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Abstract—Assistive technologies that can passively track peo-
ple’s daily activities with dementia can deliver significant ben-
efits for the patients themselves and their carers. This work
investigates the feasibility of developing a system for the unsu-
pervised tracking of daily activities at home through acoustic
sensing. Motivated by the wide adoption of intelligent voice
assistant devices in home environments, we developed a prototype
algorithm to identify diversions from typical activities using
the captured sounds, without the need for activity labeling.
The system relies on sound embeddings through a pre-trained
model, a novel dimensionality reduction algorithm, and the
application of dynamic time warping for pattern matching. Our
evaluation through synthetic activity sequences using data from
our data collection in addition to public datasets shows very good
performance (precision 0.99, recall 0.95).

Index Terms—assisted living, unsupervised learning, dementia

I. INTRODUCTION

There is a growing demand for the development of assistive
technologies that can provide support for elderly people living
with dementia. As the specific condition can progressively lead
to a significant deterioration of the ability of people to function
without support, there is great value in the design of a system
that can monitor their condition unobtrusively and alert carers
when there are signs of significant cognitive decline.

A vital sign that can indicate deterioration of cognitive
abilities for people with dementia is a progressive difficulty
following their typical daily routines, where specific regular
tasks, such as having a meal, can be skipped or repeated in
short intervals. In this work, we explore the design of a system
for the passive tracking of daily activities to detect diversions
from regular routines.

Considering the well documented limitations of deploying
wearable technologies to support people living with demen-
tia [1], in this work, we consider the feasibility of employing
acoustic sensing technologies as the primary modality for
monitoring the daily activities. Indeed, the wide adoption of
smart assistant devices like Alexa and Google Home has also
motivated the development of similar products tailored for
elderly people (e.g. MiiCube [2]). These technologies offer the
opportunity to utilise sound as a rich sensing modality that can
be used to provide assistive applications. As part of an ongoing
collaboration with the company MiiCare Ltd – a supplier of

smart assistants for the elderly – we explore the feasibility of
using acoustic sensing to identify diversions from the typical
daily routines of elderly people with dementia. Considering
the significant challenge of collecting datasets with appropriate
labelling of the activities performed, our approach investigates
the development of an unsupervised approach of tracking daily
routines through sound.

In this preliminary work, we present an architecture for
the unsupervised tracking of daily routines through sound and
detecting changes of the regular sequence of activities or the
“skipping” of particular activities as part of the daily routine.
The general idea behind our approach is to consider a small
set of sound sequences as representative patterns of typical
activities. The detection of diversion from these patterns is
performed through the combination of mapping sounds into
multi-dimensional embeddings through the use of a pretrained
model (VGG-ish [3]), the reduction of the dimensionality of
the produced embeddings through a novel approach presented
in this paper, and the application of Dynamic Time Warping as
a pattern matching technique. This paper presents preliminary
system performance results, evaluated through synthetic data
using public datasets of sounds within domestic environments,
and data collected through a controlled study with healthy
participants. Using the public dataset, the system achieves 0.74
precision and 0.93 recall and using our collected dataset the
system obtains 0.99 precision and 0.95 recall.

II. RELATED WORK

A. Daily Activities with Dementia

People diagnosed with dementia, depending on the stage
of their condition, may experience a significant reduction
in their ability to perform daily activities or follow regular
routines [4]. They may, for example, face increased difficulty
getting dressed or may skip brushing their teeth as part of their
morning routine. These alterations in elderly peoples’ routines
can introduce challenges for carers, who may need to intervene
in such situations. Monitoring and recording changes in their
daily routines can be a valuable tool in tracking the progress
of their condition.

There has been extensive work in the use of assistive
technologies for people with dementia. Riikonen et al. [5]
emphasise in their work that the most valuable technologies



Fig. 1: Pipeline: The process aims to analyse a stream of sounds captured over a long time window where the user performs
a typical routine (e.g. morning routine) and compares the sound patterns with previously captured “normal” routine for that
individual. The process does not rely on the identification of the specific activities, and therefore does not require labeled data
for training.

do not require any interaction by the user and can operate
passively.

