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Abstract: The unconfined compressive strength (UCS) of a stabilised soil is a major mechanical
parameter in understanding and developing geomechanical models, and it can be estimated directly
by either lab testing of retrieved core samples or remoulded samples. However, due to the effort,
high cost and time associated with these methods, there is a need to develop a new technique for
predicting UCS values in real time. An artificial intelligence paradigm of machine learning (ML)
using the gradient boosting (GB) technique is applied in this study to model the unconfined compres-
sive strength of soils stabilised by cementitious additive-enriched agro-based pozzolans. Both ML
regression and multinomial classification of the UCS of the stabilised mix are investigated. Rigorous
sensitivity-driven diagnostic testing is also performed to validate and provide an understanding
of the intricacies of the decisions made by the algorithm. Results indicate that the well-tuned and
optimised GB algorithm has a very high capacity to distinguish between positive and negative UCS
categories (‘firm’, ‘very stiff’ and ‘hard’). An overall accuracy of 0.920, weighted recall rates and pre-
cision scores of 0.920 and 0.938, respectively, were produced by the GB model. Multiclass prediction
in this regard shows that only 12.5% of misclassified instances was achieved. When applied to a
regression problem, a coefficient of determination of approximately 0.900 and a mean error of about
0.335 were obtained, thus lending further credence to the high performance of the GB algorithm used.
Finally, among the eight input features utilised as independent variables, the additives seemed to
exhibit the strongest influence on the ML predictive modelling.

Keywords: machine learning; artificial intelligence; pozzolans; cement; gradient boosting; soil
stabilisation; rice husk ash; palm oil fuel ash; unconfined compressive strength

1. Introduction

Ground improvement using the technique of shallow or deep soil mixing has received
much interest and acceptance in recent years largely due to its extensive applications in
construction projects. In the UK, EU and US where the uptake and implementation of the
technology has increased exponentially over the past three decades, environmental policies
and laws, taxes, landfill directives and the ever-increasing cost of excavating and moving
poor soils has made this method of ground stabilisation even more imminent [1–4].

Cementitious materials, such as cement and lime, have been used traditionally over
the past 50 decades as hydraulic binders to stabilise poor soils. However, the attendant
negative environmental impacts associated with the production of these energy intensive
binders are a present global concern. Hence, based on current developments in knowledge
and research, attention is gradually shifting from an over-reliance on solely cement and
lime to the utilisation of waste materials, industrial and agricultural by-products, organics,
etc., in soil stabilisation [5,6].

Materials 2022, 15, 4575. https://doi.org/10.3390/ma15134575 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15134575
https://doi.org/10.3390/ma15134575
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-4410-0129
https://doi.org/10.3390/ma15134575
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15134575?type=check_update&version=1


Materials 2022, 15, 4575 2 of 25

Agro-based environmentally friendly pozzolanic materials, such as rice husk ash, palm
oil fuel ash, bagasse ash, coconut shell ash, coconut husk ash, corn cob ash, almond shell ash,
etc., have gained considerable attention in soil stabilisation given the ever-growing costs of
their disposal [7–18]. The major chemical composition of these plant-based pozzolans are
alumino-silicates [19–21]. Moreover, in order to achieve the desired effect on the mechanical
properties of soils, most applications in soil stabilisation have tended towards the partial
substitution of calcium-based agents by agro-based pozzolans. The soil-binder mix in this
regard can speed up the rate of development of the calcium alumino-silicate hydrated gel
(CAH or CASH) as well as the sodium alumino-silicate hydrated gel (NASH) [22]. These
binding gels will develop inside the soil voids, and aid in the formation of a more compact
soil-binder mix and thus enable a further improvement in the strength of the stabilised soil.
Approximately 50–80% reduction in the quantity of calcium-oxide-based additives as a
result of the addition of agro-based pozzolanic materials has been reported [23]. Important
literature surveys reflecting the composite mix of calcium-based and agro-based agents
used in soil stabilisation were carried out recently [15,24,25]. Table 1 is an indication of
some of the binders used in the recent past and the target strength properties considered in
the improvement.

In general, the determination of the strength properties of soils stabilised by using a
composite binder mixture is often a crucial first step towards establishing the correct design
mix guideline for field application [26–28]. For soils stabilised by using multiple binder
combinations, the challenges of establishing a parameter, such as the UCS, may require
laborious laboratory experimentation and time-consuming trial batching of binder type,
quantities, optimal combinations, choice of curing duration, and the determination of other
influencing factors.

Moreover, conventional techniques of predicting or modelling the UCS of stabilised
soils do rely essentially on relationships that are developed empirically from statistical
concepts, employing mostly linear, and occasionally nonlinear regression methods [29–31].
The equations generated analytically from these methods do tend to determine several
unknown coefficients that may affect relationships between the dependent and independent
features or variables. Hence, the resulting models, although effective in certain situations,
are inherently riddled with shortcomings due mainly to the complexities of the stabilised
soil mix.

