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Abstract

The straightforward implementation of interval matrix product suf-

fers from poor efficiency, far from the performances of highly optimized

floating-point implementations. In this paper, we show how to reduce

the interval matrix multiplication to 9 floating-point matrix products -

for performance issues - without sacrificing the quality of the result. We

show that, compared to the straightforward implementation, the overes-

timation factor is at most 1.18.

1 Introduction

Interval arithmetic is a means to obtain guaranteed results: enclosures of the
results are computed. Nonetheless, it suffers from lower performance than non-
guaranteed floating-point computations. Indeed, the factor of performance be-
tween interval arithmetic and floating-point arithmetic in theory is four. It is
even much worse in practice, especially when a large number of operations is
involved.

In this paper we will study the case of matrix multiplication. Our implemen-
tation, based on the natural algorithm, provides good results at a cost of very
low performance. The idea is to exploit existing libraries which are well opti-
mized for floating-point matrix operations such as BLAS, ATLAS, etc. Rump
proposed a fast algorithm which uses only four floating-point matrix products
[2]. It returns a result wider than the result obtained by replacing each floating-
poing opertaion between two numbers by its interval counterpart: the factor of
overestimation in the worst case of this algorithm is 1.5. This paper proposes a
new algorithm which costs nine floating-point matrix products with the factor
of overestimation in the worst case of 1.18.
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This paper is organized as follows. Section 2 briefly presents interval arith-
metic with some basic operations. These are extended to matrix operations
which are studied in section 3. Section 4 reminds the idea of Rump algorithm.
Section 5 is devoted to our proposed algorithm.

Notations

In this paper, bold-face lower-case letters represent scalar intervals and bold-
face upper-case letters represent interval matrices. Below are some additional
notations.

[◦] an expression computed by interval arithmetic,
(◦)↓, (◦)↑ expressions computed by floating-point arithmetic with downward

and upward rounding mode respectively,
[i, s] an interval bounded by i and s,
{m, r} an interval whose mid-point is m and radius is r,
a, a lower and upper bound of a,

mag (a) maximal magnitude of a: mag (a)
def
= max{|a|, a ∈ a} = max(|a|, |a|)

2 Interval Arithmetic

Interval are used to represent connected closed sets of real values. Interval
arithmetic defines operations between intervals. The result of an operation
between intervals is also an interval containing all the possible results between
all possible pairs of real values taken from input intervals: r = a[◦]b = {a◦b, a ∈
a, b ∈ b}.

Due to the monotonicity property, the sum of two intervals r = a + b can
be computed by the sum of their two respective lower and upper bounds:

r = a+ b r = a+ b (1)

Interval multiplication r = a ∗ b is formed by taking the minimum and
maximum value of the four products between two pairs of bounds of the two
input intervals.

{

r = min(a ∗ b, a ∗ b, a ∗ b, a ∗ b)
r = max(a ∗ b, a ∗ b, a ∗ b, a ∗ b) (2)

Hence, in theory the factor, in terms of performance, between interval arith-
metic and floating-point arithmetic is 4.

Implementation

Intervals are implemented on computers using floating-point numbers. To en-
sure the inclusion property of the results, rounding errors must be taken into
account.
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For interval addition r = a + b, the lower bound must be computed with
downward rounding mode, and the upper bound with upward rounding mode.

r = (a+ b)↓ r = (a+ b)↑ (3)

Interval product r = a ∗ b is computed following (2) by four floating-point
products. Nevertheless, to tackle rounding errors, each floating-point product
must be computed twice, once with upward and once with downward rounding
mode. Thus in total, it requires eight floating-point products.

{

r = min((a ∗ b)↓, (a ∗ b)↓, (a ∗ b)↓, (a ∗ b)↓)
r = max((a ∗ b)↑, (a ∗ b)↑, (a ∗ b)↑, (a ∗ b)↑)

(4)

We can reduce the number of floating-point products by inspecting the sign
of each component. But testing the sign is costly also.

