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Abstract: Software components have interesting properties for the develop-
ment of scientific applications such as easing code reuse and code coupling. In
classical component models, component assemblies are however still tightly cou-
pled with the execution resources they are targeted to. Dedicated concepts to
abstract assemblies from resources and to enable high performance component
implementations have thus been proposed. These concepts have not achieved
widespread use, mainly because of the lack of suitable approach to extend com-
ponent models. Existing approaches – based on ad-hoc modifications of compo-
nent run-times or compilation chains – are complex, difficult to port from one
implementation to another and prevent mixing of distinct extensions in a single
model.
An interesting trend to separate application logic from the underlying execution
resources exists; it is based on meta-modeling and on the manipulation of the
resulting models. This report studies how a model driven approach could be
applied to implement abstract concepts in component models. The proposed
approach is based on a two step transformation from an abstract model to a
concrete one. In the first step, all abstract concepts of the source model are
rewritten using the limited set of abstract concepts of an intermediate model.
In the second step, resources are taken into account to transform these inter-
mediate concepts into concrete ones. A prototype implementation is described
to evaluate the feasibility of this approach.

Key-words: software components, scientific computing, model-driven engi-
neering, software connectors, algorithmic skeletons, genericity
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Une méthode générique basée sur les modèles

pour étendre les modèles de composant

Résumé : Les composants logiciels ont des propriétés intéressantes pour le
développement d’applications scientifiques, par exemple l’augmentation de la
réutilisabilité du code ou la simplification du couplage de code. Dans les modèles
de composants classiques, les assemblages de composants restent cependant
fortement liés aux ressources d’exécution pour lesquelles ils ont été prévus. Des
concepts destinés à abstraire ces assemblages des ressources ont donc été pro-
posés. Ces concepts ne connaissent pas une utilisation généralisée, principale-
ment à cause du manque d’une approche adaptée pour l’extension des modèles
de composants. Les approches existantes – basées sur des modifications ad hoc
des supports d’exécution ou des châınes de compilation – sont complexes, diffi-
ciles à porter d’une mise en œuvre à l’autre et empêchent l’utilisation simultanée
de plusieurs concepts distincts dans un seul modèle.
Une tendance intéressante pour séparer la logique applicative des ressources
d’exécution sous-jacentes existe. Elle est basée sur la méta-modélisation et sur la
manipulation des modèles résultants. Ce rapport étudie comment une approche
basée sur les modèles peut être appliquée pour mettre en œuvre des concepts
abstraits dans les modèles de composants. L’approche proposée s’appuie sur une
transformation en deux étapes depuis un modèle abstrait vers un modèle con-
cret. Dans la première étape, tous les concepts abstraits du modèle source sont
ré-écris en s’appuyant sur l’ensemble limité de concepts abstraits d’un modèle
intermédiaire. Dans la seconde étape, les ressources sont prises en compte pour
transformer ces concepts en leurs équivalents concrets. Un prototype de mise
en œuvre est présenté pour évaluer la faisabilité de cette approche.

Mots-clés : composants logiciels, calcul scientifique, ingénierie dirigée par les
modèles, connecteurs logiciels, squelettes algorithmiques, généricité
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1 Introduction

Component based software engineering (CBSE) is an approach where applica-
tions are developed as a set of independent components interacting with their
environment through well defined interfaces [26, 39]. This makes it easier to
reuse code and to separate concerns between distinct developer teams. These
are very interesting properties for the development of scientific applications such
as code coupling simulations. As a matter of fact, these applications are typi-
cally build by putting together codes developed by distinct teams of scientists,
at different time, each simulating one aspect of the object.

In order to make possible the incremental development of applications, the
concept of composite component whose implementation is provided by a com-
ponent assembly is often added to these models. In classical component models
however, the organization of component instances as well as their interactions
in assemblies is tightly bound to the execution resources they are targeted to.
As a result, it is difficult to reuse composite components on different hardware
resources.

In non component based applications, this problem is handled by dedicated
frameworks such as MPI [37, 19] or skeletons [13] for example that provide sup-
port for well known parallel structures and interaction patterns. With these
frameworks, the number of process to use is usually a parameter of the ap-
plication and communications amongst processes are usually handled by the
framework. As a result, applications are described in a much more abstract way
and thus less tightly bound to the execution resources.

Efforts to make similar features available to component based applications
have been done. Due to limitations in component models, these features have
not been developed as component based frameworks, but rather as extensions
of the models themselves. This means that either the compilation chain, the
runtime, or even both had to be modified; this is a complex task that requires
knowledge both in the domain of the implemented feature and of the internal
behavior of the component model. As a result, most features have no easily
usable implementation and mixing components relying on features implemented
separately is nearly impossible.

This paper describes and evaluates the feasibility of a new approach to sup-
port features dedicated to parallel applications in component models. This
approach is based on an intermediate model with genericity and connectors
in which these features can be implemented as component based frameworks.
The support for this intermediate model is based on Model-Driven Engineering
(MDE). The components described in this model are transformed into compo-
nents of an existing model by taking into account the execution resources.

The remaining of this paper is organized as follow. Section 2 describes the
context that led to this work and Section 3 focuses on related works. In Sec-
tion 4, the contribution of this paper, an approach based on MDE to implement
features dedicated to parallel computing in component models is described.
Then, Section 5 illustrates this approach on an example to evaluate its feasibil-
ity. Finally, Section 6 concludes the paper.

RR n➦ 6979



4 Julien Bigot & Christian Pérez

2 Context

This section describes the context that led to the work described in this paper. It
provides a quick overview of the concepts found in industrial component models
and describes features dedicated to parallel computing found either in dedicated
model or as extension of industrial models. It also provides an overview of MDE
used in Section 4 to implement the intermediate model.

