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Sébastien Soudan,

Pascale Primet

Mai 2008

Research Report No RRLIP2009-20

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr



Interaction between MPI and TCP in grids

Ludovic Hablot, Olivier Glück, Jean-Christophe Mignot,
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Abstract

As MPI applications are more and more resource consuming, they need
to be executed on grids. The communications on the WAN intercon-
necting clusters mostly use TCP which suffers from WAN features: high
latency, sharing between users, bandwidth smaller than the aggregate
bandwidth of the nodes.
In this report, we first study the interaction between MPI and TCP on
grids. We show why the nature of MPI traffic raises problems while
using TCP on WAN links. TCP’s loss detection and congestion control
mechanism can both slow down the application.
Then, we propose MPI5000, a transparent applicative layer between MPI
and TCP, using proxies to improve the execution of MPI applications
on a grid. Proxies aim at splitting TCP connections in order to detect
losses faster and avoid to return in a slowstart phase after an idle time.
Finally, we test our layer on Grid’5000, the French research grid, using
MPICH2. The results on the NPB (NAS Parallel Benchmarks) validate
our architecture that reduces the number of idle timeout and the number
of long-distance retransmissions for certain benchmarks, namely BT, SP
and LU benchmarks. Using MPI5000, these applications can decrease
their execution time by 35%, 28%, and, 15% respectively.

Keywords: MPI, TCP, Grid’5000, proxies, TCP Split, MPI5000

Résumé



Comme les applications parallèles telles que les applications MPI néces-
sitent, il devient nécessaire de les exécuter sur des grilles. Cependant,
les communications sur le WAN qui interconnecte les clusters de la grille
souffrent des caractèristiques intrinsèques du WAN et de l’utilisation
de TCP comme protocole de transport : latence élevée, réseau partagé,
bande passante inférieure à la bande passante aggregée des noeuds.
Dans ce rapport, nous étudions dans un premier temps, l’interaction
entre MPI et TCP sur les grilles de calcul. Nous montrons que la na-
ture même du trafic MPI pose problème à TCP sur les liens WAN. Les
mécanismes de détection d’erreur et de contrôle de congestion de TCP
sont à même de ralentir l’application.
Ensuite, nous présentons, MPI5000, une architecture à base de proxys
placée de manière transparente entre la couche MPI et la couche TCP,
qui permet d’améliorer l’execution d’application MPI sur une grille. Les
proxys permettent de diviser les connections TCP afin de détecter les
pertes plus rapidement et d’éviter de retourner dans le slowstart après
une phase d’inactivité.
Enfin, nous présentons les résultats de nos expériences avec MPICH2 sur
Grid5000, la grille de recherche française. Les résultats sur les NPB (Nas
Parallel Benchmarks) valident notre approche qui permet de réduire le
nombre de retour en slowstart et le nombre de retransmissions pour
certains benchmarks tels que BT, SP, et LU. En utilisant MPI5000, ces
applications diminuent leur temps d’exécution de respectivement 35%,
28% et 15%.

Mots-clés: MPI, TCP, Grid’5000, proxys, TCP Split, MPI5000
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1 Introduction

This paper deals with the execution of parallel applications on grid platforms. Many parallel
applications are written with the MPI (Message Passing Interface) library. MPI[19] is a stan-
dard that defines communication primitives for parallel applications. It includes both point to
point (MPI Send, MPI Recv ...) and collective communication functions (like MPI Gather,
MPI Alltoall...). While applications are well executed on clusters, as they are more and more
resource-consuming, they need to be efficiently executed on grids. Many implementations
are available for the grid like MPICH2 [9], OpenMPI [6] or MPICH-G2 [20] even if they need
tuning to be efficiently executed with TCP in a grid [11].

