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Multiple Object Trajectory Estimation
Using Backward Simulation
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Daniel Svensson, and Karl Granström

Abstract—This paper presents a general solution for computing
the multi-object posterior for sets of trajectories from a sequence
of multi-object (unlabelled) filtering densities and a multi-object
dynamic model. Importantly, the proposed solution opens an
avenue of trajectory estimation possibilities for multi-object filters
that do not explicitly estimate trajectories. In this paper, we first
derive a general multi-trajectory backward smoothing equation
based on random finite sets of trajectories. Then we show how
to sample sets of trajectories using backward simulation for
Poisson multi-Bernoulli filtering densities, and develop a tractable
implementation based on ranked assignment. The performance
of the resulting multi-trajectory particle smoothers is evaluated
in a simulation study, and the results demonstrate that they have
superior performance in comparison to several state-of-the-art
multi-object filters and smoothers.

Index Terms—Multi-object tracking, random finite sets, sets of
trajectories, forward-backward smoothing, backward simulation.

I. INTRODUCTION

Multi-object tracking (MOT) refers to the problem of
jointly estimating the number of objects and their trajectories
from noisy sensor measurements [1]–[4]. Vector-type MOT
methods, e.g., the joint probabilistic data association filter
(JPDAF) [5] and the multiple hypothesis tracker (MHT) [6],
[7], describe the multi-object states and measurements by
random vectors; they explicitly estimate trajectories by linking
a state estimate with a previous state estimate or declare the
appearance of a new object. However, for MOT methods based
on sets representation of the multi-object states, e.g., [8]–[11],
sequences of object states at consecutive time steps cannot be
easily constructed.

For these MOT methods, one approach to estimating tra-
jectories is to add a unique label to each single-object state
such that each object can be identified over time [12]–[16].
This track labelling procedure may work well in some cases,
but it often becomes problematic in challenging scenarios,
for example, where initially well-separated objects move in
close proximity with each other and thereafter separate again
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Fig. 1. Illustration of a one-dimensional example where the multi-object
filtering density at each time step is a Dirac delta, whose corresponding
object states are shown as black dots. The trajectory building problem in
this case reduces to how to connect the dots at consecutive time steps. The
solid lines represent one of the many ways to construct a set of trajectories
where start/end positions of trajectories are marked by circles/crosses. This
example will be further elaborated in Section VI-A.

[16]–[18]. A more advantageous approach to estimating tra-
jectories for filters based on random finite sets (RFSs) [8] is
to compute the multi-object posterior on sets of trajectories
[17], which captures all the information about the trajectories.
This has led to the development of a variety of multi-object
trackers: the trajectory probability hypothesis density (PHD)
filter [19], the trajectory cardinality PHD filter [19], the
trajectory Poisson multi-Bernoulli mixture (PMBM) filter [18],
the trajectory multi-Bernoulli mixture (MBM) filter [20], and
their approximations the trajectory Poisson multi-Bernoulli
(PMB) filter [21] and the trajectory multi-Bernoulli (MB) filter
[22]. Note that for RFS-based filters with MB birth, the multi-
object posterior may be labelled to consider sets of labelled
trajectories [17], [20], [22], [23].

Smoothing for state-space models considers the estimation
of object states of interest conditioned on the complete mea-
surement sequence [24]. Therefore, smoothing may provide
significantly better object state estimation performance than
filtering, by refining earlier object state estimates. Solutions to
single-object smoothing in clutter mainly include the Gaussian
sum smoother [25]–[29], the (integrated) probabilistic data
association smoother [30]–[32] and the Bernoulli smoother
[33]–[35]. For vector-type MOT methods with Gaussian fil-
tering, smoothed trajectory estimates are typically obtained
by applying a Rauch-Tung-Striebel (RTS) smoother [36] on
sequences of single-object filtering densities [37]–[39]. It is
also possible to consider a batch solution for estimating trajec-
tories using expectation-maximisation [40]. As a comparison,
trajectory filters [17]–[23] recursively compute the posterior of
sets of trajectories as new observations arrive, by performing
smoothing-while-filtering [41], and therefore the initiation and
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termination of estimated trajectories can also be improved.
Nevertheless, there are several MOT methods in the litera-

ture, e.g., the set JPDAF [42] and the variational PMB filter
[43], that can efficiently estimate the multi-object states, but
that cannot easily produce smoothed trajectory estimates in
a principled manner1. Then an interesting research question
arises: “Can we leverage filters that do not keep trajectory
information to compute the posterior density of sets of trajecto-
ries?”. A one-dimensional example of such trajectory building
is illustrated in Fig. 1. Also note that, even for methods that
do retain implicit trajectory information, in complex scenarios,
approximations made for computational tractability (such as
pruning) may cause loss of information that could be recovered
with the help of information from later time steps.

In this paper, we show that the exact multi-object posterior
of sets of trajectories can be obtained from a sequence of
multi-object (unlabelled) filtering densities using the multi-
object dynamic model. Specifically, we present a general
multi-trajectory backward smoothing equation based on sets
of trajectories. The proposed solution has important advan-
tages over multi-object forward-backward smoothers that only
compute the marginal multi-object smoothing densities at each
time step [45]–[52], which, even if labelled, may not be
enough to provide meaningful trajectory information [17, Ex-
ample 2]. Moreover, the proposed forward-backward smoother
does not specify the form of the multi-object filtering densities.
This is in contrast to multi-object forward-backward smoothers
based on labelled RFSs [53]–[55], which cannot incorporate
the Poisson birth model and require that the multi-object
filtering densities must be labelled. The outcome of this work
is a method for efficiently sampling multi-object trajectories
from the posterior distribution of sets of trajectories, based
on operations involving only the single time step multi-
object state distributions constructed during forward filtering.
This has important applications to offline trajectory analytics,
e.g., extracting trajectory estimates that can be viewed as
ground truth for the development and verification of perception
modules in autonomous driving.

A preliminary version of this work was presented in [56].
This paper is a significant extension of that work, and contains
the following contributions:

1) We derive a general multi-trajectory backward smooth-
ing equation based on sets of trajectories.

2) We propose a multi-trajectory particle smoother using
backward simulation [57] for PMB filtering densities. In
particular, this is a method for doing inference (draw-
ing samples) in the multi-object trajectory space while
only ever manipulating single time step, single object
marginal distributions, which is only possible because
of the properties of the multi-trajectory dynamic model
that is stated in Section II-C.

3) We present a tractable implementation of the proposed
smoother based on a linear-Gaussian dynamic model and
ranked assignment.

1A heuristic track-to-target management scheme was presented in [44] by
making use of the permutation probabilities of state vectors.

4) We compare the proposed algorithm to several state-of-
the-art algorithms [18], [23], [58] in a simulation study,
and the results demonstrate that the proposed methods
have superior performance.

The rest of the paper is organised as follows. The back-
ground on sets of trajectories, multi-object dynamic models
and PMB filtering densities is introduced in Section II. The
backward smoothing equation for sets of trajectories is pre-
sented in Section III. A multi-trajectory particle smoother for
PMB filtering densities and its tractable implementation are
given in Section IV and Section V, respectively. The simulation
results are shown in Section VI, and the conclusions are drawn
in Section VII.

II. BACKGROUND

The notation in this paper is defined following the conven-
tion in [17], [59]. For a generic space D, the set of finite
subsets of D is denoted by F(D), and the cardinality of a set
A ∈ F(D) is |A|. The sequence of ordered positive integers
(α, α + 1, . . . , γ − 1, γ) is denoted by α : γ, and the set that
includes all the permutations of 1 : n is denoted by Γn. We use
] to denote union of sets that are mutually disjoint, 〈f, g〉 to
denote the inner product

∫
f(x)g(x)dx, and the multi-object

exponential fA, for some real-valued function f , to denote the
product

∏
x∈A f(x) with f∅ = 1 by convention. In addition,

we use δx(·) and δx[·] to represent the Dirac and Kronecker
delta functions centred at x, respectively.

A. State variables

The single-object state is described by a vector x ∈ Rnx ,
typically containing the kinematic information about the object
(e.g., position and velocity). A trajectory is represented as a
variable X = (t, x1:ν) where t is the initial time step of the
trajectory, ν is its length, and x1:ν = (x1, . . . , xν) denotes
a finite sequence of length ν that contains the object states
at time steps t : t + ν − 1. For two time steps α and γ,
α ≤ γ, a trajectory (t, x1:ν) in the time interval α : γ existing
from time step t to t + ν − 1 satisfies that α ≤ t ≤ t +
ν − 1 ≤ γ, and the variable (t, ν) hence belongs to the set
I(α,γ) = {(t, ν) : α ≤ t ≤ γ and 1 ≤ ν ≤ γ− t+ 1}. A single
trajectory in the time interval α : γ therefore belongs to the
space T(α,γ) = ](t,ν)∈I(α,γ){t}×Rνnx . We note that trajectory
X is a combination of discrete and continuous states. Such a
hybrid state is not uncommon in MOT: a typical example is
the interacting multiple model [60].

A set x ∈ F(Rnx) of single-object states is a finite subset
of Rnx , and a set Xα:γ ∈ F(T(α,γ)) of trajectories is a finite
subset of T(α,γ). The subset of trajectories in Xα:γ that were
alive at time step η where α ≤ η ≤ γ is denoted by

Xη
α:γ =

{(
t, x1:ν

)
∈ Xα:γ : t ≤ η ≤ t+ ν − 1

}
.

Given a set of trajectories Xα:γ , we denote the resulting set
of trajectories in the time interval η : ζ by

Xη:ζ =
{(
ε, xε−η+1:ι−ε+1

)
:
(
t, x1:ν

)
∈ Xα:γ ,

ε = max(η, t), ι = min(ζ, t+ ν − 1), ε ≤ ι
}
.
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Note that Xη:ζ depends on Xα:γ , but we keep this relation
implicit for notational clarity. An illustrative example of Xα:γ ,
Xη
α:γ and Xη:ζ is given in Fig. 2.
Given a single-object trajectory X = (t, x1:ν), the set of

object states at time step k is

τk(X) =

{{
xk+1−t} , t ≤ k ≤ t+ ν − 1

∅, otherwise

and given a set Xα:γ of trajectories, the set of object states at
time step k is τk(Xα:γ) =

⋃
X∈Xα:γ

τk(X).