2.1 Component models

Industrial component models include for example the CORBA Component Model
(CCM) [32] defined by the Object Management Group (OMG), the Component
Object Model (COM) and .NET assemblies1 by Microsoft, the Enterprise Java
Beans [17] (EJB) defined by SUN and the Service Component Architecture [34]
(SCA) defined by the Open Service Oriented Architecture (OSOA) community.
The three main concepts of these models are components, ports and assemblies.

Components are defined by their external interface and their internal im-
plementation. The external interface defines the various possible points of in-
teraction of the component. It is usually made of a list of named ports. It
can also contain configuration properties used to configure the behavior of the
component. This behavior is provided by the internal implementation. This
implementation can be described in another model such as an object oriented
or procedural language in which case it is called a primitive implementation.
Some models also support the concept of composite components whose imple-
mentation is provided by an assembly.

Ports are the points of interaction between components. Their type speci-
fies the validity and behaviour of connections as well as the interface of use from
implementations. Industrial models usually define a fixed number of port types,
but these types accept parameters. For example in CCM, the facet (provide)
and receptacle (use) port types are parametrized with a CORBA object in-
terface. In object-oriented primitive implementations, ports are usually mapped
on object interfaces that must be implemented or that can be used, depending
on the port type. The validity of connections between ports typically depends
on their types as well as their multiplicity. This multiplicity is defined by the
minimum and maximum (possibly infinite) number of connections a given port
can be part of.

Assemblies describe a set of named component instances as well as the
connections between their ports. In some models such as CCM or SCA, as-
semblies can be described using dedicated languages while in others, they must
be dynamically created through calls to an API. Assemblies can include addi-
tional informations, in CCM deployment constraints are used to specify that
some component instances must be deployed either in the same or in distinct
processes.

2.2 High performance dedicated features

While industrial component models usually support distributed computing, they
do not target parallel and High Performance Computing (HPC). This lack has

1http://www.microsoft.com/com/
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led to the development of dedicated features discussed in this section. A com-
mon property of these features is that they let the user describe assemblies at
an abstract level. Some parameters are set only when the execution resources
are known. These features have been developed either as extensions to existing
models or in new component models such as the Common Component Archi-
tecture [3] (CCA) by the CCA forum or the Grid Component Model [8] (GCM)
by the CoreGRID European network of excellence.

A first example of feature dedicated to HPC is the concept of parallel com-
ponent used to support the single program multiple data (SPMD) paradigm.
The implementation of a parallel component is instantiated multiple times in
distinct processes. The number of instances is chosen when execution resources
are known. Two additional features are related to parallel components: M ×N

method calls and collective communications.
M × N method calls are used in order to efficiently couple parallel compo-

nents. In this case, each process of the caller component transmits a part of the
data to processes of the callee component. The redistribution algorithm is cho-
sen when the mapping of processes on execution resources and the distribution
of data are known.

Collective communications are used to make possible efficient exchange of
data between processes whose number is not known at development time. This
is achieved by relying on some well known communication patterns such as the
broadcast, reduce or all-to-all data exchange. The exact algorithm to use for
each pattern is chosen when the number of processes and their mapping on
execution resources are known.

Parallel components are a base feature of CCA while M × N method calls
are provided as an extension in the SCIRun2 [40] implementation. GCM include
the concepts of gathercast and scatercast port types that support 1 × N and
M × 1 communications and when connected together, M ×M communications.
Parallel components have been introduced together with M × N method calls
in GridCCM [35], an extension to the CCM model. Collective communications
have also been introduced as an extension to CCM [9].

Another interesting feature is the concept of task farm designed to support
the master/worker paradigm used in parameter sweep applications. A task farm
is made of two parts: a collection of instances of the worker code and a request
dispatching code. When the master code emits a request, the dispatching code
is responsible for choosing one of the worker instance and routing the request
to this instance, then the worker is responsible for the execution of the request.
The size of the collection is chosen when the execution resources are known and
the dispatching algorithm when the mapping of processes on these resources is
known.

This feature has been introduced as an extension that has been applied to
both CCM and CCA [11, 7]. It has also been introduced as one of the skeletons
supported by STKM [1].

Another feature used in many HPC applications is the concept of Distributed
Shared Memory (DSM) used in applications where various processes work on a
common piece of data with irregular access patterns. A DSM is usually made of
two parts: a data exchange code and a locking code. The data exchange code is
responsible for offering a coherent view of the memory to all processes accessing
the DSM. The locking code is responsible for offering them a locking mechanism

RR n➦ 6979



6 Julien Bigot & Christian Pérez

used to handle concurrent accesses to the memory. The algorithms used for data
exchange and for locking are chosen when the mapping of processes on execution
resources is known.

This feature has been introduced as an extension that has been applied to
both CCM and CCA [6].

To summarize, these features can be classified in two categories. A first
category describes new kinds of component implementations. It includes par-
allel components and task farms. A second category describes new kinds of
interaction between components. It includes M × N method calls, collective
communications and data sharing.

2.3 Model Driven Engineering

This section gives an overview of the Model Driven Engineering [36] (MDE)
approach and sketches some MDE initiatives with the associated models and
tools.

MDE is an approach that intends to increase the level of abstraction for
application development by focusing on the modeling of domain specific concepts
rather than on their computational aspects. This is achieved thanks to the
description of applications (M1) using domain specific models (M2). These
domain specific models are themselves described with a dedicated model (M3).
Usually, this pattern is limited and this model is used to describe itself as shown
in Figure 1.

Real world
Objects

User Model

Domain Specific
Meta−model

Meta−meta
model

A process

A petri
network

Petri networks
model

MOF
M3 : 

M2 : 

M1 : 

M0 : 

Example :

modeled
by

modeled
by

modeled
by

modeled by

Figure 1: The four classical layers of the meta-model architecture

In order to make possible for applications described in domain specific models
to be executed, an approach used in MDE is to develop transformation oper-
ations that operate at the meta-model level. These operations take as input
the user-described model that conforms to the domain-specific meta-model and
generate as output another model that conforms to a more general meta-model
as shown in Figure 2. These transformation are themselves conforming to a

INRIA
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dedicated meta-model and different transformations can be applied for different
target execution environment.

