
Low Precision Table Based Complex Reciprocal

Approximation

Jean-Michel Muller, Pouya Dormiani, Milos Ercegovac

To cite this version:

Jean-Michel Muller, Pouya Dormiani, Milos Ercegovac. Low Precision Table Based Complex
Reciprocal Approximation. 43rd Asilomar Conference on signals, systems and computers, Nov
2009, Pacific Grove, California, United States. IEEE, 2009. <ensl-00436329v2>

HAL Id: ensl-00436329

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00436329v2

Submitted on 13 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52321509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00436329v2

Low Precision Table Based Complex Reciprocal Approximation

Pouya Dormiani
Computer Science Department

University of California at Los Angeles

Los Angeles, CA 90024, USA

Email: pouya@cs.ucla.edu

Miloš D. Ercegovac
4731H Boelter Hall

Computer Science Department

University of California at Los Angeles

Los Angeles, CA 90024, USA

Email: milos@cs.ucla.edu

Jean-Michel Muller
CNRS-Laboratoire CNRS-ENSL-INRIA-UCBL LIP

Ecole Normale Supérieure de Lyon

46 Allée d’Italie

69364 Lyon Cedex 07, France

Email: Jean-Michel.Muller@ens-lyon.fr

Abstract—A recently proposed complex valued division
algorithm[1] designed for efficient hardware implementations
requires a prescaling step by a constant factor. Techniques for
obtaining this prescaling factor have been mentioned by the
authors, which serves to justify the feasibility of the algorithm
but is inadequate for obtaining efficient implementations. Table
based solutions are formulated in this paper for obtaining the
prescaling factor, a low precision reciprocal approximation for a
complex value, using techniques adopted from univariate function
approximations. Two separate designs are proposed, one using a
single table (a reference design) and another using generalized
multipartite tables. The main contribution of this work is the
extension of generalized multipartite table methods to a function
of two variables. The multipartite tables derived were up to 67%
more memory efficient than their single table counterparts.

I. INTRODUCTION

Two classes distinguished in [2] are used in general to

evaluate functions,

• Compute-bound: Evaluates the function computationally

using, for example, iterative techniques such as digit-

recurrence or multiplicative methods [3]. Combinational

logic and registers dominate the hardware cost in these

schemes.

• Table-Bound: Store the evaluated function in a table

indexed via the function arguments. Multiple tables may

be used in which the value could be directly stored

or reconstructed. This method relies on memories such

as ROMs (Read Only Memory) which constitute the

majority of hardware costs. In the discussions that follow

we will use the terms table and ROM interchangeably.

The class of compute-bound methods are more flexible as they

can scale to perform high precision approximations by trading

performance for accuracy through evaluating the approxima-

tion on the fly during execution. Indeed the division algorithm

in [1] is itself a compute-bound approach for evaluating

complex valued division. Hybrid schemes where logic and

ROMs are intermixed to achieve a desired memory and latency

tradeoff are also possible.

We denote x̂ as an approximation to x where x̂ is a lower

precision value of x obtained by truncation, rounding etc.

which has fewer significant digits and larger unit in the last

position (ulp). We distinguish an approximation to a function f
using notation f̃ , for example by an approximating polynomial

obtained via Taylor expansion about a point. We use the

notation ı =
√
−1, and given x = xR + ı xI , ℜ(x) = xR,

r a σ ǫS ≤

2 1 4 7/64

4 2 5 13/512
4 3 3 3/64

8 6 4 11/512
8 7 3 3/128

TABLE I: Upper bound for ǫS values given specific parameters

of the complex division algorithm presented in [1].

ℑ(x) = xI , we define two norms ‖x ‖∞ = max(|xR |, |xI |)
and |x | =

√
(xR)2 + (xI)2. An approximation to a complex

value is defined as an approximation to the real and imaginary

parts respectively, i.e., x̂ = x̂R + ı x̂I .