B. Densities and integrals

Given a real-valued function π(·) on the single trajectory
space T(α,γ), its integral is [17]∫

π(X)dX =
∑

(t,ν)∈I(α,γ)

∫
π
(
t, x1:ν

)
dx1:ν , (1)

which goes through all possible start times, lengths and object
states of trajectory X ∈ T(α,γ). The single trajectory space
is locally compact, Hausdorff and second-countable [17], and
therefore one can perform inference on sets of finite number
of trajectories with finite length [8].

Given a real-valued function π(·) on the space F(T(α,γ))
of finite sets of trajectories, its set integral is [17]∫

π(X)δX = π(∅)+
∞∑
n=1

1

n!

∫
π ({X1, . . . , Xn}) dX1:n (2)

where X1:n = (X1, . . . , Xn). A function π(·) on the space
F(T(α,γ)) is a multi-trajectory density if π(·) ≥ 0 and its set
integral is one.

The multi-object state density at time step k′ and the multi-
trajectory density in the time interval α : γ, both conditioned
on the sequence of sets of measurements z1:k = (z1, . . . , zk)
received up to and including time step k, are denoted by
fk′|k(·) and πα:γ|k(·), respectively. Given a set xk of object
states at time step k, the set of trajectories in the time interval
k : k is

Xk:k =
{
X =

(
k, x1

)
: x1 ∈ xk

}
where trajectory X = (t, x1:ν) ∈ Xk:k has start time t = k and
length ν = 1 with probability one. Therefore, it holds that the
multi-trajectory density πk′:k′|k(Xk′:k′) takes the same value
as the multi-object state density fk′|k(x) when τk

′
(Xk′:k′) =

x where k′ ∈ {k, k + 1}.
A trajectory Poisson point process (PPP) has density

π (Xα:γ) = e−〈λ,1〉 [λ(·)]Xα:γ (3)

where λ(·) is the Poisson intensity, and a trajectory Bernoulli
process has density

π (Xα:γ) =


1− r, Xα:γ = ∅
rp(X), Xα:γ = {X}
0, otherwise

(4)

where p(·) is a single-trajectory density and r is the probability
of existence. A trajectory MB process is the union of n ≥ 1

independent trajectory Bernoulli components and its density
is given by the convolution formula for RFSs [8, Sec. 11.5.3]

π (Xα:γ) =
∑

]nl=1X
l=Xα:γ

n∏
i=1

πi
(
Xi
)

(5)

where πi(·) is the density of the i-th Bernoulli component, and
the sum in (5) goes through all disjoint and possibly empty
subsets X1, . . . ,Xn such that X1 ∪ · · · ∪Xn = Xα:γ .

Given two single-object trajectories X = (t, x1:ν) and Y =
(t′, y1:ν′), the trajectory Dirac delta function is defined as

δY (X) = δt′ [t]δν′ [ν]δy1:ν′
(
x1:ν

)
,

and the multi-trajectory Dirac delta function centred at Y is
defined as [8, Sec. 11.3.4.3]

δY(X) =


0, |X| 6= |Y|
1, X = Y = ∅∑
σ∈Γn

∏n
i=1 δYσi (Xi)

{
X = {Xi}ni=1

Y = {Yi}ni=1

.

C. Multi-trajectory dynamic model

The conventional multi-object dynamic model described in
[8] is considered. Given the current multi-object state x, each
object x ∈ x survives with probability pS(x), and moves to a
new state with a Markovian transition density g(·|x), or dies
with probability 1 − pS(·). The multi-object state at the next
time step is the union of the surviving objects and new objects,
which are born independently of the rest. The newborn objects
are typically modelled as a PPP or an MB process with multi-
object state density β(·).

The above conventional multi-object dynamic model results
in the following dynamic model for the set of all trajectories
that have existed up to the current time step, which will be
required in backward smoothing for sets of trajectories. Given
a set X1:k of all trajectories in the time interval 1 : k, each
trajectory X = (t, x1:ν) ∈ X1:k “survives” with probability
one, pS(X) = 1, and moves to a new state according to [17]

gk+1
(
t′, y1:ν′ |X

)
=
∣∣τk(X)

∣∣ [(1− pS (xν)
)
δX

(
t′, y1:ν′

)
+ pS (xν) g

(
yν
′
|xν
)
δX

(
t′, y1:ν′−1

)]
+
(
1−

∣∣τk(X)
∣∣) δX (t′, y1:ν′

)
. (6)

That is, if the object underlying trajectory X has died before
time step k, the trajectory remains unaltered with probability
one. If trajectory X exists at time step k, it remains unaltered
with probability 1−pS(xν), or the new final object state yν

′
is

generated according to the single-object transition density with
probability pS(xν). The set X1:k+1 of trajectories in the time
interval 1 : k+1 is the union of the dead trajectories, surviving
trajectories and new trajectories where each new trajectory
(t, x1:ν) has deterministic start time t = k + 1, length ν = 1,
and multi-object state is distributed as β(·).
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(a) (b) (c)

Fig. 2. One-dimensional examples of sets of trajectories: (a) a set X1:100 of six trajectories in the time interval 1 : 100; (b) the set X50
1:100 of three trajectories

in the time interval 1 : 100 that were alive at time step 50; (c) the resulting set X30:70 of four trajectories in the time interval 30 : 70.

D. PMB filtering densities

RFS-based Bayes filters propagate the multi-object posterior
density of xk in time via the prediction and update steps:

fk|k−1(x) =

∫
g(x|x′)fk−1|k−1(x′)δx′, (7)

fk|k(x) =
`(zk|x)fk|k−1(x)∫
`(zk|x)fk|k−1(x)δx

(8)

where g(·|x) is the multi-object transition density and `(zk|·)
is the measurement likelihood. For the multi-object dynamic
model described in Section II-C with Poisson birth model

β(x) = e−〈λ
B
k ,1〉 [λBk (·)

]x
(9)

where λBk (·) is the Poisson birth intensity at time step k, and
general multi-object measurement models with Poisson clutter,
if the prior is PMBM, the predicted and posterior densities on
the current set of object states are PMBM [61]. We note that
the Poisson birth model is a special case of PMBM.

The PMB is a common and efficient approximation of a
PMBM [11], [43], and its filtering density is defined as

fk′|k(x) =
∑

xd]xu=x

fpk′|k(xu)fmbk′|k(xd), (10a)

fpk′|k(x) = e−〈λ
u,1〉

[
λuk′|k(·)

]x
, (10b)

fmbk′|k(x) =
∑

]
n
k′|k
l=1 xld=x

nk′|k∏
i=1

f ik′|k(xid), (10c)

f ik′|k(x) =


1− rik′|k, x = ∅
rik′|kp

i
k′|k(x), x = {x}

0, otherwise

(10d)

with k′ ∈ {k, k+1}. The PMB is the union of two independent
RFSs: a PPP with density fpk′|k(·), parameterised by Poisson
intensity λuk′|k(·), representing undetected objects, and an MB
process with density fmbk′|k(·) representing detected objects
where the i-th Bernoulli component has density f ik′|k(·) with
probability of existence rik′|k and single-object state density
pik′|k(·).

III. BACKWARD SMOOTHING FOR SETS OF TRAJECTORIES

In this paper, the objective is to compute the multi-trajectory
posterior density π1:K|K(X1:K) using a sequence of multi-
object filtering densities fk|k(·) with k = 1, . . . ,K and the
multi-trajectory dynamic model via backward smoothing. To

achieve this, we first present the multistep prediction theorem
for sets of trajectories, which generalises the general prediction
theorem for sets of trajectories [17, Theorem 7] to multistep
prediction, along with a resulting corollary that is important
for the derivation of the general backward smoothing equation
for sets of trajectories.

Theorem 1. Given a multi-trajectory density πα:η|k(Xα:η), its
(γ − η)-step predicted multi-trajectory density, with α ≤ η <
γ, η ≥ k and γ ≥ k + 1, is given by

πα:γ|k(Xα:γ) =
∏

(t,x1:ν)∈Xη
α:γ

[ (
1 + pS (xν) (δγ−t+1[ν]− 1)

)
×

ν−1∏
`=η−t+1

g
(
x`+1|x`

)
pS
(
x`
) ]
πα:η|k(Xα:η)πη+1:γ(W)

(11)

πη+1:γ(W) =
∏

(t,x1:ν)∈W

[ (
1 + pS (xν) (δγ−t+1[ν]− 1)

)
×
ν−1∏
`=1

g
(
x`+1|x`

)
pS
(
x`
) ] γ∏

`=η+1

β
(
τ `
(
W`

))
(12)

where we write Xα:γ = Xη
α:γ ]W and W = Wη+1 ] · · · ]

Wγ denotes the set of trajectories born in the time interval
η + 1 : γ, where W` =

{(
t, x1:ν

)
∈W : t = `

}
is the set of

trajectories born at time step ` with η + 1 ≤ ` ≤ γ.

Theorem 1 is proved in Appendix A, and it describes that the
(γ−η)-step predicted multi-trajectory density of πα:η|k(Xα:η)
can be evaluated by multiplying the following terms: the multi-
trajectory density πα:η|k(Xα:η), 1− pS(·) for trajectories that
died in the time interval η + 1 : γ, g(·|·)pS(·) for trajectories
that were alive at time step η, and the multi-trajectory density
πη+1:γ(W) for trajectories that appeared after time step η.

Corollary 1.1. For γ ≥ k + 1, it holds that

πk:γ|k(Xk:γ)

πk+1:γ|k(Xk+1:γ)
=

πk:k+1|k(Xk:k+1)

fk+1|k(τk+1(Xk+1:k+1))
. (13)

Corollary 1.1 is proved in Appendix B, and it shows that the
ratio between the two multi-trajectory densities πk:γ|k(Xk:γ)
and πk+1:γ|k(Xk+1:γ) does not depend on γ for γ ≥ k + 1.