Grids are a pool of computing resources like nodes or data servers connected together.
But from an MPI application’s point of view, they should be seen as an interconnection of
clusters by a wide area network (WAN). As this WAN is shared by all grid users, applications
must take care of concurrent traffic and fairly share the network. This is usually achieved
by TCP. WAN bandwidth is usually much smaller than required to prevent congestion if
all the nodes of one site send data to another site. It is consequently a bottleneck for the
application. In the WAN, the latency is high and thus, costly. The impact of latency can be
reduced by avoiding long-distance communications either by doing placement of processes[8]
or by providing optimized algorithms for collectives operations (in MagPIe [14] or MPICH-
G2 [12]). However, if we are using TCP, the time to detect a loss or repair it, depends on
RTT (Round Trip Time) and is therefore more costly on a WAN than on a LAN. Splitting
TCP connections can solve this problem [15].

To take these problems into account, we put forward MPI5000, a communication layer
between the application (MPI for example) and TCP that can be used automatically and
transparently. The idea is to introduce proxies at the LAN/WAN interface in order to:

• give the application the knowledge that the grid is an interconnection of clusters.

• implement the TCP split. Each end-to-end TCP connection (LAN-WAN-LAN) is re-
placed by 3 connections: LAN-LAN, WAN-WAN, LAN-LAN.

• take decisions and implement optimizations on proxies: bandwidth reservation between
proxies, communication scheduling, parallel long-distance connections, use of a modified
TCP.

This report studies the advantages of TCP splitting for MPI applications executed on a grid
and presents our architecture.

The rest of the report is organized as follows. Section 2 explains what problems are raised
by using TCP for MPI communications on long-distance links. Then, Section 3 introduces
the advantages of our approach and some implementation details. Section 4 presents the
evaluation of MPI5000 on the french research grid, Grid’5000[4]. Section 5 discusses about
related work. Finally, we conclude and give some future researches we will work on in Section
6.

2 Grids, MPI, and TCP: interaction overview

MPI applications alternate communication and computation phases. When a computation
phase is finished, the application waits for new data to compute. MPI applications communi-
cate with small to medium message size (usually less than 1 MB) and generate a bursty traffic
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[22]. These bursts are likely to fill the network equipment queues and generate losses and re-
transmissions. This ultimately increases the application completion time as the execution
flow is usually waiting for the next message to continue its execution.

As explained in the introduction, in grids, losses and retransmissions at TCP level are
even more costly due to the high latency, the sharing of the WAN, and the bottleneck at
the WAN/LAN interface. In this section, we first present TCP features that have an impact
on MPI performances. Then, we analyze how it can raised problems for these applications.
Finally, we will point out what should be improved for a more efficient execution of MPI
applications on grids.

2.1 TCP features

TCP is a reliable protocol that aims at sharing a link fairly between many connections. In
grids, using TCP on a the WAN guarantees a statistical fair bandwidth sharing between
all applications. We now detail two TCP mechanisms that impact MPI applications: error
control and congestion control.

3 DupACK
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Figure 1: TCP behavior in case of loss

• Error control: This mechanism guarantees loss detection and retransmission. TCP
stores the packets in a buffer until they are acknowledged (ACK) by the receiver. If the
packet is lost, TCP retransmits it. Figure 1 illustrates the two cases of loss detection:

– Case 1: TCP waits for 3 duplicate ACKs (DupACKs) of segment 1 to retrans-
mit the lost segment 2 by activating the FastRetransmit algorithm. If there is
enough segment to transmit after the loss, the rough estimate for the time before
retransmission is one RTT (between 10ms to 100ms).

– Case 2: if there is nothing to transmit after the loss of message 12, it is necessary
to wait for a timeout (RTO) before retransmitting it. This RTO is function of
RTT and is much larger than the RTT (usually 200 ms + RTT in Linux)). MPI
applications are highly penalized in this case.

