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ABSTRACT

We present a new method to jointly perform deblurring and color-

demosaicing of RGB images. Our method is derived following an

inverse problem approach in a MAP framework. To avoid noise am-

plification and allow for interpolation of missing data, we make use

of edge-preserving spatial regularization and spectral regularization.

We demonstrate the improvements brought by our algorithm by pro-

cessing both simulated and real RGB images obtained with a Bayer’s

color filter and with different types of blurring.

Index Terms— demosaicing, deconvolution, image reconstruc-

tion

1. INTRODUCTION

Most digital color cameras use a single sensor with a color filter array

(CFA) to acquire color images. The Bayer CFA [1] shown on Fig. 1

is the most common CFA. The color interpolation techniques to pro-

duce a color image are known as demosaicing (see [2, 3] for a re-

view). In the case of blurred images, the information of unmeasured

pixels spread to measured neighbor pixels. The main idea in this pa-

per is to use this phenomenon to elaborate a joint deconvolution and

demosaicing algorithm. The problem of demosaicing blurred data

was studied for the first by Na et al. [4] who design a electronic

device for that purpose. It was based on Weiner filtering of decore-

lated channels (YCrCb). Taubman[5] and Trussel[6] then proposed

theoretical methods using same Wiener filtering approachs. More

recently, Trimeche et al. [7] use deconvolution technics as prepro-

cessing before demosaicing. Based of super-resolution framework

Vega et al. [8] described a Bayesian framework for deconvolution

of mosaicked data. We can also point out the work of Farsiu et al.

[9] about the super-resolution of multi-frame blurred and mosaicked

data.

Fig. 1. Bayer color filter array.

2. MODEL DESCRIPTION

The recording of a given scene using a Bayer camera can be broken

down in several successive operations. First the scene get blurred

by different physical phenomenons like optical aberrations (e.g. out

of focus) and motion; then it is sampled by the Bayer’s color filter

array (CFA) and finally it is recorded by the sensor with additive

noise. This acquisition scheme is sum up on Fig. 2.

Fig. 2. Acquisition process with a Bayer camera.

2.1. Blurring

The blurred RGB image g(s) in a direction s is made of three color

channels:

g(s) = {gR(s), gG(s), gB(s)} . (1)

In color channel c ∈ {R,G, B}, the blurred image gc(s) in a direction

s is given by:

gc(s) =

"
hc(s|s′) xc(s′) ds′, (2)

where xc(s′) is the object brightness distribution in color channel

c and direction s′, hc(s|s′) is the point spread function (PSF). The

PSF hc(s|s′) is the observed relative brightness distribution in color

channel c and direction s for a point source located in direction s′.

If the PSF is isoplanatic (shift-invariant), then hc(s|s′) = hc(s − s′)

and Eq. (2) becomes a convolution product. For data sampled on N

pixels, Eq. (2) takes a matrix form:

gc = Hc · xc , (3)

where Hc is the N × N response matrix, gc and xc are vectors of size

N corresponding respectively to the blurred and incident brightness

distributions. Taking the three color channels into account yields:

g = H · x (4)

where g and x are vectors of size 3 N obtained by packing the color

components, e.g. g = (gT
R
, gT

G
, gT

B
)T; likewise, H is a 3 N×3 N sparse

block diagonal matrix:

H =



















HR 0 0

0 HG 0

0 0 HB



















. (5)

In this study, we consider known spatial PSF’s that are isoplanatic

and identical in all color channels. This simplifies computations but

has no other incidences: our algorithm can still be used if these as-

sumptions have to be relaxed.



2.2. Bayer’s Filtering and Noise

When a Bayer camera is used, the vector of available data y is a noisy

and incomplete subset of g:

y = B · g + n = B ·H · x + n , (6)

where B is an N × 3 N down-sampling matrix defined according to

the color filter array and n is a N vector accounting for the noise

(signal noise plus detector readout noise plus digitization noise and

model approximations).

3. INVERSE PROBLEM APPROACH

To recover a color image from the measurements y, one has to

solve a deblurring problem with incomplete data and additive noise.

To solve this difficult inverse problem which is both ill-posed and

ill-conditioned, we use a penalized likelihood or maximum a pos-

teriori[11] framework. The maximum a posteriori solution xMAP

minizes the cost function ε(x):

xMAP = arg min
x

ε(x) (7)

where this penalty function ε(x) expands as:

ε(x) = Φlkl(x; y) + µΦprior(x) , (8)

Minimizing the likelihood penalty Φlkl(x; y) enforces the agreement

between the model x and the data y, whereas minimizing the regular-

ization penalty Φprior(x) accounts for subjective a priori knowledge

about the sought image. Hence minimizing the criterion in Eq. (8)

yields a solution which is a trade-off between fitting the data and

keeping the solution consistent with the priors. The balance of the

trade-off is tuned by the hyper-parameter µ.