The general backward smoothing equation for sets of tra-
jectories under the conventional multi-object dynamic model
assumptions is presented in the following theorem. Its proof
is given in Appendix C.
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Theorem 2. Given the multi-trajectory density πk+1:K|K(·)
and the multi-object state filtering density fk|k(·), the multi-
trajectory density in the time interval k : K conditioned on
the sequence of sets of measurements up to and including time
step K is

πk:K|K(Xk:K) =
πk:k+1|k(Xk:k+1)πk+1:K|K(Xk+1:K)

fk+1|k(τk+1(Xk+1:k+1))
(14)

where the multi-object state predicted density fk+1|k(·) can
be computed using fk|k(·) via (7), and πk:k+1|k(Xk:k+1) is
the one-step predicted multi-trajectory density of πk:k|k(Xk:k),
which takes the same value as fk|k(τk(Xk:k)).

Theorem 2 shows that the multi-trajectory smoothing den-
sity πk:K|K(Xk:K) can be expressed as the product of the
multi-trajectory smoothing density πk+1:K|K(Xk+1:K) and
the one-step predicted multi-trajectory density of fk|k(·), nor-
malised by the multi-object state predicted density fk+1|k(·).
By applying Theorem 2 recursively backwards in time, we
obtain π1:K|K(X1:K), as desired.

IV. A MULTI-TRAJECTORY PARTICLE SMOOTHER

In this section, we first introduce a general backward kernel
for sets of trajectories, which enables us to perform backward
simulation and to approximate the multi-trajectory posterior.
Then we present how to evaluate the backward kernel when
the multi-object filtering densities are PMB. For the proposed
multi-trajectory particle smoother using PMB filtering den-
sities, the forward filtering representations involving single
time step, single object marginal distributions can implicitly
represent uncertainty over an exponentially large hypothesis
space that cannot be feasibly represented through multiple
hypothesis methods. The backward simulation framework al-
lows us to draw samples in the multi-object trajectory space
from these single time step, single object marginal distribu-
tions calculated during the forward filtering which incorporate
information from measurements over all the time steps.

A. Backward kernel for sets of trajectories

The backward kernel for sets of trajectories is introduced in
the following lemma. Its proof is given in Appendix D.

Lemma 3. The backward kernel for sets of trajectories, i.e.,
the multi-trajectory density of the set X of trajectories in the
time interval k : K conditioned on the set Y of trajectories in
the time interval k+ 1 : K and the sequence of measurement
sets up to and including time step K, satisfies

πk:K|K(X|Y) ∝ πk:k+1|k(Xk:k+1)δY(Xk+1:K). (15)

Lemma 3 describes that the backward kernel πk:K|K(X|Y)
conditioned on the set Y of trajectories is proportional to the
one-step predicted multi-trajectory density πk:k+1|k(Xk:k+1)
only if Y = Xk+1:K , and zero otherwise. Note that although
the set Xk+1:K of trajectories is deterministically given by Y,
evaluating the backward kernel πk:K|K(X|Y) is complicated
by the multiple different ways of associating Xk:k+1 to Y;
see, e.g., Fig. 1.

In both Theorem 2 and Lemma 3, we consider the distribu-
tion of the set of trajectories in the time interval k : K, and we
condition on all measurements in the time interval 1 : K. The
main difference between Theorem 2 and Lemma 3 is that the
multi-trajectory density computed in Lemma 3 is conditioned
on a particular value of the set Y of trajectories in the time
interval k + 1 : K, which is what we require for backward
simulation.

B. Backward kernel for PMB filtering densities

We proceed to present the backward kernel (15) for PMB
filtering densities, see (10). We first observe that the back-
ward kernel (15) is in analogy to the Bayesian measurement
update (8) in the sense that πk:k+1|k(Xk:k+1) is the prior
and δY(Xk+1:K) is the measurement likelihood. Specifically,
for a PMB filtering density fk|k(·), the one-step predicted
multi-trajectory density πk:k+1|k(Xk:k+1) is a trajectory PMB
[21, Lemma 4]. Moreover, the multi-trajectory Dirac delta
δY(Xk+1:K) can be understood as a standard multi-object
measurement model [8] with the following characteristics (this
will be further elaborated in Appendix E):
• Each trajectory X = (t, x1:ν) ∈ Xk:K is detected with

probability

pD(X) =

{
0, t = k and ν = 1

1, otherwise
(16)

and if detected, it generates a measurement Y with
density δY (Xk+1:K).

• Clutter is Poisson with intensity λC(·) = 0.
Then, the backward kernel πk:K|K(X|Y) (15) for PMB filter-
ing densities, obtained via updating the trajectory PMB prior
πk:k+1|k(Xk:k+1) using δY(Xk+1:K) is a trajectory PMBM
[21, Lemma 5]. In what follows, we explain the result of the
trajectory PMB update applied to backward simulation with
PMB filtering densities, where each trajectory Bernoulli com-
ponent has information on start/end times of the trajectories
giving rise to the following local hypotheses:
• The trajectory had never existed in the entire time interval

1 : k + 1.
• The trajectory ended at time step k.
• The trajectory existed at both time step k and k + 1.
• The trajectory started at time k + 1.
We define byMk+1:K = {1, . . . , nk+1:K} the set of indices

of trajectories in Y. Each trajectory in Y creates a unique
trajectory Bernoulli component. The number of trajectory
Bernoulli components in πk:K|K(X|Y) is nk:K|K = nk|k +
nk+1:K , and they are indexed by variable i ∈ {1, . . . , nk:K|K}.
A global hypothesis is a = (a1, . . . , ank:K|K ), where hi is the
number of local hypotheses and ai ∈ {1, . . . , hik:K|K} is the
index to the local hypothesis for the i-th trajectory Bernoulli
component, which incorporates the following information:

• The set of indicesMi,ai

k+1:K ⊆Mk+1:K . IfMi,ai

k+1:K = ∅,
then the i-th hypothesised trajectory did not appear after
time step k. IfMi,ai

k+1:K = {j}, then the i-th hypothesised
trajectory existed in the time interval k + 1 : K.



6

Time interval  (two trajectories )

Time step  (two Bernoulli filtering densities)

Trajectory Bernoulli 1

o

Trajectory Bernoulli 2 Trajectory Bernoulli 3 Trajectory Bernoulli 4

p

 trajectory ended at time step . 
 trajectory had never existed. 

 the -th trajectory .

Examples of global hypotheses

o

Fig. 3. Hypothesis structure of the PMBM backward kernel for the example
illustrated above where there are two trajectories in the time interval k+1 : K
and two Bernoulli filtering densities at time step k. For the two trajectories:
Y 1 is the trajectory of an object that existed at time step k + 1, and Y 2

is the trajectory of an object that appeared after time step k + 1. There are
four trajectory Bernoulli components. For each trajectory Bernoulli component
in πk:k+1|k(Xk:k+1) (Trajectory Bernoulli 1 and 2), each has two local
hypotheses: one corresponds to the case that the trajectory ended at time
step k, and the other corresponds to the case that the trajectory Bernoulli
component was updated by trajectory Y 1. The trajectory Bernoulli component
created by trajectory Y 1 (Trajectory Bernoulli 3) has two local hypotheses:
one corresponds to the case that the trajectory started at time step k + 1,
and the other corresponds to the case that the trajectory never existed. The
trajectory Bernoulli component created by trajectory Y 2 (Trajectory 4) has
only a single local hypothesis since Y 2 remains unaltered.

• The local hypothesis weight wi,a
i

k:K|K (used for computing
the probability of the global hypotheses).

• The hypothesis-conditioned Bernoulli density πi,a
i

k:K|K(·)
of the form (4), parameterised by the probability of exis-
tence ri,a

i

k:K|K and the single-trajectory density pi,a
i

k:K|K(·).

The set of all global hypotheses is

Ak:K|K =

{(
a1, . . . , ank:K|K

)
: ai ∈

{
1, . . . , hik:K|K

}
∀ i,

∣∣∣Mi,ai

k

∣∣∣ ≤ 1,

nk:K|K⊎
i=1

Mi,ai

k =Mk

}
, (17)

and the weight of global hypothesis a ∈ Ak:K|K satisfies

wa ∝
nk:K|K∏
i=1

wi,a
i

k:K|K (18)

where the proportionality means that normalisation is required
to ensure that

∑
a∈Ak:K|K w

a = 1. A simple example of the
hypothesis structure is illustrated and described in Fig. 3.

The following theorem gives the explicit expression of the
PMBM backward kernel (15) for PMB filtering densities.

Theorem 4. Given a PMB filtering density fk|k(·) (10) at time
step k, the set Y of trajectories in the time interval k+ 1 : K
and the multi-trajectory dynamic model described in Section
II-C with Poisson birth (9), the multi-trajectory density in the
time interval k : K conditioned on Y and the sequence of
measurement sets up to and including time step K, is a PMBM
of the form

πk:K|K(X|Y) =
∑

Xu]Xd=X

πuk:K|K(Xu)πdk:K|K(Xd|Y),

(19)

πuk:K|K(Xu) = e−〈λ
u
k:K|K ,1〉

[
λuk:K|K(·)

]Xu

, (20)

πdk:K|K(Xd|Y) =∑
a∈Ak:K|K

wa
∑

⊎nk:K|K
j=1 Xj=Xd

nk:K|K∏
i=1

πi,a
i

k:K|K
(
Xi
)

(21)

where nk:K|K = nk+1:K + nk|k, wa is given by (18) and

λuk:K|K
(
t, x1:ν

)
= δk[t]δ1[ν]

(
1− pS

(
x1
))
λuk|k

(
x1
)
. (22)

Also, we write Y = {Y 1, . . . , Y nk+1:K} with Y 1, . . . , Y m

being trajectories of objects that existed at time step k+1, and
Y m, . . . , Y nk+1:K being trajectories of objects that appeared
after time step k + 1.