Given a value d = dR + ı dI with reciprocal f(d) = 1/d,

we define a prescaling factor K which is a reciprocal approx-

mation with error characterized by
∥∥∥K − 1/d̂

∥∥∥
∞

< ǫK (1)

with

K =
̂̃
f(d̂) (2)

1

d̂
=

d̂R − ıd̂I

(d̂R)2 + (d̂I)2
(3)

i.e., K is an approximation to the evaluation of f̃(d̂). Complex

reciprocal approximations play an important role in a digit-

recurrence based complex division algorithm presented in [1]

which computes x/y by prescaling the computation with K
such that Kx

Ky is the actual value computed. Since the purpose

in finding K is to build efficient tables for this algorithm, its

desired accuracy is characterized here in the same manner as

expressed in [1], which requires that

‖Kd − 1 ‖∞ < ǫS (4)

where ǫS is a known constant for a given choice of algorithm

parameters. Table I shows various ǫS values for given param-

eters of the division algorithm which are derived from Eq. (5)

given in [1] for a radix r algorithm with digits in {−a, . . . , a}
and σ fractional bits in the residual estimate.

2 a ǫS +
1

2
+ 2−σ ≤ 1

r

(
a +

1

2
+ 2−σ

)
(5)

Real valued reciprocal approximations have been studied in

literature [4][5][6], but the complex reciprocal approximation

is a bivariate function. This paper formulates some table based

solutions for obtaining the complex reciprocal approximation

K by extending techniques developed for univariate functions.

To the best of our knowledge table based methods for two

variable functions have not been studied in computer arith-

metic literature. Looking at Table I one can see that the

desired accuracy of K is very low. Our approach of using

linear programs (LP) to obtain these tables does not scale to

obtain high precision approximations and is only useful for

low precision reciprocal approximations–the LP size grows

exponentially.

A. Problem Formulation

For a given value d = dR + ıdI with constraint

1

2
≤ ‖ d ‖∞ < 1 (6)

and precision n such that d is representable in two’s comple-

ment form by

dR = dR0 .dR1 dR2 . . . dRn , dI = dI0 .dI1dI2 . . . dIn (7)

Let d̂ be obtained by rounding to nearest d to the qth fractional

position such that,

d̂R = rnd(dR, q), d̂ I = rnd(dI , q) (8)
∥∥∥ d − d̂

∥∥∥
∞

≤ 1

2
2−q (9)

where ulp(d̂) = 2−q. Using d̂ we would like to obtain a K
such that constraints (1) and (4) are satisfied for some given

ǫS from Table I.

II. SINGLE TABLE DESIGN

In a single table design the estimate d̂ is used to address

one large table which stores the corresponding reciprocal

approximation rounded to t fractional positions, i.e.,

K = rnd

(
1

rnd(d, q)
, t

)

Error analysis shown in [7] is used to derive the following

constraint which relates q, t and ǫS ,

2−t + 2−q+1 < ǫS (10)

Because d̂ is obtained by rounding to nearest it could possibly

take on the value ‖ d̂ ‖∞ = 1, and its representation requires

an extra bit to the left of the binary point. For now, assume

that ‖ d̂ ‖∞ < 1 (we will later incorporate ‖ d̂ ‖∞ = 1 as a

special case). First we look at some properties of the reciprocal

function f–we will refer to f interchangeably as a univariate

function when its argument is a complex value i.e., f(d), and

also as a bivariate function with arguments f(dR, dI).

f(d) =
1

dR + ı dI
=

dR − ı dI

(dR)2 + (dI)2

1) f(−d) = −f(d)

2) f(dR, dI) = −[ℑ(f(dI , dR)) + ıℜ(f(dI , dR)]
3) f(−dR, dI) = −ℜ(f(dI , dR)) + ıℑ(f(dI , dR)), etc.

Two techniques are used to reduce the address width to the

table (which is 2(q +1) bits wide in a naı̈ve implementation),

• Using the first property, we eliminate the sign of d̂
when addressing the ROM, i.e., the implementation now

requires a 2q bit wide address,

| d̂R | = 0.αR
1 αR

2 . . . αR
q , | d̂ I | = 0.αI

1 αI
2 . . . αI

q (11)

• Since ‖ d ‖∞ ≥ 1
2 we know that either αR

1 = 1 or αI
1 = 1

(or both)–as originally proposed in [1]. If the following

address was formed: αR
1 αR

2 . . . αR
q αI

1 αI
2 . . . αI

q then we

could check if αR
1 = 1, in which case the address

can be reduced by one bit by making αR
1 implicit,

i.e., addressing the ROM with αR
2 αR

3 . . . αR
q αI

1 αI
2 . . . αI

q .

Otherwise, it must be true that αI
1 = 1, and the ROM is

addressed with αI
2 αI

3 . . . αI
q αR

1 αR
2 . . . αR

q and the second

property of the reciprocal function is used to recover the

result. This reduces the number of address bits to 2q − 1
(halving the memory required) while introducing little

additional overhead.

