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In recent years, the development of smart transportation has accelerated research on semantic segmentation as it is one of the
most important problems in this area. A large receptive field has always been the center of focus when designing convolutional
neural networks for semantic segmentation. A majority of recent techniques have used maxpooling to increase the receptive
field of a network at an expense of decreasing its spatial resolution. Although this idea has shown improved results in object
detection applications, however, when it comes to semantic segmentation, a high spatial resolution also needs to be considered.
To address this issue, a new deep learning model, the M-Net is proposed in this paper which satisfies both high spatial
resolution and a large enough receptive field while keeping the size of the model to a minimum. The proposed network is
based on an encoder-decoder architecture. The encoder uses atrous convolution to encode the features at full resolution, and
instead of using heavy transposed convolution, the decoder consists of a multipath feature extraction module that can extract
multiscale context information from the encoded features. The experimental results reported in the paper demonstrate the
viability of the proposed scheme.

1. Introduction

Computer vision stands as the backbone of various modern
autonomous driving systems [1] with semantic segmenta-
tion being one of its fundamental tasks. The goal of semantic
segmentation is to assign a label to every pixel of an image.
Deep convolutional neural networks have opened up a wide
area of extremely effective solutions to problems like object
detection [2], lane detection [3], object tracking [4], and
semantic segmentation.

Improvements in the performance of deep neural net-
works have largely been achieved by increasing the number

of learnable parameters along with careful network design-
ing, making them computationally expensive. Reducing
computational cost and extracting the maximum possible
performance from the minimum number of learnable
parameters is undoubtedly an extremely important require-
ment when dealing with embedded systems in autonomous
driving. To detect large objects in an image, it is necessary
to have a receptive field large enough to gather enough con-
text information, and the use of pooling layers in many
recent networks to increase the receptive field means that
this information is found on a courser scale at higher layers.
Finer details like edges of an object or small/thin objects
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need high spatial resolution to perform accurate
segmentation.

To increase the receptive field of the network, the
encoder in encoder-decoder methods normally downsam-
ples the image using strided convolution or pooling layers
or both, at an expense of reducing the spatial resolution.
The decoder then uses transposed convolution to upsample
these encoded features to obtain a high-resolution final fea-
ture map; this makes segmenting small objects difficult.
Encoder-decoder structures like FCN [5] and U-Net [6]
use skip connections to connect the lower layers in an
encoder to higher layers of the decoder; this partially solves
the problem by allowing both high layer course information
and low layer fine information to contribute to the predic-
tion of the final feature map. This technique is effective to
some extent but can lead to deeper models with a large num-
ber of learnable parameters.

An alternative way can be to maintain the spatial resolu-
tion of the features in the encoder while using atrous convo-
lution to increase the receptive field. DeepLab [7] modifies
FCN [5] by replacing the last 2 downsampling operations
with atrous convolutions to maintain the receptive field. In
the architecture proposed by [8], atrous convolutions are
used extensively to effectively increase the receptive field
while maintaining the spatial resolution throughout the net-
work to segment smaller objects. Figure 1 shows how atrous
convolution expands the receptive field by adding holes into
a normal convolutional layer. A convolution layer with a 3
× 3 kernel and a dilation rate of 2 has the same field of view
as a layer with a 5 × 5 kernel, while only using 9 parameters.
Dilated convolution is an effective way to maintain spatial
resolution, but going deeper with high-resolution feature
maps can also introduce latency in the system. Processing
features in full resolution can be computationaly expensive,
to reduce the latency in our system we used maxpooling half
way down our network to reduce the spacial resolution by
half, this reduces the run time of our network and at the
same time increases the receptive field for larger objects.
Capturing useful image context information at multiple
scales has proven to enhance segmentation accuracy. Pyra-
mid pooling modules like the one introduced in [9] uses pyr-
amid pooling operation for multiple scale context
aggregation. The authors in [10] divided the initial input

into four subregions and obtained the pooled features from
each of those four subregions, respectively. DeepLab [7] on
the other hand use atrous spatial pyramid pooling(ASPP)
that exploits atrous convolution to divide the features into
different scales instead of pooling layers. A deeper version
of the ASPP module was introduced in [11] by adding a
standard 3 × 3 convolution after 3 × 3 atrous convolutions.
We have taken a similar approach by using a multipath fea-
ture extraction module as a decoder to fuse together the key
information from three different scales, leading to better seg-
mentation ability.

