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ABSTRACT

Accurate precipitation nowcasting can provide great convenience to the public so they can conduct corresponding
arrangements in advance to deal with the possible impact of upcoming heavy rain. Recent relevant research
activities have shown their concerns on various deep learning models for radar echo extrapolation, where radar echo
maps were used to predict their consequent moment, so as to recognize potential severe convective weather events.
However, these approaches suffer from an inaccurate prediction of echo dynamics and unreliable depiction of echo
aggregation or dissipation, due to the size limitation of convolution filter, lack of global feature, and less attention to
features from previous states. To address the problems, this paper proposes a CEMA-LSTM recurrent unit, which
is embedded with a Contextual Feature Correlation Enhancement Block (CEB) and a Multi-Attention Mechanism
Block (MAB). The CEB enhances contextual feature correlation and supports its model to memorize significant
features for near-future prediction; the MAB uses a position and channel attention mechanism to capture global
features of radar echoes. Two practical radar echo datasets were used involving the FREM and CIKM 2017 datasets.
Both quantification and visualization of comparative experimental results have demonstrated outperformance
of the proposed CEMA-LSTM over recent models, e.g., PhyDNet, MIM and PredRNN(++), etc. In particular,
compared with the second-ranked model, its average POD, FAR and CSI have been improved by 3.87%, 1.65% and
1.79%, respectively on the FREM, and by 1.42%, 5.60% and 3.16%, respectively on the CIKM 2017.
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1 Introduction

Precipitation nowcasting is to forecast the precipitation intensity at the kilometer level for local
areas within a relatively short time range (e.g., 0–2 h) in the future, which is an effective way
to predict severe convective weather such as short-term heavy precipitation [1]. It can help local
meteorological departments make accurate decisions on severe precipitation warnings in time, guiding
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government sectors in transportation, agriculture, electric power, and other industries to respond in
advance, therefore reducing the potential economic losses [2]. However, precipitation nowcasting is
a challenging task due to the complexity of severe convective weather systems, small spatiotemporal
scales and the rapid evolution of the atmosphere and clouds [3].

With the rapid development of weather radars and corresponding techniques in recent years, pre-
cipitation nowcasting has become one of the hot investigative spots in the field of weather forecasting
[4,5]. These weather forecasting methods convert the data scanned by a Doppler weather radar into
radar echo maps and generate maps of future moments based on these observed maps. With the help
of automated algorithms [6], potential future storm circulation patterns, tracks, precipitation intensity
and other indicators can be provided based on extrapolated radar echo maps [7,8]. Accurate radar echo
extrapolation is therefore regarded as a vital task before conducting effective precipitation nowcasting.
Traditional methods for radar echo extrapolation include cross-correlation methods [9,10], centroid
tracking methods [11,12] and optical flow-based methods [13,14]. The cross-correlation methods
calculate the correlation of each sub-region in two consecutive radar echo images to get the motion
vectors [15]. These methods have low prediction accuracy regarding the condition that echoes evolve
rapidly [16]. The centroid tracking methods regard the single radar echo as a 3-Dimensional entity,
and then perform extrapolation by tracking its centroid; however, these methods are not applicable
when echo splitting, or the convective weather is severe and complex [17]. The optical flow-based
methods proposed in computer vision area [18] establish an optical flow field by observing changes
of pixel value between adjacent frames, and then extrapolate by considering other possible influences.
These methods have separate steps for optical flow estimation and radar echo extrapolation, making it
difficult to optimize parameters to obtain the best predictions. In addition, these methods are difficult
to explain the connection between echo generation, echo dissipation and optical flow fields. They are
only applicable for short-term prediction [19]. Therefore, the three traditional methods mentioned
above are limited in that they are not applicable to all conditions. In addition, they only use the most
recent observed echo images and do not make full use of a large amount of historical observation data.

Recently, deep learning as a powerful tool has achieved excellent performance in many fields such
as natural language processing [20,21], anomaly detection [22,23], medical image segmentation [24,25],
etc. The models proposed in these works are driven by data and can learn potential features from
historical data. In addition, deep learning-based methods are not easy to be limited by conditions.
They outperform traditional methods of these fields in many tasks. Therefore, some researchers
have attempted to apply deep learning models to radar echo extrapolation tasks, to achieve accurate
prediction of radar echo maps. Shi et al. [26] innovatively treat the radar echo extrapolation task as
a spatiotemporal sequence prediction problem; that is, predicting the most likely future K radar echo
map sequences with the given J observed radar echo maps. The authors also designed a ConvLSTM
model and applied it to perform radar echo extrapolation. Its extrapolation results were better than
traditional extrapolation methods and the classical Fully Connected LSTM (FC-LSTM) model. This
work demonstrated the feasibility of deep learning-based methods for this task. Since then, a large
number of models based on Recurrent Neural Networks (RNN), or its variants [27–30] have been
proposed.

However, the input data, memory cell and hidden states are isolated in these methods. The
contextual feature correlation between them is weak. Some important features may be discarded by
the forget gate when performing long-term prediction. In addition, these models use convolution
operations to capture features in spatial domain, so the models may lose some spatial features limited
by the size of convolution filter, such as features related to high-intensity echo areas. Affected by the
two factors above, it may be difficult for models to accurately predict the motion trends of radar echo
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such as moving direction, generation, and dissipation, which limits the prospects of the deep learning
methods for radar echo extrapolation tasks.