In recent times, artificial intelligence paradigms relying on several machine learn-
ing (ML) techniques have begun to gain traction as alternatives for the determination
of the UCS of soils [32–34]. That notwithstanding, the adoption of ML methods for the
predictive modelling of improved ground properties has only been reported in a few
studies [32,35–42]. Moreover, an application that involves predictive modelling of com-
pressive strength of soils stabilised by eco-friendly pozzolans enriched by cementitious
additives has not been reported.

In this study, the gradient boosting (GB) machine learning technique is utilised for the
predictive modelling of compressive strength of soils stabilised by cementitious additive-
enriched eco-friendly pozzolans. This research shall take into account both regression and
multinomial classification of the compressive strength of the stabilised soils. Rigorous
sensitivity-driven diagnostic testing to validate the algorithm used and the corresponding
statistical outcomes are also undertaken. Finally, it is recommended that an implementation
of the concepts derived from this study be applied during the preliminary stages of soil
stabilisation for civil construction and related ground improvement applications.

Table 1. Studies on soil stabilisation using agro-based and cementitious additive blends.

Pozzolanic Ash Cementitious Additive Target Strength Reference

Rice husk ash Lime CBR [43]
Bagasse ash Lime UCS, CBR [44]

Rice husk ash Cement, Lime UCS [45]
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Table 1. Cont.

Pozzolanic Ash Cementitious Additive Target Strength Reference

Rice husk ash Cement, Lime UCS, Shear [23]
Bagasse ash Lime CBR [46]

Rice husk ash Cement UCS, CBR [47]
Palm oil fuel ash Lime UCS [21]

Rice husk ash Lime CBR, shear [48]
Bagasse ash Calcium carbide UCS, shear [49]

Rice husk ash Cement UCS, tensile strength, flexural strength [50]
Rice husk ash Cement CBR [51]
Sawdust ash Lime CBR [17]

Coconut shell ash, coconut husk ash Lime UCS, CBR [52]
Palm oil fuel ash High calcium pulverized fuel ash UCS, CBR [53]

Rice husk ash Cement UCS, tensile strength [54]
Palm oil fuel ash, rice husk ash Calcium carbide UCS, shear [55]

Rice husk ash Lime UCS, shear, tensile strength, CBR [56]
Rice husk ash Lime UCS, CBR [7]
Rice husk ash Lime UCS, CBR [57]
Bagasse ash Cement UCS, CBR [58]

Rice husk ash Lime UCS, shear, CBR [59]
Palm oil fuel ash Cement Shear [60]

Rice husk ash Cement Shear, CBR [11]
Rice husk ash Lime UCS [61]
Rice husk ash Lime CBR [62]
Bagasse ash Lime UCS, CBR [63]

Rice husk ash Lime, calcium chloride UCS, CBR [64]
Corn cob ash Calcium carbide UCS [65]
Bagasse ash Cement UCS [66]

Almond shell ash Lime UCS [67]
Plant ash Cement, calcium chloride UCS [14]

Rice husk ash Cement, lime UCS [35]

2. Methodology
2.1. Database Development, Pre-Processing, and Exploratory Analysis

A dataset of 392 soils stabilised using cementitious additives’-enriched agro-based poz-
zolans in various proportions and combinations, compacted and cured for 7, 14 and 28 days
were compiled from a very intensive literature search [7,17,21,22,35,44,47,49,50,53–56,63,67].
As stated previously, most agro-based pozzolanic materials are composed mainly of
alumino-silicates. The range of some of the main chemical compositions of the pozzolans
and those of the cementitious materials (containing mostly of calcium-oxide compounds)
utilised to stabilise the soils are given in Table 2. A very broad range of agro-based poz-
zolans (rice husk ash, palm oil fuel ash, bagasse ash, coconut shell ash, coconut husk
ash, corn cob ash, and almond shell ash) were used to stabilise the soils. On the other
hand, the cementitious materials consist of cement, lime, cement kiln dust, high calcium
fly ash and calcium carbide. As could be observed in Table 2, X-ray fluorescence (XRF)
measurements conducted on the binding agents used in this study indicates the maximum
proportion of alumino-silicates in the agro-based pozzolans as being about 93%, while that
of cementitious additive is about 25%. On the other hand, the highest amount of calcium
oxide compound realized in the pozzolanic ashes is about 14% compared to 95% in the
cementitious binders. It seems from Table 2 that the proportions of both agents that can
be used to stabilize the soil could be an important trade-off between their innate chemical
compositions, the target compressive strength to be achieved and the impact of their usage
on the environment. It is also pertinent to bear in mind that the clay soils to be stabilized are
themselves mostly siliceous as indicated by their chemical compositions in Table 2; hence,
they should be taken into account in deriving a suitable design mix. Standard preparation
methods including those involving slight modifications of traditional or standardized
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measurement procedures carried out to reflect special laboratory testing conditions were
followed to achieve the aims of stabilisation. Since the nature of the dataset of UCS are
diverse in this regard, it was necessary to normalise these data in order to enhance the
significance of the overall modelling and the reliability of the results of findings. A two-step
inverse-normal data transformation approach was applied on the dataset of UCS regarded
in this study as the target variable [68]. As could be observed from Figure 1 and Table 3,
normally distributed data and relatively lower values of kurtosis (−0.16) and skewness
(1.63 × 10−6) suggest that the dataset can be reliable for ML modelling.

