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Decoherence and relaxation of single electron excitations in quantum Hall edge
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A unified approach to decoherence and relaxation of energy resolved single electron excitations in
Integer Quantum Hall edge channels is presented. Within the bosonization framework, relaxation
and decoherence induced by interactions and capacitive coupling to an external linear circuit are
computed. An explicit connexion with high frequency transport properties of a two terminal device
formed by the edge channel on one side and the linear circuit on the other side is established.
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The recent demonstrations of Mach-Zehnder interfer-
ometers (MZI) [1, 2, 3] in the Integer Quantum Hall
regime has best illustrated the ballistic and phase coher-
ent character of electronic propagation along the chiral
quantum Hall edges over tens of microns. Recently, the
development of an on demand single electron source [4]
has opened the way to fundamental electron quantum op-

tics experiments involving single charge excitations such
as the electronic Hanbury-Brown and Twiss experiment
[5] or the Hong-Ou-Mandel experiment [6, 7] in which
two indistinguishable electrons collide on a beam-splitter.
But contrary to photons, electrons interact with their
electromagnetic environment and with other electrons
present the Fermi sea. This results in relaxation and de-
coherence of single electron excitations above the ground
state that deeply questions the whole electron quantum
optics concept. This has been emphasized in MZI where,
despite insensitivity to electron-source time coherence,
decoherence along the chiral edges drastically reduces the
contrast of interferences [8, 9, 10, 11, 12, 13].

Recently, energy resolved electronic detection using
quantum dots has also been demonstrated [14], thus
opening the way to energy relaxation studies in quan-
tum Hall edge channels. Combining such measurements
with the on demand single electron source will enable ex-
perimental testing of the basic problem of quasi-particle
relaxation originally considered by Laudau in Fermi liq-
uid theory [15].

In this Rapid Communication, we present a full many
body solution to this problem in quantum Hall edge chan-
nels. To address the above basic issues, we have devel-
oped a unified approach of high frequency transport and
decoherence and relaxation of coherent single electron
excitations showing the central role of plasmon scatter-
ing. This approach opens the way to an in depth un-
derstanding of the nature of quasiparticles in various In-
teger Quantum Hall edge channels and provides an effi-
cient theoretical framework for electron quantum optics.
To illustrate our formalism, we clarify the role of the
electronic Fermi sea in single electron decoherence, ex-

plicitely showing the interpolation from a Pauli blockade
regime at low energy to a dynamical Coulomb blockade
like regime at high energy in which the Fermi sea plays
the role of an effective environment.

Model Let us consider the specific example of a chiral
edge channel capacitively coupled to an external gate of
size l connected to a resistance R representing a dissipa-
tive external circuit (see Fig. 1). In the integer quantum
Hall regime, bosonization expresses the electron creation
operator at point x along the edge, ψ†(x), in terms of a
chiral bosonic field φ(x) as:

ψ†(x) =
U †

√
2πa

e−i
√

4πφ(x), (1)

where a is a short distance cutoff and U † ensures
fermionic anticommutation relations. The bosonic field
determines the electron density n(x) = (∂xφ)(x)/

√
π. In

the presence of an external voltage U(x, t) along the edge,
its equation of motion is:

(∂t + vF ∂x)φ(x, t) =
e
√
π

h
U(x, t) . (2)

where vF is the electron Fermi velocity along the edge.
Before and after the interaction region |x| ≤ l/2, this chi-
ral field propagates freely and thus defines input (j = in
for x ≤ −l/2) and output (j = out for x ≥ l/2) plasmon
modes :

φj(x, t) =
−i√
4π

∫ ∞

0

dω√
ω

(bj(ω)eiω(x/vF −t) − h.c) . (3)

In the interaction area |x| ≤ l/2, the edge is capacitively
coupled to the gate forming a capacitor of capacitance C.
Following Büttiker et al. [16], we assume the potential
within the edge to be uniform [25] and denoted by U(t)
[16]. The total charge stored within the interaction region

Q(t) = −e
∫ l/2

−l/2

n(x, t) dx (4)
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FIG. 1: (Color online) (a) Two terminal device built from
an edge channel coupled to an RC circuit. In the interaction
area |x| ≤ l/2, the edge channel (in red) at internal poten-
tial U(t) is capacitively coupled to the gate of capacitance
C at potential V (t). (b) A single electron is injected in the
x < −l/2 region and propagates along the edge channel. In-
teractions within |x| ≤ l/2 create electron/hole pairs within
the edge channel and photons in the RC circuit leading to
decoherence.

