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E2EK: End-to-End Regression Network Based on
Keypoint for 6D Pose Estimation

Shifeng Lin1∗, Zunran Wang2∗, Yonggen Ling2, Yidan Tao3, Chenguang Yang4

Abstract—The methods based on deep learning are the main-
stream of 6D object pose estimation, which mainly include direct
regression and two-stage pipelines. The former are keen by many
scholars at first due to their simplicity and differentiability to
poses, but they usually lack in accuracy when compared with
the latter that estimate the intermediate variables relating to
geometries such as object keypoints or 2D-3D correspondence
before PnP/RANSAC algorithm. However, the loss function of
the two-stage method is non-differentiable to the 6D pose, which
is hard to apply in the tasks requiring the differentiable poses. To
overcome the disadvantages of the above methods, we propose
an end-to-end regression network based on keypoints for 6D
pose estimation. Specifically, we supervise the point-wise keypoint
offsets that help the network to learn the geometric information
and directly regress the 6D pose through aggregating keypoints
to achieve differentiability to the pose. Furthermore, we improve
the sampling method by sampling points around objects that
benefits the small object and design a unit loss function that
helps the learning of the keypoints. Experimental results show
that our approach outperforms most methods on LM, LM-O and
YCB-V datasets.

Index Terms—Deep Learning for Visual Perception, RGB-D
Perception, Pose Estimation

I. INTRODUCTION

6D object pose estimation can be employed in lots of
real-world applications such as robot grasping [42], [45],

augmented reality [43], automatic driving [44] and information
transfer [34]. In particular, the high-precision result of pose
estimation conducts to a more stable robot grasping [42], [45].
Recently, this task has gained substantial achievement with the
advent of deep learning [4]–[6], [8]. Early approaches regard
pose estimation as a discrete space pose classification problem,
but they only get rough results [11], [18]. Other methods
construct completely differentiable networks to directly regress
the 6D pose [7], [15], [16](Figure 1(a)). Although they have
fast speed and end-to-end trainability, they get poor perfor-
mance on accuracy because of only single pose supervision
information [3], [7].
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Fig. 1. Overview of the proposed method. (a) shows the direct regression
method which has a fast speed and end-to-end trainability but suffers poor
performance. (b) shows the two-stage pipeline which has a better performance
but is non-differentiable to the 6D pose. (c) represents our regression network
based on keypoints. Specifically, we remove the outlier through the correlation
between the predicted keypoints and integrate an end-to-end 6D pose estimator
into keypoint regression, which achieves differentiability to the pose while
taking into account speed and accuracy.

Mainstream researchers try to tackle this problem by di-
viding the task into two stages. They first introduce the
intermediate variables to mine the potential information of the
pose and then solve the pose through the geometric estima-
tor(Figure 1(b)). For example, [4], [6] predict the dense 2D-3D
correspondence and then solve the pose by the PnP/RANSAC.
[2] predicts the point-wise offset from the visual part to the
keypoints. The keypoints are then obtained by voting and
the pose is solved by PnP. Although the two-stage methods
provide better estimation results, there are still some problems.
Firstly, these methods usually use the corresponding relation-
ship of intermediate variables as the objective function for
training. However, the intermediate variables cannot directly
reflect the error of the pose estimation, for the error of
the inferred pose from two different sets of intermediate
variables may be the same. Secondly, these methods are not
differentiable for the 6D pose and can not be used in some
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self-supervised methods, which require a fully differentiable
network to transmit the signal between input and the 6D pose.
Finally, the time consumed by the methods of PnP/RANSAC
or voting and least square limits the real-time performance of
the method when dealing with the dense correspondence.

To combine the advantages of the direct regression methods
and the two-stage methods, [8], [17], [38] put forward direct
regression frameworks based on the supervision of intermedi-
ate variables with RGB information for a better performance.
However, lacking depth information restricts the ability to
mine the geometric structure information of objects [3], which
results in poor performance when suffering poor lighting
conditions or low contrast and non-textured objects.