2. Related Work

Semantic segmentation is of great importance in self-driving
cars and various driving aids. Deep convolutional neural
networks when used in encoder-decoder network architec-
tures have shown remarkable segmentation performance.
Encoder-decoder network architectures were first intro-
duced by Bayesian SegNet [12] and SegNet [13]; they used
the encoder to downsample the features, and then, the
decoder was responsible for recovering the spacial dimen-
sions of the features. FCN [5] used a similar approach by
using a classification model like VGG [14] as an encoder
to extract features and those extracted features were then
upsampled to perform pixelwise prediction in full resolution.

Recent works have brought various changes to the
encoder-decoder structure. Instead of using transposed con-
volution in the decoder, the architecture in [15] introduced a
JPU unit to decode the features encoded by FCN [5], the
joint pyramid upsampling (JPU) unit upsamples the last 3
feature maps from FCN and then uses 4 dilated convolution
layers to extract the features at multiple scales; this decreases
the size of the network and also speeding up the network.
Encoder-decoders like the ones in [16, 17] use an encoder
to extract multilevel features and then used a decoder to
combine them into a high-resolution final prediction, avoid-
ing the extensive use of transposed convolution.

DeepLabs [7, 18] introduced atrous spatial pyramid
pooling (ASPP) to extract context information at different
scales for better segmentation. PSPNet [9] used global aver-
age pooling to capture context information. A similar multi-
path module has been used by [19] to generate a feature

(a) Dilation = 1 (b) Dilation = 2

Figure 1: The pixels in the blue contribute in the calculation of the center pixel in the output feature map. (a) shows a 3 × 3 convolution with
dilation rate of 1. (b) shows a 3 × 3 convolution with dilation rate of 2.
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pyramid in a generative adversarial network for road seg-
mentation. The authors in [20] use multiple paths in the
decoder to capture different variations in the face with the
same expression label. In [21], the input is taken at three dif-
ferent scales and an attention map for each scale is then
learned. Yap [22] proposed an architecture to segment dam-
ages on the road; the architecture contained detail branch
and segmentation branch using VGG net [14] and Moblie-
NetV2 [23], respectively, as backbone architectures.

All these developments lead to a huge improvement in
prediction accuracy but some of them are hard on computa-

tions. There have been developments to reduce the compu-
tational complexity required to achieve certain
segmentation accuracy. ENet [24] used early downsampling
to reduce the cost of processing large frames and used
PReLU as activation. The use of PReLU tends to increase
the computational cost, but the reduction in computations
caused by reducing the spatial dimensions of the features
early in the network was large enough to make the overall
network faster than its counterparts. SINet [25] introduced
an extremely lightweight multipath structure containing
spacial squeeze modules. These spacial squeeze modules
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Figure 2: Structure of architecture 1: M-Net encoder+PSP decoder.
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reduce the number of feature maps by half by using point-
wise convolution, to further reduce the computations they
used average pooling to squeeze the resolution of the feature
maps, beating ENet [24] in the total number of parameters.

3. Proposed Method

This section will discuss our proposed methodology in detail.
Our encoder is designed to effectively encode the features in
full resolution without allowing too much latency into the sys-
tem. Since our encoded features will be in full resolution it
would eliminate the need to use extensive transposed convolu-
tions in our decoder. The decoder in our case is a multipath
feature extraction module; this would extract features at differ-
ent scales, making better use of high-resolution encoded fea-
tures. We have proposed two architectures both with the
same encoder but one with PSP module as the decoder and
the second one with ASPP module as the decoder.

3.1. Architecture 1: M-Net Encoder+PSP Decoder. The
encoder is aimed at encoding the features at full resolutionmak-
ing much finer predictions possible, while also having a large
enough receptive field to effectively segment large objects.