As previously mentioned the scenario in which ‖ d̂ ‖∞ = 1
is incorporated as a special case by including a smaller

ROM (called ROMs), having q address bits. One possible

implementation could be that ROMs[A] = f(1, A), where

A = α1α2 . . . αq and the square brackets denote perform-

ing a look-up in the ROM at address A–again note that

all the different permutations of arguments, e.g. f(d̂R,−1),
f(1,−d̂ I), etc. can be obtained by performing a conditional

final swapping of real and imaginary parts and/or a negation.

So far we have limited our discussion to the addressing

scheme of the ROM, however the width of the actual contents

of the ROM is also of interest which we will now discuss. We

already know that each entry in the ROM (including ROMs)

contains a real and imaginary part each with t fractional bits,

but how many bits are required to the left of the binary point?

It is known that KR is positive and KI is negative for positive

values of dR and dI respectively. Since 1/2 ≤ ‖ d̂ ‖∞ ≤ 1 and

the ROM only stores values for positive dR and dI , then if we

let UR and UI denote the values to be stored in the ROM (i.e.,

K is obtained via conditional negation of UR and UI), then

we know that 0 ≤ UR ≤ 2 and −2 ≤ UI ≤ 0. The imaginary

part UI is stored in magnitude form thus both UR and UI can

be represented in 2+ t bits. Each entry in the ROM (including

ROMs) stores 2(2+ t) bits, of which the first 2+ t bits is UR

and the second 2 + t bits is UI . The cost in memory (bits) of

the proposed implementation is therefore

Main ROM︷ ︸︸ ︷
2(2 + t) × 22q−1 +

Special Case (ROMs)︷ ︸︸ ︷
2(2 + t) × 2q bits (12)

The contents of the ROMs can be verified by perfect

induction to ensure that the satisfy the error bound dictated

in Eq. (10). Also note that even though there are two ROMs

in the aforementioned design, this is a consequence of trying to

r a σ ǫs q t ≈ KBits

2 1 4 7/64 5 5 7.44

4 2 5 13/512 7 7 146.25
4 3 3 3/64 6 6 33.0

8 6 4 11/512 7 8 162.5
8 7 3 3/128 7 7 146.25

TABLE II: Sampling of design space for single table memory

requirements given specific parameters of the complex division

algorithm presented in [1].

q = 3k

xH , 2k

xh, k + ⌊k/2⌋

xL, k

x

x⋆, k + ⌈k/2⌉

Fig. 1: Partitioning of input x (y partitioned similarly) into

xH , xL, and xh, such that x = xH + 2−2kxL and x = xh +
2−k−⌊k/2⌋x⋆.

reduce the memory requirements and should not be confused

with multiple table designs which are discussed next.

III. MULTIPLE TABLE DESIGNS

In the single table design a precise value for 1/d̂ was

calculated and rounded to t fractional positions to obtain K.

The reciprocal function itself however can be approximated,

which can reduce the required memory size. Approximating

the function via multiple tables was originally proposed in [4]

as bipartite (two) tables, which was extended and formalized

by [2], reformulated as a linearization problem in [8], and

extended to multipartite (greater than two) tables in [9][2].

In this section we define g as g(x, y) = x/(x2 + y2) such

that, f(d) = g(dR, dI)−ı g(dI , dR). Let ‖ f̃(d̂)−f(d̂) ‖∞ <
ǫK , then from [7], the error ǫK is related to ǫS such that

if ǫK < 1
2ǫS − 2−q is satisfied then the approximating

function f̃ can replace f . The function f̃ , which was originally

implemented as one large table, can be approximated in a

manner which decomposes it into a sum of terms where each

term is a function of fewer address bits than required by f .

Note that f̃ can be obtained from g̃. Let g̃ be the first order

Taylor expansion of g about (x0, y0), where gx denotes the

first partial derivative of g in x

g̃ = g(x0, y0)+(x−x0)gx(x0, y0)+(y−y0)gy(x0, y0) (13)

The arguments x and y, which are both positive numbers

with q fractional bits were partitioned as shown in Fig. 1,

and the point of expansion (x0, y0) in Eq. (13) was chosen to

be (xH , yH), resulting in

g̃ = g(xH , yH) + xL2−2kgx(xH , yH) + yL2−2kgy(xH , yH)

≈ g(xH , yH) + xL2−2kgx(xh, yh) + yL2−2kgy(xh, yh)
(14)

βα

α1

α2

α3

α4

αm

β1

β2

β3

β4

βm

.