For each trajectory Bernoulli component in the predicted
trajectory PMB πk:k+1|k(Xk:k+1), i ∈ {1, . . . , nk|k}, there
are hik:K|K = m + 1 local hypotheses. The local hypothesis,
corresponding to the case that the trajectory ended at time
step k, is given by Mi,1

k+1:K = ∅ and

wi,1k:K|K = 1− rik|k + rik|k

〈
pik|k, 1− p

S
〉
, (23a)

ri,1k:K|K =
rik|k

〈
pik|k, 1− p

S
〉

wi,1k:K|K
, (23b)

pi,1k:K|K
(
t, x1:ν

)
= δk[t]δ1[ν]

pik|k
(
x1
) (

1− pS
(
x1
))〈

pik|k, 1− pS
〉 . (23c)

The local hypothesis, corresponding to the case that the
trajectory Bernoulli component is updated by trajectory Y j =(
tj , y1:νj

)
, j ∈ {1, . . . ,m} (present at time step k + 1, i.e.,

tj = k + 1), is given by Mi,j+1
k+1:K = {j} and

wi,j+1
k:K|K = rik|k

〈
pik|k, g

(
y1|·
)
pS
〉
, (24a)

ri,j+1
k:K|K = 1, (24b)

pi,j+1
k:K|K

(
t, x1:ν

)
= δk[t]δνj+1[ν]δy1:νj

(
x2:ν

)
×
g
(
y1|x1

)
pik|k

(
x1
)
pS
(
x1
)〈

pik|k, g (y1|·) pS
〉 . (24c)

The trajectory Bernoulli component created by trajectory
Y j =

(
tj , y1:νj

)
, j ∈ {1, . . . ,m}, has two local hypotheses

hik:K|K = 2. The first one corresponds to a non-existent
Bernoulli and is given by Mi,1

k+1:K = ∅ and

wi,1k:K|K = 1, ri,1k:K|K = 0. (25)
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The second one is given by Mi,2
k+1:K = {j} and

wi,2k:K|K = λBk+1

(
y1
)

+
〈
λuk|k, g

(
y1|·
)
pS
〉
, (26a)

ri,2k:K|K = 1, (26b)

pi,2k:K|K
(
t, x1:ν

)
= wi,2k:K|Kδ(tj ,y1:νj )

(
t, x1:ν

)
+ wi,2k:K|Kδk[t]δνj+1[ν]δy1:νj

(
x2:ν

)
×
g
(
y1|x1

)
λuk|k

(
x1
)
pS
(
x1
)〈

λuk|k, g (y1|·) pS
〉 , (26c)

wi,2k:K|K =
λBk+1

(
y1
)

wi,2k:K|K
, (26d)

wi,2k:K|K = 1− wi,2k:K|K . (26e)

The trajectory Bernoulli component created by trajectory
Y j , j ∈ {m + 1, . . . , nk=1:K} (not present at time step k +
1) only has a single local hypothesis hik:K|K = 1, given by
Mi,1

k+1:K = {j} and

wi,1k:K|K = 1, (27a)

ri,1k:K|K = 1, (27b)

pi,1k:K|K(X) = δY j (X). (27c)

Proof. See Appendix E.

The local hypothesis parameterised by (25) corresponds to
a non-existent Bernoulli component. For a global hypothesis
that includes this local hypothesis, trajectory Y j has been
assigned to a Bernoulli filtering density. The local hypothesis
parameterised by (26) covers the case that the trajectory is
associated to the trajectory PPP in πk:k+1|k(Xk:k+1); i.e., the
corresponding object was first detected at time step k + 1.
Note that, for an object that was first detected at time step
k + 1, it might be born at any time before, or at, time step
k + 1. Therefore, there is uncertainty on the start time of its
corresponding trajectory.

C. Backward simulation for sets of trajectories

A particle approximation of the multi-trajectory density is

π(Xα:γ) ≈
T∑
i=1

w(i)δX(i)(Xα:γ) (28)

where T is the number of particles and the i-th particle has
state X(i) and weight w(i). By running the backward simula-
tion for sets of trajectories T times for k = K−1, . . . , 1 where
we recursively draw samples of Xk:K from the backward ker-
nel (15), we can obtain T particles {X(i)

1:K}Ti=1 representing the
multi-trajectory density π1:K|K(X1:K) with uniform weights
w(i) = 1/T . Note that, multiple backward set of trajectories
can be generated independently, without having to rerun the
forward multi-object filter. That is the complexity of backward
simulation for sets of trajectories is linear with the number of
particles.

For the PMBM backward kernel (19), it is sufficient to
sample sets of trajectories described by the MBM (21), which
are trajectories of objects that are hypothesised to have been

detected at some time, possibly also including object states
before their first detection. In other words, we do not sample
trajectories of objects that are hypothesised to exist but were
never detected. To do so, we first sample a global hypothesis to
obtain a trajectory MB, and then we sample a single trajectory
state for each Bernoulli component. It is, however, generally
intractable to exhaustively enumerate all the global hypotheses.
Therefore, approximations are needed for a tractable imple-
mentation. One such implementation will be presented for a
linear-Gaussian dynamic model in the next section.

V. A TRACTABLE IMPLEMENTATION FOR
LINEAR-GAUSSIAN DYNAMIC MODEL

In this section, we present a tractable implementation of the
proposed multi-trajectory particle smoother for PMB filtering
densities with the following assumptions:

Assumption 1. The linear Gaussian dynamic model and the
PMB filtering densities are defined as follows
• The survival probabilities are constant, i.e., pS(·) = pS .
• The linear Gaussian single-object state transition density

is g(·|x) = N (·;Fx,Q) where F is the state transition
matrix and Q is the motion noise covariance matrix.

• The Poisson birth intensity is a Gaussian mixture

λBk (x) =

Nbk∑
i=1

wb,ik N
(
x;xb,ik , P

b,i
k

)
(29)

where N b
k is the number of components, wb,ik , xb,ik and

P b,ik are the weight, the mean and the covariance of the
i-th component, respectively.

• The PMB filtering density at time step k is parameterised
by
{
λuk|k(·),

{
rik|k, p

i
k|k(·)

}nk|k
i=1

}
. Here,

λuk|k(x) =

Nuk|k∑
i=1

wu,ik|kN
(
x;xu,ik|k, P

u,i
k|k

)
(30)

is the Poisson RFS intensity for undetected objects where
Nu
k|k is the number of components, wu,ik|k, xu,ik|k and Pu,ik|k

are the weight, the mean and the covariance of the i-
th component, respectively. In addition, there are nk|k
Bernoulli components, and the i-th component has prob-
ability of existence rik|k and single-object state density

pik|k(x) = N
(
x;xik|k, P

i
k|k

)
where xik|k is its mean and

P ik|k is its covariance.

A. Gaussian implementation for backward kernel

The backward kernel for sets of trajectories under Assump-
tion 1 is given by the following lemma. For general non-linear
dynamic models, the smoothed state density can be computed
using Gaussian assumed density approximations [24].

Lemma 5. Given the linear Gaussian dynamic model, the
PMB filtering density at time step k specified in Assumption 1
and the set Y = {Y 1, . . . , Y nk+1:K} of trajectories in the time
interval k+ 1 : K specified in Theorem 4, the multi-trajectory
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density in the time interval k : K is a PMBM of the form (19)
with nk:K|K = nk+1:K + nk|k and Poisson intensity

λuk:K|K
(
t, x1:ν

)
= δk[t]δ1[ν]

(
1− pS

)
λuk|k

(
x1
)
. (31)

The local hypothesis of the i-th trajectory Bernoulli compo-
nent, i ∈ {1, . . . , nk|k}, corresponding to the case that the
trajectory ended at time step k, is given by

wi,1k:K|K = 1− rik|k + rik|k
(
1− pS

)
, (32a)

ri,1k:K|K =
rik|k

(
1− pS

)
wi,1k:K|K

, (32b)

pi,1k:K|K
(
t, x1:ν

)
= δk[t]δ1[ν]N

(
x1;xik|k, P

i
k|k

)
. (32c)

The local hypothesis of the i-th trajectory Bernoulli com-
ponent, i ∈ {1, . . . , nk|k}, corresponding to the case that
the trajectory Bernoulli component is updated by trajectory
Y j =

(
tj , y1:νj

)
, j ∈ {1, . . . ,m}, is given by

wi,j+1
k:K|K = rik|kp

SN
(
y1;Fxik|k, P

i
k+1|k

)
, (33a)

ri,j+1
k:K|K = 1, (33b)

pi,j+1
k:K|K

(
t, x1:ν

)
= δk[t]δνj+1[ν]δy1:νj

(
x2:ν

)
×N

(
x1;xik|K , P

i
k|K

)
, (33c)

xik|K = xik|k +Gi
(
y1 − Fxik|k

)
, (33d)

P ik|K = P ik|k −G
iFP ik|k, (33e)

Gi = P ik|kF
T
(
P ik+1|k

)−1

, (33f)

P ik+1|k = FP ik|kF
T +Q. (33g)

The local hypothesis of the i-th trajectory Bernoulli compo-
nent, i ∈ {nk|k + 1, . . . , nk|k + m}, corresponding to the

case that the object with trajectory Y j =
(
tj , y1:νj

)
was

first detected at time step k + 1, is given by

wi,2k:K|K =

Nbk+1∑
i=1

wb,ik+1N
(
y1;xb,ik+1, P

b,i
k+1

)

+ pS
Nuk|k∑
i=1

wu,ik|kN
(
y1;Fxu,ik|k, P

u,i
k+1|k

)
,

(34a)

ri,2k:K|K = 1, (34b)

pi,2k:K|K
(
t, x1:ν

)
= wi,2k:K|Kδ(tj ,y1:νj )

(
t, x1:ν

)
+ wi,2k:K|Kδk[t]δνj+1[ν]δy1:νj

(
x2:ν

)
×

∑Nuk|k
i=1 wu,ik|kN

(
x1;xu,ik|K , P

u,i
k|K

)
∑Nu

k|k
i=1 wu,ik|k

,

(34c)

xu,ik|K = xu,ik|k +Gi
(
y1 − Fxu,ik|k

)
, (34d)

Pu,ik|K = Pu,ik|k −G
iFPu,ik|k, (34e)

Gi = Pu,ik|kF
T
(
Pu,ik+1|k

)−1

, (34f)

Pu,ik+1|k = FPu,ik|kF
T +Q, (34g)

wi,2k:K|K =

∑Nbk+1

i=1 wb,ik+1N
(
y1;xb,ik+1, P

b,i
k+1

)
wi,2k:K|K

,

(34h)

wi,2k:K|K = 1− wi,2k:K|K . (34i)

The local hypothesis of the i-th trajectory Bernoulli compo-
nent, i ∈ {nk|k + j}, j ∈ {m + 1, . . . , nk+1:K}, correspond-
ing to the case that trajectory Y j remains unaltered, has
wi,1k:K|K = 1, ri,1k:K|K = 1 and pi,1k:K|K(X) = δY j (X).