• Congestion control: This mechanism aims at sending a controlled amount of data, in
order to balance the charge between all connections and avoid congestion. TCP uses a
congestion window that determines the amount of data that can be sent at the same time
on a link. Figure 2 show the evolution of the congestion window. In order to determine
the available bandwidth of a link, TCP first uses a slowstart mechanism. The congestion
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Figure 2: Evolution of TCP congestion window

window is first set at two packets and increases every ACK reception exponentially until
a loss occurs. Then, in steady state mode, this window increases linearly. When a loss
occurs (detected either by three duplicate ACKs or a Timeout), the congestion window
decreases. Finally, after an idle time (nothing is sent on a connection for a long time),
TCP enters a slowstart phase again.

2.2 Problems using MPI over TCP on grids

As the WAN link is shared by the application and the LAN/WAN interface is a bottleneck,
most losses occur while communicating on the WAN. Since the reception of DupACKs depends
on RTT, a loss on the WAN takes a longer time to be detected than on a LAN. In MPI
applications, the case 2 of Figure 2 mainly occurs because MPI uses a message paradigm to
communicate and consequently sends a small number of successive TCP segments, in contrast
with a file transfer for example.

The congestion window limits the amount of data that can be send in the same time. If
the congestion window is not large enough, an MPI message can not be sent in one time but
have to wait for ACKs to make this window increase and finish its sends. Due to the RTT,
this is costly on high latency links. Moreover, as slowstart is activated again after an idle
time, if an MPI application computes longer than the idle timeout, it will suffer from the
reactivation of the slowstart mechanism.

2.3 Focus on designing long-distance MPI architecture

As shown previously, we can sort the problems in two groups:

• Due to latency, on the grid, the application waits longer for DupACKs and for the
increase of the TCP congestion window.

• Due to MPI application communication profile, there are many RTO and many idle
time.

Table 1 show some clue on these problems. It present the sum of DupAck, RTO and Idle
timeout that occur on long-distance connections while executing BT, FT and LU from the the
NPB[3] (NAS Parallel Benchmark) suite. The experiments are performed on two clusters of
8 nodes, interconnected by a 1 Gbps link. The figures were obtain with Web100 as described
in Section 4.1. DupAck and RTO occur only in FT while the three applications are impacted
by idle timeout.
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Application DupACK RTO Idle timeout

BT 1 0 5668

FT 275 20 905

LU 1 0 760

Table 1: Sum of DupACK, RTO, and Idle timeout while executing the NPB in a grid.

In order to solve some of these problems, we put forward in the next section an architecture
based on LAN/WAN proxies that enables to split TCP connections, and therefore, on the
WAN: to reduce the number of idle timeout, and to faster detect and reduce losses.

3 MPI5000 layer

In order to control and improve MPI communications on grids, we propose MPI5000, a
transparent layer to execute MPI applications on grids using proxies. It can be used with any
MPI implementation by loading the MPI5000 library (i.e. set the environment LD PRELOAD
variable) and launching the MPI5000 daemons (i.e. proxies).

3.1 Overview of MPI5000

WAN

N1.2

N1.1

N2.1

N2.2

P1.1.1

G1 G2

P1.1.0

P2.2.0

P2.1.0

P1.2.0

Figure 3: Long distance communications with proxies

Figure 3 illustrates how MPI5000 splits the TCP connections. The dashed red lines on
the figure represent the connections without MPI5000 while the plain green lines represent
the MPI5000 connections. Each LAN-WAN-LAN connection is replaced by three connections
LAN-LAN, WAN-WAN, and LAN-LAN. Ns,n is the node n of site s. Ps,n,p is the process p

executed on node n of site s. Gs is the proxy of site s. Each process is connected to the proxy
of its site and proxies are connected together.

Proxies allow both to react faster in case of congestion and to change MPI’s bursty traffic
into longer flows on long-distance links.