Particular cases

If a and b are centered in zero

ie a = −a and b = −b then a+ b = −(a+ b). Hence, the sum r = a+ b can
be computed by:

r =
(

a+ b
)

↑
r = −r (5)

If b is centered in zero

then max(x ∗ b, x ∗ b) = |x| ∗ b and min(x ∗ b, x ∗ b) = − |x| ∗ b for all x ∈ R.
Hence according to (2), r = a ∗ b can be computed by:

r = max(|a| , |a|) ∗ b
= mag (a) ∗ b

r = −max(|a| , |a|) ∗ b
= −r

Using floating-point arithmetic, r can be computed by only one floating-
point product in upward rounding mode:

r =
(

mag (a) ∗ b
)

↑
r = −r (6)

3 Interval matrix operations

Let’s now study the case of matrix operations. Suppose that each interval matrix
here is of dimension n×n and is represented by two floating-point matrices, one
for its lower bound and the other for its upper bound.

The addition of two interval matrices C = A + B can be computed by
performing scalar additions between corresponding elements of the two matrices.
Thus

C = (A+B)↓ C =
(

A+B
)

↑
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For the case of interval matrix multiplication, each element of the result
matrix is computed by:

Ci,j =
∑

k

Ai,k ∗Bk,j (7)

Using this natural formula, the computation of each product element requires
n interval multiplications and n interval additions, or, following (3) and (4),
it requires 8n floating-point products and 2n floating-point additions. Hence,
the overall cost in theory is 8n3

∗ + 2n3
+ floating-point operations. Nonetheless,

this cost does not take into account neither min, max functions nor the cost of
rounding mode changes.

Particular cases

A is centered in zero

ie Ai,k is centered in zero for all i, k. From (6) we get

Ai,k ∗Bk,j =
[

−Ai,k ∗ mag (B)k,j ,Ai,k ∗ mag (B)k,j

]

⇒ Ci,j =
[

−∑k Ai,k ∗ mag (B)k,j ,
∑

k Ai,k ∗ mag (B)k,j

]

⇒ C =
(

A ∗ mag (B)
)

↑

C = −C

Hence A ∗ B can be computed by one floating-point matrix product with
upward rounding mode.

A is non-negative

It means that 0 ≤ Ai,k and 0 ≤ Ai,k for all i, k. Hence















max(Ai,k ∗Bk,j ,Ai,k ∗Bk,j) = Ai,k ∗Bk,j

min(Ai,k ∗Bk,j ,Ai,k ∗Bk,j) = Ai,k ∗Bk,j

max(Ai,k ∗Bk,j ,Ai,k ∗Bk,j) = Ai,k ∗Bk,j

min(Ai,k ∗Bk,j ,Ai,k ∗Bk,j) = Ai,k ∗Bk,j

Denote by xpos = max(x, 0) and xneg = min(x, 0) then

{

max(Ai,k ∗Bk,j ,Ai,k ∗Bk,j) = Ai,k ∗Bpos

k,j +Ai,k ∗B
neg

k,j

min(Ai,k ∗Bk,j ,Ai,k ∗Bk,j) = Ai,k ∗Bpos
k,j +Ai,k ∗Bneg

k,j

⇒
{

Ai,k ∗Bk,j = Ai,k ∗B
pos

k,j +Ai,k ∗Bneg

k,j

Ai,k ∗Bk,j = Ai,k ∗Bpos
k,j +Ai,k ∗Bneg

k,j

⇒
{

C =
(

A ∗Bpos
+A ∗Bneg

)

↑

C = (A ∗Bpos +A ∗Bneg)↓
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In this case, an interval matrix product can be computed by 4 floating-point
matrix products.

Similarly, if A is non positive, 4 floating-point matrix products suffice to
compute an interval matrix product.

A does not contain zero in its interior

We can then split A into positive and negative part by

apos =

{

{a ∈ a | a ≥ 0} if a ≥ 0
0 if a < 0

aneg =

{

{a ∈ a | a ≤ 0} if a ≤ 0
0 if a > 0

A does not contain zero in its interior, thus either Apos
i,j = Ai,j ,A

neg
i,j = 0 or

A
pos
i,j = 0,Aneg

i,j = Ai,j . Hence

Ai,j ∗Bj,k = Ai,j ∗Bpos
j,k +Ai,j ∗Bneg

j,k

⇒ A ∗B = Apos ∗B+Aneg ∗B

In total, it costs eight floating-point matrix products.
For these three particular cases, if all operations are performed in infinite

precision or if there is no rounding error, then the computed result is exact.
In general, when there is no assumption about the input intervals then it

would not be efficient to use the natural algorithm. One solution is to exploit
floating-point matrix multiplication because there are available libraries which
are well optimised for floating-point matrix operations.

