
Comparison of Access Policies for Replica Placement in

Tree Networks

Anne Benoit

To cite this version:

Anne Benoit. Comparison of Access Policies for Replica Placement in Tree Networks. RR-LIP-
2009-12. 2009. <ensl-00374927>

HAL Id: ensl-00374927

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00374927

Submitted on 10 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52325275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00374927

Comparison of Access Policies for Replica

Placement in Tree Networks

Anne Benoit

LIP Laboratory, ENS Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
Université de Lyon, UMR 5668 ENS Lyon-CNRS-INRIA-UCBL

Anne.Benoit@ens-lyon.fr

LIP Research Report RR-2009-12

Abstract. In this paper, we discuss and compare several policies to
place replicas in tree networks subject to server capacity. The client
requests are known beforehand, while the number and location of the
servers are to be determined. The standard approach in the literature is
to enforce that all requests of a client be served by a single server in the
tree (Single). One major contribution of this paper is to assess the impact
of a new policy in which requests of a given client can be processed by
multiple servers (Multiple), thus distributing the processing of requests
over the platform. We characterize problem instances for which Multiple
cannot be more than two times better than the optimal Single solution,
if this latter exists. For such instances, we provide a procedure which
builds a Single solution with a guarantee on its cost. This is a very
interesting result for applications which do not accept multiple servers
for a given client, since it might be more difficult to implement such a
complex strategy.

Keywords. replica placement, access policies, heterogeneous platforms,
hierarchical platforms, VOD applications.

2

1 Introduction

In this paper, we discuss and compare several policies to place replicas in tree
networks subject to server capacity. The client requests are known beforehand,
while the number and location of the servers are to be determined. A client is a
leaf node of the tree, and its requests can be served by one or several internal
nodes. Initially, there are no replica; when a node is equipped with a replica, it
can process a number of requests, up to its capacity limit. Nodes equipped with
a replica, also called servers, can only serve clients located in their subtree (so
that the root, if equipped with a replica, can serve any client); this restriction
is usually adopted to enforce the hierarchical nature of the target application
platforms, where a node has knowledge only of its parent and children.

We also point out that the distribution tree (clients and nodes) is fixed in our
approach. This key assumption is quite natural for a broad spectrum of applica-
tions, such as electronic, ISP, or VOD service delivery. The root server has the
original copy of the database but cannot serve all clients directly, so a distribu-
tion tree is deployed to provide a hierarchical and distributed access to replicas
of the original data. On the contrary, in other, more decentralized, applications
(e.g., allocating Web mirrors in distributed networks), a two-step approach is
used: first determine a “good” distribution tree in an arbitrary interconnection
graph, and then determine a “good” placement of replicas among the tree nodes.
Both steps are interdependent, and the problem is much more complex, due to
the combinatorial solution space (the number of candidate distribution trees may
well be exponential).

The rule of the game is to assign replicas to nodes so that some optimization
function is minimized. Typically, this optimization function is the total utiliza-
tion cost of the servers. If all nodes are identical (homogeneous version), this
reduces to minimizing the number of replicas. If the nodes are heterogeneous, it
is natural to assign a cost proportional to their capacity (so that one replica on
a node capable of handling 200 requests is equivalent to two replicas on nodes
of capacity 100 each).

The standard approach in the literature is to enforce that all requests of a
client be served by a single server in the tree; this policy is called Single. Following
the hierarchical structure of the platform, the server must be on the path from
the client to the root of the tree. We introduced in [3] a new policy, Multiple, in
which the requests of a given client can be processed by multiple servers on the
path, thus distributing the processing of requests over the platform. All problems
were shown to be NP-complete, except the multiple/homogeneous combination,
in which the optimal solution can be found in polynomial time, using a multi-pass
greedy algorithm.

One major contribution of this paper is to assess the impact of the new Mul-

tiple policy on the total replication cost, and the impact of server heterogeneity,
both from a theoretical and a practical perspective. Thus we demonstrate the
usefulness of the new policy, even in the case of identical servers. The first result
is that multiple allows to find solutions when the classical single policy does
not. More generally, a single server policy will never have a solution if one client

3

sends more requests than the largest server capacity. Then we build an instance
of the problem where both access policies have a solution, but the solution of
Multiple is arbitrarily better than the solution of Single. This is quite evident
for heterogeneous platforms [3], but it is a new result for the homogeneous case.