.

.

.

 .

 .

q

x

Fig. 2: Partitioning an argument x into xα and m pairs

(xα1 , xβ1), . . . , (xαm
, xβm

).

with the assumption that gx and gy are approximately constant

at the granularity of xh.

Each term in the sum of Eq. (14) is implemented by a table.

The value g̃(x, y) is determined by addressing all tables in

parallel and summing their outputs which requires a ternary

addition. The cost in bits of this scheme is,

g(xH ,yH)︷ ︸︸ ︷
(pH + tH) × 22k +

xL2−2kgx(xh,yh)︷ ︸︸ ︷
(px + tx) × 22(k+⌊k/2⌋)+k +

xL2−2kgy(xh,yh)︷ ︸︸ ︷
(py + ty) × 22(k+⌊k/2⌋)+k +

ROMs︷ ︸︸ ︷
2(2 + t) × 2q bits

(15)

where pH , tH is the number of integer and fractional bits

(i.e., the width) of the table (same for x and y subscripts).

This approximation is called bipartite in [1] even though

it has three tables, which is a consequence of it being an

approximation of a function in two variables–the first order

Taylor approximation of a univariate function and a similar

treatment yields two tables. Two techniques discussed in the

aforementioned literature will be employed to further reduce

the size of these tables.

A. Generalized Partitioning

Looking back at the partitioning of the arguments in Fig. 1,

one may wonder why this particular partitioning was chosen

by the authors. This partitioning is based on work presented

in [2] and gives algorithmic bounds on the table size. A much

more general partitioning scheme presented in [8] can be used

to obtain the optimal partitioning by exhausting all partitions.

The partitioning scheme introduced by [8] is shown in Fig. 2,

where the argument is partitioned first into two parts xα and

xβ such that x = xα + 2−αxβ . Then xβ is subsequently

partitioned into m parts, xβ1
, . . . , xβm

, where each xβi
has

a prefix xαi
, i.e., they form a pair (xαi

, xβi
).

o1 = 0 αi < α

oi =

i−1∑

j=1

βj , i > 1 x = xα + 2−α
m∑

i=1

(
xβi

2−oi
)

B. Multipartite Approximations

In this section an approach is presented to obtain a linearized

multipartite approximation g̃ using the generalized partitioning

scheme in section III-A. Observing that q was rather small for

single precision tables and ranged from 5 to 9, any useful

multipartite scheme derived should be even smaller, which

reduces computational complexity of determining such tables

considerably. Because of the very moderate problem size, the

problem is simply formulated as a linear program (LP) which

is then solved via available LP solvers.

The approach to finding the optimal sized tables for a given

ǫS is as follows: for each partition of the general partitioning

performed on the arguments, generate an LP which minimizes

the L1 norm (least absolute value, |x|) of all errors for all

possible points d̂R and d̂ I . If the LP is infeasible then the

current partitioning scheme can not yield the desired level of

accuracy. Among the feasible choices we pick the partition

which has the minimum memory requirements.

Let g̃ approximate the reciprocal function with the parti-

tioning discussed in section III-A

g̃ = g(xα, yα) + 2−α
m∑

i=1

xβi
2−oigx(xαi

, yαi
)

+ 2−α
m∑

i=1

yβi
2−oigy(xαi

, yαi
)

(16)

from which 2m+1 tables are derived: one table for the initial

value denoted TIV and m tables in x and y providing offsets

denoted TOx
i and TOy

i respectively–note that for each offset,

xαi
replaces xα.

TIV (xα, yα) = g(xα, yα) (17)

TOx
i (xαi

, yαi
, xβi

) = 2−αxβi
2−oigx(xαi

, yαi
) (18)

TOy
i (xαi

, yαi
, yβi

) = 2−αyβi
2−oigy(xαi

, yαi
) (19)

The concept of using variable sized prefixes for each xβi

was originally proposed in [8] and could possibly reduce the

table size for each offset table. As before, it is assumed that

the derivatives are approximately constant over regions with

granularity αi. In order to simplify the linearization procedure

and speed up the run time performance a heuristic can be

applied when determining the derivatives in Eq. (16): for

each derivative gx(xαi
, yαi

), the average derivative of the four

corners of the approximating region is used instead, i.e., if we

let xαi
= xαi

+ 2−αi − 2−q (similarly define for yαi
) then

TOx
i (xαi

, yαi
, xβi

) =
2−αxβi

2−oi

4

[
gx(xαi

, yαi
)+

gx(xαi
, yαi

) + gx(xαi
, yαi

) + gx(xαi
, yαi

)

]

Some notation must first be developed before expressing the

LP. Let x be represented as ix2−q where ix is a positive integer

less than 2q (similarly define iy), where ix and iy are used as

indices to distinguish variables. Also define ix[k] to be the

integer formed by taking the most significant k bits of the

q-bit vector which represents ix.