4 Rump’s algorithm

Rump proposes an algorithm which makes use of floating-point operations for
speed [2, 3]. This algorithm is based on the midpoint-radius representation of
intervals.

LetA = {mA, rA} andB = {mB, rB} be two interval matrices, withmA,mB

their midpoints and rA, rB their radius respectively. The product A ∗ B is
enclosed by an interval matrix C whose midpoint and radius are computed by:

mC = mA ∗mB

rC = (|mA|+ rA) ∗ rB + rA ∗ |mB|

In fact, because of rounding errors, mA ∗mB cannot be computed exactly.
Thus it must be computed with both upward and downward rounding mode to
obtain en enclosure of the midpoint. The radius rC must also be computed with
upward rounding to ensure the inclusion property.

mC =
[

(mA ∗mB)↓ , (mB ∗mB)↑

]

rC = ((|mA|+ rA) ∗ rB + rA ∗ |mB|)↑
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Finally, the result can be easily converted back to endpoints representation
by two floating-point additions.

C =
(

mC+ rC
)

↑
C = (mC− rC)↓

In total, this algorithm uses four floating-point products.

Over-estimation

Without taking into account of rounding errors, Rump’s algorithm always pro-
vides over-estimating results. The factor of over-estimation in the worst case is
1.5.

For example, by definition [0, 2] ∗ [0, 4] def= [0, 8].
Meanwhile, Rump’s algorithm gives

[0, 2] ∗ [0, 4] = {1, 1} ∗ {2, 2}
= {1 ∗ 2, (1 + 1) ∗ 2 + 1 ∗ 2}
= {2, 6}
= [−4, 8]

The over-estimation factor in this case is 12/8 = 1.5.

5 Proposition

Rump algorithm can be considered as decomposing A and B into a sum of two
components representing its midpoint and radius respectively. A ∗ B is then
replaced by its development, which is a sum of four sub-products. Due to the
sub-distributive property of interval product, the result yielded by this sum is
an enclosure of the original product.

Our idea is to find another decomposition such that sub-products can be
efficiently computed, and the over-estimation is small.

As we can see in Section 3, an interval product can be efficiently computed
when one of the two multipliers is centered in zero or does not contain zero.

Proposition 1. Let A be an interval matrix. If A is decomposed into two

interval matrices A
0 and A

∗ which satisfy:

• A
0

i,j = 0,A∗
i,j = Ai,j if Ai,j ∗Ai,j ≥ 0,

• A
0

i,j =
[

Ai,j ,−Ai,j

]

,A∗
i,j =

[

0,Ai,j +Ai,j

]

if Ai,j < 0 <
∣

∣Ai,j

∣

∣ ≤ Ai,j,

• A
0

i,j =
[

−Ai,j ,Ai,j

]

,A∗
i,j =

[

Ai,j +Ai,j , 0
]

if Ai,j < 0 < Ai,j <
∣

∣Ai,j

∣

∣

then

• A
0 is centered in zero,

• A
∗ does not contain zero in its interior, and
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• A
0 +A

∗ = A.

Proof. Easily deduced from the formula.

Proposition 2. Let A and B be two interval matrices and (A0,A∗) a decom-

position of A by Proposition 1. Let C be an interval matrix computed by

C = A
0 ∗B+A

∗ ∗B (8)

Then A ∗B is contained in C. Denote C
def
= A⊛B.

Proof. Following Proposition 1:

A = A0 +A∗

Interval multiplication is sub-distributive, hence

A ∗B ⊆ A0 ∗B+A∗ ∗B
⊆ C

A0 is centered in zero and A∗ does not contain zero, so according to Section
3, A0 ∗B and A∗∗B can be computed using 1 and 8 floating-point matrix prod-
ucts respectively. Hence, the overall cost is 9 floating-point matrix products.
The following section will study the over-estimation factor of this operation in
the worst case.

Over-estimation factor

Let us first consider the product of two scalar intervals a and b with a being
decomposed, following Proposition 1, into two parts: a = a0+a∗. Suppose that
all calculations here are performed in infinite precision. It means that rounding
errors will not be taken into account.

If a is centered in zero

then a∗ = 0 → a ∗ b = a0 ∗ b. Thus the result is exact.