Meta−meta
model

User Source
Model

Domain Specific
Meta−model

Destination
Model

Destination
Meta−model

Transformation
Description

Transformation
Meta−model

A petri
network

A java
application

Petri networks
model

Java language
model

Petri to java
transformation

QVT

MOF

Figure 2: Architecture of model transformation operations

The best known MDE initiative is the Model Driven Architecture [29] (MDA)
proposed by the OMG. In MDA, the source model is called Platform Independent
Model (PIM) and the destination model Platform Specific Model (PSM). The
transformation is done using the description of the platform provided in the
Platform Description Model (PDM).

MDA specifies a set of models amongst whom the most important is the
Meta Object Facility [30] (MOF) that is the common model of the fourth layer
used for meta-modeling. MOF is quite similar to UML in its design; it contains
the concepts of meta-classes with meta-attributes, meta-associations, etc. The
MOF specification describes two flavors: Essential MOF (EMOF) with only
core concepts and Complete MOF (CMOF) that is the full version.

Around MOF are several other models such as MOF Object Constraint
Language (MOF OCL [31]) used to further specify the validity of instances of the
described model. Query / View / Transformation [33] (QVT) is the model used
to describe model to model transformations. The QVT specification describes
two flavors: QVT Operational (QVTO) with an imperative approach and QVT
Relations (QVTR) with a declarative approach.

Another MDE initiative is the Eclipse Modeling Framework [14] (EMF) from
the eclipse foundation. EMF includes a number of tools based on EMF core
(ECORE) that is very similar to EMOF. EMF adopts a more pragmatic ap-
proach than the MDA initiative with a weaker focus on specification and a
stronger one on implementations, often adapting MDA standards.

Another MDE initiative with a somewhat different approach is kermeta [16].
Kermeta is based on the concept of executable models: methods of the meta-
classes are used to validate the assemblies, implement transformations between
models and implement the behavior of model instances.

To summarize, MDE provides an interesting approach to transform appli-
cations described by the user that conform to a domain specific model into
applications conforming to another model.

RR n➦ 6979
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3 Related works

This section describes various approaches that can be used to extend models
with HPC dedicated features. It starts by describing how HPC features have
been implemented in component models. Then it studies the concepts of algo-
rithmic skeletons and Architecture Description Languages (ADLs) that provide
an higher level of abstraction than what is found in component models.

3.1 HPC features implementation in component models

High performance dedicated features are either found in specific models such
as CCA or GCM or provided as extensions to existing models. Implementing
a whole new model to support these features has the advantage of providing
a consistent model where all features are well integrated. This approach does
however require all components to be rewritten for this new model and thus
decrease the possibility of code reuse. Another problem is that whenever a new
feature is required in an application, the problem of how to add it to the model
arises again. The extension of existing models with additional features has thus
been attempted mainly using two distinct approaches.

A first approach is to modify the model runtime code to support new fea-
tures. This is for example what has been done by SCIRun2 to support M × N

communications in CCA. While this approach seems to be the more intuitive
solution, it has various drawbacks. The runtime is a critical part of the com-
ponent model when it comes to performance, especially in the case of high
performance applications; it is thus often finely tuned and not intended for easy
modification. Supporting a new feature in the runtime can thus prove to be
quite difficult and requires expertise in both the domain of the added feature
and of the component model runtime implementation. Adding features to the
runtime implementations also make component using these features dependant
on this specific runtime. In the case where two features have been implemented
in two distinct runtimes, the components can not be used together anymore.

Another approach has thus been to modify the compilation chain in order
to map the new features on those included in the model or possibly by others
provided by additional libraries. This approach has for example been taken
for the implementation of GridCCM or collective communications. It has the
advantage of making possible the coexistence of components using features im-
plemented independently in the same assembly. It does however not solve the
case where a single component uses more than one feature and must thus be
compiled with two distinct compilation chains. Modifying the compilation chain
is also a process that requires a good understanding of the low-level aspects of
the model in addition to the expertise in the domain of the feature added.

While no satisfying approach to extend component models with additional
features has been found, the idea of mapping additional features on a fixed set of
concepts supported by the runtime model seems the most promising approach.
Doing so by modifying the compilation chain seems to be difficult; however as
seen in the previous section, the model-driven approach provides tools specifi-
cally dedicated to support these kinds of transformations.

INRIA
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3.2 Algorithmic skeletons

Skeletons are constructs that describe the structure of typical parallel composi-
tion patterns [13]. Skeletons have for example been written to describe various
kinds of patterns such as pipeline or task farms. Skeleton implementations are
intended to be written by system programmers that describe efficient imple-
mentations of the modeled patterns for the target platform. On the other hand,
application programmers are intended to identify parallel patterns to use, and
implement application by instantiating skeletons, possibly by nesting them, and
eventually providing application specific code.

In classical skeleton frameworks, the user can describe basic sequential skele-
tons in an existing imperative or object-oriented language such as C, C++, For-
tran, etc. These sequential skeletons can then be used as the payload of provided
parallel skeletons. The composition of skeletons can usually be done either using
a dedicated language or with calls to an API provided by the framework.

Due to their many common properties, skeleton and component technologies
have been combined to make possible the description of applications taking
advantage of both worlds [2, 15, 1]. This is typically implemented by adding
new keywords to the component assembly language and by replacing instances
of skeletons by component that dynamically instantiates its content. This means
that the assembly is not entirely known at deployment time.