Table 2. Range of chemical compositions of the materials.

Oxide
Agro-Based Pozzolans Cementitious Additives Soils

(%) (%) (%)

Silica (SiO2) 9.00–93.15 0.90–25.12 41.45–71.16
Alumina (Al2O3) 0.21–19.39 0.13–12.20 3.41–19.00

Iron oxide (Fe2O3) 0.21–6.10 0.15–4.46 3.59–21.34
Calcium oxide (CaO) 0.30–13.87 8.47–95.30 0.15–5.76

Potash (K2O) 1.38–27.24 0.10–5.10 0.15–3.45
Magnesia (MgO) 0.20–3.70 0.25–3.00 0.25–2.86

Loss on ignition (LOI) 1.76–15.21 1.24–4.70 1.40–5.61
Sodium oxide (Na2O) 0.14–1.50 0.17–1.72 0.21–5.20
Sodium trioxide (SO3) 0.10–2.53 0.20–2.66 0.34–0.67
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Figure 1. Normal distribution of values of UCS.

Table 3. Statistical measures of input features and target variable.

Statistic
Agro-Based Pozzolan Cementitious Additive PI LL PL Duration UCS

(%) (%) (%) (%) (%) (Days) kPa

Mean 8.22 5.03 27.92 53.64 25.72 16.30 893.12
Standard Deviation 5.93 2.54 11.72 15.45 7.78 9.40 623.42

Kurtosis −0.73 −0.61 −1.02 −1.05 −1.50 −1.71 −0.16
Skewness 0.64 0.42 0.78 0.62 0.12 0.31 1.63 × 10−6

Minimum 0.10 0.50 14.00 35.00 14.00 7.00 60.00
Maximum 25.00 11.25 50.00 86.00 37.00 28.00 3306.51
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A total of 8 independent variables are used as input features in the ML modelling
namely, values of agro-based pozzolans, cementitious additives, soil class, liquid limit,
plasticity index, plastic limit, curing duration and strength class. Exploratory dataset
analysis carried out on these variables yields the statistical metrics and distributions shown
in Table 3 and Figure 2, respectively.
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Given that the independent variable dataset will be used in its raw form for the ML
modelling, it is very refreshing to note how reasonably low their kurtosis and skewness
scores are as observed in Table 3. It is very necessary to use raw independent data of
the variables in the predictive modelling to preserve as well as ensure an accurate repre-
sentation of the natural reality of random distributions. As Table 3 shows, the range and
proportion (calculated by weight of dry soil) of the agro-based pozzolans (lowest of 0.1%
and highest of 25%) and the cementitious materials (lowest of 0.5% and highest of 11.25%)
used, demonstrate a very diverse mix of binder quantities that are used to stabilise the
soils. Except for the soil plasticity properties, Figure 2a,b shows a fairly uniform frequency
distribution for the binders used. The distribution of the soil class is observed as being
skewed to favour mostly soils of lower plasticity. However, there is almost a satisfying
balance between the soil classes if both high plasticity classes (CH and MH) are considered
together compared to the lower plasticity class (CL). The frequency distribution of curing
duration (Figure 2g) seems fair, except for the UCS strength classes, which, according to
Figure 2h, is imbalanced and skewed towards the hardened stabilised soils. Thus, the
frequency distribution for the stabilised soil’s compressive strength class (or consistency)
in this regard indicates that most of the stabilised soils in the dataset were greater than ap-
proximately 400 kPa, as Table 4 shows. The UCS class shall serve as a target (or dependent)
variable in the multinomial classification ML prediction, while, as already stated above,
the actual numerical values of the UCS shall be used as dependent variables in the ML
regression modelling considered subsequently in this research.

Table 4. Range of values of strength category for UCS.

Strength Category UCS (kPa)

Very soft <25
Soft 25–50
Firm 50–200
Stiff 200–400

Hard >400

2.2. Gradient Boosting Machine (GBM)

Boosting is generally an ensemble machine learning technique that involves an aggre-
gation of based learners to enable better predictions of mostly classification and regression
problems. Gradient boosting (GB) machine works by optimising a differentiable loss func-
tion (an example is the ‘squared error’ for regression and ‘logarithmic’ for classification)
as well as an additive modelling that involves taking a weighted sum of several suitable
base learners in order to minimise the loss function. In its simplest from, the GBM as an
additive model can be represented mathematically as

Fm(X) = Fm−1(X) + η· fm(X)

where F = ensemble model, f = base(weak) learner, η = rate of learning or shrinkage and X
is the input vector.

