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Abstract—Online continuous measurement of the cross-

sectional velocity distribution of pneumatically conveyed solids 

in a square-shaped pipe is desirable in monitoring and 

optimizing circulating fluidized beds, coal-fired power plants 

and exhaust pipes. Due to the limitation of non-invasive 

electrostatic sensors in spatial sensitivity, it is difficult to 

accurately measure the velocity of particles in large diameter 

pipes. In this paper, a novel approach is presented for the 

measurement of cross-sectional particle velocity distribution in 

a square-shaped pipe using sensors and Gaussian process 

regression (GPR). The electrostatic sensor includes twelve pairs 

of strip-shaped electrodes. Experimental tests were conducted 

on a laboratory test rig to measure the cross-sectional particle 

velocities in a vertical square pipe under various experimental 

conditions. The GPR model is developed to infer the relationship 

between the input variables of velocities and the cross-sectional 

velocity distribution of particles. Results obtained suggest that 

the electrostatic sensor in conjunction with the GPR model is a 

feasible approach to obtain the cross-sectional velocity 

distribution of pneumatically conveyed particles in a square-

shaped pipe. 

Keywords—two-phase flow, particle velocity, Gaussian 

process regression, square-shaped pipe, cross-sectional velocity 

distribution. 

I. INTRODUCTION 

Square-shaped pneumatic conveying pipes are commonly 
used in circulating fluidized beds, coal-fired power plants in 
certain countries, e.g., Poland and Germany [1], [2]. During 
the conveying processes, particles are irregularly distributed 
in the pipe cross section due to the time-varying interphase 
forces, the variation of pipe direction, properties of the 
particles and phase loading ratio. Therefore, cross-sectional 
velocity measurement of particles in gas–solid two-phase 
flows in square-shaped pipes is of great significance to 
understanding the dynamic behaviors of particles and the 
determination of the mass flow rate of solids. However, there 
is little research on the cross-sectional characterization of gas–
solid two-phase flow in square-shaped pipes. 

The radiometric, optical and microwave sensors can be 
used to measure the cross-sectional velocity distribution of 
particles [3], [4]. However, they are not suitable for industrial 
measurement due to the high cost and susceptibility to 
interference from harsh industrial environments.  Compared 
with these sensors, electrostatic sensors have the advantages 

of simple structure, cost-effectiveness and suitability for a 
wide range of installation conditions [5]. Electrostatic sensors 
are based on the principle of electrostatic induction. The 
electrode in an electrostatic sensor is insulated and screened 
from external electromagnetic interference. A signal 
conditioning circuit is used to amplify and filter the weak 
signal from the electrode [2], [6]. In most practical pneumatic 
conveying processes fluctuations in the temperature and 
pressure of the conveying air have little impact on the 
performance of the electrostatic sensors. However, changes in 
the dielectric properties and physical quantities (e.g. velocity) 
of pneumatically conveyed particles affect the amplitude and 
frequency charateristics of the sensor signal [7].  

Particularly, non-invasive electrostatic sensors are more 
suitable for industrial applications because they exhibit a 
significant advantage in their non-restrictiveness to the 
movement of particles in a pipe. However, due to the fast 
weakening sensitivity with the increasing distance from the 
sensing electrode to moving particles, the use of non-invasive 
electrostatic sensors in a ring shape, arc shape or strip shape 
on circular pipelines demonstrate uncertain accuracy in the 
measurement of cross-sectional averaged velocity in large 
pipes under different flow conditions [5]. Due to the non-
circle center symmetry and the existence of four right angles 
on the pipe wall, particle distribution in a square-shaped pipe 
is more complex than that in a circular-shaped pipe. Therefore, 
the limitations of traditional measurement methods need to be 
addressed urgently.  