Our encoder is four conv-blocks deep as shown in
Figure 2. Each conv-block has one standard convolutional
layer and two atrous convolutional layers with dilation rates
of 2 and 4, respectively, and each of them with a 3 × 3 kernel.
Stacking up convolutional layers in this particular order con-
nects each output pixel with 15 × 15 input pixels. To explain
this concept, we have used 1D convolutions to make things
look a bit less complicated. Figure 3 shows a set of 1D con-
volutions each with a kernel size of 3 and a dilation factor of
1, 2, and 4 is used for convolutional layers going from the
top, middle, to bottom layers, respectively. Each conv-
block effectively increases the receptive field by 15 pixels
while maintaining constant spatial dimensions; this order
of dilation rate also avoids the problem where the informa-
tion from the adjacent pixels do not overlap if only even
dilation rates are used as pointed out by [8]. Since going
deep with high spatial resolution can be computationally
expensive, the first 2 conv-blocks are followed by a Max-
Pooling layer which reduces the spatial dimensions of the
features by half, after which 2 more conv-blocks are added.
This also helps to increase the receptive field of the network
and enables it to segment larger objects in the image. Table 1
shows the input and output dimensions of every layer. We
selected a kernel size of 3 for each layer throughout the

Dilation rate = 1

Dilation rate = 2

Dilation rate = 4

Figure 3: Connections between 3 convolutional layers of dilation factors 1, 2, and 4.

Table 1: Detailed architecture of the encoder.

Layers Input Output

Conv-block 1

Conv2d 32 × 56 × 256 32 × 256 × 256 k = 3, p = 1, d = 1

Conv2d 32 × 256 × 256 32 × 256 × 256 k = 3, p = 2, d = 2

Conv2d 32 × 256 × 256 32 × 256 × 256 k = 3, p = 4, d = 4

Conv-block 2

Conv2d 32 × 256 × 256 32 × 256 × 256 k = 3, p = 1, d = 1

Conv2d 32 × 256 × 256 32 × 256 × 256 k = 3, p = 2, d = 2

Conv2d 32 × 256 × 256 32 × 256 × 256 k = 3, p = 4, d = 4

MaxPooling 32 × 256 × 256 32 × 128 × 128 k = 3, s = 2, p = 1

Conv-block 3

Conv2d 32 × 128 × 128 64 × 128 × 128 k = 3, p = 1, d = 1

Conv2d 64 × 128 × 128 64 × 128 × 128 k = 3, p = 2, d = 2

Conv2d 64 × 128 × 128 64 × 128 × 128 k = 3, p = 4, d = 4

Conv-block 4

Conv2d 64 × 128 × 128 64 × 128 × 128 k = 3, p = 1, d = 1

Conv2d 64 × 128 × 128 64 × 128 × 128 k = 3, p = 2, d = 2

Conv2d 64 × 128 × 128 64 × 128 × 128 k = 3, p = 4, d = 4

k denotes the kernel size, p denotes the padding used, d denotes the dilation rate, and s denotes the strides.
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network; we have avoided using larger kernel sizes to reduce
computations. Specific padding is used for each dilation rate
to maintain the spacial resolution. The outputs from the last
two conv-blocks are upscaled using transposed convolution
to recover the spatial dimensions of the features from the last
2 conv-blocks. All four feature maps are then concatenated
together resulting in a feature map of shape 128 × 256 ×
256 which is then passed on to the decoder which in this first
case is a PSP module.

The emphasis behind using a PSP module as the decoder
is to extract features from different scales further increasing
the receptive field and to fuse the information received from
different scales. This increases the range of context informa-
tion obtained.

This idea was inspired by the PSP module proposed by
[9] which uses spacial pyramid pooling to capture the global
context information from the high-resolution features.

Multipath structures like the ones used in google’s incep-
tion nets and the ones used in this PSP module can be hard
on computations. To counter the high computational require-
ments, we have used a 1 × 1 convolution layer to reduce the
number of channels. The feature maps are then pooled into
their respective subregions each followed by a 3 × 3 convolu-
tion layer and batch normalization as shown in Figure 2.
The features from each scale are then upsampled using bilin-
ear interpolation and are then concatenated together.

3.2. Architecture 2: M-Net Encoder+ASPP Decoder. Another
way to extract multiple-scale information is by using atrous
spatial pyramid pooling (ASPP). The ASPP module replaces
pooling layers with atrous convolution at different dilation
rates to extract features at multiple scales. The reason why
we have not completely gone with pooling layers in the
PSP module to extract multiscale features is that despite

Table 2: The architectural difference between PSP and ASPP modules.