B. Practical considerations

The difficulty in drawing samples of sets of trajectories from
the trajectory PMBM backward kernel (19) is the number of
global hypotheses since enumerating every global hypothesis
is of combinatorial complexity. A simple solution is to truncate
the MB mixture (21) to only keep global hypotheses with non-
negligible weights. This can be achieved by solving a ranked
assignment problem using, e.g., Murty’s algorithm [62].

As trajectory Bernoulli components created by trajectories
{Y j}nk+1:K

j=m+1 not present at time step k + 1 all have a single
local hypothesis with weight wi,1k:K|K = 1, i ∈ {nk|k + m +

1, . . . , nk:K|K}, the global hypothesis weight (18) becomes

wa ∝
nk|k∏
i=1

wi,a
i

k:K|K

nk|k+m∏
i=nk|k+1

wi,a
i

k:K|K

∝
nk|k∏

i=1:ai>1

wi,a
i

k:K|K

wi,1k:K|K

nk|k+m∏
i=nk|k+1

wi,a
i

k:K|K . (35)

We can then construct the corresponding cost matrix as:

C = − log
[
W1 W2

]
, (36a)

W
(j,i)
1 =

wi,j+1
k:K|K

wi,1k:K|K
, (36b)

W2 = diag
(
w
nk|k+1,2

k:K|K , . . . , w
nk|k+m,2

k:K|K

)
(36c)

where W2 ∈ Rm×m is a diagonal matrix, W1 ∈ Rm×nk|k and
its (j, i)-th entry is W (j,i)

1 , the weight of associating the j-
th trajectory to the i-th trajectory Bernoulli component. Each
global hypothesis can be represented as an m × (nk|k + m)
assignment matrix S consisting of 0 or 1 entries such that each
row sums to one and that each column sums to zero or one.
Then we obtain the M -best global hypotheses that minimise
tr(STC) using Murty’s algorithm. Note that the assignment
problem formulated here is similar to the assignment problem
involved in the PMBM filter update where measurements are
associated to Bernoulli/PPP components.

In addition to pruning global hypotheses with small weights,
we apply ellipsoidal gating to remove unlikely local hypothe-
ses. Specifically, if the squared Mahalanobis distance between
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the first state y1 of trajectory Y j , 1 ≤ j ≤ m and the predicted
density of N (x;xik|k, P

i
k|k), i.e.,

SMD(y1;xik|k, P
i
k|k) ,(

y1 − Fxik|k
)T (

FP ik|kF
T +Q

)−1 (
y1 − Fxik|k

)
is larger than a pre-defined threshold Γg , we then set W (j,i)

1 =
0. This also applies to the Gaussian components of (29) and
(30). In addition, clustering can be used to further simplify the
computations of the assignment problem.

Having discussed strategies on how to efficiently sample the
global hypotheses, we proceed to describe how to simplify the
sampling of trajectories from the trajectory Bernoulli densities.
We note that a fairly large number of particles may be needed
to find the mode of the multi-trajectory density π1:K|K(X)
when the Gaussian covariance matrices in (34c) and (33c) are
large. A simple heuristic that helps to quickly find the mode
in some situations is to approximate each of these Gaussian
densities as a Dirac delta centred at its mean. For instance, in
this case the single-trajectory density (33c) becomes

p̂i,j+1
k:K|K

(
t, x1:ν

)
= δk[t]δνj+1[ν]δxi

k|K

(
x1
)
δy1:νj

(
x2:ν

)
,

and this also avoids the need for computing the corresponding
Gaussian covariance P ik|K (33e).

The robustness of the proposed multi-trajectory particle
smoother mainly depends on the number T of particles and the
maximum number M of global hypotheses used in backward
simulation. For scenarios with large motion noises or PMB
filtering densities with many Bernoulli components, we may
need large T and M to obtain good smoothing performance. In
fact, if the computational complexity is not a concern in offline
applications (which is usually the case), one can always use
larger T and M to obtain improved results.

Finally, the pseudocode of linear/Gaussian backward simu-
lation for sets of trajectories with PMB filtering densities can
be found in Appendix G.

VI. ILLUSTRATIVE EXAMPLE AND SIMULATION RESULTS

In this section, we first illustrate how to perform backward
smoothing for sets of trajectories using Theorem 2 via a one-
dimensional example shown in Fig. 4a. Then, we evaluate the
performance of the proposed multi-trajectory particle smoother
for PMB filtering densities in two different two-dimensional
scenarios.

A. Illustrative example
We consider a one-dimensional scenario on the line segment

[−1 m, 1 m], of length K = 8 time steps, where two initially
well-separated objects first approach each other (on the real
line), then pause for 1 s, before crossing each other. In
the model, objects survive with probability pS = 0.95 and
new objects appear according to a Poisson birth model with
intensity λB(x) = 0.1 × Uniform[−1, 1]. A nearly constant
velocity motion model is used with sampling period Ts = 1 s
and single-object state transition density parameterised by

F =

[
1 Ts
0 1

]
, Q =

1

900

[
T 3
s /3 T 2

s /2
T 2
s /2 Ts

]

We also assume that the multi-object filtering density at each
time step is a multi-object Dirac delta, which is a special type
of PMB with zero PPP intensity and each Bernoulli component
having probability of existence one and single target density
being a Dirac delta. The ground truth and filtering estimates
are illustrated in Fig. 4a.

The objective is to compute the multi-trajectory posterior
π1:K|K(X1:K), which, in this example, can be directly derived
using Theorem 2. However, due to the multiple possible as-
sociations of single-object Dirac deltas at different time steps,
the number of mixture components in the multi-trajectory
smoothing density πk:K|K(Xk:K) increases very fast when
computed backward in time, and thus it soon becomes in-
feasible to evaluate πk:K|K(Xk:K) without approximation. As
shown in Appendix H, the multi-trajectory smoothing density
πK−1:K|K(XK−1:K) has already a mixture representation of
7 components. In this example, we compute the approximate
π1:K|K(X1:K) by pruning mixture components with negligible
weights. Fig. 4b, 4c and 4d show the estimated sets of
trajectories in descending order of posterior probability. The
results show that the estimate with unbroken trajectories has
the highest weight. With the considered multi-object dynamic
model, the set of trajectories with the highest posterior prob-
ability closely matches the true trajectories. The other sets of
trajectories (with less probability) do not properly link one of
the trajectories and, therefore, estimate an additional trajectory.

B. Simulation results

We present the results from a Monte Carlo simulation with
500 runs where the performance of the following multi-object
filters/smoothers are compared:

1) Track-oriented PMB filter [11], referred to as TO-PMB.
2) Variational PMB filter [43], referred to as V-PMB.
3) Multi-trajectory particle smoother with TO-PMB filter-

ing densities, referred to as BS-TO-PMB.
4) Multi-trajectory particle smoother with V-PMB filtering

densities, referred to as BS-V-PMB.
5) Trajectory PMBM filter for the set of all trajectories

[18], referred to as T-PMBM.
6) Trajectory PMB filter for the set of all trajectories [21],

referred to as T-PMB.
7) δ-GLMB filter with a multi-scan estimator [58] and RTS

smoothing, referred to as GLMB.
8) Multi-scan GLMB with batch smoothing [23], referred

to as M-GLMB.
We note that both 7) and 8) can be considered as implemen-
tations of the trajectory MBM01 filter in [17].

We consider a two-dimensional scenario with 81 time
steps where six initially well-separated objects move in close
proximity to each other and thereafter separate, in the area
[−100 m, 100 m]× [−100 m, 100 m]. The true trajectories of
the simulated scenario are illustrated in Fig. 5. We use a nearly
constant velocity motion model with sampling period Ts = 1 s
and single-object state transition density parameterised by

F = I2 ⊗
[
1 Ts
0 1

]
, Q = σ2

qI2 ⊗
[
T 3
s /3 T 2

s /2
T 2
s /2 Ts

]
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(a) (b) (c) (d)

Fig. 4. Single-object Dirac deltas and true/estimated trajectories of a one-dimensional illustrative example. The single-object Dirac deltas are shown as black
dots. Start/end positions of trajectories are marked by circles/crosses. Subfigure (a) shows the true trajectories. Subfigure (b), (c) and (d) show the estimated
sets of trajectories in descending order of posterior probability; their posterior probabilities are 0.78, 0.15 and 0.03, respectively.

Fig. 5. True trajectories of the scenario with a high risk of track coalescence
for one of 500 Monte Carlo runs. The figure on the top shows the two-
dimensional trajectories, and how their decompositions into x and y dimen-
sions vary over time is illustrated in the two figures on the bottom. Note that
for different Monte Carlo runs, only the birth and death time of objects are
deterministic. Start/end positions of trajectories are marked by triangle/square,
respectively. There are six objects. They are born at time step 1, 6, 11, 16,
21, 26 and die at time step 41, 51, 61, 61, 71, 81, respectively. At time step
41, one object dies when all objects are in close proximity.

where I2 is an identity matrix, ⊗ denotes the Kronecker
product, and σq = 0.1. Each object survives with probability

pS = 0.98. We also consider the point object measurement
model where each object generates at most one measurement.
The probability of detection is pD = 0.7 and the clutter is
uniformly distributed in the tracking area with Poisson rate
λC = 30. The measurement model is also linear and Gaussian
with observation matrix I2 ⊗

[
1 0

]
and measurement noise

covariance σ2
rI2 where σr = 1.