In recent years, soft computing techniques have been 
widely applied to facilitate the characterization of multiphase 
flow by establishing the relationship with the variables that 
can be measured directly [8]. For example, convolutional 
neural networks were developed for patterns identification of 
multiphase flows [9], [10], [11]. Artificial neural network 
(ANN) and support vector machine (SVM) were trained with 
experimental data to measure the mass flow rate and the 
fraction of individual phase in gas–solid or gas–liquid two-
phase flows [12], [13], [14], [15]. There is also research 
combining electrical capacitance tomography (ECT) 
techniques with deep-learning algorithms to visualize the 
dynamics of gas–liquid two-phase flow [16], [17]. While the 
study applies soft computing techniques to cross-sectional 
velocity distribution measurement of particles in gas–solid 
two-phase flows is rare. However, with its wide application 



and superior performance in multiphase flow measurement, 
soft computing provides a new idea for the measurement of 
cross-sectional particle velocity distribution.  

Gaussian process regression (GPR) has been gradually 
recognized as a useful soft sensor modeling method over the 
past few years due to its excellent performance [18], [19]. 
Compared with common machine learning algorithms 
including SVM, ANN and regression trees, GPR has good 
adaptability and strong generalization ability to deal with 
complex problems such as high dimensions, small samples 
and nonlinearity. This paper presents a novel approach 
incorporating electrostatic sensing with Gaussian process 
regression (GPR) modeling for the measurement of cross-
sectional velocity distribution of pneumatically conveyed 
particles in a square-shaped pipe. The particle velocities 
measured by twelve pairs of non-invasive electrodes and the 
air velocity are used as the input variables of the model, while 
the output variables of the model are particle velocities in 
different areas of the pipe cross section. Evaluation tests were 
undertaken to verify the performance of the proposed 
measurement approach. 

II. METHODOLOGY 

A. Overall Measurement Strategy 

The overall strategy for the measurement of the cross-
sectional velocity distribution of particles in a square-shaped 
pipe is shown in Fig. 1. The non-invasive electrostatic sensor 
that consists of twelve pairs of strip-shaped electrodes is used 
to measure the velocity of particles moving through each 
electrode pair. Two identical parallel electrodes, one being 
positioned downstream of the other, are used to determine 
particle velocity using a cross-correlation technique [5]. The 
air velocity is obtained with a measuring device suitable for 
the flow conditions. Then the twelve particle velocities and the 
air velocity are considered as input variables to the model. In 
order to reduce the dimensionality of datasets and increase 
interpretability, principal component analysis (PCA) is 
applied to the input variables. The vectors (i.e. principal 
components) from PCA are fed into the GPR model. Then the 
cross-sectional velocity distribution of particles in a square-
shaped pipe is obtained by the GPR model. 

 

Fig. 1. Principle of the measurement strategy. 

B. Sensors 

The structure of the sensor used in this study is shown in 
Fig. 2. The non-invasive electrostatic sensor consists of twelve 
pairs of strip-shaped electrodes (three pairs on each inner 
surface of the pipe). All the stripe-shaped copper electrodes 
have the same dimension with a length of 15 mm and a width 
of 3 mm [2]. The holes on the pipe wall are used to insert a 
device for the measurement of pure air velocity. In order to 
simultaneously obtain the reference velocities of particles in 
different areas of the pipe cross section, an invasive 
electrostatic sensor including nine pairs of electrodes with the 
same dimensions of the non-invasive electrodes is installed 
downstream from the holes. The distance between the non-
invasive electrostatic sensor and the invasive electrostatic 

sensor is 16 cm which is enough to avoid the turbulence 
caused by the invasive electrostatic sensor. The sensor is 
covered in a grounded shielding case to isolate both sensor 
arrays from external electromagnetic interference [2]. As 
shown in Fig. 3, the pipe cross section with the side length of 
54 mm is equally divided into nine sub-areas (index by A1-
A9) and each invasive electrode is placed in the area center. 
Therefore, the reference particle velocities of each area of the 
square pipe can be obtained by nine pairs of electrodes, 
respectively. Then the reference particle velocities are used as 
the output variables in the model training process. 

 

Fig. 2. Structure of non-invasive and invasive electrostatic sensors. 

 
Fig. 3. Division of square-shaped pipe cross section and electrode 

configuration. 