3.1. The Likelihood Penalty

For Gaussian noise, using the model defined in Eq. (6), the likelihood

penalty writes:

Φlkl(x; y) = [y − B ·H · x]T · C−1
noise · [y − B ·H · x] , (9)

where Cnoise = 〈n · n
T〉 is the covariance matrix of the noise. Assum-

ing uncorrelated noise, Cnoise is diagonal and Eq. (9) becomes:

Φlkl(x; y) =
∑

k

1

σ2
k

[

(B ·H · x)k − yk

]2
, (10)

where σ2
k

is the noise variance for measured pixel k. For the results

presented at the end of this paper, we assumed uncorrelated uniform

noise with a statistic independent of the color of pixels, i.e. σ2
k
= σ2.

3.2. The Regularization Penalty

Restoration of the RGB image x involves interpolation of colors and

deblurring. In this case, and at least to avoid noise amplification,

the regularization term must enforce the solution to be somewhat

smooth. Besides, since the spatial and spectral (color) dimensions

of x are not homogeneous, we consider a separable regularization

penalty:

µΦprior(x) = µΦspectral(x) +
∑

c∈{R,G,B}

µcΦspatial(xc) , (11)

where Φspectral(x) is a spectral regularization and Φspatial(xc) is the

spatial regularization for color channel c.

3.2.1. Spatial Regularization

As the noise mostly contaminates high frequencies, smoothness con-

straint yields the most effective regularization. We therefore choose:

Φspatial(xc) =
∑

k

∑

k′∈Vk

ϕ

(

xc,k − xc,k′

ℓk,k′

)

, (12)

where ϕ(u) is some increasing function of |u|, xc,k is the value of k-th

pixel in color channel c of the restored image, k′ is a pixel in the

neighborhoodVk of pixel k (usually a V8 neighborhood) and ℓk,k′ is

the distance between these pixels.

Since the likelihood term is quadratic, using a quadratic regu-

larization, i.e. ϕ(u) ∝ u2, would give an analytical expression for

the solution of Eq. (7). Quadratic regularization however has the

drawback that it reintroduces some unwanted blur and ripples by

over-smoothing sharp edges of the image. Non-quadratic norms can

be used to preserve such sharp feature. Following this approach, we

choose a so-called ℓ2 − ℓ1 norm [12] for ϕ:

ϕ(u; λ) = 2 λ2 [

|u|/λ − log (1 + |u|/λ)
]

, (13)

where λ > 0 is the threshold beyond which the difference between

neighbor pixels is most certainly due to an edge and must not be

too much smoothed. Indeed the norm in Eq. (13) is asymptotically

quadratic (resp. linear) for small (resp. large) pixel differences com-

pared to the threshold λ. In principle, one can choose a different

threshold for each color channel and take:

Φspatial(xc; λc) =
∑

k

∑

k′∈Vk

ϕ

(

xc,k − xc,k′

ℓk,k′
; λc

)

. (14)

3.2.2. Spectral Regularization

Gunturk et al. [13] have shown that there is strong correlation be-

tween color channels at high spatial frequencies. According to this,

we design our spectral regularization penalty so as to minimize the

variance between color channels at high frequencies:

Φspectral(x) = ‖P · dR,G‖
2
2 + ‖P · dR,B‖

2
2 + ‖P · dB,G‖

2
2, (15)

where dc,c′ = xc − xc′ is the pixel-wise difference between the

monochromatic images in color channels c and c′ and where P is

a high-pass filter. For our tests, we took P = I − L where I is

the identity and L is the flux-preserving low-pass filter obtained by

convolving its argument by the 5 × 5 separable smoothing kernel:

K =
1

256
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. (16)

4. ALGORITHM SUMMARY

In this Bayesian framework, restoring the de-blurred image is ob-

tained by seeking for the RGB image x which minimizes the com-

posite criterion:

ε(x; y, θ) = Φlkl(x; y)+
∑

c∈{R,G,B}

µc Φspatial(x; λc)+µΦspectral(x) , (17)

where θ = {µ, µR, µG, µB, λR, λG, λB} is the set of chosen hyper-

parameters. Given the observed image y, the restored image x only

depends on θ, that is on four regularization levels (the µ’s) and three

edge-preserving thresholds (the λ’s).



4.1. Hyper-parameters Setting

To derive proper hyper-parameter values, we assumed that the im-

age dynamic is identical in each color channel. As a consequence,

the spatial regularization weights and the edge-preserving thresholds

are the same in every color channels: µR = µG = µB = µRGB, and

λR = λG = λB = λRGB. Hence, only three hyper-parameters have to

be chosen: θ = {µ, µRGB, λRGB}. Despite this simplification, choosing

the optimal values of the hyper-parameters is cumbersome and diffi-

cult. Whether methods such as generalized cross-validation (GCV)

[14] or the L-curve [15] are suitable for this task deserves an exten-

sive study which is out of the scope of this paper. In the present

work, we simply choose hyper-parameter values by trial and error

and visual inspection of the resulting image.

4.2. Optimization Algorithm

In order to determine the optimal image xMAP in our inverse prob-

lem approach, one has to minimize a criterion with respect to a very

large number of variables (all the pixel values for every color chan-

nels). To that end, we used the VMLM-B algorithm [16] which is

a limited memory variant of the variable metric method with BFGS

updates [17]. This algorithm, which can further account for bound

constraints on the parameters, has proven effectiveness for image re-

construction and only requires the computation of the penalty func-

tion to be minimized and its gradient. The memory requirement is a

few times the size of the problem.