The advantages of our solution are the following and shown on Figure 4 in which we
use the notation previously mentionned. P1.1.0 and P1.2.0 are sender processes from the first
site, G1 and G2 are proxies from site 1 and site 2 respectively. P2.1.0 and P2.2.0 are receiver
processes, situated on site 2. Gray color represents the WAN. Black or blue arrows represent
different connections. Green arrows represent WAN-WAN connections using MPI5000.
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• Loss occurs on the LAN (due to a alltoall for example): In case 1 of Figure 4, congestion
occurs on a LAN instead of a WAN. Without proxies, if packet 2 is lost, sender P1.1.0

waits for three duplicate ACKs generated by packets 3, 4, and 5 and sent by P2.1.0,
before it knows that the packet is lost and retransmits it. The DupACKs arrive after
a long-distance RTT (RTTw). With proxies, the sender P1.1.0, also waits for three
DupACKs but it is G1 that retransmits it. It takes only a local RTT (RTTl).

In case 2a, proxies transform a RTO in DupACKs. P1.1.0 sends two messages: the first
message is composed of packets 2 and 3 and is sent to P2.1.0, packets 2’ and 3’ contain
the second message sent to P2.2.0. Without proxies if packet 2 is lost and packet 3 is
the last packet of a message, P1.1.0 will receive only one DupAck and wait for a timeout
before retransmitting it. On the contrary, if we use proxies, packets 4 and 5 use the
same connection as packets 2 and 3. They contribute to send the DupACKs necessary
to do a retransmission that is done by P2.1.0 after a local RTT (RTTl).

• Loss occurs on the WAN (due to cross traffic): in case 2b, P1.1.0 sends packets 2 and 3
to P2.1.0 while P1.2.0 sends packets 2’ and 3’ to P2.2.0. Packet 2 is lost. In the normal
case, P1.1.0 waits for a timeout before retransmitting packet 2. With proxies, however,
at the reception of packets 2’ and 3’, G2 sends a DupACK. P1.1.0 retransmits packet 2
only after a long-distance RTT (RTTw).

MPI5000 aims at avoiding timeout on long-distance and local links. It also retransmits
DupACKs faster. Therefore, it reduces the waiting time of MPI applications and improve
global performances.



6
L
.
H

a
b
lo

t,
O

.
G

lü
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Our architecture also has an impact on the congestion window. Indeed, proxies help to
keep the congestion window closer to the real available bandwidth because they transmit
more data than a single process and thus probe the network more regularly. If an application
has communication phases longer than the idle timeout but all processes do not communicate
synchronously, the proxies help to not go back in slowstart phase because other processes
keep the congestion window open.

3.2 MPI5000 implementation

MPI5000

IP

L1/L2

TCP

proxy
MPI5000MPI

IP

TCP

L1/L2

MPI5000
library

MPI

MPI5000

IP

L1/L2

TCP

proxy
MPI5000

LAN LAN

WAN

IP

TCP

L1/L2

MPI5000
library

N1.1 G1 G2
N2.1

Figure 5: MPI5000 architecture

As shown on Figure 5, MPI5000 is based on two components: a library on node and a
daemon program on proxies. The dashed red lines represent the data path from one node to
another without MPI5000 while the plain green lines represent it with MPI5000.

In order to route messages between nodes and proxies, we add a header to the MPI
message (shown on Figure 6). The header contains a flag that identifies the message type
(data or connection), the destination’s id, the size of the MPI message and the source’s id.
An id is described using three numbers: s, the site’s number, n, the node’s number and p,
the process’s number on the node.

MPI message

MPI message

MPI message

Len

1B2B1B 1B2B1B4B

src
n ps

TCP TCP header

MPI

MPI’5000

1B

MPI5000 header

13B

y zx
dest

flag

Figure 6: MPI5000 header

3.2.1 MPI5000 library

The library is placed below MPI and can be used with few modifications to the usual MPI
execution procedure The mpirun command line is modified in order to call the MPI5000
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library (for example env LD PRELOAD in mpich). The MPI5000 library intercepts functions
of socket API (bind, accept, connect, write/v, read/v, close) – in other words, we
force the MPI program to call our library’s functions instead of libc’s – and adapt them to
MPI5000’s architecture. With this mechanism, we are able to use our layer with any MPI
implementation. On a bind() the library connects the node to the proxy. When a connect()

is intercepted, the library creates a message with the connection flag set and sends it to the
proxy. On a accept(), it just waits to the adequate connect().