To address the above-mentioned problems, this paper proposes a Contextual Feature Correlation
Enhancement Block (CEB) and a Multi-Attention Mechanism Block (MAB). These two blocks are
fitted into a ConvLSTM structure to establish the proposed model, called CEMA-LSTM. The CEB
enhances the contextual correlation between input data and hidden states by using convolution and
element-wise product operations. The MAB uses the attention mechanism from the perspective of
position and channel dimension, respectively to capture global spatial features effectively. With these
two components, the model can accurately extrapolate radar echo maps.

2 Related Work
2.1 Models for Spatiotemporal Sequences Prediction

As a kind of spatiotemporal sequence prediction problem, radar echo extrapolation has attracted
a lot of research concerns and efforts. Many deep neural networks were proposed. The backbone
structure of these models can be mainly divided into two categories. One is the encoder-decoder
network consisting of convolutional and deconvolutional layers; the other is based on RNNs and
its variants.

Shi et al. [26] replaced linear operations in the original LSTM structure with convolutional ones,
which enhanced the dynamic modeling ability of the model. The proposed model obtained better
results than optical flow-based methods and traditional deep models in extrapolation tasks, which
attracted the attention of many researchers. Zhuang et al. [31] designed a novel spatiotemporal con-
volutional network (ST-CNN) to learn spatiotemporal dependencies among meteorological variables
for extreme precipitation forecasting. Singh et al. [32] used a hybrid structure of LSTM and CNN with
a discriminator for radar echo state prediction. Shi et al. [33] proposed a Trajectory GRU (TrajGRU)
based on the ConvGRU. This model overcomes the problem that the convolutional recurrent structure
is difficult to model transformation objects due to invariant location. It can actively learn the location-
variant structure to achieve high-resolution forecasting of regional rainfall. Wang et al. [27] added
spatiotemporal memory to the ConvLSTM to build an ST-LSTM unit, which were stacked to build
a PredRNN network. Wang et al. [28] then proposed a PredRNN++ network by optimizing the
PredRNN, which consists of four layers of Causal LSTM units. A single unit has a dual-cascade
gated structure and a gradient highway. These two components can model both the short- and long-
term dynamics compared with the original model. Tran et al. [34] designed a sequence-to-sequence
network to predict multi-channel radar sequences. Ayzel et al. [35] used a deep fully convolutional
neural network for precipitation forecasting, and experiment results showed that this model can
capture and learn the features of convective weather generation and evolution well. Wang et al. [36]
introduced the concepts of stationary and non-stationary states into a deep learning area and proposed
a Memory in Memory (MIM) model, which can capture these two types of features separately by
using two cascaded, self-updating modules, and have achieved the best prediction results on multiple
spatiotemporal sequence datasets. Guen et al. [37] proposed a two-branch network PhyDNet. It can
capture rough- and fine-grained features of moving objects by using physical and residual branches,
respectively. A series of work [38–41] further improved the structure of the classical encoder-decoder
model, U-Net for specific spatiotemporal sequence prediction tasks.
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2.2 Models Integrating Attention Mechanism
Attention mechanism has recently been a hot topic in the field of deep learning. Inspired by the

attention of the human brain, this mechanism amplifies or suppresses features by calculating a weight
matrix compared with ordinary convolutional operations [42]. With this mechanism, the original
models can effectively learn important global features from existing data and then perform specific
tasks better.

Vaswani et al. [43] abandoned the traditional CNN or RNN structure and designed a Transformer
model. This model uses multi-head attention for machine translation tasks. Song et al. [44] proposed
a Mask-Guided Contrastive Attention Model (MGCAM) to learn features from different parts of
an image for person re-identification. Woo et al. [45] use a Convolutional Block Attention Module
(CBAM) for feature refinement. The module greatly improves the performance while keeping the holis-
tic network lightweight. In addition, the CBAM can be embedded in other models. Trebing et al. [46]
introduced it into the original U-Net model to build SmaAT-UNet. The performance of this model
in doing precipitation nowcasting tasks is comparable to those of larger and more complex models.
Zhao et al. [47] used a scene parsing model, called Point-wise Spatial Attention Network (PSANet) to
adaptively learn features from the feature map for the collection of contextual information. Li et al. [48]
proposed a MANet for remote sensing image semantic segmentation tasks. This model can efficiently
extract the contextual dependencies of data with the help of multiple attention modules, and it uses a
novel kernel attention mechanism to reduce the computational complexity.

Some models have also been proposed for spatiotemporal sequence prediction by integrating
attention mechanisms. Lin et al. [49] optimized the attention mechanism by adding a gated structure
and an additional memory to build a Self-Attention Memory (SAM) module. The SAM was integrated
into the original ConvLSTM unit to build the SA-ConvLSTM model, which achieved improved
performance in making spatiotemporal prediction while maintaining fewer parameters. Chai et al. [50]
designed a Context-Embedding Block and a multi-scale-based Spatiotemporal-Expression Block for
accurate modeling of typhoon image sequences.

3 Methodology

In this section, the structure of the proposed Contextual Feature Correlation Enhancement
Block and the Multi-Attention Mechanism Block, and the way that they operate in a CEMA-LSTM
recurrent unit are discussed in detail.