For implementations with Poisson birth model, the Poisson
birth intensity is a single Gaussian (c.f. (29)) with parameter
N b
k = 1, wb,1k = 0.05, mb,1

k = [−25, 1,−25, 1]T and P b,1k =
diag(225, 1, 225, 1). The MB birth model used in GLMB and
MS-GLMB contains a single Bernoulli with the same PHD as
the Poisson birth process.

All the implementations use ellipsoidal gating (with gating
size computed using the inverse-chi-squared distribution at
probability 0.9999) to remove unlikely local hypotheses and
Murty’s algorithm to find the M -best global hypotheses with
highest weight, with the only exception being MS-GLMB
where the multi-scan data association problem is solved using
Gibbs sampling. The maximum number of hypotheses is 100
for TO-PMB, V-PMB and T-PMB, and 1000 for T-PMBM and
GLMB. For filters with Poisson birth, Bernoulli components
with probability of existence smaller than 10−4 and Poisson
components with weights smaller than 10−4 are pruned. For
T-PMBM and T-PMB, Bernoulli components with probability
of being alive at the current time step smaller than 10−4 are
considered dead, and both filters are implemented without
L-scan approximation, i.e., single-object states at different
time steps are not considered independent. For T-PMBM and
GLMB, we prune global hypotheses with weight smaller than
10−4. For MS-GLMB, the smoothed multi-trajectory estimate
obtained from GLMB is used to initialise the Markov chain
and 1000 iterations are used in the multi-scan Gibbs sampler.
For BS-TO-PMB and BS-V-PMB, the number of particles is
1000 and only a maximum of 100 global hypotheses with
weight larger than 10−4 can be sampled.

For filters with Poisson birth, estimates are extracted from
Bernoulli components with probability of existence r ≥ 0.5.
For T-PMBM, this is done for the global hypothesis with the
highest weight. Also note that we only extract T-PMBM and
T-PMB estimates at the last time step. For GLMB and M-
GLMB, we also report estimates from the global hypothesis
with the highest weight. For BS-TO-PMB and BS-V-PMB,
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Fig. 6. GOSPA error versus time for the scenario with a high risk of track
coalescence. The two multi-trajectory particle smoothers outperform their
corresponding multi-object filters in terms of GOSPA error at almost all the
time steps.

TABLE I
AVERAGE GOSPA ERROR AND ITS DECOMPOSITION WHERE

LOCALISATION REFERS TO THE LOCALISATION ERROR NORMALISED BY
THE ESTIMATED CARDINALITY

GOSPA Localisation Missed False
TO-PMB 859.5 93.6 358.5 196.0

BS-TO-PMB 606.8 64.3 272.3 119.2
V-PMB 772.0 83.3 363.8 140.0

BS-V-PMB 492.3 55.7 226.7 78.6

we report the particle (set of trajectories estimate) with the
highest likelihood accumulated over time, see Appendix G for
implementation details.

The multi-object state estimation performance is evalu-
ated using the generalised optimal sub-pattern assignment
(GOSPA) metric [63] with α = 2, c = 20 and p = 1. Given
a metric db(·, ·) in Rnx , a scalar c > 0, and a scalar p with
1 ≤ p < ∞, the GOSPA metric (α = 2) between sets x and
y is [63, Proposition 1]

d(x,y)

=

min
θ∈Γ

 ∑
(i,j)∈θ

dpb (xi, yj) +
cp

2
(|x|+ |y| − 2|θ|)

 1
p

where θ is an assignment set between sets {1, . . . , |x|} and
{1, . . . , |y|}, and Γ is the set of all possible assignment sets.
In addition, the multi-trajectory estimation performance is
evaluated using the linear programming (LP) metric for sets
of trajectories [64] with c = 20, p = 1 and γ = 2, which is
an extension of GOSPA to sets of trajectories.

We first analyse how the two multi-trajectory smoothers can
improve multi-object estimation performance with respect to
the forward filters. For TO-PMB, BS-TO-PMB, V-PMB and
BS-V-PMB, the GOSPA error versus time is shown in Fig.
6, and the average GOSPA error and its decomposition into
localisation error, missed detection error and false detection
error are presented in Table I. It can be seen from Fig. 6

Fig. 7. LP trajectory metric error versus time for the scenario with a high
risk of track coalescence. BS-V-PMB has the best overall performance.

TABLE II
AVERAGE LP TRAJECTORY METRIC ERROR AND ITS DECOMPOSITION

Total Localisation Missed False Switch
BS-TO-PMB 688.2 277.9 274.9 118.3 17.2
BS-V-PMB 564.4 242.6 225.2 79.0 17.7
T-PMBM 640.5 243.9 356.2 22.9 17.5
T-PMB 722.3 280.3 237.8 185.9 18.3
GLMB 867.0 285.9 329.8 232.1 19.2

M-GLMB 724.3 262.5 324.5 116.5 18.8

that TO-PMB shows the largest estimation error when objects
moving in close proximity begin to separate, a problem known
as track coalescence commonly observed in JPDAF. As a
comparison, V-PMB resolves the coalescence by using a more
accurate MB approximation method [43]. Both BS-TO-PMB
and BS-V-PMB outperform their corresponding forward filters
in terms of localisation error, missed and false detections by a
large margin. Between these two smoothers, BS-V-PMB has
better estimation performance than BS-TO-PMB.

We proceed to analyse the trajectory estimation perfor-
mance of different implementations. The LP trajectory metric
error versus time for all the implementations that estimate
trajectories is shown in Fig. 7, and the numerical values
of the average LP trajectory metric error are presented in
Table II. On the whole, BS-V-PMB has the best estimation
performance averaged over different time steps, followed by
T-PMBM. In particular, BS-V-PMB has the best performance
when objects are in close proximity, whereas T-PMBM has the
best performance on initiating and terminating trajectories. In
principle, T-PMBM will produce optimal trajectory estimates
if it is implemented without approximation, and we apply
an optimal estimator (e.g. in the sense of minimising the
mean trajectory metric error). However, in practice, we use
pruning and a suboptimal estimator. When objects are well-
spaced, only hypotheses with negligible weight are pruned,
so the performance of T-PMBM is effectively optimal. With
closely-spaced objects, there are many feasible hypotheses
which cannot be effectively enumerated, and the additional
ability of BS-V-PMB to reason over the entire sequence is
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(a) (b) (c) (d)

Fig. 8. Decompositions of trajectory metric error versus time for the scenario with a high risk of track coalescence.

(a) (b) (c)

Fig. 9. Some statistics (averaged over 500 Monte Carlo runs) of the particle representation of the multi-trajectory density π1:K|K(X) obtained from BS-
V-PMB. The computation of these statistics is given in Appendix F. Subfigure (a) shows the cardinality distribution of the set X of trajectories in the time
interval 1 : K. Subfigure (b) and (c), respectively, show the cardinality distributions of trajectory birth and death at different time steps where the probability
of a specific birth/death event is represented by the length of its corresponding bar.

clearly evident. BS-TO-PMB outperforms T-PMB, with the
latter being an efficient approximation of T-PMBM. GLMB
is less accurate than the other implementations using Poisson
birth model due to their less efficient representation of the
multi-object posterior [65], even though for the considered
scenario where at most one object is born at a time it is more
beneficial to use a Bernoulli birth model. M-GLMB has better
performance than GLMB by improving the GLMB estimates
using a multi-scan Gibbs sampler with batch smoothing.

The decompositions of the LP trajectory metric error into
localisation error, missed detection error, false detection er-
ror and track switch error are shown in Fig. 8. T-PMBM,
GLMB and M-GLMB show large missed detection errors
when objects are in close proximity. In this case, many global
hypotheses in T-PMBM and GLMB can have non-negligible
weights due to the high data association uncertainty, and
capping the number of global hypotheses may result in larger
approximation errors than merging multiple global hypotheses
into one. This explains why T-PMBM has worse performance
than its approximation T-PMB when objects are in close
proximity (before separation). Moreover, T-PMBM has very
small false detection error, whereas GLMB has difficulty
in terminating trajectories of dead objects. T-PMB has less
missed detection error but more false detection error than BS-
TO-PMB. The track switch error of all the implementations
becomes large when objects are in close proximity, and
implementations with Poisson birth model have lower track
switch error than the two GLMB implementations.

Fig. 9 shows the cardinality distributions of the estimated set
of trajectories as well as the trajectory birth and death at dif-
ferent time steps, computed using the particle representations
of the multi-trajectory density π1:K|K(X) in BS-V-PMB. As
can be seen, these statistics, in general, well reflect the ground
truth except at time step 41 when one object died. Specifically,
Fig. 9b and Fig. 9c show that it is very likely that no object
dies at time step 41.

The average execution times in seconds of a single run2 (81
time steps) for pD = 0.7, λC = 30, σq = 0.1, and σr = 1 are:
281.0 (BS-TO-PMB), 209.4 (BS-V-PMB), 171.0 (T-PMBM),
6.5 (T-PMB), 11.1 (GLMB), 8683.7 (M-GLMB). The fastest
implementation is T-PMB, followed by GLMB. T-PMBM is
slower than GLMB as we do not use the L-scan approximation
[21]. BS-V-PMB is faster than BS-TO-PMB even though V-
PMB is slower than TO-PMB. This is due to the fact that
the computational bottleneck of BS-V-PMB and BS-TO-PMB
is backward simulation and that it is faster to run backward
simulation on the PMB filtering densities obtained using V-
PMB for the considered scenario. M-GLMB is significantly
slower than the other implementations as it solves an 81-scan
data association problem.

We proceed to analyse the performance of the filters and
smoothers with Poisson birth for different scene parameters,
and the results are shown in Table III. In general, BS-V-PMB
has the best trajectory estimation performance, followed by

2MATLAB implementation on 3.0 GHz Intel Core i5.
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TABLE III
AVERAGE LP TRAJECTORY METRIC ERROR FOR DIFFERENT SCENE

PARAMETERS OF THE SCENARIO WITH A HIGH RISK OF TRACK
COALESCENCE

BS-TO-PMB BS-V-PMB T-PMBM T-PMB
No change 688.2 564.4 640.5 722.3
σq = 0.5 1096.4 915.9 926.1 1088.2
σr = 0.5 460.5 374.7 409.8 476.4
pD = 0.8 559.0 457.2 505.9 582.6
λC = 10 642.2 511.7 565.9 668.3
λC = 50 712.1 599.5 693.2 752.2

Fig. 10. GOSPA error versus time for the scenario with simultaneous
object births. The two trajectory filters and the two multi-trajectory particle
smoothers significantly outperform the two PMB filters based on sets of
objects.