In this paper, we build an object pose estimator based on
RGBD information. The RGBD full flow bidirectional fusion
network in [3] is proven to be an efficient way to fuse the
RGBD information, hence it is suitable for our backbone to
utilize the texture and geometric structure information of the
object. In the estimator, we integrate the end-to-end learning
into the keypoint regression to realize gradient backprop-
agation between the 6D pose information and the RGBD
information. Figure 1(c) illustrates an overview of our method.
Using the RGBD full flow bidirectional fusion Network [3],
we obtain the point-wise offset from the visible part of the
object to the keypoints. Then, we remove the outliers by
keypoint distribution. Specifically, we remain the points near
the mean after standardizing the keypoints. The supervision of
keypoints and the removal of outliers make the network more
robust to learn geometric structure information of objects.
Finally, we construct a simple but effective keypoint-based
regression head. The head takes the keypoints in the camera
coordinate system and the corresponding keypoints in the
model coordinate system as input and outputs the 6D object
pose. As the keypoints information comes from the previous
features, the entire network is differentiable to the pose.
Specially, we use the novel continuous representation for pose
in [19] to improve the performance of learning. On account of
these ways, we build an End-to-End regression network based
on Keypoint (E2EK) for 6D pose estimation.

In addition, we propose a novel keypoint offset represen-
tation for our framework. Different from the previous work
to supervise the keypoints offset [1], [3], we supervise the
unit vector and length of offset. It is generally believed that
uniformly distributed output is beneficial to the learning of
the network [32]. Besides, we further improve points sampling
rules in [1], [3]. The point cloud of the whole image is sampled
randomly in [1], [3], which will lead to the limited amount of
points on the small or heavily occluded objects. Hence we
add an object detection framework and sample points around
objects to ensure the number of object points for feature
fusion.

To summarize, our main contributions are as follows.
1) We propose an end-to-end regression network based on

the geometric information of correspondence keypoints,
which makes the input differentiable to the 6D pose and
improves the performance of 6D pose estimation.

2) We separate the keypoints offset into unit vector and
length for regression to make the distribution of regres-

sion variables more uniform and improve the perfor-
mance of keypoints estimation.

3) Extensive experiments on LM , LM-O , and YCBV
datasets show the superiority of our method.

II. RELATED WORK

Traditional methods extract features manually and use tem-
plate matching or point-pair feature matching to determine
the pose of objects [22], [37]. Deep-learning methods have
recently made satisfactory progress for the task. In this section,
we review several different strategies for 6D object pose
estimation.

Direct Method. The direct regression methods have the
advantages of fast speed and differentiability for the 6D
pose, but they lack accuracy. Early methods regard the pose
estimation of objects as a discrete viewpoint classification
problem [11], [18]. [11], [16] directly regress the 6D pose
use the point-match loss. Specially, Densefusion [9] combines
RGB and point cloud features to fully leverage the texture
and geometric information. However, the above methods can
only get rough results, so they use refinement to get better
results. The reason why the above methods perform poorly is
a) it is difficult for the network to encode relevant features
only relying on the supervision of pose information b) the
parameters used in most regression methods are quaternions
or variants of quaternions [16], [19], which have been proved
to be discontinuous in [19] and hence limits the learning of
the network. [19] proposed a novel continuous expression for
rotation in SO(3), which further enhance the prospect of direct
regression.

Nondifferentiable Indirect Method. The nondifferentiable
indirect regression methods leverage the supervision of in-
termediate variables to mine the potential information of the
pose. After that, the pose is estimated by a geometric estimator
with the intermediate variables. Although they gain a higher
accuracy, they are time-consuming and non-differentiable.
Some methods predict dense 2D-3D correspondence, and then
obtain the pose of the object through PnP/RANSAC [5], [6],
[21], [41]. Specially, EPOS [6] uses fragments to divide the
model into blocks and predict the category of pixels to solve
the ambiguity problem of symmetrical objects. SurfEmb [41]
proposes a novel query method based on key-value to solve the
coordinate ambiguity problem of symmetric objects. CDPN
[21] decouples the rotation and translation of the object, while
the rotation matrix is obtained by PnP/RANSAC and the
translation is obtained by regression. Some methods solve the
pose depend on keypoints [1]–[3]. For example, PVNet [2]
predicts the 2D offset in the pixel coordinate system from the
visible part to the keypoints, and align the model after voting
to estimate the pose. PVN3D [1] extends 2D to 3D to solve
projection errors in 2D image.