3.1 The Contextual Feature Correlation Enhancement Block
Current proposed recurrent units, such as the ConvLSTM and ST-LSTM, have a gated structure

consisting of a forget gate, an input gate, an input modulation gate, and an output gate. The forget
gate enables the model to trade-off between the previous features and the newly captured features from
new input data at current-time step, so the model can forget previous features and learn new captured
features, and then the memory and hidden state are updated and transmitted to the next unit.

In general, the input data and previous hidden state are only interacted in form of doing
convolution or addition operations in traditional models. When performing long-term prediction
tasks, i.e., radar echo extrapolation in this paper, the model can receive bad input data so the
parameters of the model are not efficiently optimized. They may determine the contextual feature
correlation between the input and hidden state is weak. Then the forget gate may choose to forget
the features that are more important for future prediction. This process is irreversible, which leads to
inaccurate modeling of radar echo motion and wrong prediction of future motion trend. To address
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this problem, the Contextual Feature Correlation Enhancement Block (CEB) is proposed, as shown
in Fig. 1.

Figure 1: The structure of a Contextual Feature Correlation Enhancement Block

The CEB is embedded before the gated structure of recurrent unit. The block has two main
operations, i.e., convolution and element-wise product. The new input state of current moment Xt

and previous hidden state Hl
t−1 are transmitted into CEB. The block firstly uses a convolution filter

Whx, whose size is 5 × 5, to capture the previous feature information from Hl
t−1. The Sigmoid function

followed the convolution layer is to ensure that the value of each element in the captured feature map
is between (0,1).

Then, the block performs element-wise product on Xt and the feature map that is captured from
Hl

t−1 together make the two states interact with each other. The interaction process makes the features
from different moments fused, so that the contextual correlation between the hidden state and the
input state gets preliminary enhancements. The output of this process is used to update the original
input Xt, and the new input state is written as X ′

t . Next, using another convolution filter Wxh, whose
size is also 5 × 5 to generate a feature map from X ′

t . The Sigmoid function normalizes the map, then
the element-wise product makes the previous hidden state to interact with the new captured features.
The obtained output becomes H ′l

t . Similarly, performing the operation above again on X ′
t and H ′l

t ,
the obtained Xit and Hil

t is the final output of the CEB, representing the interacted input and hidden
state respectively. The whole process can be formulated as Eqs. (1)–(4), where ∗ means the convolution
operator, × means the element-wise product operator, and σ is the Sigmoid function.

X ′
t = σ(Whx ∗ Hl

t−1) × Xt (1)

H ′l
t−1 = σ(Wxh ∗ X ′

t ) × Hl
t−1 (2)

Xit = σ(Whx ∗ H ′l
t−1) × X ′

t (3)

Hil
t−1 = σ(Wxh ∗ Xit) × H ′l

t−1 (4)

The CEB block enhances the contextual feature correlation between the input state and the hidden
state in original recurrent units, preventing the occurrence of errors during predicting the motion of
echo objects caused by forgetting important features of the gated mechanism.
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3.2 The Multi-Attention Mechanism Block
Most previous models use convolution to capture features in spatial domain and learn the

dynamics of moving objects. However, limited by the size of convolution filters, these models have
difficulty in capturing the global motion features of radar echo at a single-time step.

To address the problem, a Multi-Attention Mechanism Block (MAB) is proposed, which consists
of two attention modules, i.e., a Position Attention Module and the Channel Attention Module. In
the same way as the original dot-product attention mechanism, the PAM and CAM compute the
similarity score of each pair of points in a feature map to obtain the corresponding weight matrix
from the view of position and channel, respectively. This block enables the model to determine which
features are important in a global view, in order to capture and remember the features when performing
the gated mechanism. The important global features captured by the MAB are memorized in a hidden
state, so that the gating operation can consider the features more comprehensively to accurately model
the dynamics of radar echo. The structure of the MAB is shown in Fig. 2. The input to of MAB is
the memory Cl

t−1 transmitted from the previous time step and the interacted hidden state Hil
t. The

block performs element-wise addition on these two input terms. The operated result is Z, then it is
transmitted into the PAM and CAM as the input of the two attention modules.

Figure 2: The structure of proposed Multi-Attention Mechanism Block

In a PAM, Z is operated by three different 1 × 1 convolution filters and then reshaped to get
matrixes Query Qp, Key Kp and Value Vp. Their size is N × (H × W) × C, where N is batch size, C is
the number of channels, H is the height of a feature map, and W is the width of a feature map. In the
original dot-product attention mechanism, Qp and Kp are applied matrix multiplication and a softmax
function to obtain the weight matrix. This can be formulated as:

DPAtten(Qp, Kp, Vp) = softmax(QpKp
T
)Vp (5)

For the i-th row, it can be written as:

DPAtten(Qp, Kp, Vp)i =
∑H×W

j=1 eqikj vj
∑H×W

j=1 eqikj
(6)

In Eq. (6), the size of QpKp
T is N × (H × W) × (H × W). This is a huge number when facing

radar echo maps. When the softmax function is applied to each row of this matrix, both memory
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and computational complexity becomes high, which limits the performance of the PAM. Therefore,
an improved dot-product attention in [46] were used, which is based on a kernel smoother to replace
the original dot-product attention. It can be formulated as Eq. (7), where the improved kernel dot-
product mechanism replaces the softmax function with a simpler function softplus, whose value range
is always greater than 0. In this way, the computation consumption of mechanism is reduced, whilst
the gradient vanishing problem can also be alleviated. In addition, the query and key are separated,
whereas the softplus function is applied to both of them, so that

∑H×W

j=1 softplus(kj) can be calculated
once and reused for each query.