B. Acoustic Scene Classification
Recognising various acoustic environments from recorded

acoustic signals is an active research field that has received
significant attention. Acoustic scene classification (ASC) is
the task of recognising the acoustic environment based on the
recorded acoustic signal, for example, “office” or “park” [6].
Interestingly, recent results in this domain demonstrate that the
state-of-the-art of acoustic scene classification can outperform
humans on the same task [7]. ASC algorithms have matured
and are already in real-world application scenarios. However,
one of the main challenges in this domain is the difficulty
of collecting well curated datasets. One of the most popular
methodologies to apply ASC in new domains is using a
pretrained model (PANNs [8]) and applying transfer learning.
In this work we adopt this approach as part of the early
processing of acoustic signals.

C. Unsupervised activity recognition
Supervised methodologies are prevalent in activity recogni-

tion applications although, manual labelling of large datasets
is expensive and time-consuming. These challenges are par-
ticularly difficult when considering labeling of acoustic data
where the particular sounds for similar activities can differ
greatly between users [9].

Unsupervised learning can be used to discover recurring
sequences of activities captured by human activity recognition
sensors with unlabeled data. These methods have been used
for behaviour pattern discovery in smart home environments
before, and they can also be used for providing proactive
assistance from home [10]. Moreover, unsupervised sensing
where specific activities are not explicitly detected, can offer
an additional layer of privacy with respect to the output of the
specific system.

III. MOTIVATION

By 2020, 50 million people were estimated to be affected by
dementia worldwide [11]. Furthermore, the number of cases is
rising by about 10 million every year [12]. In the face of these
projections, there is an increasing need to provide technology
that can observe their daily lives and the progress of their
condition while reducing the need for unnecessary involvement
of carers.

In this work, we consider the feasibility of using voice
assistants within the homes of people with dementia to detect
diversion of their daily routines, which could be a sign
of cognitive decline. Considering example technologies like
MiiCube, there is an opportunity to work with large acoustic
datasets collected from the living environments of older users.
However, the nature of these deployments makes it highly
challenging to collect any ground truth information about the
specific activities people perform.

The main objective of this work is to develop a system
that can “learn” the typical activity patterns of users in an
unsupervised way, using sound. Although the typical day of
any person is not predictable, there are certain times that most
people follow regular routines, for example, morning routine,
mealtime, or bedtime routine. We consider the proposed sys-
tem as a passive sensing tool to detect diversions within those
regular routines. The system should identify diversions from
the “typical” pattern by detecting skipped activities that were
not performed in the typical order. Using only sound signals
as input, the main idea is to transform acoustic signals into a
low dimensionality time series that can indicate when the user
switches from one activity to the next.

The proposed system does not need to identify the exact
activities involved, and therefore does not rely on training
over labeled data. Instead, with the transformation of acoustic
signals into low dimension time series, we aim to apply time
series pattern matching techniques like Dynamic Time Warp-



ing (DTW) [13] (commonly applied in gesture recognition [14]
for example).

IV. METHODOLOGY

The overall architecture of the proposed system can be
found in Figure 1. The system operates in two stages: the
passive stage aims to collect acoustic data over a period of
time in order to “learn” the sound characteristics of typical
routines for each user; the active stage is where the system
analysis acoustic data aims to detect diversions from the
typical routines. The general pipeline employed involve ex-
tracting features from the acoustic signal, applying a technique
for dimensionality reduction, smoothing, and a final stage of
pattern matching using DTW.

A. Data Collection

The proposed system was developed and evaluated using
two different datasets. The Freesound Audio Tagging 2019
dataset [9] dataset is a large public dataset of a range of
sounds, typically used for ASC tasks. The dataset is labeled
with ground-truth, but the labeling is only used as part of the
evaluation process.

In addition to the public dataset, we evaluated our system
through a small-scale collection of real-world sounds. We
asked 10 participants to record their morning routine using
their smartphones, over a period of 5 days. The data collection
was performed through the AudioHive App [15], a purpose-
built application that we developed for this study. The app
allows participants to label their activities. Activity durations,
and sequences varied across participants. There were activities
of short duration (e.g. average 2 mins for “brushing teeth”),
or much longer (e.g. average 10.6 mins for “having coffee”).
Similar to the public dataset, the labels were only used as part
of the system evaluation process.

Although beyond the scope of this paper we are currently
in the process of collecting acoustic data from a real-world
deployment of acoustic sensing within two care-homes in the
United Kingdom, involving 20 participants diagnosed with
dementia.