TABLE IV
AVERAGE GOSPA ERROR AND ITS DECOMPOSITION WHERE

LOCALISATION REFERS TO THE LOCALISATION ERROR NORMALISED BY
THE ESTIMATED CARDINALITY

GOSPA Localisation Missed False
TO-PMB 281.7 24.1 192.1 11.6

BS-TO-PMB 96.5 15.4 33.8 3.6
V-PMB 280.2 24.1 191.2 11.2

BS-V-PMB 90.7 15.4 29.8 1.8
T-PMBM 74.4 14.4 17.0 1.2
T-PMB 91.5 15.7 22.8 7.7

T-PMBM. As expected, if the scenario has lower signal-to-
noise ratio, e.g., when the motion noise or clutter intensity
increases, performance of all the filters/smoothers decreases. If
the scenario has higher signal-to-noise ratio, e.g., measurement
noise or clutter intensity decreases, or probability of detection
increases, performance of all the filters/smoothers increases.

To further demonstrate the ability of the proposed multi-
trajectory smoothers to infer object birth locations before first
detection, we consider another scenario with 20 time steps
where four objects are born at time step 1 and no object
dies. Compared to the first scenario, here the probability of
detection is pD = 0.5 and the Poisson clutter rate is λC = 5.
We compare the performance of different implementations
with Poisson birth model. The Poisson birth intensity is
parameterised by N b

k = 1, wb,1k = 0.02, xb,1k = [0, 0, 0, 0]T ,

P b,1k = diag(100, 2, 100, 2)2, and the initial Poisson intensity
for undetected objects is set to λu0|0(x) = 4N (x;xb,1k , P b,1k ).

The GOSPA error versus time for the considered scenario is
shown in Fig. 10 and its decomposition is presented in Table
IV. The results show that T-PMBM has the best estimation
performance, and that TO-PMB and V-PMB have the worst
estimation performance. The estimation performance of T-
PMB, BS-TO-PMB and BS-V-PMB is similar, and it is slightly
worse than T-PMBM. Due to the low detection probability,
objects were usually detected a few time steps after they were
born. This explains the high missed detection error of TO-
PMB and V-PMB. The estimation of object states before first
detection can be obtained by considering the posterior density
on sets of trajectories, which captures all the information about
the trajectories, including those of undetected objects. For T-
PMBM and T-PMB, this information is explicitly carried over
time via forward filtering, whereas for BS-TO-PMB and BS-
V-PMB, this information is inferred from filtering densities of
detected objects at later time steps and gradually recovered
via backward smoothing.

At last, we note that the forward-backward smoothers BS-
TO-PMB, BS-V-PMB and the trajectory filters T-PMBM, T-
PMB are suitable for different applications. BS-TO-PMB and
BS-V-PMB are offline methods and their backward smoothing
steps do not utilise any information of the measurements and
the multi-object measurement model, and therefore they are
more suitable for offline trajectory analytics. T-PMBM and T-
PMB are online methods, and they can also be applied to batch
problems. The difference is that T-PMBM and T-PMB solve
the data associations while filtering, whereas with backward
simulation, we are not constrained to the previously solved
data associations in the sense that future measurements can
be utilised to improve trajectory estimation.

VII. CONCLUSIONS

In this paper, we have derived a multi-trajectory backward
smoothing equation based on sets of trajectories. This allows
us to leverage filters that do not keep trajectory information to
compute the posterior density of sets of trajectories, and has
important applications to offline trajectory analytics. In addi-
tion, we have proposed a multi-trajectory particle smoother
using backward simulation for PMB filtering densities along
with its tractable implementation based on ranked assignment.
The simulation results show that the proposed methods have
superior trajectory estimation performance compared to sev-
eral state-of-the-art algorithms.

A follow-up work direction is developing an implementation
that works for forward densities with particle representation. In
addition, it would be interesting to study how to extract better
estimates from the particle representation of multi-trajectory
densities (28), e.g., by merging different particles in the multi-
object trajectory space.
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Supplementary Materials
APPENDIX A

PROOF OF THEOREM 1
We prove Theorem 1 by induction3. The base case one-step

prediction with γ = η+1 has been proved in [17]. We proceed
to show that if (11) and (12) hold, then the (γ + 1 − η)-step
predicted multi-trajectory density of πα:η|k(·) is also of the
form (11) and (12). We define Wγ+1 as the set of trajectories
born at time step γ + 1. Then the one-step predicted multi-
trajectory density of πα:γ|k(Xα:γ) is

πα:γ+1|k(Xα:γ+1) = πα:γ|k(Xα:γ)πγ+1:γ+1(Wγ+1)

×
∏

(t,x1:ν)∈Xγ
α:γ+1

(1 + pS (xν) (δγ−t+2[ν]− 1)
)

×
ν−1∏

`=γ−t+1

g
(
x`+1|x`

)
pS
(
x`
) . (37)

We further write Xγ
α:γ+1 = Y]V where Y ⊆ Xη

α:γ+1 is the
set of trajectories present at time step η and V ⊆W is the set
of trajectories that appeared after time step η (by assumption
η < γ). This allows us to separate the product over Xγ

α:γ+1

in (37) into two products over Y and V, respectively. By
plugging (11) and (12) into (37) and combining these two
products with the product over Xη

α:γ in (11) and the product
over W in (12), respectively, we obtain

πα:γ+1|k(Xα:γ+1) = πα:η|k(Xα:η)πη+1:γ+1(W ]Wγ+1)

×
∏

(t,x1:ν)∈Xη
α:γ+1

(1 + pS (xν) (δγ−t+2[ν]− 1)
)

×
ν−1∏

`=η−t+1

g
(
x`+1|x`

)
pS
(
x`
) , (38)

πη+1:γ+1(W ]Wγ+1) =

γ+1∏
`=η+1

β
(
τ `(W`)

)
×

∏
(t,x1:ν)∈W

(1 + pS (xν) (δγ−t+2[ν]− 1)
)

×
ν−1∏
`=1

g
(
x`+1|x`

)
pS
(
x`
)]
. (39)

We can then observe that (38) has the same form as (11), and
that (39) has the same form as (12).

This finishes the proof of Theorem 1.

APPENDIX B
PROOF OF COROLLARY 1.1

We observe that the only factor in (11) that depends on time
step α is πα:η|k(Xα:η). This means that the quotient

πα:γ|k(Xα:γ)

πα:η|k(Xα:η)

3A direct proof using sets integrals can be found in [56, Appendix A].

does not depend on time step α, and therefore it holds that

πk:γ|k(Xk:γ)

πk:η|k(Xk:η)
=
πk+1:γ|k(Xk+1:γ)

πk+1:η|k(Xk+1:η)
. (40)

Setting η = k + 1 in (40) gives

πk:γ|k(Xk:γ)

πk:k+1|k(Xk:k+1)
=

πk+1:γ|k(Xk+1:γ)

fk+1|k(τk+1(Xk+1:k+1))
, (41)

which can be rearranged to obtain (13).
This finishes the proof of Corollary 1.1.

APPENDIX C
PROOF OF THEOREM 2

Let X and Y be the set of trajectories in the time interval k :
K and k + 1 : K, respectively. Applying the total probability
theorem and Bayes’ rule gives

πk:K|K(X) =

∫
πk:K|K(X,Y)δY,

=

∫
πk+1:K|K(Y)πk:K|K(X|Y)δY (42)

where πk:K|K(X|Y) defines the backward transition density
from Y to X conditioned on the sequence of sets of mea-
surements up to and including time step K. Assume that X is
independent of measurements (zk+1, . . . , zK) that are in the
future given Y:

πk:K|K(X|Y) = πk:K|k(X|Y). (43)

Then we have

πk:K|K(X) =

∫
πk+1:K|K(Y)πk:K|k(X|Y)δY

= πk:K|k(X)

∫
πk+1:K|K(Y)

πk:K|k(X|Y)

πk:K|k(X)
δY.

(44)

Bayes’ rule then yields

πk:K|K(X) = πk:K|k(X)

∫
πk+1:K|K(Y)

πk+1:K|k(Y|X)

πk+1:K|k(Y)
δY

(45)
where πk+1:K|k(Y|X) defines the transition density from X
to Y, which is a multi-trajectory Dirac delta. The integral over
Y in (45) can then be cancelled out by applying the prediction
equation for sets of trajectories [17, Eq. (8)], which gives us

πk:K|K(X) =
πk:K|k(X)πk+1:K|K(Xk+1:K)

πk+1:K|k(Xk+1:K)
. (46)

Applying Corollary 1.1 on (46) yields

πk:K|k(X)

πk+1:K|k(Xk+1:K)
=

πk:k+1|k(Xk:k+1)

fk+1|k (τk+1(Xk+1:k+1))
. (47)

The proof is finished by plugging (47) into (46).
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APPENDIX D
PROOF OF LEMMA 3

We first rewrite πk:K|K(X|Y) using (43) and Bayes’ rule:

πk:K|K(X|Y) =
πk:K|k(X)πk+1:K|k(Y|X)

πk+1:K|k(Y)
(48)

where πk+1:K|k(Y|X) defines the transition density from X
to Y, which is a multi-trajectory Dirac delta. We then apply
Corollary 1.1, which gives

πk:K|K(X|Y) =
πk:k+1|k(Xk:k+1)δY(Xk+1:K)

fk+1|k (τk+1(Yk+1:k+1))
. (49)

As fk+1|k
(
τk+1(Yk+1:k+1)

)
does not depend on X, we can

further express πk:K|k(X|Y) as (15).
This finishes the proof of Lemma 3.