DPKAtten(Q, K, V)i = softplus(qi)
T
∑N

j=1 softplus(kj)vT
j

softplus(qi)T
∑H×W

j=1 softplus(kj)
(7)

The Eq. (7) can be further formulated in a vectorized form as Eq. (8):

DPKAtten(Q, K, V) = softplus(Q)softplus(K)TV

softplus(Q)
∑H×W

j=1 softplus(K)T
i,j

(8)

The calculation result is reshaped and performed element-wise addition with Z. Finally, the ReLU
function is applied to the output of the element-wise addition. This can be expressed as:

PAMout = ReLU(DPAtten(Qp, Kp, Vp) + Z) (9)

In a CAM, Z is also operated by three different 1×1 convolution filters, respectively, and then
reshaped to get matrixes Query Qc, Key Kc and Value Vc. All their size is N × C × (H × W), which is
different to that in a PAM. The size of QcKc

T is N × C × C, where the value of C is much smaller than
H or W for radar echo maps. This indicates the lower computational and memory complexity of the
subsequent dot-product attention operation. Therefore, the original dot-product attention mechanism
is still used in the CAM. Similar to that in the PAM, the calculation result of the dot-product attention
mechanism is added with the original input Z after getting reshaped, and then it is output after the
ReLU function operation. The working process of the CAM is formulated as:

DPAtten(Qc, Kc, Vc) = softmax(QcKc
T
)Vc (10)

CAMout = ReLU(DPAtten(Qc, Kc, Vc) + Z) (11)

After obtaining the outputs of the CAM and PAM, respectively, the element-wise addition
operation can be performed to fuse them to get the output of the MAB, which is transmitted to
the gated mechanism as the new hidden state Ĥl

t−1 contains global features. This process can be
formulated as:

Ĥl
t−1 = PAMout + CAMout (12)

3.3 The CEMA-LSTM Unit
Embedding the CEB and MAB into the original ConvLSTM, and the CEMA-LSTM proposed in

this paper is established. Generally, recurrent units are stacked to build the prediction network, which
increases the recurrence depth of the model at one-time step, so that models can better capture refined
features to model the short-term dynamics of objects. A single unit’s structure is shown is Fig. 3, where
l denotes the unit in the l-th layer, t means the t-th time step, f is forget gate, i is input gate, g is input
modulation gate, and o is output gate.
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Figure 3: The structure of proposed CEMA-LSTM unit

The working process of a CEMA-LSTM unit can be clearly seen from the figure. The input Xt is
at current moment. The hidden state of previous time step Hl

t−1 and the previous memory Cl
t−1 are the

three input terms of the recurrent unit. When l = 1, it means that the recurrent unit is at the bottom
layer. Xt is the new input data at the t-th time step. When l > 1, it means that this recurrent unit is not
the bottom one. the hidden state Hl−1

t from previous layer plays the role of input state Xt. Hl
t−1 and Xt

are firstly transmitted into a CEB to perform feature capturing and interaction. The interacted input
state Xit and interacted hidden state Hil−1

t are then obtained, so that both two states have stronger
contextual feature correlation.

Next, Hil
t and Cl

t−1 are transmitted into MAB. The block captures global features from the view
of position and channel. The two types of features are fused to generate the final global feature map,
while the output is the new hidden state Ĥl

t−1.

After the operation of two blocks, Xit has strong contextual correlation with the hidden state at the
previous moment. The new hidden state’s contextual correlation is also enhanced, and Ĥl

t−1 contains
rich global important features. The two terms are combined, and the subsequent operations follow
the original gated mechanism in ConvLSTM unit. ft forgets those features that are not important
for prediction considering the contextual feature correlation and global feature maps. it and gt learn
the new captured features, especially those that are relevant to the dynamics of objects. Element-wise
addition is performed to update the memory, so new memory Cl

t is obtained. Finally, the new hidden
state Hl

t of a current unit is generated. The whole processes of the CEMA-LSTM can be expressed as:

Xit, Hil
t−1 = CEB(Xt, Hl

t−1) (13)

Ĥl
t−1 = MAB(Hil

t−1, Cl
t−1) (14)

it = σ(Wxi ∗ Xit + Whi ∗ Ĥl
t−1 + bi) (15)

gt = tanh(Wxg ∗ Xit + Whg ∗ Ĥl
t−1 + bg) (16)

ft = σ(Wxf ∗ Xit + Whf ∗ Ĥl
t−1 + bf ) (17)

Cl
t = ft × Cl

t−1 + it × gt (18)

ot = σ(Wxo ∗ Xit + Who ∗ Ĥl
t−1 + bo) (19)

Hl
t = ot × tanh(Cl

t) (20)
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Compared to the mentioned traditional radar echo extrapolation methods, the proposed CEMA-
LSTM model is versatile because it is suitable for various conditions without considering the shape,
quantity, size, and other properties of radar echoes in input observed maps. Either based on existing
RNNs or its variant structure, the CEMA-LSTM retains and captures features that play an important
role in the dynamics of radar echoes by embedding the two newly proposed modules CEB and MAB,
thereby achieving accurate radar echo extrapolation.