Skeletons provide an interesting way to express new kind of component im-
plementations for parallel applications. Skeleton models do however typically
provide only a limited and fixed set of constructs and the addition of new skele-
tons poses the same kind of problems as the addition of new features in compo-
nent models. The instantiation of the content of skeletons is also typically the
responsibility of the skeleton implementation which makes it difficult to make
the right planning choices at deployment.

In a previous work [10], we described an approach to introduce genericity in
component models: we have shown that it is possible to implement skeletons by
relying on generic components (similar to C++ templates or Java generics) only.
In this case, skeletons are mere composites with the type of some components
in the assembly being a parameter.

With this approach, new skeletons can be implemented as simple new com-
ponents and deployment tools can make planning choices in function of their
content. Skeletons do however focus on component implementations only, they
do not offer any solution to introduce new type of interactions between compo-
nents.

3.3 Architecture Description Languages

ADLs [28, 12] are languages such as ACME [18], C2 [27], Darwin [23], Rapide [21,
22] or Wright [4] intended to make possible the description of application soft-
ware architecture. The concepts found in ADLs are very similar to those of
components assembly languages: applications are described as a set of com-
ponent instances interacting together through well defined interfaces. Unlike
component models however, ADLs do not focus on reuse of existing compo-
nents but rather on the top down description of architectures mainly for the
purpose of communication between parties involved in the development.

RR n➦ 6979



10 Julien Bigot & Christian Pérez

The architecture is usually described at a high abstraction level and then
refined to eventually obtain the set of components that must be implemented.
As a result of this different focus, ADLs often include tools to formally describe
the behavior of components and connections so that assemblies validity and
refinements compatibility can be checked. For example Darwin can use the finite
state processes algebra [24] (FSP) and Wright the communicating sequential
processes algebra [20, 4] (CSP).

In order to describe application architectures at a high abstraction level
many ADLs (including ACME, C2, and Wright) include the concept of connector
as a first class entity. A connector is a type whose instances are connections
between component ports. Letting the user describe new connectors makes it
possible to describe new types of interaction between components or to provide
different behaviors for a connection depending on the connector used.

Some work has been made to bring the advantages of connectors to software
component models [38, 25]. These models are however limited to supporting
new kind of interaction between primitive components; they have no support
for HPC dedicated features such as new kind of component implementations.

3.4 Conclusion

To summarize, existing extensions to component models targeting HPC have
been implemented at a very low abstraction level, modifying either their run-
time or compilation chain. On the other hand, skeletons and ADLs provide
interesting higher level concepts, but these have not been combined in compo-
nent models yet. The next section describes an approach based on MDE to
introduce these concepts in component models in order to ease the introduction
of HPC dedicated features.

4 A model transformation approach for the ex-

tension of component models

This section describes an approach to implement features dedicated to HPC in
component models. The remaining of the section characterizes the models that
appear at the various steps of the transformation and describes the transforma-
tions between these models.

4.1 Overview

In order to implement the studied concepts through a model transformation,
the source Model S and the destination Model D must be identified. In the
scope of this paper, both models are component models.

❼ D is typically an existing component model close to the execution. It
models a set of concrete concepts dc. These concepts are typically those
described in Section 2.1: components, ports and assemblies.

❼ S typically models the same concepts dc but also additional abstract con-
cepts sc; it is therefore a super-set of D. The sc concepts are typically

INRIA



A Generic Model Driven Methodology for Extending Component Models 11

those found in scientific models as described in Section 2.2: parallel com-
ponents with M × N method calls, collective communications à la MPI,
data sharing ports, task farms, etc.

The idea is to let applications described by the user in S be transformed into
semantically equivalent applications of D. As seen in Section 2.2 however, im-
plementations of sc concepts are typically dependant on the execution resources;
these must be taken into account by the transformation. As an additional con-
straint, these resources are typically known when the application is deployed
and the transformation should therefore occur at that time. As a classical prop-
erty of primitive component implementations is their binary distributability as
a black box, their modification at deployment time should be avoided. Thus the
model transformation described in this section transforms the assembly model
rather than the whole component model.

4.2 A two step transformation

A first approach would be to implement the transformation as a single mono-
lithic step. Such an approach does however lead to similar drawbacks as those
of existing approaches. The introduction of a new concept in the S model or the
modification of the D model are likely to require the rewrite of the whole trans-
formation. The transformations of all sc concepts are tightly bound together
and can hardly be provided by different actors.

We therefore advocate for the introduction of an intermediate Model I that
borrows its additional concepts ic from skeletons and ADLs: genericity and
connectors as first class entities. With this approach, the transformation from
the S to the D model is split into two parts: from S to I, and then from I to
D. In the transformation from S to I, the behavior of sc concepts is described
using ic concepts. In the transformation from I to D, resources are taken into
account to transform a limited set of well known abstract concepts (ic) into
their concrete counterpart. As a result, the proposed transformation chain is
described in Figure 3.

S
model

D
model

Primitive Component
Use/Provide port
Assembly
(Composite)

Concepts of D
Master/Worker
Memory Sharing
Parallel components
...

Ressources

I
model

Concepts of D
Replicating components
Switching types
Composite connectors
...

sc
implementation

using ic

Figure 3: The S to D transformation chain.

Model I

Similarly to Model S, Model I is a super-set of D. In order to support the
introduction of new kind of interactions between components, connectors are
first class entities in the model and new port types can be described using
bundle and collection port types. In order to support the introduction of new
component implementations, genericity as described in [10] is introduced in the
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12 Julien Bigot & Christian Pérez

bundle BundlePortType : SubPortType1(p1) {
SubPortType1 p1;

SubPortType2 p2;

}

Figure 4: Example of a bundle port type (BundlePortType) that contains two
sub-ports (p1 and p2) and that inherits SubPortType1 through its sub-port p1.

model with support for replicating and switching component implementations.
In order to let execution resources be taken into account, data-value parameters
of generic components and connectors can be left free (no argument is provided
for the parameter) to let their value be chosen when execution resources are
known.