C. Principal Component Analysis 

The input variables include twelve particle velocities 

(namely vA to vL) which are obtained from twelve pairs of non-

invasive electrodes and the air velocity (v). It is found that the 

input variables are correlated with each other to some extent. 

Therefore, PCA is used to remove the redundancy information 

and reduce the dimensionality of the predictor space, which 

can help prevent overfitting in the model training process. 

PCA is used to linearly transform the predictive factors, 

remove redundant dimensions, and generate a group of new 

variables called principal components. Firstly, the potential 

input variables are normalized as a matrix 𝑋𝑚×𝑛  and the 

covariance matrix 𝐶 is calculated by: 

𝐶 =
1

𝑚
𝑋𝑋𝑇                                   (1) 

where 𝑚 is the dimension of 𝑋. 𝑋𝑇 is the transposed matrix 

of 𝑋 . Then the eigenvalues λ  and eigenvectors 𝛼  of the 

matrix 𝐶 can be determined by: 

𝐶𝛼 = 𝜆𝛼                                    (2) 

The eigenvalues and corresponding eigenvectors are sorted 

by 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛. The eigenvalues are arranged into a 

matrix from top to bottom according to the corresponding 

eigenvectors, and the first 𝑘 rows are taken to form a matrix 

𝑀. 

𝑃 = 𝑀𝑋                                   (3) 
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where 𝑃 = {𝑝1, 𝑝2 ⋯ 𝑝𝑘}  is the set of principal 

components,  𝑘  is the reduced dimension. The resulting 

principal components are uncorrelated and arranged in a 

descending order according to their significance contributing 

to the overall data variation. The contribution of 𝑃 is defined 

as： 

𝛼𝑘 =
∑ 𝜆𝑖

𝑘
𝑖=1

∑ 𝜆𝑘
𝑛
𝑖=1

(𝑘 ≤ 𝑛)                         (4) 

In this study, PCA keeps enough components to explain 95% 

variance.  

D. Gaussian Process Regression  

The difference between the GPR algorithm and general 
machine learning algorithms such as regression trees, SVM 
and ANN is that there is a covariance matrix reflecting the 
correlation between the features of the sample in the Gaussian 
process, which makes GPR show super fitting ability and 
more explainable [20]. Therefore, GPR is chosen to describe 
priority knowledge of processes in this study. 

GPR is a non-parametric kernel-based probabilistic model 
that uses Gaussian process priors to perform regression 
analysis on data which has advantages over parameterized 
methods in regression analysis with a limited number of 
training samples. GPR model is represented as 

𝑦 = ℎ(𝑥)𝑇𝛽 + 𝑓(𝑥)                                 (5) 

where 𝑓(𝑥)  is from a zero-mean Gaussian process with 
covariance function. In this study, 𝑥  is the principal 
components diverted from PCA, the output variables 𝑦  are 
particle velocities in different areas of the pipe cross section, 
ℎ(𝑥) represents a set of functions that transform the original 

vector  𝑥  in  𝑅𝑑  into a new feature vector ℎ(𝑥)  in 𝑅𝑝.  𝑑 
represents the dimension of the original vector. 𝑝 represents 
the dimension of the transformed vector, which is consistent 
with the dimension of 𝑓(𝑥) . 𝛽  is a 𝑝-by-1 vector of basis 
function coefficients. The distribution of 𝑦𝑖  in the probability 
model is  

𝑃(𝑦𝑖|𝑓(𝑥𝑖), 𝑥𝑖)~𝑁(𝑦𝑖|ℎ(𝑥𝑖)𝑇𝛽 + 𝑓(𝑥𝑖), 𝜎2)         (6) 

where 𝜎2 is the error variance of normal distribution data, 𝑥𝑖 
is the observation of the latent variable 𝑓(𝑥𝑖). In vector form, 
this model is equivalent to 

𝑃(𝑦|𝑓, 𝑋)~𝑁(𝑦|𝐻𝛽 + 𝑓, 𝜎2𝐼)                     (7) 

where 

𝑋 = (

𝑥1
𝑇

𝑥2
𝑇

⋮
𝑥𝑛

𝑇

), 𝑦 = (

𝑦1

𝑦2

⋮
𝑦𝑛

), 𝐻 = (

ℎ(𝑥1
𝑇)

ℎ(𝑥2
𝑇)

⋮
ℎ(𝑥𝑛

𝑇)

), 𝑓 = (

𝑓(𝑥1)

𝑓(𝑥2)
⋮

𝑓(𝑥𝑛)

). 