If we focus on homogeneous platforms, there are many problem instances for
which Multiple cannot be more than two times better than the optimal Single

solution, if this latter exists. In our work, we thoroughly characterize such cases
and we provide a procedure which builds a Single allocation with a guarantee
on the cost. The idea consists in having a single server allocation in which each
server is processing a number of requests being at least equal to half of its
processing capacity. The servers may be fully used in the Multiple allocation,
thus the solution will be up to two times better, but not arbitrarily better. This
is a very interesting result for applications which do not accept multiple servers
for a given client, since it might be more difficult to implement such a complex
strategy.

The rest of the paper is organized as follows. Section 2 is devoted to a detailed
presentation of the target optimization problems. In Section 3 we compare the
different access policies. Next in Section 4 we proceed to the complexity results,
both in the homogeneous and heterogeneous cases. Section 5 introduces the
procedure to build efficient Single solutions. Section 6 is devoted to an overview
of related work. Finally, we state some concluding remarks in Section 7.

2 Framework

This section is devoted to a precise statement of the replica placement optimiza-
tion problem. We start with some definitions and notations. Next we outline the
simplest instance of the problem. Then we describe several types of constraints
that can be added to the formulation.

2.1 Definitions and notations

We consider a distribution tree whose nodes are partitioned into a set of clients
C and a set of nodes N . The clients are leaf nodes of the tree, while N is the
set of internal nodes. It would be easy to allow client-server nodes which play
both the rule of a client and of an internal node (possibly a server), by dividing
such a node into two distinct nodes in the tree. Each client i ∈ C (leaf of the
tree) is sending ri requests per time unit to a database object. A node j ∈ N
(internal node of the tree) may or may not have been provided with a replica of
this database. Nodes equipped with a replica (i.e., servers) can process requests
from clients in their subtree. In other words, there is a unique path from a client
i to the root of the tree, and each node in this path is eligible to process some or
all the requests issued by i when provided with a replica. Node j has a processing
capacity Wj , which is the total number of requests that it can process per time-
unit when it has a replica. A cost is also associated to each node, scj , which
represents the price to pay to place a replica at this node. It is quite natural

4

to assume that scj is proportional to Wj : the more powerful a server, the more
costly.

Let r be the root of the tree. If j ∈ N , then children(j) ⊆ N ∪ C is the
set of children of node j. If k 6= r is any node in the tree (leaf or internal),
parent(k) ∈ N is its parent in the tree. Let Ancestors(k) ⊆ N denote the set of
ancestors of node k, i.e., the nodes in the unique path that leads from k up to
the root r (k excluded). Finally, subtree(k) ⊆ N ∪ C is the subtree rooted in k,
including k.

2.2 Problem instances

There are two scenarios for the number of servers assigned to each client:

Single server – Each client i is assigned a single server that is responsible for
processing all its requests.

Multiple servers– A client i may be assigned several servers in a set Servers(i).

To the best of our knowledge, the single server policy (Single) has been
enforced in all previous approaches. One objective of this paper is to assess the
impact of this restriction on the performance of data replication algorithms. The
single server policy may prove a useful simplification, but may come at the price
of a non-optimal resource usage.

For each client i ∈ C, let Servers(i) ⊆ Ancestors(i) be the set of servers respon-
sible for processing at least one of its requests. In a single server access policy,
this set is reduced to only one server: ∀i ∈ C |Servers(i)| = 1. Let R be the set of
replicas: R = {s ∈ N | ∃i ∈ C , s ∈ Servers(i)} . Also, we let ri,s be the number
of requests from client i processed by server s. All requests must be processed,
thus

∑

s∈Servers(i) ri,s = ri. In the single server case, this means that a unique
server is handling all ri requests. The problem is constrained by the server capac-
ities: no server capacity can be exceeded, thus ∀s ∈ R,

∑

i∈C|s∈Servers(i) ri,s ≤ Ws.

Finally, the objective function is defined as min
∑

s∈R scs.