PSP ASPP

Branch Layers Parameters Layers Parameters

Branch 1
MaxPooling k = 9, s = 8, p = 1 Conv2d k = 3, p = 8, d = 8

Conv2d k = 3, s = 1, p = 1 Conv2d k = 3, p = 1, d = 1

Branch 2
MaxPooling k = 5, s = 4, p = 1 Conv2d k = 3, p = 4, d = 4

Conv2d k = 3, s = 1, p = 1 Conv2d k = 3, p = 1, d = 1

Branch 3
MaxPooling k = 3, s = 4, p = 1 Conv2d k = 3, p = 2, d = 2

Conv2d k = 3, s = 1, p = 1 Conv2d k = 3, p = 1, d = 1

Image Ground truth ENet SINet MNet + PSP MNet + ASPP

Figure 5: Visual comparison of segmentation masks with different models on Cityscapes dataset.

Table 3: Experimental results of segmentation models on Cityscapes.

Model Number of parameters Size mIoU

ENet 688K 3Mb 53

M-Net+ASPP 375K 1.5Mb 58

M-Net+PSP 348K 1.38Mb 56

SINet 43 K 0.3Mb 43
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being robust at increasing the receptive field of the network
maxpooling layers have shown to lose some of the informa-
tion; this effect is shown by the authors in [26], and we have
also observed finer results with ASPP module. We have used
three atrous convolution layers with the dilation rates of 2, 4,
and 8, respectively. Each atrous convolution is followed by a
standard convolution layer with a 3 × 3 kernel as shown in
Figure 4. We decided not to go deep with the convolution
layers in PSP and ASPP modules as a large number of com-

putations on multiple paths can make the system slower.
Table 2 shows the architectural difference between our PSP
and ASPP decoders.

4. Experiments and Results

We have used Pytorch as our deep learning framework to
train and test our model. Adam Optimizer [27] with a learn-
ing rate of 4e − 6, weight decay of 2e − 4, and batch size of 10
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Figure 6: Graphical comparison of validation mIoU against epoch on the Cityscapes dataset. (a) The graph of ENet. (b) The graph of SINet.
(c) The graph of M-Net with a PSP decoder. (d) The graph of M-Net with ASPP decoder.

Table 4: Experimental results of segmentation models on Mapillary Vistas.

Model Number of parameters Size mIoU

ENet 688K 3Mb 56

M-Net+ASPP 375K 1.5Mb 61

M-Net+PSP 348K 1.38Mb 59

SINet 43 K 0.3Mb 50

Image Ground truth ENet SINet MNet + PSP MNet + ASPP

Figure 7: Visual comparison of segmentation masks with different models on Mapillary Vistas dataset.
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was used to train our networks on Cityscapes [28] and
Mapillary vistas [29]. We have compared our results with
ENet and SINet since they both are known for working with
a low number of parameters.

We have used mean intersection over union as our eval-
uation metric; mIoU is the mean of IoU scores for each class
Equation (1), where TP, FP, and FN represent true positives,
false positives, and false negatives, respectively.

mIoU =
1
C
〠
C

x=1

TP xð Þ
TP xð Þ + FP xð Þ + FN xð Þ : ð1Þ

4.1. Cityscapes. Cityscapes is a large dataset with video
sequences recorded from the streets of 50 different cities.
The dataset has 2975 training samples, 500 validation sam-
ples, and 1525 test images. We trained our networks at an
image resolution of 256 × 256 and with 10 classes. To test
the performance of both multipath feature extraction
methods, we have trained our network first with a PSP mod-
ule as our decoder and then with an ASPP module. Table 3
shows the comparison between ENet, SINet, and our pro-
posed networks on the CityScapes dataset, the number of
parameters of SINet are still much less than our proposed
architecture but the jump in mIoU is significant while still
using half trainable parameters; the graphical comparison
between the models is shown in Figure 5 shows that both
of our models tend to converge a bit sooner. Despite having
slightly more parameters than the PSP module, the ASPP
module is still faster than the PSP module while still produc-
ing better results.

The results in Figure 6 show that high-resolution feature
encoding in our model makes it better at segmenting thin
and small objects and also at predicting fine-edged feature
masks. The pole in the first example is segmented by both
of our networks with reasonable accuracy while ENet and
SINet completely ignored it. The person in the second image

is segmented as a blob by SINet and ENet, whereas our pro-
posed architectures have managed to produce better edges
and a more human-like shape.