3.2.2 MPI5000 proxies

The second component of MPI5000 is the proxies. For the moment, they are launched manu-
ally but it could be done automatically. The proxies just wait for data and forward it to either
another proxy or to local nodes, using the information included in the header. If the connec-
tion flag is set, the proxy establishes the connection to the matching node in order to free the
pending accept(). Once this is done, this connection is closed and only the connection to
the proxy remains.

4 Experimental evaluation

This section evaluates the architecture described in previous section and based on the advan-
tages discussed in Section 2.

4.1 Experimental testbed

Bordeaux



WAN

18.2 ms of RTT

n AMD Opteron 2218 2.6 GHz

1 Gbps

1 Gbps


Nancy



n AMD Opteron L5420 2.5 GHz

1 Gbps

1 Gbps

n nodes

P

1 Gbps




R1

1 Gbps

1 Gbps

n nodes
PR2

PRn

PN1

PN2

PNn

Figure 7: Experimental testbed

Our experiments are conducted on Grid’5000[4], which links nine sites in France, having
from 5 ms to 21 ms of RTT. Sites are connected by a dedicated WAN operated by RENATER
at 1 or 10 Gbps. This architecture provides researchers a full reconfigurability feature to
dynamically deploy and configure any OS on any host. This feature allows them to have
administrator rights, to change TCP parameters for instance. Figure 7 shows the experimental
testbed used. Bordeaux’s nodes are AMD Opteron 2218 2.6 GHz. Nancy’s nodes are AMD
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Opteron 5420 2.5 GHz connected to the switch by a 1 Gbps Ethernet card. Nancy’s and
Bordeaux’s switches are HP ProCurve 3400cl and HP ProCurve 5406zl respectively. The
kernel scheduler frequency is set to 1000Hz. Bordeaux and Nancy are connected by a 1 Gbps
link, with 18.2ms of RTT. n, the number of nodes used within a cluster depends of the
experiment (1 in case of pingpong, 8 in the NPB case).

TCP uses BIC congestion control, with SACK. In order to reset TCP values (buffer sizes,
congestion window...) between two experiments, we disable the save of metrics feature. TCP
default receive’s and send’s buffer sizes are set to 4 MB which correspond to bandwith delay
product (BDP, as advised in [24]).

We use a kernel 2.6.28.7 with the Web100[17] 2.5.23 patch applied. Web100 instruments
the code of the TCP kernel stack in order to give a view of the TCP behavior. Almost all
useful values of a TCP connection like the congestion window size, the number of DupACK,
the number of RTO, the RTT, etc... are logged. Each variable is updated continously but we
pick up values every only 10 ms.

Cross traffic generation: During some experiments (specified later), we add cross traffic on
the long distance link. This cross traffic is carried out with two iperf TCP flows at 1 Gbps on
four extra nodes. One flow is sending from one Nancy’s node to a Bordeaux’s node, another is
going the opposite way on different nodes. This traffic congest the long-distance link between
Bordeaux and Nancy.

4.2 Proxies impact on a simple pingpong

In this section, we measure the overhead due to the proxies on the execution of simple MPI
pingpong.

MPICH2 MPI5000 Overhead

Latency (µs) 9114 9255 141 µs (1.5%)

Bandwidth (Mbps) 840 785 15%

Table 2: MPI latency and bandwidth between the two clusters.