B. Feature Extraction

The approach followed for extracting features from acoustic
signals is influenced by typical methods applied for acoustic
scene classification [16]. Traditionally, features on sound sig-
nals are extracted by transforming the signal into the frequency
domain. However, since the publication of the VGGish model
in 2017 [3], the acoustic sensing community has increasingly
explored the application of transfer learning to extract sound
features that can be used for acoustic scene classification.

The VGGish model is a pre-trained CNN network that has
been trained over the AudioSet [17] dataset. The model takes
as input frames of 975ms of audio data, converts them into
a spectrogram, applies the Mel-Frequency Filter Banks, and
uses this as input for training for acoustic scene classification.
Applying VGGish for direct activity recognition in new envi-
ronments can produce poor results, as the model is trained over

Fig. 2: Identifying Reference Points (illustration): We apply
k-means over the dataset of domestic sounds. The red dots
represent the mid points between cluster centres. We select
the 3 points with the lowest density.

a fixed set of labels. Instead, the VGGish model is typically
used as a feature extraction method [3] by stripping the last
layer of the model and utilising the generated 128-dimensions
feature vector produced by the model as a multi-dimensional
embedding representing features that can be used for acoustic
sensing.

In our work, we employ a similar methodology for feature
extraction. Our assumption for the VGGish produced embed-
dings is that the model is trained to provide high discrimination
between sounds of different activities and closer similarity
between sounds of the same activity. Preliminary investigation
through the AudioSet dataset has validated that assumption.
Indeed using Euclidean distances over the embedding vectors
between audio samples of similar activities (e.g. cooking)
are significantly smaller than the distances across activities
(e.g. cooking vs bathroom). We also notice that for certain
sound types, there are significant variations with respect to
the generated embeddings. Indeed, sounds within the same
activity can vary over short periods. As the VGGish model
operates over frames of less than a second, these variations
are manifested as changes on the embedded vectors produced
for the same activity.

In order to address the issues with high variability within
the sound embeddings, we incorporate a smoothing function
over the generated embeddings before they are forwarded to
the next stage. Specifically, as we intend to identify long ac-
tivities (such as cooking or eating), we aggregate the produced
embeddings over a window of 1min. Essentially the pipeline
operates over a 1min sliding window (50% overlap), where
the VGGish embeddings are averaged to produce a single 128-
dimension embedding for each 1min window.

C. Dimensionality Reduction

DTW is a common technique used for pattern matching
of time series. However, DTW is not well suited for time
series with high number of dimensions, as the complexity
increases exponentially with each additional dimension. Com-
monly DTW is applied on series with up to three dimensions.



Fig. 3: Distances between cluster centers midpoints and se-
quence

As we intend to apply DTW over a time series of sound
signals, it is essential to transform the 128-dimension embed-
dings into a significantly reduced dimensionality vector. Fol-
lowing our previous observation regarding Euclidean distances
between embeddings, we consider using a small set of fixed
reference points within the 128-dim embedding hyperspace
and using the distances from these reference points as a new
lower dimension feature vector. In the proposed system, we
aimed to reduce the dimensionality of the embeddings into 3-
dimensional feature vectors. Each value within the 3D vector
should hold the distance of each sound sample from three
identified reference points within the embedding space.

Selecting the appropriate reference points is essential to
ensure that the calculated distances will still have a discrimi-
natory effect in separating sounds of different activities. This
is a key part of the “passive stage” of the overall system. Over
the “passive stage” a range of domestic sounds are collected
over multiple days. As the VGGish model is trained over a
larger range of sounds (including a variety of outdoor acoustic
scenes), we expect that the distribution of domestic sounds
within a specific household would be relatively sparse when
embedded into the 128-dimension space. Therefore, we aim
to identify three reference points within that sparse space to
help differentiate activities through their Euclidean distance.

Our approach for selecting the reference points is based on
the following rationale:

• Reference points should not be within dense areas of
sound activity in the embedding space: The rationale is
that a dense area can contain representations of a specific
activity, and a reference point within that space can have
a highly discriminatory effect for sound samples of the
same activity.

• Reference points should be “near” the areas in the em-
bedding space where domestic sound activity is located:
This way, estimated distances from sounds of different
activities can have a more discriminatory effect.

• The three reference points should be far from each other:
we want to minimise any correlations between the three
dimensions produced.