In addition to the two access policies Single or Multiple, we consider different
platform types, with different or identical servers:

Different servers – As already pointed out, it is frequently assumed that the
cost of a server is proportional to its capacity: scs = Ws. The problem thus
reduces to finding a valid solution of minimal cost, where “valid” means that
no server capacity is exceeded. We name Replica Cost this problem.

Identical servers – We can further simplify the previous problem in the ho-
mogeneous case: with identical servers (∀s ∈ N , Ws = W), the Replica

Cost problem amounts to minimize the number of replicas needed to solve
the problem. In this case, the storage cost scj is set to 1 for each node. We
call this problem Replica Counting.

5

2.3 Note about the Closest policy

In the literature, the Single strategy is further constrained to the Closest policy:
the server of client i is constrained to be the first server found on the path that
goes from i upwards to the root of the tree. In particular, consider a client i
and its server s. Then any other client i′ residing in subtree(s) will be assigned
a server in that subtree. This forbids requests from i′ to “traverse” s and be
served higher (closer to the root in the tree).

We relax this constraint in the Single policy. Note that a solution to Closest

always is a solution to Single, thus Single is always better than Closest in terms
of the objective function. Similarly, the Multiple policy is always better than
Single, because it is not constrained by the single server restriction.

3 Access policies comparison

In this section, we compare the general Single policy with the Multiple one for
the Replica Counting problem. Section 3.1 illustrates the impact of policies
on the existence of a solution. Then Section 3.2 shows that Multiple can be
arbitrarily better than Single. Finally, Section 3.3 presents lower bounds and
show some cases in which the optimal solution is arbitrarily higher than this
bound. This comparison is done on the Replica Counting problem, thus the
results can be generalized to the Replica Cost problem.

3.1 Impact of the access policy on the existence of a solution

We consider here a very simple instance of the Replica Counting problem. In
this example there are two nodes, B being the unique child of A, the tree root
(see Fig. 1). Each node can process W = 1 request.

If B has two client children, each making 1 request, the solution consists in
placing a replica on each node, and both clients car be served (Fig. 1(a)). This
works for the Single policy (and thus for the Multiple one). However, if B has
only one client child making 2 requests, only Multiple has a solution since we
need to process one request on s1 and the other on s2, thus requesting multiple
servers (Fig. 1(b)).

This example demonstrates the usefulness of the new policy: the Multiple

policy allows to find solutions when the classical Single policy does not. More
generally, a single server policy will never have a solution if one client sends more
requests than the largest server capacity.

3.2 Impact of the access policy on the cost of a solution

In this section we build an instance of the Replica Counting problem where
both access policies have a solution, but the solution of Multiple is arbitrarily
better than the solution of Single.

Consider the instance of Replica Counting represented in Fig. 2, with
3 + n nodes of capacity W = 4n. The root A has n + 2 children nodes B, C and

6

A

B

1 1

A

B

2

(a) (b)

W=1

Fig. 1. Solution existence.

A

B C 1 2 n...

...
4n 2n-1 2n 2n+1 2 2 2

W = 4n

Fig. 2. Solution cost.

1, ..., n. Node B has two client children, one with 4n requests and the other with
2n − 1 requests. Node C has two client children, one with 2n requests and the
other with 2n + 1 requests. Each node numbered i has a unique child, a client
with 2 requests.

The Multiple policy assigns 3 replicas to A, B and C. B handles the 4n
requests of its first client, while the other client is served by A. C handles 2n
requests from both of its clients, and the 1 remaining request is processed by A.
Server A therefore processes (2n−1)+1 = 2n requests coming up from B and C.
Requests coming from the n remaining nodes sum up to 2n, thus A is able to
process all of them.

For the Single policy, we need to assign replicas everywhere. Indeed, with this
policy, C cannot handle more than 2n + 1 requests since it is unable to process
requests from both of its children, and thus A has (2n−1)+2n requests coming
from B and C. It cannot handle any of the 2n remaining requests, and thus each
remaining node must process requests coming from its own client. This leads to
a total of n + 3 replicas.

The performance factor is thus n+3
3 , which can be arbitrarily big when n

becomes large.