5. RESULTS

Several experiments on both simulated and real data were carried out

to assess the performance of the presented algorithm. To quantify

the reconstruction quality, we use the Peak Signal to Noise Ratio

(PSNR) which is classically used to measure improvements of digital

image quality. This criterion corresponds to a mean squared error

normalized by the maximum pixel value M:

EPSNR = −10 log10
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, (18)

where K is the number of pixels, x̂ and x are respectively the restored

and the true images. Here the signal is assigned to the original im-

age and the noise corresponds to the reconstruction error. Thus, the

larger is the PSNR, the better is the reconstruction. In the following,

the results are presented in terms of PSNR improvement with respect

to the PSNR between the blurred data before mosaicing. As convo-

lution is done by means of Fourier Transforms, field of view aliasing

corrupts a narrow border of the image which is thus not taken into

account for this quality assessment.

5.1. Simulation

Simulations were performed on several images from the Kodak

database (http://www.cipr.rpi.edu/resource/stills/kodak.html) and

shown by Fig. 3. All these images are of size 512 × 728 and are

digitized on 8 bits (256 quantification levels).

To assess the deblurring ability of our algorithm, we consider

different types of blur: (i) Gaussian blur with full width at half max-

imum of 4 pixels, (ii) out of focus blur by a uniform disk PSF of

radius 4 pixels, and (iii) vertical uniform motion blur of 5 pixels.

The reconstruction using our method (column J in Tab. 1) is com-

pared with a simple bilinear interpolation reconstruction (column B

Fig. 3. Data set used in our simulation. From left to right: light-

house, sail, statue and window.

in Tab. 1) and the deconvolution of this bilinear reconstruction (col-

umn BD in Tab. 1). This deconvolution of the bilinear interpolation

is performed using the same algorithm as the presented one but with-

out down-sampling by the CFA matrix B. Results are shown in table

1. A detail of the images processed for the 9-th row of this table are

shown on Fig. 4.

Image Blur Blurred B BD J

Light- Gaussian 24.61 -0.28 +3.99 +5.60

house Defocus 22.97 +0.01 +6.17 +6.90

Motion 27.37 -1.42 +0.82 +3.58

Gaussian 27.96 -0.36 +5.00 +5.93

Sail Defocus 26.50 -0.05 +6.30 +6.46

Motion 30.66 -0.98 +2.03 +4.33

Gaussian 28.36 -0.29 +4.11 +4.86

Statue Defocus 27.20 -0.06 +5.60 +5.69

Motion 29.83 -0.52 +2.94 +5.57

Gaussian 28.10 -0.46 +5.69 +6.55

Window Defocus 26.59 -0.17 +6.81 +6.23

Motion 30.10 -0.77 +4.04 +5.65

average -0.45 +4.46 +5.61

Table 1. PSNR improvement in decibel of the bilinear interpolation

(B), its deconvolution (BD) and the algorithm presented in this paper

(J).

Two main tendencies can be retrieved from these results. First,

as blur attenuates the high frequencies and therefore smooths the

edges of the image, bilinear interpolation is quite close (−0.45 dB) to

the blurred image before mosaicing. Second, except in one case, the

presented method achieves better reconstruction than interpolation

followed by deconvolution.

5.2. Experimental data

We carried out an experimental test of our algorithm on really

blurred pictures. These pictures were taken using a Canon EOS

350D reflex digital camera which could record images in a mo-

saicked raw format. Several pictures of the same scene were taken

with different level of defocus. We used a parametric myopic decon-

volution to derive the approximate shape of the defocus PSF shown

in Fig. 5(c). Deconvolution by the defocus PSF was then performed

on a 1024 × 1024 pixels part of this scene. The result is shown on

Fig. 5(b) and can be compared with bilinear reconstruction shown

on Fig. 5(a) and with an in-focus and automatically processed (de-

mosaicing, white balance, dynamics...) picture of the same scene

on Fig. 5(d). Although some ringing artifacts are visible, the im-

age was correctly restored (it is possible to read the writing on the

reconstruction). This experimental result shows that the presented

algorithm is robust to imperfection in the PSF knowledge.



(a) original (b) blurred and mosaicked (c) bilinear interpolation of (b) (d) deconvolution of (c) (e) joint deconvolution and de-
mosaicing of (b)

Fig. 4.Details of the statue picture with the motion blur as presented in Tab. 1. Let us point your attention to the crown and the wrinkle details.

(a) Bilinear interpolation (b) Joint deconvolution and mosaicing
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(c) PSF used for our deconvo-
lution

(d) In focus

Fig. 5. Experimentally defocused image. Let us point your attention to the inscription details.

6. CONCLUSION

In this paper we have presented a unified method to achieve com-

bined deconvolution and demosaicing. On simulation, we show that

joint deconvolution and demosaicing is more effective than a suc-

cessive demosaicing then deconvolution. Experimental results vali-

date the algorithm on real data’s and show its robustness to partially

known PSF.
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