The approach that satisfies these requirements is the follow-
ing: We operate over a set of domestic sounds collected during
the “passive” stage. Using the VGGish model, the dataset is
transformed into a 128-dim data series of embeddings. We

perform a sequence of k-mean clustering operations over the
embeddings of all the domestic sounds of the household,
with k ∈ {3, 4, 5, ...}. We produce k cluster centres for each
clustering operation, which we assume are within dense areas
in the embedding space. Using the cluster centres, we calculate
the midpoint within each pair of them: a total of k(k − 1)/2
candidate points for each clustering (Figure 2). We consider
these points as candidates that can be “near” the areas of activ-
ities but potentially within low-density space. Using the Kernel
Density Estimation (KDE) function fitted over the dataset of
domestic sounds, we calculate the density for each candidate
point. Finally, we identify the 3 candidate points with the
lowest density as potential reference points. This process will
generate a triplet of points for each clustering operation. The
last step is to select the triplet with the maximum distance
between the candidate reference points: For each triplet, we
calculate the surface area of the triangle produced between
the three points as an estimator of the distance between them.
The final selection includes the triplet produced by one of the
clusters with the highest surface area.

The identification of the three reference points allows us
to apply dimensionality reduction over the 128-dimension
embeddings. Specifically, we can calculate the Euclidean dis-
tance of each sound sample from the three identified reference
points. For example, in Figure 3 you can see a sample of the
distribution of three domestic activities after dimensionality
reduction. Although there is a significant loss of information
from the reduction to a 3D vector, the proposed approach can
still maintain the discriminant characteristics of the specific
features.

D. Pattern Matching with DTW

Dynamic Time Warping [18] is an algorithm that calculates
the dissimilarity or distance between two time series while
allowing the warping (compression or expansion) of the time
axis in order to find the best alignment of the two series.
Specifically, DTW calculates the distance between each pos-
sible pair of points within two time series. Through these it
calculates the cumulative distance matrix and identifies the
ideal warping path that minimizes the distance between the
two series. When working with multi-dimensional time series
the multivariate DTW [14] algorithm has been successfully
used for gesture recognition using 3D-activity time series.

In this work we consider the use of DTW as a form of
identifying activity sequences that are similar to the typical
routine of the specific user, and flag sequences that are con-
sidered atypical. After the dimensionality reduction process, a
time series of sound signals mapped into a sequence of 3D
vectors, can be used for activity sequence pattern matching.
Different sequences of daily activities can be used to identify
the “typical” daily pattern of activities. Similarly new sound
sequences can be classified using DTW based on their simi-
larity with the typical activity patterns.

When monitoring a particular “routine” of activities (e.g.
morning routine, bedtime routine), we consider a set of sound
sequences collected over a few days, as the typical pattern



(a) Typical A (b) Typical B (c) Typical C

(d) Atypical A (e) Atypical B (f) Atypical C

Fig. 4: Distances from reference points and audio samples from the Data Collection. In the first row the sequences contain
the same set of activities. The patterns of the three dimensions are similar although the duration can vary. Second row the
sequences are different and this is reflected in changes in the overall patter compared to the “typical” sequence.

of the user. We term this the training set. Calculating DTW
between the sample of sound sequences from the training set,
allows us to estimate a threshold θ as the maximum DTW
distance between sequences of the training set. When tracking
new sound sequences, we calculate the average DTW distance
of that sound sequence with all sequences of the training set.
If the average distance is lower than θ the particular sequence
is considered “typical”, and when the distance is higher it is
considered “atypical”.

V. RESULTS

We evaluate the performance of the proposed model us-
ing two datasets: the public Freesound Audio Tagging 2019
dataset [9], and our datasets collected through the AudiHive
app [15] by 10 users over 5 days. Freesound Audio Tagging
datasets contains 297,144 samples of audio data, accurately
labelled with the activity they represent. For this work, we
selected only a subset of the dataset domestic sounds. Sim-
ilarly, the AudioHive dataset was manually labelled by the
participants, with activities representing their morning routine.

A. Synthetic Sequences

In order to evaluate the model, we needed a sufficient dataset
of both “typical” and “atypical” sequences of activities. We
syntesised such sequences by combining data from the original
datasets, stitching sound samples of different duration from
various activities.