3.3 Lower bound

Obviously, the cost of an optimal solution of the Replica Counting problem

(for any policy) cannot be lower than the lower bound
⌈P

i∈C ri

W

⌉

, where W is the

server capacity. Indeed, this corresponds to a solution where the total request
load is shared as evenly as possible among the replicas.

The example of Fig. 3 shows that the solution can be arbitrarily higher than
this lower bound, even for the Multiple policy, since many servers are required
to be placed and each of them is only handling a small portion of work.

Consider Fig. 3, with n + 2 nodes of capacity W = n. The root of the tree A
has n+1 children: B and 1, ..., n. Node B has two client children, each sending n
requests. Each other node has a unique child, a client with only one request. The

7

A

B 1 2 n...

...
n n 1 1 1

W = n

Fig. 3. The lower bound cannot be approximated for Replica Counting.

lower bound is
⌈P

i∈C ri

W

⌉

= 3n
n

= 3. However, both policies will assign replicas

to A and B to cover both clients of B, and will then need n extra replicas, one
per node 1, ..., n. The total cost is thus n+2 replicas, arbitrarily higher than the
lower bound.

Previous examples give an insight of the combinatorial nature of the replica
placement optimization problems, even in its simplest variant with identical
servers, Replica Counting. The following section corroborates this insight:
most problems are shown NP-hard, even though some variants have polynomial
complexity.

4 Complexity results

The decision problems associated with the previous optimization problems are
easy to formulate: given a bound on the number of servers (homogeneous version)
or on the total storage cost (heterogeneous version), is there a valid solution that
meets the bound?

Single Multiple

Replica Counting NP-complete polynomial
Replica Cost NP-complete NP-complete

Table 1. Complexity results.

Table 1 captures the complexity results. These complexity results are proved
in [2, 1]. The NP-completeness of the Single/Replica Counting case comes as a

8

surprise, since all previously known instances with the extra Closest constraint
were shown to be polynomial, using dynamic programming algorithms. With
different servers (Replica Cost), the problem is combinatorial due to resource
heterogeneity. The only polynomial case is the Multiple/Replica Counting

combination, in which the optimal solution can be found using a multi-pass
greedy algorithm described in [3].

5 From Multiple to Single

In this section, we give a procedure to build a Single allocation for the Replica

Counting problem, with a guarantee on the cost. Indeed, while an optimal
solution for the Multiple problem can be found in polynomial time, the Single

problem is NP-complete. Still, some applications may require a Single policy
since the implementation is much more straightforward for such a policy. Our
goal is thus to build a good Single allocation, compared to a lower bound given
by the Multiple solution.

Recall that in the worst case, the optimal Single can be arbitrarily worse than
the optimal Multiple (see Section 3.2). Thus we aim at characterizing problem
instances for which a good Single solution can be derived.

5.1 Problem formulation

Let (C,N) be a problem instance in which ri ≤ W for all i ∈ C (otherwise, there
is no solution to the Single problem). We are given an optimal Multiple solution
for this problem, of cost M (i.e., M is the number of servers in this solution).
We aim at finding a Single solution with a cost S ≤ 2M , and at characterizing
cases in which this is possible.

5.2 Linear trees

First let us consider a linear tree consisting in n nodes, ordered as a linear
chain 1 → 2 → . . . → n, and a set Cj of clients attached to node j of the
chain, for 1 ≤ j ≤ n (note that C = ∪1≤j≤nCj). Furthermore, we assume that
jW ≥ 2

∑

i∈∪1≤k≤jCk
ri, meaning that, at each level of the chain, there are twice

more nodes than the minimum number of servers requested to handle all requests
from the root down to this level. On the whole chain, we have a condition on
the total number of nodes, n ≥ 2

W

∑

i∈C ri.
We build a solution to Single by assigning requests greedily, starting from

the clients at the top of the tree, since they have less choice of nodes where to
be processed. At each step, we try to give requests to servers that are already
processing some requests, and we try to allocate requests starting from the bot-
tom of the chain. If it fails, a new server is created on the first free node. The
linear-tree procedure returns the Single solution in which si,j = ri if node j is
processing requests of client i, and sj is the total number of requests processed
by node j, sj =

∑

i∈C si,j .