The error bounds for the LP must be carefully examined–

if each term in the expansion of Eq. (14) is rounded to

some fractional position, then these rounding errors must be

incorporated. For a partitioning α, (α1, β1), . . . (αm, βm), the

required amount of memory bits can be expressed with

(p + t) × 22α +

m∑

i=1

(px
i + txi) × 22αi+βi

+
m∑

i=1

(py
i + tyi) × 22αi+βi +

ROMs︷ ︸︸ ︷
2(2 + t) × 2q

(20)

where p, t denotes the number of integer and fractional bits

respectively of TIV entries, and pi, ti denotes the number

of integer and fractional bits respectively of TOx
i and TOy

i

entries respectively. The total rounding error (ǫR) of the terms

is,

‖ f̃(d̂) − ̂̃
f(d̂) ‖∞ = ǫR ≤ 1

2

(
2−t +

m∑

i=1

2−ti

)
(21)

which affects the error bounds as such

ǫK < 1
2ǫS − 2−q − ǫR (22)

The value of ǫR is not known a priori. The number of

fractional positions to which each table will be rounded to

depends on the error slack (1
2ǫS − 2−q − ǫK) which is

dependent on the quality of the attainable linearization for a

given partition. Minimizing Eq. (20) according to constraints

in Eqs. (21) and (22) can be done by brute force because of

the small problem size. Therefore, when formulating the LP

the errors will not be bounded, instead the maximum error,

ǫK , obtained from the LP solution will be checked against
1
2ǫS − 2−q. If ǫK is greater, then the current partition for the

given precision q is infeasible as it exhibits more than the

permissible amount of error. If ǫK is less, then the difference

(ǫR) will be distributed into rounding errors for the tables in

a manner which minimizes the total number of required bits.

The LP problem using the heuristic described to obtain the

offsets can then be written as,

Objective:

min




2q−1∑

ix=0

2q−1∑

iy=0

ǫix,iy




Variables:
{

for ix[α], iy[α] = 0, . . . , 2α − 1

tix[α],iy[α]

Constraints:

for ix, iy = 0, . . . , 2q − 1

ǫix,iy
=

∣∣∣∣g(ix, iy) − tix[α],iy[α] −
m∑

i=0

TOx
i (xαi

, yαi
, xβi

)

−
m∑

i=0

TOy
i (xαi

, yαi
, yβi

)

∣∣∣∣

r a σ ǫS ǫK ǫR q (p,t),[(p1,t1)x(p1,t1)y],...,[(pm,tm)x(pm,tm)y] α (α1,β1),...,(αm,βm) ≈ KBits

2 1 4 7/64 0.023 0.00092 5 (2, 10), [(−2, 12)x(−4, 12)y] 4 (3,1) 5.688

0.036 0.0031 6 (2, 8), [(−2, 10)x(−4, 10)y], [(−3, 13)x(−4, 13)y] 4 (3,1) (2, 1) 5.844

0.028 0.011 (2, 6), [(−2, 9)x(−4, 9)y], [(−3, 11)x(−5, 11)y] 4 (3,1) (3, 1) 6.25

4 2 5 13/512 0.0039 0.001 7 (2, 9), [(−4, 16)x(−7, 16)y] 6 (4,1) 56.75

0.0016 0.0033 (2, 8), [(−4, 10)x(−5, 10)y 6 (5,1) 64.25

4 3 3 3/64 0.0062 0.0016 6 (2, 9), [(−3, 11)x(−6, 11)y] 5 (4,1) 18.5

8 6 4 11/512 0.0016 0.0013 7 (2, 9), [(−4, 12)x(−5, 12)y] 6 (5,1) 53.75

8 7 3 3/128 0.0039 2.3e-05 7 (2, 15), [(−4, 18)x(−7, 18)y] 6 (4,1) 82.75

0.0016 0.0023 7 (2, 8), [(−4, 12)x(−5, 12)y] 6 (5,1) 72.25

TABLE III: Multipartite results using derivative heuristic.

whose solution will yield the values of all tix[α],iy[α] which

will be used to populate the corresponding entry in the initial

value table, TIV . By minimizing the sum of errors, each error

ǫix,iy
is minimized. Some results using the aforementioned

approach have been shown in Table III, which can again be

verified by perfect induction.