In particular, we generated three new datasets through the
stitching of activities from the AudioHive dataset and three
new datasets from the Freesound Audio Tagging 2019 dataset.

• Typical sequence: We defined a sequence St =
a1, a2, ..., an of n activities selected from the complete
set of activities within the dataset, to represent a typical
set of activities performed in a household, e.g. prepar-
ing breakfast, cleaning dishes, etc. For each activity ai
within the sequence, we estimated the distribution of
each duration as recorded by our participants. Based on
this distribution, we generated samples of variable length
within the range of two standard deviations from the
mean duration for each activity.

• Reordered sequence: Using the same St we produced
random re-orderings of the set of activities. These se-
quences contain the same activities as those in the typical
sequence, but in randomly mixed order.

• Missing activity sequence: Using the St sequence gen-
erated a set of activities where one of the ai activity is
removed from the sequence.

Through this process, we generated 30 acoustic signals of
“typical” sequences, 30 re-ordered sequences which represent
the ”atypical” set, and 30 sequences with a missing activity
using the public dataset. Next, we did the equivalent with the
AudioHive dataset; we created 30 acoustic signals of “typical”
sequences, 30 re-ordered sequences, and 30 missing activities
using the AudioHive dataset.

For the training of the DTW algorithm, we selected a ran-
dom subset of 10 typical activities to estimate the acceptable
range of DTW distances to classify a sequence as “typical”.
The validation set consists of the remaining 20 “typical”
sequences and 60 “atypical” sequences.

The “passive” stage of the system involves the identification



TABLE I: Results of the selection of reference points using
clustering. k=7 generates points with the widest distance
between them.

Clusters (k) Avg. Density 3
midpoints

Surface area

k = 3 20.50 1.47
k = 4 48.25 1.71
k = 5 11.24 2.52
k = 6 34.17 1.43
k = 7 8.027 2.73
k = 8 -11.57 1.10
k = 9 -12.78 1.22
k = 10 20.50 1.08

TABLE II: Performance of proposed clustering method, and
comparison with baseline (PCA)

Method Precision Recall
Clustering (AudioHive Dataset) 0.99 0.95

Clustering (Public Dataset) 0.74 0.93
PCA (Public Dataset) 0.59 0.8

of appropriate reference points for dimensionality reduction.
These are selected for each environment and the set of
domestic sounds contained in each dataset. Table I illustrates
the outputs of that process over a series of clustering steps. For
each of these, we calculated the midpoint between all cluster
centres, selected the three midpoints with the lowest density,
and calculated the surface area between them. In this case,
midpoints from k = 7 cover the largest surface area.

During the “active” stage, the system uses these reference
points to reduce the dimensions of any 1min sound sample.
Figure 4 shows samples of the produced 3-d vectors for
different sequences. It can be observed visually that sequences
of the “typical” pattern demonstrate similarly shaped time
series, whereas those of “atypical” behaviour do not. This
indicates that the time series transformation into a 3D model
produces suitable results for DTW pattern matching.

We evaluated the algorithm using the validation set, consist-
ing of 20 correct, and 60 wrong activity sequences for each
dataset. The results are shown in Table II. The results are also
compared with the effects of a similar system that relies on
a more traditional dimensionality reduction technique using
pricipal component analysis (PCA). As shown the proposed
algorithm can achieve very high performance. We note that the
performance is particularly high for the real-world collection
through participants. The reason for this high performance is
that the “passive” stage analyses the patterns of the sounds
that are generated within each household. This leads to a
transformation that is tailored to the sound patterns produced
by each participant. Instead, the public dataset consists of
activity sounds from a range of different environments group
together.

VI. CONCLUSIONS

This paper presents a novel technique for the unsupervised
tracking of changes in daily routines using acoustic sensing.
This work aims to develop a system that can detect significant
changes in the daily routines of people with dementia.

The proposed system relies upon the VGGish model to
generate embeddings of sound samples. A novel dimension-
ality reduction technique transforms the acoustic signal into
a 3D time series of features. The application of DTW is
then applied to match different patterns of activity sequences.
The evaluation of the system through synthetic data achieves
a precision of 0.99 and recall of 0.95. We are currently in
the process of collecting acoustic data through a real-world
deployment involving two care-homes in the UK. In our future
work we intent to evaluate the performance of this technique
under real-world conditions.
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