The joint distribution of latent 
variables 𝑓(𝑥1), 𝑓(𝑥2) … 𝑓(𝑥𝑛) follows: 

𝑃(𝑓|𝑋)~𝑁(𝑓|0, 𝐾(𝑋, 𝑋))                     (8) 

where 𝐾(𝑋, 𝑋) is 

𝐾(𝑋, 𝑋) = (

𝑘(𝑥1, 𝑥1) 𝐾(𝑥1, 𝑥2) ⋯ 𝑘(𝑥1, 𝑥𝑛)

𝑘(𝑥2, 𝑥1) 𝑘(𝑥2, 𝑥2) ⋯ 𝑘(𝑥2, 𝑥𝑛)
⋮ ⋮ ⋮ ⋮

𝑘(𝑥𝑛 , 𝑥1) 𝑘(𝑥𝑛 , 𝑥2) ⋯ 𝑘(𝑥𝑛 , 𝑥𝑛)

)    (9) 

The kernel function 𝑘(𝑥𝑖 , 𝑥𝑦)  in the Gaussian process 

regression model reflects the similarity and correlation 

between different sample sets and plays a key role in the 

prediction performance of the GPR model. There are four 

possible kernel functions: the squared exponential kernel 

(SEK), exponential kernel (EK), Matern 5/2 (M52K) and 

rational quadratic kernel (RQK). Their functions are defined 

as 

𝑘𝑆𝐸𝐾(𝑥𝑖 , 𝑥𝑦) = 𝜎𝑓
2exp (−

𝑟2

2𝜎𝑙
2),                    (10) 

𝑘𝐸𝐾(𝑥𝑖 , 𝑥𝑦) = 𝜎𝑓
2exp (−

𝑟

𝜎𝑙
),                      (11) 

𝑘𝑀52𝐾(𝑥𝑖 , 𝑥𝑦) = 𝜎𝑓
2(1 +

√5𝑟

𝜎𝑙
+

5𝑟2

3𝜎𝑙
2)exp (−

√5𝑟

𝜎𝑙
),   (12) 

𝑘𝑅𝑄𝐾(𝑥𝑖 , 𝑥𝑦) = 𝜎𝑓
2(1 +

𝑟2

2𝛼𝜎𝑙
2)−𝛼,               (13) 

where 𝜎𝑖  is the characteristic length scale, 𝜎𝑓  is the signal 

standard deviation and 

𝑟 = √(𝑥𝑖 − 𝑥𝑗)
𝑇

(𝑥𝑖 − 𝑥𝑗)                       (14) 

is the Euclidean distance between 𝑥𝑖 and 𝑥𝑗. 

The optimal kernel function can be considered by 

comparing the prediction effect of models based on different 

kernel functions. In order to assess the performance of the 

model in terms of accuracy, the root-mean-square error 

(RMSE) is calculated based on the reference particle 

velocities and the predicted particle velocities from the model. 

By comparing RMSE, the performance of the trained models 

can be comprehensively understood and evaluated. RMSE is 

defined as: 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑚
𝑖=1                      (15) 

where 𝑚 is the number of test data, 𝑦𝑖  is the reference value 
of the 𝑖-th test, 𝑦̂𝑖 is the predicted value of the 𝑖-th test. 