The width of a table entry can be further reduced by

finding the range of its values. For example if all entries in

a table range from [−0.12, 0.12] and the table is rounded to

10 fractional positions, then all numbers in the table can be

represented with 8 bits. The reason behind this is the value

can be represented with s.sssx4x5x6x7x8x9x10 where s is the

sign bit and xi are fractional bits. It’s obviously wasteful to

store unnecessary sign bits as the value can be sign extended to

the desired precision after table-lookup. Each table is analyzed

in this manner to determine if any of the leading fractional

positions can be omitted. If any fractional positions can be

omitted, this is denoted by a negative p value, for example,

px
1 = −4, tx1 = 10 would mean that for offset table TOx

1 ,

only six bits need to be stored, where the 4 most significant

fractional positions are omitted and the remaining 6, up to the

desired rounding position, are retained.

IV. RESULTS

A comparison between the single table and multipartite

tables derived is shown in the plot of Fig. 3. From the results

it is clear that multipartite tables are much more memory

efficient than single table designs, ranging in improvements

from 23% up to 67% for the studied design points. The

results verify the intuition behind the multipartite scheme and

prove that they remain highly applicable to functions of two

variables.

V. CONCLUSION & FUTURE WORK

The objective of this research was to extend the mul-

tipartite scheme as developed by [8][2][9] to the complex

valued reciprocal, which is a function of two variables. The

contribution of this work is the extension of multipartite

and linearization techniques and proving their viability via

a concrete design problem. Multipartite schemes derived via

the proposed extensions were found to be 23% to 67% more

efficient than their single table counterparts for the design

points studied.

The linearization problem can actually be posed in a manner

which allows solving for the optimal offset values [7], as

 0

 20

 40

 60

 80

 100

 120

 140

 160

2,1 4,2 4,3 8,6 8,7

r, a
K

B
it
s

Single Table

Multipartite Tables

Memory Requirements vs. Design Point

Fig. 3: Single table reciprocal approximation costs vs multi-

partite costs. The x-axis is the design point under question,

which is specified via the radix r and digit-set a used by the

division algorithm in [1].

opposed to using the heuristic employed in obtaining the

results presented in this paper, which is the topic of future

work.

REFERENCES

[1] M. D. Ercegovac and J. M. Muller, “Complex division with prescaling of
operands,” in Application-Specific Systems, Architectures, and Processors,

2003. Proceedings. IEEE International Conference on, Jun. 2003, pp.
304–314.

[2] J. M. Muller, “A few results on table based methods.” in Reliable

Computing, 5(3), 1999, pp. 279–288.
[3] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann

Publishers, San Francisco, 2004.
[4] D. Das Sarma and D. W. Matula, “Faithful bipartite ROM reciprocal ta-

bles,” in Computer Arithmetic, 1995., Proceedings of the 12th Symposium

on, Bath, UK, Jul. 1995, pp. 17–28.
[5] D. DasSarma and D. W. Matula, “Measuring the accuracy of ROM

reciprocal tables,” IEEE Transactions on Computers, vol. 43, no. 8, pp.
932–940, Aug. 1994.

[6] P. Kornerup and D. W. Matula, “Single precision reciprocals by multi-
partite table lookup,” 2005. ARITH-17 2005. 17th IEEE Symposium on

Computer Arithmetic, pp. 240–248, Jun. 2005.
[7] P. Dormiani, “Low precision table based complex reciprocal approxima-

tion,” computer Science Department, UCLA, Internal Report 2009.
[8] F. de Dinechin and A. Tisserand, “Some improvements on multipartite

table methods,” in Computer Arithmetic, 2001. Proceedings. 15th IEEE

Symposium on, Vail, CO, USA, 2001, pp. 128–135.
[9] J. E. Stine, Michael, and J. Schulte, “The symmetric table addition method

for accurate function approximation,” Journal of VLSI Signal Processing,
vol. 21, pp. 167–177, 1999.