9

procedure linear-tree (C,N)
∀i ∈ C, ∀j ∈ N , si,j = 0; ∀j ∈ N , sj = 0; // Initialisation.
for j = 1..n do

for i ∈ Cj do
// Try to add requests to an existing server.
for j′ = j..1 do

if
P

k∈N
si,k = 0 and sj′ 6= 0 then

if ri + sj′ ≤ W then si,j′ = ri; sj′ = sj′ + ri;
end

end

// If the previous loop did not succeed, create a new server.
if

P

k∈N
si,k = 0 then

for j′ = j..1 do
if

P

k∈N
si,k = 0 and sj′ = 0 then si,j′ = ri; sj′ = ri;

end

end

end

end

The procedure never fails because of the assumption on the number of nodes.
Indeed, let us count the number of servers allocated by the procedure, Sj , at each
step of the loop on j. Each couple of servers (k, k′) is such that sk + sk′ > W ,
otherwise the greedy allocation would have assigned all requests to one of these
servers. Thus, all servers but eventually the last one are handling at least W/2
requests. If Sj ≥ 2, we associate the last server, k (with possibly less than W/2
requests) with another one, k′, thus we have sk + sk′ > W . Then it is easy to
see that the total number of requests handled by the solution at this level j is
greater than (Sj − 2)W

2 + W = Sj
W
2 . Moreover, we know that the total number

of requests at level j is
∑

i∈∪1≤k≤jCk
ri, and thus Sj < 2

W

∑

i∈∪1≤k≤jCk
ri ≤ j by

hypothesis. If Sj = 1, then Sj ≤ j since j ≥ 1. Therefore, at each level, there are
enough nodes available so that we are able to perform the allocation (j nodes
available, and Sj servers needed). From the upper bound on the total number
of servers S, we can immediately derive the upper bound on the cost, since M

must be at least equal to
⌈P

i∈C ri

W

⌉

in order to handle all requests. We have

S = Sn ≤ 2
P

i∈C ri

W
from the previous reasoning, and thus S ≤ 2M .

5.3 General trees

The problem becomes more complex in the case of general trees, because several
branches of the tree are interacting. However, the transformation procedure can
still be performed, dealing successively with each branch of the tree and enforcing
a condition on the minimum number of nodes on each branch.

We start by applying the linear-tree procedure successively on each branch
of the tree. The number of servers is not guaranteed anymore, thus the procedure
may fail. If at the end of the procedure on a branch, some clients have not

10

1

A

B

2

3

2 7 4

W = 10

6

39

1

(a) 1

A B

2

3

(b)

610

C D

10 10 106 6 6

Fig. 4. Dealing with a general tree

been assigned to any server, let j be the server which corresponds to the first
branching. We consider all requests coming from other branches already assigned
to servers j up to the root server, and if possible we either create a new server
in the corresponding branch, or move these requests down into this branch. The
example of Fig. 4(a) illustrates this procedure. Assume that the two leftmost
branches have already been processed, with server 1 handling clients 1 and 9,
server 2 handling clients 3 and 6, and server B handling client 2. It is not possible
to process requests of clients 7 and 4, thus we move down other requests, either
client 9 onto server A (server creation), or client 6 onto server B.

However, it might fail even if the constraint on the minimum number of
servers at each level of each branch is respected, as for instance in the example
of Fig. 4(b). In this case, each server A,B,C and D will be in charge of the
corresponding client with 10 requests, and other requests cannot be assigned to
servers 1, 2 and 3 with a Single policy.

Thus we add an extra constraint on the minimum number of nodes in a
subtree, in order to guarantee the construction of the Single solution. Of course,
note that the procedure can be followed even if the constraints are violated, but
in such cases it might fail. The idea consists in adding a constraint similar to the
linear tree one, but generalized on subtrees to allow correct branching. For each
node j ∈ N such that |children(j) ∩ N| ≥ 2, we request that subtree(j) follows
the linear tree property. Thus all clients of a branch rooted in j will possibly
be processed by servers in subtree(j), and it will always be possible to process
requests when dealing with a new branch.