To summarize, six concepts are added to Model D to create Model I: generic-
ity, bundle and collection port types, replicating and switching implementations
and first class connectors. Let’s describe them.

❼ A generic component or connector as defined in [10] is a type that
accepts parameters, similarly to C++ templates or Java generics. These
parameters can carry either a data-value or a type (data-type, component,
port type or connector). The value of the parameters can then be used
in the implementation of the component or connector. While [10] has
introduced the concept of explicit specialization, this is not used in this
paper; instead, the two main applications of this concept: replicating and
switching implementations are introduced directly in the model.

❼ A bundle port type is defined by a set of sub-ports where each sub-
port is named and typed by an existing port type. This is similar to the
concept of structure used to define new data types in languages such as
C. A bundle port type can inherit existing port types. This is done by
attaching a sub-port to each inherited port type. The notation used to
describe bundle port types in the remaining of this report is described in
Figure 4.

❼ A collection port type is defined by two properties: an existing port
type (PT) and an integer (N). The collection port type contains N ordered
sub-ports of type PT. This is similar to the concept of array used to define
new data types in most imperative languages. In the remaining of the re-
port, the notation used to describe such a port type is collection<PT,N>.

❼ A replicating component implementation describes the content of a
component as a set of instances of the same component. It is defined by
two properties: the type of the internal component instances (IC) and the
number of instances (N). In the remaining of the report, the notation
used to describe instances of such a component is replicating<IC,N>.
For each port p of IC whose type is PT, the replicating component has a
port p of type collection<PT,N>. An example of replicating component
instantiation is described in Figure 5.

❼ A switching component implementation describes a component whose
implementation can be chosen amongst a list of possible implementations.
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IC

p: PT

p: collection<PT,3>

IC IC

Figure 5: Content of an instance of the component replicating<IC,3>

It is defined by three properties: a list of component types (CL), an in-
teger (N) that identifies the rank of the type to use in that list, and the
mappings of the ports of the switching component to the ports of the
types in CL. Each port of the switching component must be mapped to
one port of the same type for each type of CL. The notation used to de-
scribe switching components in the remaining of the report is described
in Figure 6. The notation used to describe instances of such a component
is SwitchingComponent<N>.

component SwitchingComponent [

T1 p1;

T2 p2;

] switching {
// 1st possibility: component C1 is used

// in this case

// port p1 is provided by port cp1 of C1

// port p2 is provided by port cp2 of C1

C1 [ p1 = cp1, p2 = cp2 ];

// 2nd possibility: component C2 is used ...

C2 [ ... ] ;

}

Figure 6: A switching component with two ports p1 and p2.

❼ A connector is a first class entity similar to a component with roles in-
stead of ports. Instances of connectors that have their roles fulfilled by
ports of component instances are called connections. Unlike components
however, connector roles are not typed. The validity is a global property
of the connection and not local to each role. Native connector implemen-
tations are used to model the type of connections supported in Model D.
Composite, replicating and switching connector implementations, similar
to their component counterpart are also available. In these two cases, the
roles of the connector can either directly expose roles of internal connec-
tions or in the case where bundle or collection ports are connected to this
role, a different role can be exposed for each sub-port.

When a primitive component exposes a port whose type is either a bundle or
a collection port type, only the sub-ports (recursively until native port types are
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reached) are seen from the implementation. This approach ensure that primitive
implementations only deal with native port types. Therefore, implementations
from Model I are also valid implementations in Model D.

Both the number of instances in replicating components and the implemen-
tation to choose in switching components are type parameters specified at in-
stantiation. Leaving these parameters free is interesting to describe applications
that can adapt themselves to the execution resources.

Because of the introduction of new meta-classes to describe these additions,
the modeling of assemblies is slightly modified in I. Assemblies still describe
instances of components but they also describe connections. These connections
are instances of connectors and they contain fulfillments that reference the ports
fulfilling each role of the connection. Two kind of fulfillment are possible: either
the whole port of a component instance is used, or in the case where it is a
collection, the fulfillment can reference the sub-ports of the collection and the
connection is replicated.

4.3 Transformation implementation

This section details the two steps of the transformation: from S to I and then
from I to D.

4.3.1 S to I transformation

The S to I transformation is based on the implementation of sc concepts using
ic concepts. This implementation is very dependant on the exact concepts to
implement – two examples are described in more details in Section 5. As these
implementations are independent of each other, it is possible for them to be
developed by specialists of the domain they handle (message passing, distributed
memory sharing, etc.). In addition, since Model I is rather independent from
Model D except for primitive component implementations, it should be easy
to port the implementation of a feature from a destination model to another
by providing implementations of primitive components in the new destination
model.

The role of the transformation code itself is to map concepts of S into their
equivalent in I, which has two aspects. The first aspect covers the transforma-
tion of concepts with different modeling in S and I. A typical example is where
S has no concept of connector and only supports direct connections from a use
port to a provide port; hence, a connection has to be mapped to an instance of
a connector of Model I that supports an equivalent use/provide semantics. The
second aspect deals with the mapping of native types of S that do not exist in
I into elements of I. As it will be shown through an example in Section 5, this
rewriting is quite straightforward.

4.3.2 I to D transformation

In the I to D transformation, all the ic concepts described earlier have to be
transformed into their equivalent in D. This transformation depends on the
execution resources for the choice of the value of type parameters that were
left to be specified at deployment time (free parameters). This part of the
transformation is however completely independent of the sc concepts that have
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been implemented. It is thus made of two steps: the choice of values for free
parameters and the transformation of ic concepts into dc concepts.