is proportional to the voltage drop between the gate at
potential V (t) and the edge channel:

C(U(t) − V (t)) = Q(t) . (5)

Following [17, 18], the resistance will be modeled as a
quantum transmission line with characteristic impedance
Z = R. Its degrees of freedom are described by input and
output photon modes aj(ω) (j = in or out) propagating
along the line. The total charge stored within the line
is, by neutrality of the RC circuit, equal to Q(t) and
expressed in terms of photon modes by:

Q(t) =

√
~

4πR

∫ ∞

0

((ain +aout)(ω)e−iωt +h.c.)
dω√
ω
. (6)

The voltage of the gate V (t) is also expressed as:

V (t) = eR

√
RK

2R

∫ ∞

0

√
ω(i(ain−aout)(ω)e−iωt +h.c.)

dω

2π
(7)

Using (5), (6) and (7), the voltage U(t) can be expressed
in terms of the a modes. Solving for the edge equation
of motion (2) gives a first linear equation relating the
input and output a and b modes. It also expresses the
chiral field and total charge within the interaction region
in terms of these modes. Using this in eq. (4) leads to
a second linear equation between the input and output
a and b modes. This leads to the unitary plasmon to
photon scattering matrix S(ω) = (Sαβ(ω)) (α, β equal to
c for the circuit or e for the edge) at frequency ω/2π. In
the following t(ω) = See(ω) will denote the edge plasmon
transmission amplitude. As discussed in the case of 1D
(non chiral) wires [19], it determines the finite frequency
admittance. Obviously, this quantity is model dependent
but our discussion of its connection with single electron
relaxation is valid in full generality.

High frequency admittances The admittance matrix
at frequency ω relates the Fourier component Iα(ω) of
the incoming currents through the various leads α to the
voltages Vβ(ω) in the linear response regime:

Iα(ω) =
∑

β

gαβ(ω)Vβ(ω) . (8)

In the present case, the input modes can be related to
the voltages applied to the edge reservoir and to the RC
circuit. First of all, the applied time dependent volt-
age Vc(t) creates an incoming coherent state within the
transmission line caracterized by the average value of the
incoming a modes:

〈ain(ω)〉 =
−i√
ω

√
RK

2R

eVc(ω)

h
. (9)

For the edge channel, modeling the reservoir as a uniform
time dependent voltage Ve(t) applied from x = −∞ to
x = −l/2 shows that it injects in the [−l/2, l/2] region a
plasmon coherent state fully characterized by the average
value of the incoming b modes [20]:

〈bin(ω)〉 = − e

h

Ve(ω)√
ω

eiωl/2vF . (10)

The finite frequency admittance can then be expressed
in terms of the plasmon to photon scattering matrix and
reciprocally uniquely determines it. In the present case,
due to total screening of charges in the edge channel by
the gate, this 2 × 2 admittance matrix satisfies gauge
invariance and charge conservation [16]: gee = gcc =
−gec = −gce and is thus determined by a unique ad-
mittance:

g(ω) = gee(ω) =
e2

h
(1 − t(ω) eiωl/vF ), (11)

which is in turn entirely determined by the plasmon
transmission amplitude t(ω). At low frequency and up
to second order in ω, the admittance is equivalent to the
serial addition of a electrochemical capacitance Cµ and
a charge relaxation resistance Rq. Here, Cµ is the se-
ries addition of the quantum capacitance Cq = l/vFRK

(with RK = h
e2 ) and the geometric capacitance [16]. The

charge relaxation resistance is the sum of the circuit re-
sistance and the half-quantum h/2e2 [21, 22] expected
for a single mode conductor.

Electron relaxation and decoherence Let us now con-
sider the evolution of a single electron initially pre-
pared (see Fig. 1-b) in a coherent wave packet. Start-
ing from the zero temperature Fermi sea |F 〉 , the many
body state with one additional electron in the normal-
ized wavepacket ϕ(x) above the Fermi sea is given by
|ϕ, F 〉 =

∫
ϕ(x)ψ†(x)|F 〉 dx.