As shown in Table 2, latency is increased by 141 µs for 1 B messages. The overhead of
one proxy is the sum of the time from the switch to the proxy and the time to the crossing of
TCP stacks. For each proxy, we add four extra copies, from the card to the TCP buffer, from
the TCP buffer to the proxy application and the same backwards. While executing a simple
pingpong between two nodes of the same cluster, the number of copies and the RTT are equal
to the overhead introduced by proxies. Doing this experiment, the round-trip latency is 142µs

on the LAN, which is similar to the overhead previously mentionned. Bandwidth decreased
from 840 Mbps to 785 Mbps for 33 MB messages, about 15%. Indeed, a higher message size,
increases the overhead to do extra copies.

4.3 Performances on NPB

The next experiments use the Nas Parallel Benchmark (NPB[3]) to show the performance
of MPI5000. The NPB are a set of eight programs (BT, CG, EP, FT, IS, LU, MG and
SP) that have been designed to compare performances of supercomputers but are now also
used to compare MPI implementations. The NPB give a good panel of the different parallel
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Comm. Quantity Long-distance writes: Number of Execution time

type of data Size and quantity long-d. conn. on a cluster

BT P. to Point 2.8 GB 9648 writes of 26 kB 32 151 s

+ 16112 w. of 160 kB

CG P. to Point 2.37 GB 15800 writes of 150 kB 8 52 s

FT Collective 5.9 GB 600 writes < 200 B 240 s

+ 2816 writes > 2 MB

IS Collective 0.74 GB 1151 writes < 400 B + 240 10 s

0.5 MB < 1400 w. < 0.6 MB

LU P. to Point 0.62 GB 200000 writes of 1 kB 8 72 s

+ 2000 w. of 200kB

MG P. to Point 0.19 GB 8842 * diff. sizes B 24 6 s

from 40 B to 135 k

SP P. to Point 5.1 GB 45 kB<19248 writes<54 kB 32 183 s

+ 100 kB<32112 w.<160 kB

Table 3: NPB communication features on long-distance with MPICH.

applications that could be executed on a cluster or a grid. Table 3 summarizes the long-
distance communication features of NPB 2.4 for B class problem on 16 nodes. We obtain
these figures by logging each TCP write size during one NPB execution. We do not care
about EP because it mostly computes and does few communications. FT uses the primitive
MPI Alltoall and IS uses MPI Allreduce and MPI Alltoallv.

4.3.1 Overhead of MPI5000 on big messages

We run each NPB three times and take the mean execution time. The Figure 8 shows the
relative execution time between MPICH2 and MPICH2 with MPI5000 of each NPB. FT
and IS show very bad performances with our layer. As shown in Table 3, FT and IS use
collective operations of big size. The overhead of the copies in MPI5000 proxies is important
on big messages, especially when it is collective communications because all messages are
sent synchronously. For example, we run a alltoall of 2 MB on 16 nodes with and without
MPI5000. The resulting relative completion time is 2.74 which is similar to the time observed
for FT on Figure8 (2.86). The same observation can be done with IS, but message sizes are
smaller, and so is the overhead. Thus, if the proxies can not forward data fast enough, their
overhead is high.

4.3.2 Impact on idle timeout

MPICH2 MPICH2
NAS without MPI5000 with MPI5000

BT 331 323

CG 725 427

LU 185 179

MG 73 70

SP 487 426

Table 4: Number of idle timeouts in the NPB with and without MPI5000

The number of congestion signals (DupACK and RTO) are obtained thanks to the Web100
patch. Table 4 shows the number of time the congestion window size is decreased without loss
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Figure 8: Relative performance of NPB normalized to MPICH2

signal i.e. the number of idle timeout we have measured with and without MPI5000 in the
NPB. The figures for MPICH2 without MPI5000 are a mean on all long-distance connections
while for MPICH2 with MPI5000 they are taken on the proxy long-distance connection. All
NAS show a smaller number of idle timeout with MPI5000.