III. EXPERIMENTAL AND RESULTS 

A. Experimental Setup 

As shown in Fig. 4, experimental tests were carried out on 
a laboratory-scale test rig consisting of a feeding system, a 
powder recovery, a negative pressure system and electrostatic 
sensors. Solid particles (plain flour with the size range of 98–
124 μm) were fed into the pipe using the double screw feeder 
and pneumatically conveyed to the solids recycling tank using 
the negative pressure system, respectively. The mass flow rate 
of particles and the conveying velocity can be changed by 
adjusting the double screw feeder and the negative pressure 
device, respectively. As shown in Fig. 4, the sensors were 
installed on a vertical pipe about 1200 mm away from the 
upstream elbow. The non-invasive electrostatic sensor and the 
invasive electrostatic sensor were used to measure the particle 
velocities simultaneously. During data acquisition, variables 
such as the ambient temperature (around 26℃), relative 
humidity (around 69%) and particle characteristics (i.e. size, 
type, moisture content, etc.) were all controlled and almost 
constant. 



 

Fig. 4. The layout of the test rig with a square-shaped pipe. 

The data used in this study were obtained from 16 
experimental conditions (V1M1 to V4M4) as outlined in 
Table I. The air velocity and mass flow of particles were 
adjusted from 19 m/s to 31 m/s and 2 kg/h to 8 kg/h, 
respectively. A total of 4496 datasets were obtained for model 
training and testing. 

TABLE I.  EXPERIMENTAL CONDITIONS 

Mass Flow (kg/h) 
Air velocity (m/s) 

V1=19 V2=23 V3=27 V4=31 

M1=2 V1M1 V2M1 V3M1 V4M1 

M2=4 V1M2 V2M2 V3M2 V4M2 

M3=6 V1M3 V2M3 V3M3 V4M3 

M4=8 V1M4 V2M4 V3M4 V4M4 

B. Kernel Function Selection 

Since the kernel function of the GPR model has an 

influence on the predicted results, it is necessary to choose a 

suitable kernel function before model training. In order to 

evaluate the effects of different kernel functions (EK, M52K, 

RQK and SEK) on the model performance, four GPR models 

with different kernel functions were developed based on the 

same training dataset, respectively. The RMSE results of 

predicted velocities from four GPR models in areas A1 to A9 

are shown in Fig. 5. As can be seen from Fig. 5, the GPR 

model with the EK kernel function has the lowest RMSE than 

other models in all areas except for A1 and A6. The difference 

in RMSE between the GPR model with EK kernel function 

and the best-performed model is less than 0.5%. Therefore, the 

exponential kernel function is selected to measure the cross-

sectional velocity distribution under experimental conditions. 

 
Fig. 5. Comparison of RMSE for four GPR models with different kernel 

functions. 

C. Experimental Results and Analysis 

In the model training process, the principal component 
vectors obtained from PCA were taken as the input of the GPR 
model. The reference particle velocity of each area is regarded 
as the output variable of the model. The 5-fold cross-
validation was applied in the model training process to 
evaluate the prediction performance of the model, which can 
also avoid the overfitting of the model. During the model 
training, the Bayesian optimization was used to optimize the 
hyperparameter (𝜃 = {𝜎𝑖 , 𝜎𝑓 , 𝜎}). The algorithm terminates 

after 30 iterations, because no obvious improvement is 
observed when the number of iterations is beyond 30. Then 
the trained model is used to determine the cross-sectional 
velocity distribution only from the particle velocities 
measured by the non-invasive electrostatic sensor and the air 
velocity. 

Fig. 6 shows the predicted particle velocities and reference 
particle velocities of the test dataset in 9 areas under 16 
experimental conditions. The predicted velocity values are 
very close to reference values in all areas. The relative errors 
between predicted values and the reference values are 
depicted in Fig. 7. Under all experimental conditions, the 
relative errors of the predicted velocities in A1 to A9 are all 
within ±3%. The results suggest that the GPR model is capable 
of predicting the cross-sectional velocity distribution of 
particles in a square-shaped pipe based on particle velocities 
measured by electrostatic sensors along with the velocity of 
conveying air. 

 

Fig. 6. Comparison of the predicted and reference velocities of the particle 

under 16 experimental conditions. 