Single particle spatial coherence and density are re-
spectively described by the off diagonal and diagonal
components of the single particle reduced density opera-

tor G(e)
ρ (x, y) = Tr(ψ(x). ρ. ψ†(y)) in which ρ denotes the
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many body electronic density operator. Going to Fourier
space then shows that the single electron momentum dis-
tribution is encoded in the diagonal of the single particle
density operator in momentum space.

Before entering the interaction region, the initial many
body density operator is given by ρi = |ϕ, F 〉〈ϕ, F | and

then G(e)
ρi (x, y) = G(e)

F (x, y) + ϕ(y)∗ϕ(x) where the first

contribution G(e)
F (x, y) =

∫
nF (k)eik(x−y) dk

2π comes from

the Fermi sea (nF (k) = 〈c†kck〉F ) whereas the second one
is associated with the coherent single electron excitation.

Using (1), the state |ϕ, F 〉 appears as a superposition of
incoming plasmon coherent states. Since the interaction
region elastically scatters plasmon to photons, the re-
sulting outcoming external circuit + edge quantum state
is an entangled superposition of coherent plasmon and
photon states. Tracing out over the circuit’s degrees of
freedom leads to the exact many body electron state af-
ter time t such that the initial wave packet has flown
through the interacting region:

ρf =

∫
dy+dy−ϕ(y+)ϕ∗(y−)Dext(y+ − y−)

× ψ̃†(y+ + vF t)|F 〉〈F |ψ̃(y− + vF t) (12)

where Dext is the extrinsic decoherence associated with
photon emission into the external circuit

Dext(∆y) = exp

(∫ +∞

0

|r(ω)|2 (e
−i ω ∆y

vF − 1)
dω

ω

)
(13)

where r(ω) = Sce(ω) denotes the plasmon to photon scat-

tering amplitude. In (12), ψ̃†(y) is a modified field oper-
ator:

ψ̃†(y) =
U †

√
2πa

exp

(∫ ∞

0

(t(ω)b(ω) eiωy/vF − h.c.)
dω√
ω

)
.

(14)

When t(ω) is a pure phase linear in ω, ψ̃†(y) is a spa-
tially translated fermion field operator. Any other ω
dependence of t(ω) leads to the creation of additional
electron/hole pairs that cannot be absorbed in a simple
translation.

Relaxation of a single electron can then be discussed
by considering an incident energy resolved wave func-
tion: ϕk0

(x) = eik0x. The complete momentum distribu-
tion consists in the Fermi sea contribution and a change
δnk0

(k) that can be obtained from single particle coher-

ence G(e)
k0

after interaction with the RC-circuit:

∫

R

e−ik(x−y)G(e)
k0

(x, y) d(x−y) = LnF (k)+δnk0
(k) (15)

where L is the total size of the system. The l.h.s. can
be computed using bosonization thus leading to explicit
fully non perturbative expressions for single electron re-
laxation δnk0

(k) that will be given in a forthcoming pub-
lication.
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FIG. 2: (Color online) (a) Single electron energy relaxation
for R = 50 Ω and l/vF RKC = 0.5 plotted against (k − k0)l
for (I) k0l = 13 and (II) k0l = 8. The dashed curve corre-
sponds to the single particle result (16) valid at high energies.
Inset shows small values of k0l: (III) 4, (IV) 3 and (V) 2.
The dotted line corresponds to the simple relaxation model
δnr

k0
(k) = −Z′(k0 − k). (b) Quasiparticle peak Z(k0). (c)

Real and imaginary part of the plasmon transmission ampli-
tude t(ω).
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FIG. 3: (Color online) (a) Single electron energy relaxation
for R/RK = 0.5 and l/vF RKC = 0.5 plotted against (k−k0)l
for (I) k0l = 13 and (II) k0l = 8. The dashed curve corre-
sponds to the single particle result (16) valid at high energies.
Inset shows small values of k0l: (III) 2, (IV) 1 and (V) 0.5.
The dotted line corresponds to the simple relaxation model
δnr

k0
(k) = −Z′(k0 − k). (b) Quasiparticle peak Z(k0). (c)

Real and imaginary part of the plasmon transmission ampli-
tude t(ω).

This detailed analysis shows that, at zero tempera-
ture, δnk0

(k) has a quasiparticle peak at k = k0 and a
non-zero regular part for −k0 ≤ k < k0 : δnk0

(k) =
Z(k0)δ(k − k0) + δnr

k0
(k). Finally, the sum rule Z(k0) +

∫ k0

−k0
δnr

k0
(k)dk = 1 reflects particle conservation.