MPICH2 without MPI5000 MPICH2 with MPI5000

Execution time Execution time Execution time
NAS (s) without slowstart (s)

after idle (s)

BT 204 171 147

CG 122 122 116

LU 66 71 74

MG 11 11 14

SP 242 203 221

Table 5: Comparison of NPB execution time with and without slowstart after idle

In order to confirm these results, we disable the slowstart after idle TCP feature (an option
in linux). The results are shown in Table 5. CG, LU and MG with the slowstart disabled
show a similar completion time with or without the slowstart after idle. Thus, reducing the
number of idle timeout can not improve performance. However, in BT and SP, disabling
slowstart after idle improve completion time. These results confirm that MPI5000 reduces
the number of idle timeouts.
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Figure 9: Relative completion time of NPB normalized to MPICH2 with cross-traffic

4.3.3 Impact on RTO and DupACK

The previous experiments do not explain the impact of MPI5000 on CG, LU and MG. More-
over, the Web100 results on these NPB show that there is no loss signals (neither duplicate
ACK or RTO). In order to see what can MPI5000 improve under congestion conditions, we
add cross-traffic, generated as previously described in Section 4.1.

The Figure 9 show that BT, LU, and, SP benefit from MPI5000 in case of cross-traffic.
However, CG decrease its performance compare to the case without cross traffic. This is prob-
ably due to a congestion window that is not increased fast enough but further investigation
is needed on this point.

The Table 6 shows the number of congestion signals with and without MPI5000 in case
of cross-traffic. In the MPI5000’s case, local refers to connections from nodes to proxies and
distant to the connection between the proxies.

BT, LU, MG and SP results show that MPI5000 delete a lot oflong distance RTO and
DupACKs. However, congestion on MG is not high enough to overlap the overhead introduced
by proxies. Its relative completion time is reduced compare to the case without cross-traffic.
SP is even better in this case than without cross-traffic and shows an improving completion
time by 35%.

5 Related work

Many MPI implementations are available for grids. While some of them manage heterogene-
ity of interconnects, others like MPICH2[9] or GridMPI[18] also propose optimized collec-
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MPICH2 MPI5000

Distant Local Distant
NAS DupAck RTOs DupAck RTOs DupAck RTOs

BT 757 56 4 1 320 1

LU 327 232 0 0 174 41

MG 94 53 7 0 48 4

SP 1409 778 8 0 667 131

Table 6: DupACK and RTO with and without MPI5000 in case of cross-traffic

tive operations to communicate efficiently between clusters. For example in MPICH2, the
MPI Gather implementation packs all messages from a cluster in one (depending of message
size) to send it over a long-distance link. Other work try to optimize task placement to avoid
long distance communications [8]. However, this approach needs to know the communication
scheme of the application.

As previously explained, MPI traffic is mainly composed of bursts. Some mechanisms
like pacing ([2] and [23]) have been proposed to avoid these bursts by spacing packets, thus
reducing the number of retransmissions. The pacing mechanism consists in introducing a
delay between packets in order to avoid them to be dropped by switches. MPI5000 behaves
like pacing in smoothing TCP long-distance traffic.

Other authors propose to use proxies to improve performance like in [5]. The same mech-
anism, called TCP splitting [15] is used in wireless networks. It aims at putting an interface
between a lossy link like satellite or wireless connection and improve TCP performance. We
show in this report that it is also useful for wired connections. In [25], the authors propose
a layer named Logistical Session Layer or LSL between the application and TCP that use
some depots on a network path to buffer packet and improve performance. Our work follows
a similar approach – their depots are substituted by gateways –, but we specifically focus on
MPI applications and their interaction with TCP.

GridMPI’s developpers proposed a similar mechanism of proxies using the IMPI protocol
to communicate between nodes and proxies [26]. The main purpose of their implementation is
to communicate between private clusters. MetaMPICH[21] aims at managing heterogeneity
of node communication interfaces and put proxies at the WAN/LAN interface. However, both
GridMPI and MetaMPICH proxies are part of the implementation and can not be used with
another one. PACX-MPI[7] also use proxies to managed heterogeneity. Their implementation
is placed above both MPI and TCP. Therefore, it can not split TCP connections as presented
in this article.