Fm (X) is the result of each iteration obtained by minimising a loss function and
therefore can be considered as a directional vector (rm−1), which points to the steepest
decent. Hence, the GB machine can then be expressed alternatively as

Fm(X) = Fm−1(X) + η·rm−1

If the function that is being approximated is given as

F(x) = f1(x) + f2(x) + f3(x) + · · ·+ fn
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If there are n number of samples in a dataset (D), with each sample having m set of
features in a vector x and a real target or dependent value of y all expressed as

D = xi, yi(|D| = n, xi ∈ Rm, yi ∈ R)

Then, an ensemble of trees considering additive modelling can be given as below:

yi = φ(xi) = ∑M
m=1 fm(xi), fm ∈ F

where M = number of base leaners and F = regression tree space.
Additionally, if the differentiable loss function is given as

L(φ) = ∑i l(ŷι, yi)

then the first step in initialising the model with a constant value by minimizing the loss
function becomes

F0(x) = argmin︸ ︷︷ ︸
ρ

∑n
i=1 L(yi, b0)

where b0 = minimisation of loss function at 0th iteration.
For m = 1 to M, the following is computed for all the n samples for i = 1, . . . , n

rim = −
[

∂L(yi, Fm−1(xi))

∂Fm−1(xi)

]
Next, we fit a regression (or classification tree) to rim, allowing each tree to be denoted

by Rjm for j = 1, . . . , Jm, where Jm is the number of leaves in the trees created in the mth

iteration.
For j = 1, . . . , Jm the following is then computed:

ρm = argmin︸ ︷︷ ︸
ρ

∑n
i=1 L(yi, Fm−1(x) + ρm ∑J

j=1 bjm

where bjm = least square coefficient or the basis function, ρm = leaf weight or scaling factor
The equation then simplifies to

ρjm = argmin︸ ︷︷ ︸
ρ

∑n
i=1 L(yi, Fm−1(x) + ρm·bm),

With the update given as

Fm(x) = Fm−1(x) + η·ρm·∑Jm
j=1 bjm

It is important to note that the parameters or hyperparameters required (among other
factors) will have to be carefully selected in order to obtain an optimised or desirable results
of the ML prediction. The following section shall describe the methods adopted to optimise
the GB machine to ensure higher performance on multinomial classification and regression.

2.3. Model Optimisation
2.3.1. Hyperparameter Tuning

In order to ensure the best performance of the GB model, a series of stepwise-
randomized searching were implemented to select the best performing hyperparameters
using python’s sklearn searching class type called “RandomizedSearchCV”. Table 5 shows
the hyperparameters eventually chosen to optimise the algorithm on both the training and
testing datasets.
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Table 5. Optimised parameters of GB algorithm.

Category Parameter

Tree-based min_samples_split = 6; max_depth = 5; min_samples_leaf = 11; max_leaf_nodes = 100;
max_features = sqrt; min_weight_fraction_leaf = 0.005

Boosting Subsmaple = 0.7999905; n_estimators = 501; Learning rate = 0.0805;

General functionality loss = huber; random state = 20; criterion = friedman_mse;
min_impurity_decrease = 8.999999999; init = None; alpha = 0.9; n_iter_no_change = None

2.3.2. Cross-Validation

The k-fold cross-validation technique was applied to enhance learning and validation
on 80% of the dataset. Cross validation also ensures that undue overfitting of the algorithm
on the training set was prevented. After several trials, 10-fold cross validation was regarded
as the most effective in the ML modelling. It is important to note that a further 20% of the
data was set aside for model testing.

2.4. ML Performance Evaluation Metrics

For an assessment of the performance of the ML model on the multinomial classifica-
tion problem, accuracy, precision, recall and F1 score were used. Additionally, in order to
depict the capacity of the model to predict the probability of the compressive strength of the
stabilised soils belonging to different categories across a specified decision threshold, the
receiver operating characteristic curve (ROC) and corresponding area under curve (AUC)
were used. ROC is a plot of true positive rate (TPR) or sensitivity versus false positive rate
(FPR) (or one less specificity) under some threshold values hence, separating “noise” from
“signals”. AUC is a measure of the actual ability of a model to distinguish between class
labels. For the regression problem, coefficient of determination (R2) and mean absolute
percentage error (MAPE) metrics shall be adopted.

3. Results and Discussion
3.1. Behaviour of the Stabilised Soils

The UCS of soils stabilised using cementitious additives-enriched pozzolanic materials
and compacted at optimal conditions (dry density (DD) and moisture content (MC)) as
shown in Figure 3. The stabilised materials were thoroughly synthesized and slightly
modified from their original sources with the horizontal axis showing a combined total of
the binders (agro-based pozzolans and cementitious additives) used (by weight of the dry
soil). Generally, a rising trend is observed as represented by the shaded bands signifying
increments up to 28 days of curing. The increase in strength corresponds to an increase in
the proportion of the binders with the curing duration. However, a few slight deviations
from this trend are also observed, where there seems to be a threshold signifying the
highest rise in UCS corresponding to the optimal binder mixes beyond which there is
a minimal decrease in UCS as the total binder proportion increases (Figure 3a,c,g,k,l,p).
28-day strength development of twice and slightly more than doubled those observed at
7 days of curing are noticed in Figure 3b,d,h. As indicated in Figure 3b, 100% strength
increase at 28 days, up from 7 days of curing, is also realised when the binders with
combined proportion of 25% are used to stabilise the soil. On the other hand, the strength
increases of about 23% (from 7 to 28 days of curing), considered the least of all, are indicated
in Figure 3k,o.