Differentiable Indirect Method. To take advantage of
the above methods, differentiable indirect methods construct
differentiable networks while supervising the network using
intermediate variables. Specially, [17] builds a network of
point cloud structures to solve the 6D pose with the dense 2D-
3D candidate correspondence. GDR-net [8] inputs the dense
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2D-3D correspondence and object surface fragment prediction
to a convolution network and full connection layer and output
the 6D pose of the object. SO-Pose [40] introduces a new
representation for self-occlusion and further improves the
accuracy of object pose estimation. While they perform well,
they lack accuracy when compared to the RGBD method.
With RGBD information, G2L-Net [7] uses the offset from
the visible points to the keypoints as supervision to obtain
point-wise embedding features, and inputs these features into
the fully-connected layer to obtain the 6D pose of the object.
However, the unremoved outlier features may reduce the
performance of the network and direct input features lack the
keypoint information of the model. In the case of known object
masks, REDE [12] designs a network to obtain the confidence
of keypoints, and finally uses an end-to-end network to regress
the 6D pose. However, when trained together with the task of
mask prediction, the keypoint weight network tends to learn
the same weights, resulting in poor performance. In addition,
it requires a complex training strategy that solves the pose
multi-times for single input during training.

III. PROPOSED METHOD

Given an RGBD image captured by a calibrated camera,
the goal of the 6D object pose estimation is to predict the
transformation matrix between the object coordinate system
and the camera coordinate system. The transformation matrix
consists of the rotation matrix and a translation matrix. To
tackle this problem better, the texture information of an RGB
image and the geometric information of depth image should
be used.

Fig. 2 shows an overview of our proposed method. We
first detect the object of interest using an off-the-shelf object
detector YOLOv3 [39] and sample the points in the bounding
box as input to the Point Cloud Network(PCN). Based on the
full flow bidirectional fusion network, we extract the point-
wise RGBD feature for the semantic segmentation and the
3D keypoints localization. Combining the prediction results
of semantic segmentation and keypoint offset, we get the set
of keypoints. Then, we standardize it and average pool the
points with high confidence in the Gaussian distribution to
obtain the predicted keypoints. Through the correspondence
between the predict keypoints and the model keypoints, we
train a network for direct regression of object rotation and
translation. The network consists of a 128 × 128 × 128 1-D
convolution network and a full connection layer.

A. Point Sampling Module

As we use RGBD information, sufficient number of input
point clouds can help obtain object structure information. We
use the sampling principle in [1], [3] to randomly sample
12800 points from the entire image, and make the statistics
in Fig. 3 on the Linemod Occulusion dataset.

It can be seen in Fig. 3 that when the object is occluded,
the points randomly sampled on the object are very limited,
although the overall sampling point has been as high as 12,800.
On small objects such as cat, the sampling points on the
surface of the object are less than 20 on 25% of the dataset.

We think that too sparse points are difficult to represent the
geometric structure of the object. Therefore, we added an
offline object detection framework. It is worth noting that since
our object detection framework is independent of the following
pose estimation network, we can directly use methods with
both fast and high-accuracy in the rapidly growing field of
object detection. Meanwhile, sampling in the vicinity of the
object can significantly reduce the sampling point, thereby
reducing calculation memory and time consumption.

B. Keypoints Learning Module

Considering that [3] is the state-of-the-art network for rgb
and point cloud fusion, we choose it as the feature extractor.
Following [3], we use ImageNet pre-trained ResNet34 to
encode RGB images and the PSPNet [28] as a decoder.
For the point cloud processing, we apply the RandLA-Net
[29] following [3] for a fair comparison. After the full flow
bidirectional fusion networks, the dense RGBD features are
obtained and fed into the semantic segmentation and the
keypoint offset learning modules.