Formally, the constraint can be written as follows (recall that r is the root
of the tree, and that the property also is true for all linear chains starting from
the root – case j = r):

∀j ∈ {j′ ∈ N | |children(j′) ∩N| ≥ 2} ∪ {r}, ∀k ∈ subtree(j) ∩N ,

let X = {j} ∪ Ancestors(k) ∩ subtree(j).

Then |X| ≥
2

W

∑

ℓ∈X

∑

i∈children(ℓ)∩C

ri (1)

11

The algorithm is then the following:

1. For each node j ∈ N , let br(j) = |children(j)∩N| be the number of branches
rooted in j and not yet processed.

2. Call the linear-tree procedure on the leftmost branch of the tree, r = 1 →
2 → . . . → k. We denote the current branch by cb = (1, 2, ..., k) ⊆ N , and
we mark this branch as processed: ∀ℓ ∈ cb, br(ℓ) = br(ℓ) − 1.

3. For j = maxj′∈cb{j
′ | br(j′) ≥ 1} (first branching from the bottom of the

tree), call the linear-tree procedure on the leftmost branch rooted in j and
not yet processed, denoted as j → j1 → . . . → jk, with j < j1 < . . . < jk.
We set cb = (j, j1, ..., jk) and mark it as processed: ∀ℓ ∈ cb, br(ℓ) = br(ℓ)−1.

4. If required, call the merge-servers procedure on the current branch.
5. Go back to step 3, until there is no more branching not yet processed (i.e.,

∀j ∈ N , br(j) ≤ 0).

We prove in the following that the algorithm returns a Single solution with
a cost S ≤ 2M , with in some cases the extra constraint that the tree is binary.
At the end of step 2, there is at most one server which is handling less than W/2
requests in the branch. The allocation always is possible because of constraint (1)
applied on r. For step 3, let us check that there exists a Single solution. The
number of requests of clients attached to node j1 is at most W because of
constraint (1), thus it is always possible to create a server at this node and
handle these requests. Similarly, there is no problem when assigning requests
from clients attached to nodes j2 to jk. However, at the end of this call, we
might have two servers handling less than W/2 requests, one in the subtree
already processed, x, and one in the new branch, y. In this case, we call the
merge-servers procedure which aims at suppressing one of these servers. If
x ∈ Ancestors(j) (recall that j is the root of the current branch), then we can
simply move requests processed by y to server x, and there remains at most one
server with less than W/2 requests. Similarly, if one node in Ancestors(j) is not
yet a server, we can move requests processed by x and y onto this node, thus
merging both servers into a single one. Otherwise, because of constraint (1) at
node j, it is always possible to process requests of the current branch without
using server j. However, we need at this point an additional constraint on the
subtree rooted in j in order to have the guarantee: it should be a binary tree.
With this extra constraint, we can process all requests of both subtrees without
using server j, and we can move requests processed by x to server j, since the
requests coming from clients attached to j are less than W/2 (constraint (1)).
Then, if there are still two servers with less than W/2 requests, these servers
are y and j, and it is possible to move requests from y to j.

Without the binary tree constraint, it might not be possible to merge servers.
For instance, consider a tree whose root r has 4 children nodes, 1..4. Nodes 1..4
each has one single client with 4 requests, and W = 10. Then two clients will be
processed by r, but there will remain two servers each processing only 4 < W/2
requests, with no possibility of merging. Note however that the solution still has
the performance guarantee S ≤ 2M , and even in this case S = M since 3 servers
are required for both policies.

12

Therefore, for a binary tree respecting constraint (1), we can build a Single

solution with a cost S ≤ 2M . These constraints can however be relaxed and we
expect the procedure to return efficient Single solutions in most cases anyway.

6 Related work

Early work on replica placement by Wolfson and Milo [10] has shown the impact
of the write cost and motivated the use of a minimum spanning tree to perform
updates between the replicas. In this work, they prove that the replica placement
problem in a general graph is NP-complete, and thus they address the case of spe-
cial topologies, and in particular tree networks. They give a polynomial solution
in a fully homogeneous case, using the Single closest server access policy. More
recent works [4, 8] use the same access policy, and in each case, the optimization
problems are shown to have polynomial complexity. However, the variant with
bidirectional links is shown NP-complete by Kalpakis et al [5]. Indeed in [5],
requests can be served by any node in the tree, not just the nodes located in the
path from the client to the root. All papers listed above consider the Single clos-
est access policy. As already stated, most problems are NP-complete, except for
some very simplified instances. Karlsson et al [7, 6] compare different objective
functions and several heuristics to solve these complex problems.