In general, the total amount of agro-based pozzolans combined with calcium-based
additives required to stabilise the soil to produce the highest strength is approximately
15% by weight of the dry soil. Moreover, it has been reported that the proportion of
agro-based pozzolanic ashes should be more than calcium oxide-rich additives in the
stabilised soil in order to achieve the desired aim of reducing carbon footprinting [51,54,69].
It should also be noted that although the behaviour of the stabilised soil in terms of strength
increase is mostly due to the proportion of binders used and curing duration, the methods
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of preparation of the stabilised soil, curing conditions, method of compaction, soil type,
laboratory instrumentation, etc., can also contribute to this trend. It is suggested that
these secondary factors be further investigated and modelled to include environmental
factors (temperature, freezing and thawing, wetting and drying, etc.), which could also
have potential effect in terms of the durability of a stabilised soil.
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Figure 3. Variation of UCS of stabilised soils with duration and binder proportion. (a) 39% increase
in UCS; (b) 100% increase in UCS; (c) 74% increase in UCS; (d) 109% increase in UCS; (e) 48% increase
in UCS; (f) 44% increase in UCS; (g) 43% increase in UCS; (h) 115% increase in UCS; (i) 83% increase
in UCS; (j) 60% increase in UCS; (k) 23% increase in UCS; (l) 29% increase in UCS; (m) 52% increase
in UCS; (n) 36% increase in UCS; (o) 23% increase in UCS; (p) 77% increase in UCS.

3.2. ML Classification of UCS

Three compressive strength categories or classes (‘firm’, ‘very stiff’ and ‘hard’) are
obvious from the dataset as earlier indicated by their statistical distribution in Figure 2h.
Hence, an application of ML multiclass classification was used to gauge the performance
of the GB ML algorithm by investigating its capacity to properly learn the stabilised soil
strength patterns and therefore provide predictions accordingly. In most cases, it is very
essential that for multinomial classification problems, a threshold point be set for the
classifier’s boundary across the different categories. Hence, a sensitivity analysis was
performed by using the ROC (receiver operating characteristics curve) and resulting area
under curve (AUC) as relevant tools for the assessment of the capacity of a ML algorithm
to identify or decern the true positives among the class labels.

As shown in Figure 4, the GB algorithm possesses a very high capacity to identify the
positive and negative UCS consistency classes. Table 6 also shows very high values of the
multinomial classification metrics resulting from the ML prediction. With a ‘non weighted’
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accuracy of 0.920, it can then be inferred that the ability of the GB ML algorithm in the
multiclass prediction to ensure that both type 1 and type 2 prediction errors have been
kept at the barest minimum has been achieved. Table 6 also shows that the assignment of
weighted average to take care of under-represented class instances does clearly improve
the individual multiclass performance with ‘weighted’ accuracy of 0.966 compared to the
overall accuracy metric of 0.920. Further, it is important to note that the averaging that
considers each class instances (i.e., micro-averaging) gives higher scores when compared
to the averaging, whereby all equal class instances (i.e., macro-averaging) are taken into
account with respect to the most frequently occurring class labels. Additionally, by compar-
ing other metrics, such as the recall rates and precision scores, it is observed in Table 6 that
using micro-averaging in this regard does provide relatively higher sensitivity and thus
better performance.
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Table 6. Multinomial classification metrics.

Multiclass Metric Type Value

Accuracy Overall 0.920
Weighted 0.966

AUC
Macro 0.951
Micro 0.980

Weighted 0.958

f1 score
Macro 0.818
Micro 0.920

Weighted 0.915

Precision
Macro 0.882
Micro 0.920

Weighted 0.938

Recall
Macro 0.833
Micro 0.920

Weighted 0.920

The number of misclassified instances indicated in the normalised confusion matrix
could have been due to an imbalance of the strength categories or classes. However, it is
very important to note that in order to ensure an overfitting of the data by the algorithm was
prevented, a 10-fold cross validation was used. The distribution of the strength categories
as earlier indicated in Figure 5 indicated that most of the stabilised soils in the dataset were
classed as being ‘hard’ (i.e., >400 kPa). Hence the prediction has unsurprisingly shown
slight biases towards the stabilised soils’ ‘hard’, ‘very stiff’ and ‘firm’ categories in that
order. Based on the nature of dataset used in this study, this behaviour of the ML model