1) semantic segmentation module: After extracting the per-
point features, we use the semantic segmentation module
composed of shared MLP layers to predict the per-point
semantic labels. The main function of semantic segmentation
is to segment object points and non-object points (background
or other objects) in the object detection boundingbox. In the
following keypoint voting module, we only take points judged
as objects. We use Focal Loss [31] as the loss function of the
module.

Lsemantic = −δ(1− qi)
ηlog(qi) (1)

where qi = ci ∗ li, ci presents the predicted confidence
for the ith point belongs to each class, li is the one-hot
representation of the ground true class label, δ is the balance
parameter and η is the focusing parameter.

2) 3D keypoints offset detection module: Similar to [1]–
[3], we predict per-point euclidean translation offset from the
object visible points to target keypoints. Different from [1] to
predict the unit vector, or [2] to predict the offset with length,
we predict the unit vector and the length of the offset. In other
words, we predict the four-dimensional vectors, including the
direction and the length of the offset. We think the uniform
distribution of the unit vector is helpful to the learning of
the network, but it loses the length information, which may
bring some additional errors to the recovery of keypoints after
network learning.

Given a set of visible seed points {pi}Ni=1 and a set of
selected keypoints {kj}Mj=1 belongs to an object, we predict
the unit offset {vji } and the length of the offset {lji }, where i
presents the ith visible points and j presents the jth keypoints.
In other words, for the visible points pi of the instance, the
jth candidate keypoint is define as kj = pi + vji ∗ l

j
i . We use

L1 Loss to supervise the offset and the length.
Lkeypoints = Lunit + Llength

Lunit =
1
N

∑N
i=1

∑M
j=1 ∥v

j
i − vj∗i ∥1Γ(pi ∈ I)

Llength = 1
N

∑N
i=1

∑M
j=1 ∥l

j
i − lj∗i ∥1Γ(pi ∈ I)

(2)
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Fig. 2. Overview of the proposed method. To ensure a sufficient number of sampling points on the object, we first detect the object and sample around
the object. After that, we leverage the full flow bidirectional fusion network to fuse RGB features and point cloud features to supervise keypoints offset.
After voting keypoints, the high-confidence keypoints and the model keypoints are concatenated, and the 6D pose of the object is finally obtained after the
keypoint-base network.

Fig. 3. Proportion of sampled points on the surface of the object. The abscissa
is the range of sampling points, and the ordinate is the proportion of data in
the entire dataset.

where the vj∗i is the ground truth translation unit vector offset;
N is the total number of the points and M is the number of
the keypoints. Γ is an indicating function. When pi belongs
to instance I , it equals to 1 otherwise 0.

C. Regression Module

We propose a keypoints-guided network to replace clus-
tering and least-squares in [1], [3]. This method can make
the network end-to-end trainable, and the loss function is
directly related to the accuracy of object pose estimation.
Firstly, we use the network to predict the points of each object
and the offset vector to the keypoints to obtain the candidate
keypoints of the object. Then, the keypoints are standardized,
and the keypoints with high confidence are selected for average
pooling to obtain the predicted keypoints. Finally, we concate-
nate the predicted keypoint and the corresponding keypoint in
the model coordinate system, which is passed through 1-D
convolutional networks and fully connected layers to obtain
the pose of the object.

1) keypoints voting: For keypoints {ckj}mj=1 in cam-
era coordinate system, we get the set of candidate points

{{pij}ni=1}mj=1, where m is the number of the keypoints and
n is the numbers of object points judged from the semantic
segmentation. For each keypoint ckj , we standardize the point
set {pij}ni=1 to evaluate the per-point confidence and obtain
the keypoints after voting.

ckj =

n∑
i=1

(pij ∗ cij)/
n∑

i=1

(cij) (3)

where cij represents the confidence of keypoints, which can
be calculated by the following equation.

spij = (pij −mean({pij}ni=1))/std({pij}ni=1) (4)

cij =

{
1 |spij | < θ

0 |spij | > θ
(5)

where mean and std represent the mean and standard devi-
ation of the point set {pij}ni=1, respectively. θ is a threshold
and we find θ = 0.6 to be optimal.