4 Experiments

This section will introduce the details of the experiments, including used datasets, quantitative
evaluation metrics for performance evaluation, settings of experimental parameters, presentation of
experiment results, as well as the analysis of them.

4.1 Datasets
In this paper, two practical radar echo datasets are used to demonstrate the outperformance

of the proposed CEMA-LSTM over existing methods on radar echo extrapolation, as well as its
generalization ability and robustness on different datasets. The first dataset is made by the authors
using historical Doppler weather radar echo images of composite reflectivity, while the second one is
a publicly available radar echo dataset.

4.1.1 The FREM Dataset

The FREM (Fine-grained Radar Echo Map) dataset contains\radar echo images of composite
reflectivity obtained by a Doppler weather radar for three consecutive years. The dataset is divided
into three parts for comparative experiment, i.e., a training set, a validation set and a test set. The
training set has 2,715 radar echo map sequences. The validation has 550 sequences, whilst the test has
925. Each sequence has 15 radar echo maps. The interval between every two adjacent maps is 6 min, so
each sequence represents 90-min observation. All models receive the first 5 radar echo maps to predict
the next 10 maps; that is, past 30-min observed data are used to predict next 1 h. The size of each radar
echo map is 128 × 128, meaning the spatial resolution is 1 km. The unite of each pixel value is dBZ,
and ranges from 0 to 70. All data are masked fulfilling the laws and regulations of the meteorological
department.

4.1.2 The CIKM 2017 Radar Echo Dataset

To verify the generalization ability and robustness of the proposed model, a publicly available
radar echo dataset called CIKM 2017 were also manipulated. This dataset is provided by Shenzhen
Meteorological Bureau, in which the sequence numbers of training set, validation set, and test set are
8,000, 2,000, and 4,000, respectively. Each sequence has 15 echo maps, where the interval between two
adjacent maps is also 6 min. All models in the experiment extrapolate the next 10 maps based on the 5
input maps. The original size of each map is 101 × 101. For the convenience of calculation, this paper
fills the right and lower sides of each map in this dataset with 0, so make the new obtained echo map
size 104 × 104. The pixel values in each echo map are converted into dBZ according to the following
equation:

dBZ_value = pixel_value × 95/255 − 10 (21)
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4.2 Evaluation Metrics
To evaluate the quality of predicted radar echo maps generated by each model, three meteo-

rological evaluation metrics were chosen including Probability of Detection (POD), False Alarm
Rate (FAR), and Critical Success Index (CSI). The POD score, ranging from 0 to 1, evaluates the
ability of the model to correctly forecast the precipitation events. The higher value indicates the
better performance of the model. The FAR score reflects whether the model has the possibility of
false precipitation prediction events. A FAR value varies between 0 and 1. The closer to 0, the lower
possibility of false precipitation prediction events a model has. The CSI score, also known as the Threat
Score (TS), reflects the precipitation forecasting probability of a model; that is, the condition that the
model successfully predicts a precipitation event. A CSI value ranges from 0 to 1. The more it is closer
to 1 the better a model indicates its forecasting performance.

The values of above meteorological evaluation metrics are calculated as following steps. Given
a dBZ threshold τ , compare each pair of points at the same location in the predicted map with the
corresponding observed map. If the values in the predicted and observed map are both higher than τ ,
the number of points belonging to this category is recorded as TP. If only the value of one point in
the predicted map is higher than τ , whilst the corresponding value in the observed map is lower than
τ , the number of points belong to this category is recorded as FP. If the value in the predicted map
is lower than τ , whilst the corresponding value in the observed map is higher than τ , the number of
points belong to this category is recorded as FN. If the values in both the predicted map and observed
map are lower than τ , the number of points belong to this category is recorded as TN. Finally, the
POD, FAR and CSI scores of each model can be obtained by calculation according to the following
formula:

POD = TP
TP + FN

(22)

FAR = FP
TP + FP

(23)

CSI = TP
TP + FP + FN

(24)

Structural Similarity (SSIM) were also used to evaluate the visual quality of the predicted maps.
The higher SSIM score indicates that the predicted map is more similar to the observed map.

4.3 Implementation
ConvLSTM [26], PredRNN [27], PredRNN++ [28], Memory in Memory (MIM) [34] and

PhyDNet [35] were chosen to compare. The five models are all representative deep learning-based
methods in spatiotemporal sequence prediction tasks and/or radar echo extrapolation tasks. They are
not easily affected by the data type or the size of radar echo maps. When received several maps from
past observations, they are able to extrapolate a sequence of multiple maps for a period of time in the
future, rather than generating only the radar echo map of a single future moment.