Materials 2022, 15, 4575 11 of 25

is also partly a reaffirmation of the effectiveness of the eco-friendly pozzolanas combined
with the cementitious binders in stabilising the soft soils. A total of 12.5% misclassified
instances was achieved.
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Another means of validating a classifier’s performance is by using the cumulative
gains (CG) and its corresponding lift curve (LC). By relying on the CG or LC, further
justification can be provided to show the classifier’s effectiveness in the ML prediction
especially when compared to another model exhibiting an act of random guessing between
multinomial categories. LC is extrapolated from the CG and represents the cumulative gains
between a model that also includes the baseline lifting portion (or horizontal percentile
axis) of the curve. The lift is viewed mathematically as the ratio of 1 s on a certain sampled
data point, to that of 1 s on the entire dataset as given in the equation below. This then can
be seen as the predictions that a random model would be making.

lift =
prediction rate

average rate
=

ratio of 1 s in a particular samples dataset
ratio of 1 s in the whole dataset

Figure 6 shows the CG and LC of the multiclass classification. A high lift indicates
a high performing algorithm. The lift indicated by micro-averaging indicates the highest
rising from the baseline percentile axis up to the value of about 5 as seen in Figure 6.
Although LC could also be used to compare two or more models, the performance of
GB in this regard can be viewed as very reasonable. Hence, if 5% of the sampled data is
considered, it therefore means that there are 5 times more positive class labels for each of
the classes than an average. Put differently, for 5% of the dataset sampled, about 50% of the
entire dataset would contain all the positive class labels.

It is pertinent to note that the performance of the ML model as indicated by the LC
resulting from micro-averaging is generally higher than those of macro- and weighted lift
scores. This behaviour confirms further, the multiclass ML prediction outcomes given by
the ROC and CG curves.

3.3. ML Regression of UCS

GB demonstrates a very high capacity to learn the complexities of the soil stabilised
using the different additives and their various combinations as already seen from the
multiclass classification above. As can be observed from Figure 7, both the coefficient of
determination for the train and test sets are equal at 0.900. Further evidence of this high
performance is indicated by the very low percentage error of both the training and testing
datasets being 0.213 and 0.335, respectively. Tabarsa et al. [35], in their studies utilising both
artificial neural networks and support vector machine algorithms, obtained a coefficient
of determination of about 0.990, albeit on a smaller number of dataset (137 datapoints).
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Unlike the present study, they did not utilise the technique of cross validation, and hence,
overfitting of the dataset could not be ascertained. Additionally, Tabarsa et al. [35] only
considered a single agro-based ash (rice husk ash) and two cementitious binders (cement
and lime) in the stabilised soil mix, whereas the present study utilised a multitude of the
agro-based and calcium-oxide based agents in the soil stabilisation. While this could mean
that the stabilised soils’ model in this study is more non-linear, it is also important to
add that the eight input variables utilised in the model may have also impacted the non-
linearity of the model compared to six such input features used in the research conducted
by Tabarsa et al. [35].
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It is important to emphasise that cross-validation was performed on the training
dataset used in this study in order to prevent undue overfitting of the model. Further
sensitivity analyses to justify the capability of the GB algorithm used are discussed in the
sections following.

3.4. ML Model Diagnostics
3.4.1. GB Model Residuals

Residual plots of ML predictions can provide an insight into the behaviour of a model
while also offering the means of validating such a model. By utilising the residual plots,
a ML model’s predicted or observed errors can be assessed and evaluated in order to
judge its consistency with that of its corresponding stochastic errors (i.e., its measure
of unpredictability or randomness). Figure 8 indicates the level of independence of the
residuals for both the training and the testing sets when applying GB ML model. As could
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be observed, ML predictions on the dataset have demonstrated very high independence
of the residuals or stochastic prediction errors, given that the training and testing dataset
are relatively very close and concentrated around the zero-line including a very random
distribution of the data points. Almost similar trends of very high symmetry about the
origin are exhibited by both training and testing sets of data thus further confirming their
matching R2 metric score as indicated above followed by a minute difference in the mean
absolute percentage error metric. That notwithstanding, as could be observed from the
residual plot of Figure 8, a few data points seem to be far away from the zero-line, which
also confirms that the residuals may not be entirely independent.
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3.4.2. Distribution of Residuals

The normal frequency distribution plot of the residuals is another means for which
a ML algorithm’s authenticity and effectiveness can be assessed. Figure 9 shows the
cumulative distributions on histogram plots of the GB regression on training and testing
sets. Much like the residual plots given above, there is a higher symmetry with very
balanced distributions of the GB model predictions about the centre, although the residuals
of the training sets are slightly higher, given they contain most of the data points compared
to the testing set. Furthermore, a very high performing model will tend to possess residuals
with peaks at the centre or the origin in some cases but with only marginal stochastic errors
at the seams, whereas an inaccurate model with very low predictive performance will tend
to have much higher errors at the seams and fewer peaks at the centre of the distribution.
Based on this concept, it could be observed that although GB prediction on the training set
does possess a higher residual peak given the greater quantity of the dataset used, both it
and the predictions on the testing set tend to have very low residuals at the extremes of the
distribution, hence indicating further the high level of accuracy provided by the model in
the ML prediction.