2) pose regression: To enable the network to better learn
the correspondence between keypoints, we aggregate model
keypoints and predicted keypoints as the input of the regres-
sion network. In conclusion, our regression module can be
written as follow.

(R, t) = G(cat{(ck1,m k1), ..., (
ckj ,

m kj)},Θ) (6)

where mkj and ckj represent the keypoints in the model
system and camera system respectively. cat() represent the
concatenation operation. For function G, we use a one-
dimensional convolutional network followed by two fully
connected layers to realize. It is worth noting that although
the network structure looks simple, the keypoint information
comes from the previous features filtered by voting, so the
gradient can be returned to the original RGBD information.
Meanwhile, multi-task training improves the ability of the
network to extract features.
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TABLE I
EXPERIMENT ON LINEMOD DATASET

RGB RGBD
PoseCNN
[25]

PVNet
[2]

CDPN
[21]

DPOD
[5]

PointFusion
[26]

Dense-
fusion
[9]

G2L-Net
[7]

PVN3D
[1]

FFB6D
[3]

Ours

ape 77 43.6 64.4 87.7 70.4 92.3 96.8 97.3 98.4 98.7
benchvise 97.5 99.9 97.8 98.5 80.7 93.2 96.1 99.7 100 100

camera 93.5 86.9 91.7 96.1 60.8 94.4 98.2 99.6 99.9 99.9
can 96.5 95.5 95.9 99.7 61.1 93.1 98 99.5 99.8 100
cat 82.1 79.3 83.8 94.7 79.1 96.5 99.2 99.8 99.9 100

driller 95 96.4 96.2 98.8 47.3 87 99.8 99.3 100 100
duck 77.7 52.6 66.8 86.3 63 92.3 97.7 98.2 98.4 99.4

eggbox 97.1 99.2 99.7 99.9 99.9 99.8 100 99.8 100 100
glue 99.4 95.7 99.6 96.8 99.3 100 100 100 100 100

holepuncher 52.8 82 85.8 86.9 71.8 92.1 99 99.9 99.8 100
iron 98.3 98.9 97.9 100 83.2 97 99.3 99.7 99.9 100
lamp 97.5 99.3 97.9 96.8 62.3 95.3 99.5 99.8 99.9 99.9
phone 87.7 92.4 90.8 94.7 78.8 92.8 98.9 99.5 99.7 100
mean 88.6 86.3 89.9 95.1 73.7 94.3 98.7 99.4 99.7 99.8

* Italic and bold are symmetrical objects

TABLE II
EXPERIMENT ON LINEMOD OCCULUSION DATASET.

PoseCNN
[25]

Pix2Pose
[4]

PVNet
[2]

DPOD
[5]

HybridPose
[27]

Single-stage
[17]

PVN3D
[1]

FFB6D
[3]

Ours

ape 9.6 22.0 15.8 - 20.9 19.2 33.9 47.2 61.0
can 45.2 44.7 63.3 - 75.3 65.1 88.6 85.2 95.4
cat 0.9 22.7 16.7 - 24.9 18.9 39.1 45.7 50.8

driller 41.4 44.7 65.7 - 70.2 69.0 78.4 81.4 94.5
duck 19.6 15.0 25.2 - 27.9 25.3 41.9 53.9 59.6

eggbox 22.0 25.2 52.0 - 52.4 52.0 80.9 70.2 55.7
glue 38.5 32.4 51.4 - 53.8 51.4 68.1 60.1 78.3

holepuncher 22.1 49.5 45.6 - 54.2 45.6 74.7 85.9 91.4
mean 24.9 32.0 40.8 47.3 47.5 47.6 63.2 66.2 73.3

* Italic and bold are symmetrical objects

Following [8], [19], we use the 6D representation R6d in
SO(3), which is continuous in Euclidean space and conducive
to network learning. Specifically, R6d is consists of the first
two columns of rotation matrix R.