When specifying free parameters, it is possible that the transformation of a
single type leads to multiple results with different values for these parameters
depending on the context in which the type was used. In order to simplify
this case, an intermediate Model Ii that models instances rather than types is
introduced. The transformation from I to Ii consists in the (recursive) instan-
tiation of a given component. In the case where the instantiated component is
a composite, the instantiation produces a tree of components whose leaves are
primitive components. When a type with free parameters is instantiated, their
value are chosen accordingly to the available resources.

The second step of the transformation is applied on Model Ii. Replicating
component instances are replaced by the number specified as parameter of com-
ponent instances. Switching component instances and connections are replaced
by instances of the type chosen by their parameter. Composite connections are
replaced by a their content. Bundle and collection ports are replaced by their
sub-ports. This is applied until no more transformation is possible.

The result of this transformation is an instance of Model Ii with no more free
parameters, replicating or switching components, bundle or collection port and
with native connectors only. The transformation to the D model is then quite
straight forward, for each component instance its type is rebuild from its content
and native connector instances are transformed into direct port connections.

5 Implementation and evaluation

The approach described in the previous section has been applied to a concrete
case to study its feasibility. It has been used to extend the SCA component
model with two additional features: data sharing ports and task farms. This
extended SCA model is referred to as exSCA. As described in the previous
section, the transformation is made of two steps: a first one that depends of
the features added to the source model but not of the execution resources and a
second one that depends of the execution resources but not of the added features.
The intermediate model (i.e. the Model I applied to the case of SCA) is referred
to as iSCA. This section starts by describing the first step and especially how
the two concepts have been manually described in iSCA. Then, it focuses on
the second step and especially on a Java-based prototype that implements the
transformation engine.

5.1 exSCA to iSCA transformation implementation step

The first transformation step takes as input a set of components (primitive or
composite) described in exSCA by the user and transforms them into iSCA
components. The instances of exSCA are described with an XML syntax very
similar to the syntax of plain SCA with a few additional notations for task
farms and data sharing ports. An example is given in Figure 7. The syntax
for iSCA, on the other hand is the one presented in the previous sections. It
is not linked with the SCA syntax which makes the transformation engine for
the intermediate model easier to port for another component model. Figure 8
displays the description of the example in iSCA.
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Sharer.componentType:

<componentType>

<shares name="shared1"/>

...

</componentType>

Accessor.composite:

<composite name="Accessor">

<accesses name="data1"/>

...

</composite>

Appli.composite:

<composite name="Appli">

<component name="sh">

<implementation.cpp header="Sharer.h" library="Sharer.so"/>

</component>

<component name="acc">

<implementation.composite name="Accessor"/>

<accesses name="data1">a/shared1</accesses>

</component>

</composite>

Figure 7: Appli description in exSCA

Sharer.component:

component Sharer <

// type parameter

String lib

> [

// ports

SharePort shared1;

...

] cpp { // C++ implem.

library=lib;

header=‘‘Sharer.h’’;

}

Accessor.component:

component Accessor [

AccessPort data1;

] composite {
... // composite implem.

}

Appli.component:

component Appli [

] composite {
// components instances

Sharer<‘‘Sharer.so’’> sh;

Accessor acc;

// connections

SharedMem sh_shared1 {
// roles fulfillments

sharer = sh.shared1;

accessor = acc.data1;

}
}

Figure 8: Appli description in iSCA.

This step of the transformation relies on the implementation of four types
directly in iSCA:

1. the AccessPort port type,

2. the SharePort port type,

3. the SharedMem connector, and

4. the TaskFarm component.
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Accessor Sharer

acc sh

Accessor Sharer

acc sh

The Appli composite in exSCA The Appli composite component in iSCA

SharedMem

access data1 shares shared1 AccessPort data1 SharePort shared1
accessor sharer

sh_shared1

Figure 9: Transformation of the Appli composite from exSCA to iSCA.

The implementation of these types are presented in the following subsections.
It applies the following algorithm to transform exSCA components into iSCA
components:

❼ composites of exSCA are transformed into iSCA components with the
same ports and a composite implementation containing the same compo-
nent instances,

❼ primitive exSCA components are transformed into iSCA components with
the same ports, a primitive implementation and type parameters for things
(such as the library file to use) specified at instantiation in exSCA,

❼ references and services of exSCA are transformed into native Use and
Provide ports of iSCA with their interface specified as a type parameter,

❼ shares and accesses ports of exSCA are transformed into instances of the
SharePort and AccessPort port types,

❼ connections of a reference to a service in exSCA are transformed into
instances of the native MethodCall connector,

❼ connections of a accesses to a shares in exSCA are transformed into in-
stances of the SharedMem connector,

❼ farms of component C in exSCA are transformed into instances of the
TaskFarm component with C as a type parameter in iSCA.

An example of transformation is shown in Figure 9 with the description of the
associated descriptors in Figure 7 and 8. The remaining of this section describes
in more details the data sharing and task farm description in iSCA.

5.1.1 Data sharing implementation

The data sharing implementation has been designed to provide the same behav-
ior as found in [6]. In the referenced paper, the two port types are seen as use
ports with a dedicated interface from primitive implementations. To provide
a similar semantic, the port types are described as bundle ports containing a
single use port as shown in Figure 10 and 11.

The SharedMem connector — defined in Figure 12 — used to connect these
ports has two roles: sharer that must be fulfilled by one SharePort port and
accessor that can be fulfilled by any number of AccessPort ports. The most
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// C++ class definition

class Access {
virtual void* get pointer()=0;

virtual long get size()=0;

virtual void acquire()=0;

virtual void acquire read()=0;

virtual void release()=0;

};

// Bundle definition

bundle AccessPort {
Use<Access> prim;

}

Figure 10: AccessPort C++ interface (left) and bundle port type (right).