Overall, when the algorithm is applied on the training dataset set, the total of residual
data points is about 0.04% of each of the sum of the predicted and actual data (Figure 9b).
Meanwhile, ML learning regression using the testing set would produce a total of ap-
proximately 1.60% of the sum of the predicted and actual data (Figure 9d). Although the
performance of the ML algorithm on both the training and testing set are equal when
considering the regression coefficient of 0.900 for both sets of data, further diagnostics
has revealed that the errors (although very marginal) inherent in the predictive model are
slightly higher on the testing dataset than on the training set. This is also a confirmation of
their different mean percentage error scores as observed previously.

3.5. ML Model Interpretation
3.5.1. ML Feature Importance

Indicators of the importance of input features or independent variables in ML pre-
diction can provide an insight into the dataset utilised in the stabilised soil modelling,
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while also enabling in some instances an improvement of the effectiveness of the adopted
algorithm in the preliminary stages of the model selection. The relative usefulness and
significance of the input features used in the modelling or forecast of target variables are
shown in Figure 10 for both the multiclass classification and ML regression.
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For the classification problem, the feature importance of the input variables aggregated
over the three target categories (strength classes) shows the cementitious additives as having
the greatest influence on the prediction of the strength class. Although the importance of
the soil class is greater than that of the pozzolanic materials, it could be concluded generally
that the binders used in the soil stabilisation do possess the highest effect on the prediction
of the strength class within the bounds of dataset used in this study. When considering
the performance of the features in the prediction of each of the different class categories,
it is observed from Figure 10 that the binders again do possess the highest significance
in the ML classification. In the same vein, the binders are also observed as consistently
having an important bearing on the class categories as noted by the similar levels of feature
importance values for each of pozzolans and calcium-oxide-rich additives across the three
class categories. It is interesting to observe that although the soil class has the second
highest importance after calcium-oxide-rich additives, it does not seem to consistently
contribute to the performance or multiclass prediction of the strength categories. Again,
Figure 10 does also indicate how the soil plasticity features are lower in the ranking of
importance in the ML classification.
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Almost a similar trend in terms of feature importance in ML classification is demon-
strated by the input features when considering ML regression on the actual compressive
strength values of the stabilised soils. It is clearly seen from Figure 11 that here, the binders
do possess much stronger influence on the prediction. Interestingly, the soil class seems to
have the least importance in the prediction of the target variable. It is also very refreshing
to note how the soil plasticity properties used as input features in the ML forecast have a
stronger bearing on the regression forecast when compared to the ML classification. It is
important to stress that although curing duration is an important consideration in deter-
mining the strength gain in soil stabilisation, its contribution as an input feature is judged,
but the GB model is only fair both in the classification and regression problems. This
could be seen as positive at least within the context of the dataset used in this study. This
does suggest that the GB ML algorithm can show high performance by determining either
what strength class the stabilised soil belongs or what compressive strength it possesses,
irrespective of the knowledge of the age of curing.
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3.5.2. Partial Dependence and Interaction Plots

A partial dependence plot (PDP) and an individual conditional expectation (ICE)
plot could be utilised to analyse and visualise the interaction that exit between the target
response variable and a set of explanatory or input variables of interest. PDP indicates
the dependence (taken as an average) between the target response variable and a set of
independent variables of interest, marginalizing over the average values of the other input
variables (or the ‘complementary’ features). Meanwhile, an ICE allows a visualisation of
the dependence of a prediction on a variable for each sample when considered separately
with one line per sample.

Figure 12 indicates one-way PDP plots with ICE lines between the explanatory features
and the response variable. As could be observed, the strongest non-linear relationship
seems to exist mostly between the binders (cementitious additive and agro-based pozzolans)
and the target or response variable of UCS, although there are some exceptions, where
the response variable remains almost constant in some ranges of the average amount
of cementitious additive and agro-based pozzolans. This indicates a dependence of the
predicted variable on the binders. However, there appears to be almost no relationship
between the duration and the strength class with the target variable as indicated by the ICE
lines being constant throughout in most ranges of the median of the explanatory features.

A much better visualisation of the interaction between each of the two most influential
and less influential features in the prediction is shown in Figure 13. The two-way interaction
PDP plots indicate the dependence of the average of the target variable (UCS) on the joint
values of the most important and the less influential variables. When considered together,
it can be clearly seen from Figure 13a–d that there is a strong interaction between the
two most important features: for an average agro-based pozzolan of between 7 and 15%,
the UCS is nearly independent of the cementitious additive used (indicated by the nearly
horizontal contours of Figure 13c), whereas for median values between 0 and 7% (indicated
by vertical contours), there is a strong dependence on the cementitious additives. Although
there are pockets of exceptions to these relationships as observed from Figure 13c, it could
be concluded generally that the quantity of agro-based binder required in combination
with a calcium-based cementitious agent for high stabilised soil performance in terms of
unconfined compressive strength should be limited to about 15% but not less than 7%
calculated by weight of the dry soil. With regards to the soil plasticity properties, for an
average plasticity index (PI) of less than 40%, the UCS is nearly independent of the plastic
limit (PL) (Figure 14a–d). Finally, there seems to be almost no dependence of UCS on the
soil class for all average values of the curing duration (Figure 15a–d).