Following the settings in [25,26], all models were stacked to build a 4-layer prediction network.
Each layer has 64 feature maps, the size of convolution filter is 5 × 5. Adam [51] was selected as the
optimizer, where the batch size was set to 4, the initial learning rate was 0.001, and the loss function
was set as L1+L2 Loss. Scheduled sampling [52], layer normalization [53] and early stopping strategy
were also used for model training. All models were implemented by PyTorch and the experiments were
conducted in a GPU server fitted by a NVIDIA RTX 3090.
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4.4 Experiment Results
4.4.1 The Results of Comparative Experiment on the FREM Dataset

Table 1 shows POD and FAR scores of each model on the FREM dataset when the threshold τ

is set to 20, 30, and 40 dBZ, respectively. In terms of POD, the proposed CEMA-LSTM improves by
0.68% over PredRNN++ when τ = 20. When τ = 30 and τ = 40, its POD score is higher than that of
the second-ranked model, i.e., MIM by 0.19% and 7.04%, respectively. In addition, its average POD
score is improved by 3.87%, which indicates that it can better predict the precipitation events correctly
under all thresholds.

Table 1: The quantitative comparison of all models in terms of POD and FAR when threshold τ is set
to 20, 30 and 40 dBZ on FREM dataset

Model POD ↑ FAR ↓

τ = 20 τ = 30 τ = 40 Avg τ = 20 τ = 30 τ = 40 Avg

ConvLSTM [24] 0.7696 0.6965 0.3305 0.5989 0.3292 0.4318 0.6476 0.4695
PredRNN [25] 0.7630 0.5689 0.2835 0.5385 0.2845 0.4274 0.6294 0.4471
PredRNN++ [26] 0.8096 0.6456 0.3137 0.5896 0.3122 0.4770 0.6837 0.4910
MIM [34] 0.7718 0.6971 0.3847 0.6179 0.2787 0.4311 0.6258 0.4452
PhyDNet [35] 0.7635 0.6562 0.3188 0.5795 0.3336 0.4697 0.6399 0.4811
CEMA-LSTM 0.8151 0.6984 0.4118 0.6418 0.2732 0.4249 0.6155 0.4379

In terms of FAR, a lower FAR score indicates the lower possibility of false precipitation prediction
events. It can be seen from the results that the CEMA-LSTM has achieved the lowest FAR scores under
all three thresholds. Compared with the second-ranked MIM, the FAR scores decrease by 1.97% (τ =
20), 1.44% (τ = 30), and 1.65% (τ = 40), respectively. The average FAR score of the proposed model
has been improved by 1.65%.

Compared with the benchmark model, i.e., ConvLSTM, the proposed model shows significant
improvement. The POD scores at three thresholds are increased by 5.91%, 0.27% and 24.60%,
respectively, whereas the FAR scores are decreased by 17.01%, 1.60% and 4.96%, respectively.

The CSI and SSIM scores of each model are shown in Table 2, it can be seen from the table
that the CSI and SSIM scores of the proposed CEMA-LSTM are both improved compared with the
previous models. When τ = 20, the CSI score is improved by 1.48% compared with the MIM and 4.93%
compared with the baseline model ConvLSTM. When τ = 30, the improvement is 0.07% over MIM
and 14.40% to ConvLSTM. When τ = 40, it is improved by 6.02% and 20.72% compared with the MIM
and the ConvLSTM, respectively. In terms of average CSI score, it creases by 1.79% over MIM. The
above results show that the proposed CEMA-LSTM makes a significant improvement in successfully
radar extrapolation compared with previous models. For SSIM, The CEMA-LSTM also obtained the
highest score. it creases by 0.78% over the second-ranked MIM, indicating that its predicted radar
echo map has better visual quality and higher similarity with the corresponding observed maps, which
can better help meteorologists make effective precipitation forecast.
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Table 2: The quantitative comparison of all models in terms of CSI and SSIM when threshold τ is set
to 20, 30 and 40 dBZ on FREM dataset

Model CSI ↑ SSIM ↑

τ = 20 τ = 30 τ = 40 Avg

ConvLSTM [24] 0.5946 0.4027 0.2056 0.4010 0.4171
PredRNN [25] 0.5854 0.3993 0.1914 0.3920 0.4162
PredRNN++ [26] 0.5920 0.4064 0.1870 0.3951 0.4201
MIM [34] 0.6148 0.4604 0.2341 0.4364 0.4253
PhyDNet [35] 0.5524 0.4150 0.2035 0.3903 0.3814
CEMA-LSTM 0.6239 0.4607 0.2482 0.4443 0.4286

In addition, the extrapolation results of models are visualized to illustrate the performance of
the proposed model. The series of instances on the dataset were carefully chosen representing typical
movement and development of high-intention echoes, such as generation and dissipation. These
variations are shown in maps as changes in positions, amounts, and pixel values. Noises have been
filtered through multi-class processes from base data, so these echo pictures contain representative
meteorological values. Fig. 4 is one of the typical sequences so that it can better reflect the general
variation characteristics of echoes, especially for high-intensity echoes in all sequences. The mapping
relationship between the radar reflectivity value and the color is shown in the color bar at the top. The
closer to purple depicts a higher intensity of radar echo, indicating the higher possibility of severe
convective weather, such as heavy precipitation in this area. However, such trend only means the
dynamics of precipitation-particles in Cumulonimbus clouds above 5000–20000 meters (or possibly
higher), whether actual precipitation events happen or not need to be further investigated with the
situation of the overall weather system at the nowcasting stage. The first two rows of images are the
observed maps in this sequence. All models predict the 10 echo images in the second row based on
the 5 echo images in the first row. The next 6 rows of images are the predicted maps of each model.
The label T at the bottom of each column is the lead time corresponding to the predicted map.