R6d = [R1|R2] (7)

The rotation matrix R can be computed by the prediction
R6d = [r1|r2] according to R1 = ϕ(r1)

R3 = ϕ(R1 × r2)
R2 = R3 ×R1

(8)

where ϕ represents the vector cross product operation. Finally,
the pose loss is defined as follow, where µ is the balance
parameter and we set to 2.0 in our experiment.

Lpose = LR + µLt

LR = avgx∈M∥R̂x− R̄x∥
Lt = ∥t̂− t̄∥

(9)

For the symmetric objects,we compute the set Ω including
all possible ground-truth rotations under symmetry and then
compute the loss as LR,sym = minR̄∈Ω LR(R̂, R̄).

Thereby, we use the following loss to guide the training of
the network.

L = αLsemantic + βLkeypoints + γLpose (10)

IV. EXPERIMENT

In this section, we first introduce our experimental setup
and implementation details and then report the evaluation
results for several commonly employed benchmark datasets.
Specifically, we compared our method with the start-of-the-art
methods on LM, LM-O and YCB-V. Finally, we demonstrate
the effectiveness of our individual components by performing
an ablative study on Linemod Occulusion Dataset.

A. Datasets

LINEMOD [22] includes 13 sequences of 13 objects with
pose annotation, each with about 1200 images. It contains
chaotic scenes and changeable lighting. We follow the previous
work to divide the data set, use about 15% of the pictures for
training [1]–[3], the remaining pictures for testing, and follow
[1]–[3] to generate synthetic images for expanding the data
set.

LINEMOD OCCULUSION [23] is a subsequence belong-
ing to LM, which consists of 1214 images with 8 heavily
occluded objects pose annotations. We use it only for the test
following [1]–[3].

YCB-V [24] contains 92 RGBD image sequences, with a
total of more than 110k images. It includes a total of 21
objects, including symmetrical objects and low texture objects.
We follow [1], [3] to divide the training set and the test set.
In addition, we follow [1], [3] and use the synthetic data set
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in [25] to expand the training set, and use the hole filling
algorithm to fill the depth map of the synthetic data set [3].

B. Implementation Details

All our experiments are implemented using PyTorch. We
train the model for a total of 40 epochs. For the learning rate,
we choose the CyclicLR [35] while the max learning rate is set
to 1e−3 and the base learning rate is set to 1e−5. Specifically,
we use 2 cycles for Linemod and Linemod Occulusion dataset
and 6 cycles for YCB-V datasets. For the hyperparameter in
Eq. (10), we set α = 2.0, β = 1.0, γ = 0.001 at first 20 epochs
to let the network better learn semantics and keypoints, and
improve the γ to 2.0 at end 20 epochs to let the network learn
the object pose information.

C. Evaluation Metrics

Following [1], [3], we use the average distance metrics ADD
and ADDS for evaluation. ADDS is generally used to evaluate
symmetrical objects. ADD and ADDS is defined as follows:

ADD =
1

m

∑
v∈O

∥(Rv + t)− (R∗v + t∗)∥

ADDS =
1

m

∑
v1∈O

min
v2∈O

∥(Rv1 + t)− (R∗v2 + t∗)∥

where v denotes a point in object, R, t is the predicted pose
and the R∗, t∗ is the ground truth.

Following previous methods, we report ADD(S) < 0.1d
on the LM and LM-O, where d means the diameter of the
object and ADD(S) means using ADD for non-symmetric
objects while ADDS for symmetric objects. When evaluating
on YCB-V, we compute the AUC of the ADDS and ADD(S),
representing the area under the ADDS and ADD(S) curve.

D. Evaluation on Three Benchmark Datasets

Evaluation on the Linemod Dataset. Table I shows our
results. Compared to state-of-art methods, we achieved the
best performance on every object and get an average of
99.8% on ADD(S) < 0.1d. The testing set of the LM is
very close to the training set in the scene, and the objects
are not occluded, which leads to the performance of other
methods being good enough. Thus our method has a limited
improvement in comparison.