APPENDIX E
PROOF OF THEOREM 4

We first give the explicit expression of the multi-trajectory
density πk:k+1|k(Xk:k+1). Given the PMB filtering density at
time step k (cf. (10)) and the multi-trajectory dynamic model
described in Section II-C with Poisson birth density (9), the
predicted multi-trajectory density πk:k+1|k(Xk:k+1) is a PMB
[21, Lemma 4]

πk:k+1|k(Xk:k+1) =∑
]
nk:k+1|k
j=1 Xj]P=Xk:k+1

πpk:k+1|k(P)

nk:k+1|k∏
i=1

[
πik:k+1|k

(
Xi
)]
(50)

with nk:k+1|k = nk|k, where πpk:k+1|k(·) is of the form (3)
with intensity

λuk:k+1|k
(
t, x1:ν

)
= δk+1[t]δ1[ν]λBk+1

(
x1
)

+
〈
λuk|k

(
y1
)
δk[t′]δ1[ν′], gk+1

(
t, x1:ν |t′, y1:ν′

)〉
, (51)

and πik:k+1|k(Xi) is of the form (4), parameterised by

rik:k+1|k = rik|k, (52)

pik:k+1|k(X) =
〈
pik|k

(
y1
)
δk[t′]δ1[ν′], gk+1

(
X|t′, y1:ν′

)〉
.

(53)

where the single trajectory transition density gk+1(·|·) is given
by (6).

Next, we elaborate on why the multi-trajectory Dirac delta
δY(Xk+1:K) can be seen as a standard multi-object measure-
ment model [8] with characteristics specified in Section IV-B.
We note that the multi-trajectory Dirac delta δY(Xk+1:K) can
be written as a trajectory MB where each trajectory Bernoulli
component is parameterised by probability of existence one
and a Dirac delta single-trajectory density, i.e.,

δY(Xk+1:K) =
∑

]
nk+1:K
j=1 Xj=Xk+1:K

nk+1:K∏
i=1

δ{Y i}
(
Xi
)

(54)

where for trajectories that did not exist in the time interval k+
1 : K, they are implicitly represented by trajectory Bernoulli

components with zero probability of existence. Therefore, the
multi-trajectory Dirac delta δY(Xk+1:K) can be understood
as a standard measurement model for sets of trajectories [21]:
• Each trajectory X = (t, x1:ν) ∈ Xk:K is detected with

probability

pD(X) =

{
0, t = k and ν = 1

1, otherwise
(55)

and if detected, it generates a measurement Y with
density δY (Xk+1:K).

• Poisson clutter intensity λC(·) = 0.
Note that if a trajectory X in the time interval k : K did not
exist in the time interval k + 1 : K, then it must have start
time t = k and length ν = 1.

Having established the analogy between the backward ker-
nel (15) for PMB filtering densities and the trajectory PMB up-
date, the explicit expression of the trajectory PMBM backward
kernel (19) can be straightforward obtained by plugging the
trajectory PMB prior (50) and measurement model (54) into
the trajectory PMB update equations [21, Lemma 5]. One thing
to be noted is that the set of trajectories appeared after time
step k + 1 remains unaltered. This will be further elaborated.

We write X = X′ ]D′ as the disjoint union of the set X′

of trajectories present at time step k or k + 1 and the set D′

of trajectories of objects that appeared after time step k + 1.
We also write Y = Y′ ]D as the disjoint union of the set
Y′ of trajectories of objects that existed at time step k + 1
and the set D of trajectories of objects that appeared after
time step k + 1. It holds that Xk+1:K = X′k+1:K ] D′ by
construction, and that the density of Xk+1:K conditioned on
Y is zero unless D = D′. Then we have

δY′]D
(
X′k+1:K ]D′

)
= δY′

(
X′k+1:K

)
δD (D′) , (56)

and the backward kernel (15) becomes

πk:K|K (X′ ]D′|Y′ ]D)

∝ πk:k+1|k
(
X′k:k+1

)
δY′

(
X′k+1:K

)
δD (D′) (57)

where δD (D′) can be written as a trajectory MB similar to
(54). This explains the last part of Theorem 4 and finishes the
proof of Theorem 4.

APPENDIX F

For the particle representation of the multi-trajectory density
(28), the cardinality distribution of the set Xα:γ of trajectories
is given by

Pr(|Xα:γ | = n) =

T∑
i=1

w(i)δn

[∣∣∣X(i)
∣∣∣] , (58)

the cardinality distribution of the trajectories born at time step
k with α ≤ k ≤ γ is given by

Pr(n births at time k) =

T∑
i=1

w(i)δn

 ∑
(t,x1:ν)∈X(i)

δk[t]

 ,
(59)
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and the cardinality distribution of the trajectories that die at
time step k with α ≤ k ≤ γ − 1 is given by

Pr(n deaths at time k)

=

T∑
i=1

w(i)δn

 ∑
(t,x1:ν)∈X(i)

δk[t+ ν − 1]

 . (60)

APPENDIX G
The pseudocode of linear-Gaussian backward simulation for

sets of trajectories with PMB filtering densities along with
an efficient estimator is given in Algorithm 1. The proposed
estimator reports the particle with the highest likelihood accu-
mulated over time from T particles (sets of trajectories) with
equal weight 1/T .

APPENDIX H
In this appendix, we derive the explicit expression of multi-

trajectory smoothing density πK−1:K|K(XK−1:K) for the one-
dimensional example in Section VI-A.

We write XK−1:K = Y ] V ] B where the set Y of
trajectories present at both time step K − 1 and K, the set
V of trajectories only present at time step K − 1, and the
set B of trajectories only present at time step K. We also
write the multi-object filtering density fk|k(x) at time step k
as δyk(x) where yk = {y1

k, y
2
k} and k ∈ {1, . . . ,K}. The

predicted multi-trajectory density of fK−1|K−1(·) for each of
the events can then be expressed using Theorem 1:
• The two objects existed at both time step K − 1 and K,

πK−1:K|K−1(Y ]B)

= δyK−1

(
τK−1(Y)

)
e−0.1

∏
(K,x1)∈B

λB
(
x1
)

×
(
pS
)2 ∏

(K−1,x1:2)∈Y

N
(
x2;Fx1, Q

)
.

• Object with state y1
K−1 existed at time step K and object

with state y2
K−1 died at time step K − 1,

πK−1:K|K−1(Y ]V ]B)

= δyK−1

(
τK−1(Y ]V)

)
e−0.1

∏
(K,x1)∈B

λB
(
x1
)

×
(
1− pS

)
pS

∏
(K−1,x1:2)∈Y

N
(
x2;Fy1

K−1, Q
)
.

• Object with state y2
K−1 existed at time step K and object

with state y1
K−1 died at time step K − 1,

πK−1:K|K−1(Y ]V ]B)

= δyK−1

(
τK−1(Y ]V)

)
e−0.1

∏
(K,x1)∈B

λB
(
x1
)

×
(
1− pS

)
pS

∏
(K−1,x1:2)∈Y

N
(
x2;Fy2

K−1, Q
)
.

• The two objects died at time step K − 1,

πK−1:K|K−1(V ]B) =

δyK−1

(
τK−1(V)

)
e−0.1

∏
(K,x1)∈B

λB
(
x1
) (

1− pS
)2
.

Algorithm 1 Backward simulation for sets of trajectories with
PMB filtering densities

Input: T ,
{
λBk (·), λu

k|k(·)
}K−1

k=1
,
{{

rj
k|k, p

j
k|k(·)

}nk|k
j=1

}K
k=1

.

Output: X1:K

1: for ι = 1, . . . , T do
2: yK|K = ∅;
3: cι = 0;
4: for i = 1, . . . , nK|K do
5: u ∼ Uniform[0, 1];
6: if u ≤ ri

K|K then

7: yK|K = yK|K ∪
{
xi
K|K

}
;

8: end if
9: end for

10: YK:K =
{
Y =

(
1, y1

)
: y1 ∈ yK|K

}
11: for k = K − 1, . . . , 1 do
12: Separate Yk+1:K into

{
Y j
}m
j=1

and
{
Y j
}nk+1:K
j=m+1 as described

in Theorem 4;
13: for i = 1, . . . , nk|k do
14: for j = 1, . . . ,m do
15: if SMD(y1j ;xi

k|k, P
i
k|k) < Γg then

16: Compute W (j,i)
1 using (36b);

17: else
18: W

(j,i)
1 = 0;

19: end if
20: end for
21: end for
22: Compute W2 (36c);
23: C = − log

[
W1 W2

]
;

24: Run Murty’s algorithm on C to obtain the M best global hypotheses
with highest weight a∗

k:K|K = {a1, . . . , aM};
25: Compute [ŵa1 , . . . , ŵaM ] using (18) and normalise them to obtain

[wa1 , . . . , waM ];
26: a ∼ Categorical([wa1 , . . . , waM ]);
27: cι = cι + log(ŵa);
28: end for
29: Yk:K =

{
Y j
}nk+1:K
j=m+1 ;

30: for i = 1, . . . , nk|k do
31: if ai = 1 then
32: u ∼ Uniform[0, 1];
33: if u ≤ ri,1

k:K|K (32b) then
34: Sample Y ∼ pi,1

k:K|K(·) using (32c);
35: Yk:K = Yk:K ∪ {Y };
36: end if
37: else
38: Sample Y ∼ pi,a

i

k:K|K(·) using (33c);
39: Yk:K = Yk:K ∪ {Y };
40: end if
41: end for
42: for i = nk|k + 1, . . . , nk|k +m do
43: if ai = 2 then
44: Sample Y ∼ pi,2

k:K|K(·) using (34c);
45: Yk:K = Yk:K ∪ {Y };
46: end if
47: end for
48: X

(ι)
1:K = Y1:K ;

49: end for
50: ι∗ = arg maxι cι;
51: X1:K = X

(ι∗)
1:K ;

When taking the product of the two multi-trajectory densities
πK−1:K|K(XK−1:K) and πK:K|K(XK|K), a multi-trajectory
Dirac delta with two components, each of the first three events
has two different cases due to the unknown correspondence
between τK−1(Y) and yK . Therefore, the multi-trajectory
density πK−1:K|K(XK−1:K) has a mixture representation of
7 components.