This sequence depicts the echoes variation process that relates to the development of possible
severe convective weather events. As shown in the Input echoes, several orange and red areas were
forming at the edge of the map, indicating potential wide influence and rapid expansion of high-
intensity echoes. Observed ground truth slides in the second row illustrate the high-intensity echoes
finally aggregated in the center of map. The corresponded extrapolated maps can help to identify
potential severe convective weather events within radar observation range such as heavy storms
and strong wind. Compared with other models, the proposed CEMA-LSTM has shown accurate
extrapolation on both edge and intensity, as highlighted in red boxes.
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Figure 4: The visualized prediction results of all models on a sequence sampled from test set of FREM
dataset

The ConvLSTM incorrectly predicts that the above and below echoes are both expanding, but
it fails to successfully predict the high-intensity echo area marked in the red box. This is due to the
lack of contextual information, and it is difficult for the model to capture global features to determine
the dynamics of radar echoes. The first few maps extrapolated by the PredRNN are similar to the
observed maps. But starting from T = 30, the echo below gradually dissipates, so the echo area in the
red box is obviously smaller than the ground truth. The extrapolated maps of the PredRNN++ are
significantly improved compared with those of the PredRNN. The model can predict the aggregation
trend of the echo above and below, but the orange area in the prediction maps moves to the right,
which is exactly opposite to the observed maps. The echo positions in the maps extrapolated by the
MIM are roughly the same as those in the observed maps, but in the last few maps, it can be clearly
seen that the orange echo region is large for both the upper and lower echo. The model also fails to
predict the red echo area marked in the red box correctly. The extrapolation results of the PhyDNet
also suffer from the above-mentioned problems. The positions of the two echoes deviate significantly
compared to their actual positions, indicating that the model fails to capture the features of radar echo
motion and its variations. In addition, its extrapolated maps are more blurred and visually distorted,
making it difficult to discern the detailed texture of the radar echoes from the maps, which is the reason
why its SSIM score is much lower than other models. The CEMA-LSTM proposed in this paper has
successfully predicted the trend that the upper and the lower echo move to each other and aggregate at
the center of map. The yellow and orange areas representing higher reflectivity do not dissipate or are
severely overestimated. The red echo area marked in the red box where strong convective weather events
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may occur has also been successfully predicted. This is owing to the two embedded blocks. The CEB
enhances the correlation between features and prevents the high-intensity echo generation features
from being forgotten by the model, and the MAB can accurately model its dynamics by capturing the
feature of radar echo motion.

4.4.2 The Results of Comparative Experiment on the CIKM 2017 Dataset

The extrapolation quality of all models on the CIKM 2017 dataset was evaluated by calculating
quantitative values and visualization. Compared with the previous dataset, the map size is smaller, and
the models obtain less information of radar echo motion, so the extrapolation task on this dataset is
more challenging. Tables 3 and 4 show the quantitative scores of all models on the CIKM 2017 dataset.
It can be seen that similar results to the previous dataset are obtained.

Table 3: The quantitative comparison of all models in terms of POD and FAR when threshold τ is set
to 20, 30 and 40 dBZ on CIKM 2017 dataset

Model POD ↑ FAR ↓

τ = 20 τ = 30 τ = 40 Avg τ = 20 τ = 30 τ = 40 Avg

ConvLSTM [24] 0.5893 0.2601 0.0858 0.3117 0.5136 0.5447 0.7940 0.6174
PredRNN [25] 0.6208 0.2602 0.1111 0.3307 0.5097 0.5694 0.7552 0.6114
PredRNN++ [26] 0.6044 0.2791 0.1297 0.3377 0.4701 0.5418 0.7592 0.5904
MIM [34] 0.6281 0.3313 0.1701 0.3765 0.4640 0.5528 0.7531 0.5900
PhyDNet [35] 0.5845 0.2675 0.1613 0.3378 0.4707 0.5786 0.8032 0.6175
CEMA-LSTM 0.6431 0.3316 0.1708 0.3818 0.4630 0.5100 0.6978 0.5569

As shown in Table 3, at three different thresholds, compared with the second-ranked MIM model,
the POD scores of the proposed CEMA-LSTM are improved by 2.39%, 0.09% and 0.41%, respectively,
and the average POD score is improved by 0.14%. In terms of FAR, it is improved by 0.21%, 7.74%
and 7.34%, respectively, and the average FAR value is decreased by 5.60%.

Table 4 shows the CSI and SSIM scores of these models on the CIKM 2017 dataset. Compared
with the ConvLSTM, the proposed CEMA-LSTM has a very significant improvement in all scores.
Compared with the second-ranked MIM model, the CSI scores of the CEMA-LSTM are improved
by 1.67%, 4.63%, and 5.42%, respectively, when the threshold is set to 20, 30, and 40 dBZ. The average
CSI score is improved by 3.16%, while the SSIM score is improved by 0.83%, indicating that the maps
extrapolated by the CEMA-LSTM are more similar to the observed maps.