 

Fig. 7.  Relative error range of the predicted velocities in nine areas under 

all experimental conditions. 

The accuracy of the trained model mainly depends on the 
comprehensiveness of the training data. However, it is 
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impractical to obtain the training data under all flow 
conditions. In order to evaluate the performance of the GPR 
model with a smaller training dataset or missing data, three 
GPR models that trained using different training datasets were 
tested with the test datasets shown in Table II, respectively. It 
is worth noting that the dataset used for training GPR models 
excludes the flow conditions for testing. 

TABLE II.  TEST SETUP OF SMALLER TRAINING DATASET 

Test group Test dataset not included in the training dataset 

Test Ⅰ V1M4, V4M1 

Test Ⅱ V3M1, V3M2, V3M3, V3M4 

Test Ⅲ V1M3, V2M3 V3M3 V4M3 

In Test I, the GPR model was trained with data from all 
experimental conditions except for V1M4 (lowest air velocity 
19 m/s and highest solid mass flow rate 8 kg/h) and V4M1 
(highest air velocity 31 m/s and lowest solid mass flow rate 2 
kg/h). The experimental results of these two flow conditions 
were used to evaluate the trained model. As shown in Fig. 8(a), 
the relative error of predicted velocity has negative values 
under the condition of high air velocity and low solid mass 
flow rate, while the relative error is positive under the 
condition of low air velocity and high solid mass flow rate. 
The relative error in all areas is still less than ±5% under the 
condition of V4M1. However, the relative error of the 
predicted velocity goes up to the range between 11.60% and 
15.16% under the condition of V1M4 because the flow 
condition is far beyond the training conditions of the model. 

In Test II, the training dataset does not contain the data 
collected at the air velocity of 27 m/s. The developed GPR 
model was tested under the condition of V3M1, V3M2, V3M3 
and V3M4. Fig. 8(b) shows that the relative errors are mostly 
within ±5% when the solid mass flow rate changes from 2 kg/h 
to 6 kg/h. When the solid mass flow rate reaches 8 kg/h, larger 
errors (around 10%) occur in areas A4 and A5. However, 
compared with the results from Test I, the overall performance 
is still better than that under the V1M4 flow condition. This is 
because the test dataset in Test II is unknown to the model but 
is still within the range of the training dataset. 

In Test Ⅲ, the measurement results under the solid mass 
flow rate of 6 kg/h were used as the test dataset (not included 
in the training dataset). The performance of the GPR model 
under the conditions of V1M3, V2M3, V3M3 and V4M3 is 
shown in Fig. 8(c). When the air velocity is 19 m/s and 31 m/s, 
the relative errors in all areas are less than ±3%. But larger 
errors (around ±8%) occur in areas A4 and A5 when the air 
velocity is at 23 m/s and 27 m/s. Due to the uneven distribution 
of data in the training dataset, these flow conditions were 
mismatched by the model to other flow conditions, which 
resulted in larger errors. The result also indicates that more 
features related to flow conditions need to be considered for 
model training in the follow-up study. 

 

Fig. 8. Relative error for the predicted velocities under different flow 

conditions. 

IV. CONCLUSIONS 

In this paper, a novel approach using a non-invasive 

electrostatic sensor and a GPR model to the measurement of 

the cross-sectional velocity distribution of pneumatically 

conveyed particles is proposed and evaluated. The feasibility 

of the proposed measurement methodology has been verified 

under laboratory conditions. Experimental results have 

demonstrated that the GPR model with exponential kernel 

function trained with the data from all experimental 

conditions performs well. The relative error of predicted 

velocities in each area is within 3%. With a smaller training 

dataset, the model performance is negatively affected. For the 

data beyond the range of the training dataset, the relative error 

of the model goes up to ±10% or even ±15%. However, the 

limitation in generalization ability is a common problem for 

all data-driven models. In future, investigations into the 

improvement of the generalization ability of GPR models will 

be conducted and field trials will be carried out to assess the 

methodology under industrial conditions. 
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