// C++ class definition

class Share : public Access {
virtual void associate(void* data, long size)=0;

virtual void disassociate()=0;

};

// Bundle definition

bundle SharePort {
Use<Share> prim;

}

Figure 11: SharePort C++ interface and bundle port type.

connector SharedMem [

// roles and validity rules

role sharer;

role accessor;

constraint (sharer.size == 1)

and (sharer.each(type == SharePort))

and (accessor.each(type == AccessPort);

] switching {
LocalSharedMem [

sharer = localSharer,

accessor = localAccessor ];

JuxmemSharedMem [

sharer = juxmemSharer,

accessor = juxmemAccessor ];

}

Figure 12: SharedMem switching connector implementation.

efficient implementation of this connector is however very dependant on the
execution resources. Two implementations of this connector are described in
Figure 12. The first one, LocalSharedMem is a simple implementation dedicated
to the case where all interacting component instances are located in the same
process. The second one, JuxmemSharedMem is dedicated to the case where
instances are distributed on a computing grid and is based on JuxMem [5].
To support the choice between these multiple implementations, the SharedMem
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connector is implemented as a switching type that let the choice of the actual
implementation be a parameter as shown in Figure 12.

LocalSharing
Component

localSharer
localAccessor

prim subport
prim subport

user user
provider provider

cmp

Provide<Share>
sharingService

Provide<Access>
accessingService

connector LocalSharedMem [

role localSharer;

role localAccessor;

constraint localSharer.size == 1

and localSharer.each(type == SharePort)

and localAccessor.each(type == AccessPort);

] composite {
LocalSharingComponent cmp;

MethodCall sh_mc {
provider = cmp.sharingService;

user = localSharer.prim;

};
// a MethodCall connection for each accessor

MethodCall acc_mc {
provider = cmp.accessingService;

user = localAccessor.prim.each;

};
}

Figure 13: Graphical and textual representation of the LocalSharedMem com-
posite connector.

The local implementation of the connector, described in Figure 13, is com-
posite and contains a single component instance with two provide ports, one
for data sharing and the other for memory accessing. This component simply
maintains a reference (pointer) to the memory that has been declared as shared
through the sharing port and provides it when requests are made on the ac-
cessing port. Two MethodCall connections are part of this assembly: one for
each role of the connection (accessor and sharer). Each one has its provider role
fulfilled by the corresponding port of the component instance while its use role
is exposed as the sub-role of one of the connector roles.

The JuxMem based implementation shown in Figure 14 is similar, but in-
stead of containing one single component instance, it contains two instances.
The sh instance provides the sharing service by redirecting calls to JuxMem.
The acc one similarly provides the accessing service. Having a single instance
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Jux
Share

juxmemSharer
juxmemAccessor

prim subport
prim subport

user user
provider provider

Provide<Share>
sharingService

Collection<Provide<Access>,N>
accessingService

Jux
Access

.

.

.

sh

acc

Replicating<JuxAccess,N>

connector JuxmemSharedMem [

role juxmemSharer;

role juxmemAccessor;

constraint juxmemSharer.size == 1

and juxmemSharer.each(type == SharePort)

and juxmemAccessor.each(type == AccessPort);

] composite {
JuxShare sh;

// N is left as a free parameter

Replicating<JuxAccess,N> acc;

MethodCall sh_mc {
provider = sh.sharingService;

user = juxmemSharer.prim;

};
MethodCall acc_mc {

provider = acc.accessingService.each;

user = juxmemAccessor.prim.each;

};
}

Figure 14: Graphical and textual representation of the JuxmemSharedMem com-
posite connector.

of this component while multiple components can be connected to the acces-
sor role might however lead to performance penalties. This instance is thus a
replicating component with the number of replicas left as a free parameter.

5.1.2 Task farm implementation

The task farms implementation has been designed to provide the same behavior
as found in [11]. The TaskFarm component is a composite as shown in Figure 15.
It contains a replicating component instance that replicates the Worker compo-
nent provided as a parameter and a TransportPattern instance that embeds
the logic for transmitting the requests to one of the worker instances.

Many implementations with different properties are possible for this trans-
port pattern component. It is thus implemented with a switching type. A simple
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component TaskFarm<

component Worker

> [

Provide<Service> service;

] composite {
TransportPattern pattern;

Replicating<Worker,N> workers;

service = pattern.service;

MethodCall mc {
user =

pattern.to_workers;

provider =

workers.service.each;

};
}

Transport 
pattern

Provide<Service>
service

.  .  .

MultiUse<Service>
from_workers

Replicating<Worker,N>

transport

workers

worker

collection<Provide<Service>,N>
service

Figure 15: The TaskFarm composite

implementation is the PrimitiveRandom component that makes a centralized
random choice of the worker to use: it is implemented as a primitive component.

component MultiLevelRandom [

Provide<Service> service;

MultiUse<Service> to_workers;

] composite {
PrimitiveRandom this_level;

Replicating<HierarchicRandom,N>

sub_levels;

service = this_level.service;

to_workers =

sub_levels.to_workers;

MethodCall mc {
user =

this_level.to_workers;

provider =

sub_levels.service.each;

};
}

.  .  .

Primitive
random

Hierarchic
Random

Provide<Service>
service

MultiUse<Service>
to_workers

collection<Provide<Service>,N>
service

Replicating
<HierarchicRandom,N>

this_level

sub_levels

MultiUse<Service>
to_workers

Figure 16: The MultiLevelRandom transport pattern

A more interesting implementation is the HierarchicRandom component. In
order to let the number of levels in the hierarchy be chosen at deployment time,
this implementation is recursive. This means that it is a switching component
with two possible implementations: either the PrimitiveRandom component for
a single level hierarchy or the MultiLevelRandom shown in Figure 16 for more
levels of hierarchy. This MultiLevelRandom is a composite that contains one
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instance of PrimitiveRandom that deals directly with requests and transmits
them to one of the HierarchicRandom instances in the sub levels replicating.