4.2. Mapillary Vistas. Mapillary Vistas has 25,000 high-
resolution images which are 5 times larger than Cityscapes;
it contains 66 object categories with labels for 37 classes. It
contains images from all devices from all around the world
in various weather conditions and seasons. We have aug-
mented our dataset by flipping the images along the y-axis,
doubling the dataset. We divided our dataset so that we
had 40,000 training samples, 5,000 validation, and 5,000 test
samples. Table 4 shows how each network performed on the
Mapillary dataset. Figure 7 shows that our architectures
maintain a pattern similar to the one presented by Figure 5
on a much larger Mapillary vistas dataset.

All 4 networks are trained on 3 classes naming vehicle,
pedestrian, and road. Figure 8 shows the visual comparison
between the results of all 4 networks on Mapillary Vistas.

Both of our networks have shown similar improvements
on both datasets. Careful encoding of features in high reso-
lution combined with multipath feature extraction has
shown to segment finer edges without any increase in the
number of learnable parameters. The first example in
Figure 8 shows how both of our M-Net architectures were
able to segment 3 different cars separately instead of seg-
menting all three cars as one. In the second example both
M-Nets are able to produce much finer results showing
how it is able to segment both large and small objects. The
graphs below from (a) to (d) show the change in mIoU with
every epoch on a validation set.

5. Discussion

This paper improves on the traditional encoder-decoder
technique for segmentation and proposes a technique to
encode the features in full resolution and uses a multipath
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Figure 8: Graphical comparison validation mIoU against epoch on the Mapillary dataset. (a) The graph of ENet. (b) The graph of SINet. (c)
The graph of M-Net with a PSP decoder. (d) The graph of M-Net with ASPP decoder.
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feature extraction feature extraction module to predict much
finer segmentation masks as compared to its traditional
encoder-decoder counterparts.

U-Net [6] has been one of the most widely used encoder-
decoder architecture for semantic segmentation; its effective-
ness and simplicity is the main reason behind its popularity. It
is safe to say that aggressive down sampling in segmentation
models can cause the loss of important spacial information. It
can be argued that the skip connections in U-Net [6] and Seg-
Net [13] can overcome the loss of information due to down-
sampling, but looking at it from a different angle, it is clear
that the convolutional layer immediately after the pooling layer
will not receive the needed spacial information. Small models
like ENet [24] and SINet [25] downsample the features in the
beginning of the network and then go deep with much smaller
feature maps to reduce the size and computational require-
ments of the model. In this paper, we show why that is not a
good idea when network is to be used for road scene segmenta-
tion. Encoding the features in full resolution and using a multi-
path feature extraction module has shown to result in much
finer and accurate segmentation masks while still maintaining
low computational requirements. The future work of this study
may include upscaling the network to compare its performance
with larger segmentation models. The main limitation of this
technique is that going too deep with full scale features can be
expensive this is one of the reasons why we had to use max-
pooling to be better than the networks under consideration
(ENet and SINet) in both size and speed. Future work might
also be able to study the effect of going deeper with full scale fea-
tures for applications where computation resource is not an
issue.

6. Conclusion

Unlike detection and classification applications, spacial reso-
lution of features is extremely important when it comes to
segmentation. This is also true for road scenes when seg-
menting small objects like a person and traffic sign, etc. This
paper proposes a new deep learning-based model for seman-
tic segmentation using an encoder-decoder architecture.

Instead of following the conventional approach of doing
extensive downsampling of features in the encoder, we have
introduced the idea of high-resolution feature encoding, thus
enabling the decoder to extract valuable multiscale features
from the high-resolution encoded features. To address the
issue of latency due to high-resolution features, the spatial res-
olution is reduced by half after every two convolution blocks.
The downsampled features are then upsampled before being
concatenated with the rest of the features. This way the output
of the encoder is in full resolution. The decoder consists of a
multipath feature extraction module to decode the necessary
information from three different scales. The proposed scheme
is also compared with some classical encoder-decoder archi-
tectures for semantic segmentation. The experimental results
reported in the paper show that encoding in full resolution
has resulted in the prediction of much finer segmentation
masks for both large and small objects. This research shows
the overall effectiveness of the proposed architecture in terms
of improved segmentation performance.

Data Availability

Two datasets were used in this set of experimentation
namingly Cityscapes and Mapillary vistas; they both are open
access datasets and are available on the following links: https://
www.kaggle.com/datasets/zhangyunsheng/cityscapes-data
and https://www.mapillary.com/dataset/vistas.
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