Evaluation on the Linemod Occulusion Dataset. To verify
the performance of our method under occlusion, we conducted
experiments on LM-O. We follow the state-of-the-art to train
our model on the LM dataset and only use this dataset for
testing. Table II demonstrates our results. Compared to the
start-of-art method, we improve a lot in most of the objects
except the eggbox. We found that the eggbox lacks texture and
it has a poor performance in semantic segmentation. if using
the ground truth, we also get the 84.2% ADDS < 0.1d on
the eggbox.

Evaluation on the YCB Dataset. Table III shows our
results. Compared to the latest method, we achieved 94.4%
on ADD(S) AUC, which is 0.7% higher than start-of-the-art
methods.

E. Ablation Study

Ablation on Voting strategies. We conduct a comparison
experiment between the mean-shift and our standardization.
Then benchmark is the model only with the object detection.
We first train the model with keypoints offset, the two different
voting strategies are applied respectively to get the input of
Least Squares. We conduct the experiment on the LM-O.
From Table IV, our method achieves the same performance
with lower time consumption. Specifically, in the keypoints
error, our method achieves better performance with the slight
advantage of 1mm. But in terms of time consumption, we
have achieved a great advantage. The time complexity for the
mean-shift is O(n2) while standardization is O(n). It is worth
noting that the speed here is slower than that in [2], [3]. The
reason is that we use object detection to sample points around
the object, which causes the points on the object to be much
denser.

Ablation on Regression network. In this experiment, we
compare the results between the geometric estimator using
different voting strategies and the direct regression. We eval-
uate our models in the LM-O. Table V shows our results.
Experiments show that our voting strategy performance is not
much different from mean-shift. Meanwhile, the performance
of using the keypoint regression network is better. This shows
that our proposed network can better learn the relationship
between point pairs.

Ablation on our method. In this experiment, we respec-
tively compared the results of the individual improvements
we proposed. We evaluate our models in the LM-O. Table
VI shows our results. Because the selecting keypoints of
symmetrical objects according to [3] are ambiguous, and
our method is based on keypoints, we omit symmetrical
objects in this ablation for better comparison. Experiments
show that the individual improvements we proposed enhance
the performance. Specifically, the small object such as ‘ape‘
benefit a lot from increasing the sampled points of the object,
increasing by 11%. Large objects benefit from the unitized
loss because the unnormalized offset vectors of large objects
have a larger distribution range. Among them, ‘driller‘ and
‘can‘ improve by 12.7% and 9.3% respectively.

F. Running Time

On the desktop of Intel(R) i7 @3.10GHz CPU and the RTX
3090 GPU, given 480×680 RGB and depth image, our method
takes approximately 68ms for a single object, for which 8ms
for the object detection.

V. CONCLUSIONS

In this paper, we integrate a keypoint-based regression
model to the 6D pose estimation task. Hence, end-to-end
learning is achieved by using the intermediate variable. Mean-
while, we improve the sampling method for point cloud,
which benefit the small objects. Furthermore, a new unit
loss consisting of a unit vector and the length is proposed
to improve the keypoints learning. Experiments show our
methods outperform other methods. However, our method has
some shortcomings in dealing with symmetric objects, because



7

TABLE III
EXPERIMENT ON THE YCB-V DATASET.

PoseCNN [25] DCF [30] Densefusion [9] PVN3D [1] FFB6D [3] Ours
Object ADDS ADD(S) ADDS ADD(S) ADDS ADD(S) ADDS ADD(S) ADDS ADD(S) ADDS ADD(S)