SOCKS[16] is a protocol to communicate between a client and a server via a proxy.
Tsocks[1], a transparent SOCKS proxying library, uses the same system of hijacking libc

calls than MPI5000. We could have modified it to adapt it to our architecture. However,
we would have to implements a SOCKS proxy calling another SOCKS proxy. Moreover, as
SOCKS use IP to forward data, we would have lost the site, node and process information
necessary to reduce the number of connections.

Some other protocols have been proposed to avoid drawbacks of TCP on grids. UDT [10]
is a protocol based on UDP, to share more efficiently than TCP the bandwidth between a
small number of sources doing bulk transfers. The flow control is done using a rate control,
a window control, and a bandwidth estimation technique. Our context is clearly different
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because messages are small and sent over a lot of connections. However, their solution may
be useful for the long-distance connections of MPI5000. XCP [13] proposes to improve the
detection of losses by providing active switches. These switches warn the sender when they
are dropping a packet due to a congestion. Such an architecture could help to faster detect
losses on long-distance links but this architecture is not deployed yet.

6 Conclusion

The execution of MPI applications on grids faces new problems. Grids are an interconnection
of clusters linked with a WAN. This network has a high latency where the time to detect and
repair losses is costly. The WAN is shared between all grid users, and thus, the use of TCP is
necessary to fairly share the bandwidth. Finally, its bandwidth can be a bottleneck if a lot of
nodes want to communicate on the WAN at the time. To take these problems into account,
we propose to put a proxy at the LAN/WAN interface to: give the application a vision of
the grid, split TCP connections, take decisions on this proxy in order to better manage the
long-distance connections.

We first show in this report how MPI deals with TCP on grids. MPI waits for messages
to continue its execution. Thus, any delay in the reception can potentially slowdown the
execution. The loss detection of TCP error control, is done by the reception of duplicate
ACKs (which depends of RTT) or an RTO. TCP congestion control is done by a congestion
window that limits the message size sent in one time.

Then, we propose MPI5000, a transparent layer that alleviates TCP’s drawbacks by adding
proxies at the LAN/WAN interfaces. MPI5000 splits each TCP LAN-WAN-LAN connections
in three connections LAN-LAN, WAN-WAN and LAN-LAN. This allows to detect losses
faster: because the loss occurs on the WAN instead of the LAN or because all the nodes
use the same connection and contribute to avoid RTOs. MPI5000 also helps to avoid the
slowstart phase after an idle time (time without communications on a link).

Finally, we test MPI5000 on the french research grid, Grid’5000. We show on the execution
on NPB that MPI5000 can increase performance. First, we have seen that FT and IS suffer
on MPI5000 because the cost of copies on gateways is too important. Second, BT and SP
benefit from the reduction of idle timeout. Third, due to the few number of losses during
the first experiments, we add cross-traffic on the link to emulate a production grid with a
lot of applications sharing the WAN. In this case, BT, LU, and SP show improvements with
MPI5000: the number of long-distance DupACK and RTO is reduced and execution time
decreases. In conclusion, TCP split is a valid approach to execute MPI applications on grids
and MPI5000 can improve performance if the messages are not too big which is not the case
in most of MPI applications.

In a future work, we will further investigate TCP’s behavior with MPI5000 in order to
better understand NPB performances, especially for CG. We will particularly pay attention
to the evolution of the congestion window in these cases. In order to validate the transparent
approach, we will execute MPI5000 with other MPI implementations. In order to reduce the
overhead, we could implement a kernel version of the proxies to avoid two copies in user space.
Finally, we will implement and evaluate the optimizations previously described: bandwidth
reservation between proxies, communication scheduling, parallel long-distance connections,
use of a modified TCP.
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