When an instance of the HierarchicRandom is transformed, it can either
lead to a single level of hierarchy if the PrimitiveRandom implementation is
chosen. In the case where the MultiLevelRandom implementation is chosen, it
contains at least two levels of hierarchy. The instances of the bottom level are
however again HierarchicRandom instances and the same transformation can
recursively be applied leading to arbitrary deep hierarchies.

5.2 iSCA to SCA transformation implementation step

Once the application described in model exSCA has been transformed into an
iSCA application, the second phase of the transformation is executed to trans-
form it into a plain SCA application. While the first step of the transformation
was done by hand; this transformation is done by a prototype transformation
engine. This section describes the behavior of this prototype.

As described in Section 4, four distinct models appear in this phase: iSCA,
plain SCA, and the models of their instances. For each kind of model (types
and instances), the plain SCA part is common between the two models; the
major part of these models is even not specific to SCA and could be reused for
most component model. The modeling has thus been written as three layers:
a generic meta-framework for component meta-modeling, a SCA specific part
common to all models of this example and the third layer specific to iSCA.

These models were first written using kermeta, but this tool was still not
complete at that time, they have thus been rewritten as with plain Java classes.
These meta-classes contain only attributes and accessors, the logic of the trans-
formation is implemented in external classes to make the implementation of
other transformations possible. Factoring non SCA specific parts of the model-
ing in a component model agnostic meta-framework seems to have been a good
decision as most part of the meta-classes can be described independently of the
component model. The meta-framework contains 30 meta-classes, while the
SCA specific part contains only 8 additional meta-classes and the iSCA one 16
additional meta-classes.

The transformation is implemented by following the steps described in Sec-
tion 4.3.2. First, the iSCA application is instantiated: instances of Model iSCA
are transformed into instances of Model iSCAinstances. In order to apply this
transformation, the component that represents the whole application and that
will thus be instantiated must be specified by the user; this component can not
accept any parameter with no default value. The transformation then executes
the following algorithm:

❼ if the instantiated element has free parameters, an external plugin is called
that chooses the value for this parameter, currently the only plugin im-
plemented requires the user to interactively provide a value,

❼ if the instantiated element is a primitive component or a native connector,
instantiate it,

❼ if the instantiated element is composite, instantiate it and instantiate all
its inner components instances and connections; if any of these element
has free parameters, their value are chosen,
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❼ if the instantiated element is a switching type, instantiate the type chosen
by the switching parameter value,

❼ if the instantiated element is a replicating type, instantiate as many in-
stances of the replicated type as specified by the replication parameter
value.

The next next step is applied on Model iSCAinstances. Bundle and collection
ports are replaced by their sub-ports and composite connections are replaced
by their content. This is executed until the resulting assembly contains only
native connections and sub-ports. In the last step, the types of each instance is
regenerated and dumped into SCA XML.

5.2.1 Discussion

A transformation engine that transforms iSCA applications using the concepts
presented in this report into valid SCA applications has been implemented. The
implementation of these transformation in this engine requires about 400 lines
of Java code with about 150 lines for the first step, 100 lines for the second one
and 150 lines for the last one.

The implementation of the AccessPort and SharePort port types, of the
SharedMem connector and of the TaskFarm component made it possible to han-
dle applications relying on both task farms and data sharing. A simple test
application using both concepts has been written and successfully executed. As
the transformation from exSCA to iSCA is still manual, this application has
however been written directly in Model iSCA. As described in this section, the
implementation of the task farm and data sharing have been done independently
of each other.

However, by using this model, we ran into some limitations when connector
are used together with composite components. As a matter of fact, only ports
can be exposed by components and it is thus for example not possible to inter-
act through shared memory between primitive components spread in multiple
composites.

6 Conclusion

Component models appear very interesting for handling the increasing complex-
ity of both scientific applications and resources. However, existing component
models are still too close to resources, and it turns out to be quite difficult to
experiment/implement extensions of component models.

This report has studied the usability of the MDE approach in order to be able
to quite straightforwardly implement concept extension to component models.
The studied methodology is based on the use of an intermediate model between
the extensions and the concrete component models so as to be able to compose
extensions and to have a clear separation between concept implementations and
resource dependent issues. This intermediate model is derived from the concrete
model with the addition of five concepts (bundle port type, collection port type,
replicating component implementation, switching component implementation
and connector). For many published extensions to component models, Model I

seems to be powerful enough.
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This report has studied two extensions to the SCA component model: data
sharing and task farms. For both extensions, the transformation from exSCA
to iSCA has been hand-coded: it is mainly string substitution. However, the
transformation from iSCA to SCA has been implemented in Java with the
limitation that all choices have been made manually.

Thus, the approach has proved to be usable for the development of advanced
component models with concepts abstracted from the execution resources. Its
main advantages relies in the possibility to develop extensions independently —
there is no conflict between the memory sharing extension and the task farm
extension — and to only focus on their interactions in a second phase. It also
makes it possible to introduce such extensions without having to deeply modify
any existing component runtime or deployment tool.

It does however still present some drawbacks. The dynamic modification
of the assembly is not actually possible as the deployed assembly is different
from the one described by the user. Another problem is that a new primitive
components must be written for each value of its interface even if its behavior is
dependant of that interface such as in the case of the transport pattern compo-
nent. Moreover, algorithms for selecting free parameters have to be developed.

On the other hand, The implementation of the transformation engine has
shown a real need for language dedicated to MDE. A first step would have been
to use languages such as ECORE to describe the meta-models that appear at
the various steps of the transformation. A second step would have been to use
languages such as kermeta or QVT to describe the transformation themselves.
The relative youth of the tools supporting these languages does however make
it still rather difficult to debug transformations written by using them.
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rio, and C. Pérez. Gcm: A grid extension to fractal for autonomous
distributed components. Special Issue of Annals of Telecommunications:
Software Components – The Fractal Initiative, 64(1):5, 2009.
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