Fig. 2-a presents the regular part δnr
k0

(k) as a function
of (k− k0)l at fixed k0, and Fig. 2-b shows the weight of
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the quasiparticle peak Z(k0) in term of k0l for R = 50 Ω
and l/vFRKC = 0.5. In two limiting regimes, energy
relaxation can be described using a single particle relax-
ation approach by introducing an appropriate effective
environment and, at low energy, taking into account the
Pauli exclusion principle.

Close enough to the Fermi surface (see inset Fig. 2-a),
single electron relaxation can be described using a simple
relaxation model : for 0 ≤ k < k0, δn

r
k0

(k) ≃ p(k0 − k)
where p(q) can be interpreted as the probability to lose
momentum q. The remaining quasiparticle weight Z(k0)

is then related to p by p(q) = −Z ′

(q). Note that the
Fermi sea remains spectator (δnr

k0
(k) ≃ 0 for k < 0),

since at low energies t(ω) is close to one, thus limiting
the creation of electron/hole pairs in the relaxation pro-
cess. In this regime, energy relaxation is limited by the
Pauli exclusion principle. For R 6= 0 and at low energy,
photon emission is the dominant relaxation mechanism
and the inelastic scattering probability 1− Z(k0), which
only depends on the equivalent circuit parameters, scales

as (
Rq

RK
− 1

2 )(k0RKCµvF )2 at low momentum. Conse-
quently, the quasi particle is well defined close to the
Fermi surface.

At high energies, δnk0
(k) splits into two distinct con-

tributions (see e.g Fig. 2-a, k0l = 8, 13). The first
one appears in Fourier space around the Fermi level and
corresponds to the electron/hole pairs created by the in-
cident electron. The second one is localized in Fourier
space close to k0 and corresponds to the relaxation of the
incoming electron due to photon emission into the trans-
mission line as well as electron/hole pair creation inside
the edge channel. In real space, in the limit of very high
incident energy, it shows up as an effective decoherence
coefficient D(x − y) acting on the incident wavepacket
propagated during the time interval [0, t]:

ϕ(x)ϕ∗(y) 7→ ϕ(x− vF t)ϕ
∗(y − vF t)D(x− y) . (16)

The decoherence coefficient D is then a product of the
extrinsic contribution (13) and an intrinsic contribution

associated with the imprints left within the Fermi sea
by the different positions appearing in the single electron
incident wavepacket. Finally D is obtained by substi-
tuting |r(ω)|2 by 2ℜ(1 − t(ω)) into (13). This regime
is similar to the dynamical Coulomb blockade [23], with
the Fourier transform of D playing the role of P (E) (see
dashed lines on Figs. 2-a and 3-a for the correspond-
ing energy relaxation). The case of an RC-circuit with
R = RK/2 exhibits clear deviations from these two lim-
iting approaches in the considered frequency range (see
Fig. 3-a) thus showing the need of our non-perturbative
approach. This arises from the strong plasmon scattering
in the relevant frequency range at larger R/RK (compare
figs. 2-c and 3-c). Note also the faster decay of the quasi-
particle peak (compare figs. 2-b and 3-b).

Conclusion In this letter, we have presented a com-
plete theory of coherent single electron excitation relax-
ation in integer quantum Hall edge channels.The scat-
tering between edge plasmonic and environmental modes
determines both the finite frequency admittances and re-
laxation properties of a coherent single electron excita-
tion. The latter can thus be computed exactly from the
finite frequency admittances. This approach can be used
to study decoherence and relaxation of single electron ex-
citations due to interactions within a single edge channel
or to interchannel coupling in ν = 2 quantum Hall sys-
tems. It can also be generalized to fractional quantum
Hall edges as well as to the case of non chiral quantum
wires. Finally, relaxation of non equilibrium distribution
functions such as the one created by a biased quantum
point contact requires taking into account all Keldysh
correlators of currents [24].
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[4] G. Fève et al, Science 316, 1169 (2007).
[5] R. Hanbury-Brown and R. Twiss, Nature 178, 1046

(1956).
[6] C.K. Hong, Z.Y. Ou, and L. Mandel, Phys. Rev. Lett.

59, 2044 (1987).
[7] S. Ol’khovskaya, J. Splettstoesser, M. Moskalets, and
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