002 83.9 50.2 90.9 74.6 95.3 70.7 96 80.5 96.3 80.6 95.3 79.6
003 76.9 53.1 87.1 79.3 92.5 86.9 96.1 94.8 96.3 94.6 96.4 95.1
004 84.2 68.4 94.3 84.2 95.1 90.8 97.4 96.3 97.6 96.6 97.7 96.7
005 81.0 66.2 90.5 79.8 93.8 84.7 96.2 88.5 95.6 89.6 95.6 89.8
006 90.4 81.0 90.6 83.5 95.8 90.9 97.5 96.2 97.8 97.0 97.5 96.5
007 88.0 70.7 91.7 73.8 95.7 79.6 96 89.3 96.8 88.9 97.5 90.7
008 79.1 62.7 89.3 84.1 94.3 89.3 97.1 95.7 97.1 94.6 97.8 96.9
009 87.2 75.2 92.9 89.5 97.2 95.8 97.7 96.1 98.1 96.9 98.3 97.5
010 78.5 59.5 83.2 74.6 89.3 79.6 93.3 88.6 94.7 88.1 93.3 90.8
011 86.0 72.3 84.8 71.0 90.0 76.7 96.6 93.7 97.2 94.9 97.4 94.4
019 77.0 53.3 89.5 80.3 93.6 87.1 97.4 96.5 97.6 96.9 97.0 95.6
021 71.6 50.3 88.4 79.8 94.4 87.5 96.0 93.2 96.8 94.8 96.7 94.0
024 69.6 69.6 80.3 80.3 86.0 86.0 90.2 90.2 96.3 96.3 96.0 96.0
025 78.2 58.5 90.7 76.6 95.3 83.8 97.6 95.4 97.3 94.2 97.3 95.3
035 72.7 55.3 87.4 78.4 92.1 83.7 96.7 95.1 97.2 95.9 97.4 96.6
036 64.3 64.3 84.2 84.2 89.5 89.5 90.4 90.4 92.6 92.6 93.8 93.8
037 56.9 35.8 84.2 70.3 90.1 77.4 96.7 92.7 97.7 95.7 98.5 97.9
040 71.7 58.3 89.5 81 95.1 89.1 96.7 91.8 96.6 89.1 97.8 95.0
051 50.2 50.2 63.6 63.6 71.5 71.5 93.6 93.6 96.8 96.8 97.2 97.2
052 44.1 44.1 64.4 64.4 70.2 70.2 88.4 88.4 96.0 96.0 96.7 96.7
061 88 88 83.1 83.1 92.2 92.2 96.8 96.8 97.3 97.3 97.2 97.2

mean 75.2 61.3 85.7 77.9 90.9 84.0 95.4 92.6 96.6 93.7 96.8 94.4
* Italic and bold are symmetrical objects

（a）image （b）ground truth （c）FFB6D （d）Ours

Fig. 4. Comparison result on Linemod Occulusion dataset.

TABLE IV
ABLATION ON VOTING STRATEGIES

keypoints
error/cm

ADD(S)
<0.1d

time
/ms

standardization 3.4 67.9 5
meanshift 3.5 67.7 83

TABLE V
ABLATION ON REGRESSION NETWORK

Meanshift Standardization Regression
ADD(S)<0.1d 72.7 72.9 73.3
ADDS<0.1d 83.9 83.8 84.3

TABLE VI
ABLATION ON OUR PROPOSE METHODS.

object detection ✓ ✓ ✓ ✓
unit loss ✓ ✓ ✓ ✓

regression head ✓ ✓ ✓ ✓
ape 47.2 58.2 53.6 49.6 54.9 59.4 59.5 61.0
can 85.2 90.4 94.5 85.5 94.9 92.4 92.8 95.4
cat 45.7 46.3 50.6 46.0 48.4 45.0 47.0 50.8

driller 81.4 90.3 94.1 90.8 91.6 92.1 94.3 94.5
duck 53.9 59.0 55.2 57.4 57.1 60.0 60.3 59.6

holepuncher 85.9 75.9 80.3 86.2 87.2 87.8 84.0 91.4
mean 66.6 70.0 71.4 69.3 72.3 72.8 73.0 75.5

the keypoint definitions are ambiguous for symmetric objects.
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In the future, we will conduct a more detailed study on this
problem. In addition, we will also consider the advantages of
end-to-end training and use it for self-supervised learning.
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