Table 4: The quantitative comparison of all models in terms of CSI and SSIM when threshold τ is set
to 20, 30 and 40 dBZ on CIKM 2017 dataset

Model CSI ↑ SSIM ↑

τ = 20 τ = 30 τ = 40 Avg

ConvLSTM [24] 0.3693 0.1984 0.0645 0.2107 0.5342

(Continued)
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Table 4 (continued)

Model CSI ↑ SSIM ↑

τ = 20 τ = 30 τ = 40 Avg

PredRNN [25] 0.3773 0.1936 0.0827 0.2179 0.5456
PredRNN++ [26] 0.3935 0.2139 0.0974 0.2349 0.5356
MIM [34] 0.4069 0.2356 0.1162 0.2529 0.5523
PhyDNet [35] 0.3435 0.1957 0.0973 0.2122 0.4850
CEMA-LSTM 0.4137 0.2465 0.1225 0.2609 0.5569

Fig. 5 shows the visualization of radar echo maps extrapolated by each model for one sampled
sequence from the test set of the CIKM 2017 dataset. It can be seen that there was an orange strip
area in the middle of the map, and gradually moved downward and increases in intensity at the same
time. This area can be related to heavy precipitation or storm events. In order to better illustrate the
extrapolation quality of models, the strip area is marked with the red box.

Figure 5: The visualized prediction results of all models on a sequence sampled from test set of CIKM
2017 dataset
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All models successfully predicted the general motion trend of radar echoes in this sequence, but
some details in extrapolated maps such as the boundaries, the intensity of echoes are quite different
from each other. The baseline model ConvLSTM lacks the contextual feature correlations and global
features of the radar echo motion, so its extrapolation results for this sequence are inaccurate.
The yellow area in the red box almost dissipated. The PredRNN and PredRNN++ got similar
extrapolation results, but as shown in the area marked by the red box, the location of the stripe echo
area was wrong. The extrapolated echo map of MIM has obvious intensity overestimation problem.
The red box in the last map is almost filled by the red echo area. The PhyDNet also suffers from the
overestimation problem, and it is even more severe. The red area in the red box is almost 3 to 4 levels
higher than that in the observed maps. This is fatal, as severe overestimation may lead to unnecessary
responses, resulting in a waste of public resources. The last row shows the extrapolated echo maps of
proposed the CEMA-LSTM, which accurately predicted the trend of the radar echo motion. For the
high-intensity radar echo region marked in the red box, although the yellow and orange regions are
slightly larger in area, the location and intensity of the stripe area are most similar to the corresponding
observed maps compared with the other models’ maps.

4.5 Discussion
The extrapolation results on two different radar echo datasets have shown that with the help of the

CEB and MAB, the proposed CEMA-LSTM can well understand the contextual correlation between
the new input data and the previous states. It can then learn the newly captured global features, whilst
concerning the features transmitted from previous stages. Compared with the other five models, the
proposed CEMA-LSTM can accurately recognize and learn the dynamics of radar echoes, but avoid
the overestimation or dissipation of high-intensity echo areas at the same time, leading to its higher
quantitative scores and more accurate extrapolation results. However, radar echo extrapolation is only
the early stage of precipitation nowcasting. To provide the public with precipitation rate, rainfall area,
duration of precipitation events and other information, it is necessary for meteorologists to implement
the conversion from radar data to meteorological data with the help of some methods in meteorological
area. Therefore, the echo maps by the accurate extrapolation methods can lay a solid foundation for
more rational short-term precipitation nowcasting.

In addition, the authors also notice that the extrapolated echo maps of the proposed method still
differ from the observed maps in terms of the boundary and fine-grained texture. This happens due to
the inherent complexity of the atmospheric system, which is affected by various meteorological factors,
such as temperature, wind direction, air pressure, etc. As detected echoes are constantly evolving,
holistic modeling their dynamics via the echoes only becomes unilateral and uninterpretable. Instead,
the CEMA-LSTM proposed in this paper attempts to discover the potential correlation between
previous and future echo maps, regarding radar echoes as moving objects in images to illustrate their
potential movement trends. In this way, better inference results can be achieved over existing methods
with far less consumption of computational resources than traditional numerical weather prediction
methods in the meteorological area.

5 Conclusion

In this paper, a CEMA-LSTM recurrent unit for radar echo extrapolation tasks is proposed, which
takes the ConvLSTM as the backbone, fitted with a Contextual Feature Correlation Enhancement
Block (CEB) and a Multi-Attention Mechanism Block (MAB). The CEB enables the current input
state and previous hidden state to interact with each other, in order to enhance contextual feature
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correlation. The MAB uses a position attention mechanism and a channel attention mechanism to
capture and amplify global important features.

Both quantitative comparisons and visualization results of the comparative experiments con-
ducted on two radar echo datasets have shown the improved performance of the CEMA-LSTM
proposed in this paper in radar echo extrapolation tasks, which can accurately predict the motion
trend of radar echoes. Specifically, on the FREM dataset, compared with the second-ranked model
MIM, the average POD score and average CSI score are improved by 3.87% and 1.79%, respectively,
while its FAR value decreases by 1.65% and its SSIM score improves by 0.78%. On the FREM dataset,
compared with the MIM, both the average POD and CSI score are improved by 1.42% and 3.16%,
respectively, while its FAR decreases by 5.60% and its SSIM improves by 0.83%. In addition, the
extrapolated boundaries and textures of the high-intensity echoes by the CEMA-LSTM are not quite
consistent with the observed maps. In the future, the authors will attempt to integrate additional
information such as the corresponding wind field conditions to the original input radar echo data
to solve this problem.
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