To the best of our knowledge, there is no related work comparing different
access policies, either on tree networks or on general graphs. Most previous
works impose the closest policy. The Multiple policy is enforced by Rodolakis
et al [9] but in a very different context. In fact, they consider general graphs
instead of trees, so they face the combinatorial complexity of finding good routing
paths. Also, they assume an unlimited capacity at each node, since they can add
numerous servers of different kinds on a single node. Finally, they include some
QoS constraints in their problem formulation, based on the round trip time (in
the graph) required to serve the client requests. In such a context, this (very
particular) instance of the Multiple problem is shown to be NP-hard.

7 Conclusion

In this work, we have carefully analyzed different strategies for replica placement,
and proved that a Multiple solution may be arbitrarily better than a Single one,
even on homogeneous platforms. Moreover, we have provided an algorithm to
build a Single solution, which is guaranteed to use no more than two times
more servers than the optimal Multiple solution, given some constraints on the
problem instance. This is a very interesting result, given that the Single problem
on homogeneous platforms is NP-difficult, and that some applications may not
support multiple allocations.

Even though the constraints on the trees are quite restrictive, the procedure
can be applied on any tree and still return good Single solutions, even if the
application tree does not allow for a guarantee on the solution. We expect that
the ratio of 2 should be achievable in most practical situations. It would be very

13

interesting to simulate the procedure on random application trees and practical
ones, in order to figure out the percentage of success and the average performance
ratio lost by moving from a Multiple solution to a Single one. We plan to explore
such directions in future work.

References

1. A. Benoit, V. Rehn, and Y. Robert. Impact of QoS on Replica Placement in Tree
Networks. Research Report 2006-48, LIP, ENS Lyon, France, Dec. 2006. Available
at graal.ens-lyon.fr/~abenoit/. Short version appears in ICCS’2007, the 7th
International Conference on Computational Science.

2. A. Benoit, V. Rehn, and Y. Robert. Strategies for Replica Placement in Tree
Networks. Research Report 2006-30, LIP, ENS Lyon, France, Oct. 2006. Available
at graal.ens-lyon.fr/~abenoit/. Short version appears in HCW’2007, the 16th
IEEE Heterogeneity in Computing Workshop.

3. A. Benoit, V. Rehn-Sonigo, and Y. Robert. Replica Placement and Access Poli-
cies in Tree Networks. IEEE Transactions on Parallel and Distributed Systems,
19(12):1614–1627, 2008.

4. I. Cidon, S. Kutten, and R. Soffer. Optimal allocation of electronic content. Com-
puter Networks, 40:205–218, 2002.

5. K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal placement of replicas in trees
with read, write, and storage costs. IEEE Trans. Parallel and Distributed Systems,
12(6):628–637, 2001.

6. M. Karlsson and C. Karamanolis. Choosing Replica Placement Heuristics for Wide-
Area Systems. In ICDCS ’04: Proceedings of the 24th International Conference
on Distributed Computing Systems (ICDCS’04), pages 350–359, Washington, DC,
USA, 2004. IEEE Computer Society.

7. M. Karlsson, C. Karamanolis, and M. Mahalingam. A framework for evaluating
replica placement algorithms. Research Report HPL-2002-219, HP Laboratories,
Palo Alto, CA, 2002.

8. P. Liu, Y.-F. Lin, and J.-J. Wu. Optimal placement of replicas in data grid en-
vironments with locality assurance. In International Conference on Parallel and
Distributed Systems (ICPADS). IEEE Computer Society Press, 2006.

9. G. Rodolakis, S. Siachalou, and L. Georgiadis. Replicated server placement with
QoS constraints. IEEE Trans. Par. Distr. Systems, 17(10):1151–1162, 2006.

10. O. Wolfson and A. Milo. The multicast policy and its relationship to replicated
data placement. ACM Trans. Database Syst., 16(1):181–205, 1991.