3.6. Comparison to Other Tree-Based ML Ensembles

A confirmation of the performance of the GB ML algorithm used in this study when
compared to other commonly used tree-based ensemble ML techniques is given in Table 7.
GB does clearly outperform its counterparts and base estimators as indicated by the sta-
tistical metrics. Granted, these algorithms are characterised by slightly different param-
eters; however, these were optimised and used for the training and testing. The order
of performance and ranking of the algorithms on the stabilised soil dataset is Gradient
Boost > Adaboost > Extremely Randomised Trees > Random Forest > Decision Tree.
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Table 7. ML performance of tree ensembles on the stabilised soil dataset.

Model Optimised Parameters R2 MAPE

Training Testing Training Testing

Decision Tree

splitter = ‘random’, random_state = 51,
max_depth = 20, min_samples_split = 5,

criterion = ‘squared_error’,
min_samples_leaf = 2, max_features = ‘auto’,

min_impurity_decrease = 0.9,
max_leaf_nodes = 50

0.820 0.813 0.332 0.915

Random Forest

n_estimators = 500, random_state = 5,
max_depth = 9, min_samples_split = 5,

criterion = ‘squared_error’,
min_samples_leaf = 2, max_features = ‘log2’,

oob_score = False, bootstrap = True,
max_leaf_nodes = 100

0.861 0.827 0.328 0.845

Extremely
Randomised Trees

n_estimators = 100, random_state = 90,
max_depth = 9, min_samples_split = 6,

criterion = ‘squared_error’,
min_samples_leaf = 2, max_features = ‘auto’,

oob_score = False, bootstrap = False,
max_leaf_nodes = 70

0.867 0.849 0.211 0.513

Adaboost

base_estimator = Decision tree
(max_depth = 7), n_estimators = 20,

random_state = 45, loss = ‘exponential’,
learning_rate = 0.9205

0.867 0.856 0.200 0.478

Gradient Boosting
(this study) Table 5 0.900 0.900 0.213 0.335

4. Study Significance

The importance of machine learning to civil and environmental engineering design
and construction especially in ground improvement works including but not limited to
road subgrades, building foundations, embankments and cut slopes, bridge abutments,
exclusion barriers, liquefaction mitigation, backfills, contaminated ground remediation,
etc. cannot be over- emphasized. The concept of artificial intelligence as applied in this
study can save time, cost and money during the planning and design stages of ground
improvement. Examples of some of the preliminary exercises that can be circumvented are
laborious laboratory experimentation and time-consuming trial batching of binder type,
quantities, optimum combinations, choice of curing duration, and the determination of
other influencing factors. In order to practically implement the model studied herein, all its
resources, including background scripting, would have to be deployed and persisted on an
organisation’s server to be used to train and test on new data of stabilised soil’s unconfined
compressive strength.

However, it should be borne in mind that only a few of the plethora of factors that can
directly or indirectly influence soil stabilisation were considered. Hence, it is suggested
that the principles applied in this research be extended to include modelling of not just
soil strength behaviours but also other important serviceability design parameters that
involve settlement and soil swelling or expansion. Moreover, predictive modelling using
artificial intelligence is recommended for stabilised soils subjected to different curing and
environmental durability conditions in future studies. It is also suggested that various
other environmentally friendly materials be utilised to stabilise the soils and predictions
made using machine learning models.

5. Conclusions

An artificial intelligent approach using machine learning for predictive modelling
of soil stabilised by eco-friendly pozzolans rich in cementitious additives was studied.
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Sensitivity-driven diagnostic testing was also performed to validate the algorithm used
along with the corresponding statistical outcomes. Highlights and the summary of this
study are as follows:

• The combined total quantity of agro-based pozzolans and calcium oxide-rich required
to stabilise a soil to produce the highest strength is approximately 15% (by weight of
the dry soil) but with the pozzolan having the greater amount in the binder mix.

• GB algorithm shows a very high capacity to distinguish between positive and negative
unconfined compressive strength categories (‘firm’, ‘very stiff’ and ‘hard’) with an
overall accuracy of 0.920, weighted scores of 0.938 and 0.920 for precision and recall
rates respectively and an overall lift of 5 in a multinomial classification.

• Although ML multiclass prediction was slightly biases towards the stabilised soils’
‘hard’, ‘very stiff’ and ‘firm’ categories in that order, only 12.5% of misclassified
instances was achieved by the algorithm.

• A coefficient of determination of approximately 0.900 and a mean absolute percentage
error of 0.335 lends further evidence to the high performance of the GB algorithm
when applied to a regression problem.

• Rigorous diagnostic tests performed on the GB algorithm revealed only marginal
inherent stochastic errors in the prediction with the errors only being slightly higher
on the testing set when compared to the training set.

• Overall, among the 8 input features used as independent variables, the binders (both
agro-based pozzolans and the cementitious additives) tend to exhibit the strongest
influence on the ML predictive modelling in the multinomial classification and regres-
sion modelling.
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