If a does not contain zero in its interior

then a0 = 0 → a ∗ b = a∗ ∗ b. Thus the result is exact too.
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If a contains zero

It means that a < 0 < a. The case a < |a| is contrary to the case a > |a|, hence
without loss of generality we suppose that a > |a|. In this case a0 = [a,−a] and
a∗ = [0, a+ a]. Following Proposition 2

a⊛ b = a0 ∗ b+ a∗ ∗ b
= [a,−a] ∗ b+ [0, a+ a] ∗ b
= [a ∗ mag (b) ,−a ∗ mag (b)] + [0, a+ a] ∗ b

• If b ≥ 0, then mag (b) = b

a⊛ b = [a ∗ mag (b) ,−a ∗ mag (b)] + [0, a+ a] ∗ b
=

[

a ∗ b,−a ∗ b
]

+
[

0, (a+ a) ∗ b
]

=
[

a ∗ b, a ∗ b
]

Meanwhile, b ≥ 0 → a ∗b =
[

a ∗ b, a ∗ b
]

. Hence a⊛b = a ∗b. It means
that there is no overestimation.

• Idem for the case b ≤ 0.

• If b > 0 > b and b ≥ |b| then mag (b) = b. Hence

a⊛ b = [a ∗ mag (b) ,−a ∗ mag (b)] + [0, a+ a] ∗ b
=

[

a ∗ b,−a ∗ b
]

+
[

(a+ a) ∗ b, (a+ a) ∗ b
]

=
[

(a+ a) ∗ b+ a ∗ b, a ∗ b
]

⇒ diam(a⊛ b) = a ∗ b− ((a+ a) ∗ b+ a ∗ b)
= a ∗ b ∗ (1− a/a− b/b− a/a ∗ b/b)

As a > 0 > a > −a and b > 0 > b > −b

a ∗ b =
[

min(a ∗ b, a ∗ b), a ∗ b
]

⇒ diam(a ∗ b) = a ∗ b− min(a ∗ b, a ∗ b)
= a ∗ b ∗ (1− min(a/a,b/b))

Denote by

{

M = max(|a| /a, |b| /b)
m = min(|a| /a, |b| /b) then















0 < m ≤ M ≤ 1

min(a/a,b/b) = −M

a/a+ b/b = −m−M

a/a ∗ b/b = m ∗M
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The factor of overestimation is computed by:

diam(a⊛ b)

diam(a ∗ b) =
1− a/a− b/b− a/a ∗ b/b

1− min(a/a,b/b)

=
1 +M +m−Mm

1 +M

=
1 +M +m(1−M)

1 +M

≤ 1 +M +M(1−M)

1 +M

Inspecting the last function of unknown M between 0 and 1, we have
that its maximum is 4 − 2

√
2 ≈ 1.18 and this maximum is reached for

m = M =
√
2− 1, or a/a = b/b = 1−

√
2.

• Idem for the case b > 0 > b and b < |b|

Let’s now extend to the case of matrix multiplication. Each element of the
result matrix is computed by

Ci,j =
∑

k

A0

i,k ∗Bk,j +
∑

k

A∗
i,k ∗Bk,j

=
∑

k

(A0

i,k ∗Bk,j +A∗
i,k ∗Bk,j)

Moreover

diam(a + b) = (a+ b)− (a+ b)

= (a− a) + (b− b)

= diam(a) + diam(b)

⇒ diam(Ci,j) = diam

(

∑

k

(A0

i,k ∗Bk,j +A∗
i,k ∗Bk,j)

)

=
∑

k

diam(A0

i,k ∗Bk,j +A∗
i,k ∗Bk,j)

With the assumption of no rounding error, the over-estimation factor in the
worst case for this scalar product is 4− 2

√
2. Hence

diam(Ci,j) ≤ (4 − 2
√
2) ∗

∑

k

diam(Ai,k ∗Bk,j)

≤ (4 − 2
√
2) ∗ diam

(

∑

k

Ai,k ∗Bk,j

)

⇒ diam(C) ≤ (4 − 2
√
2) ∗ diam(A ∗B)

Hence, the over-estimation factor in the worst case of interval matrix product
is also 4− 2

√
2 ≈ 1.18.
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6 Conclusion

The algorithm presented in this paper implements the product of interval ma-
trices using floating-point operations. It constitutes a trade-off between the
performances of optimized floating-point libraries, and a slight overestimation
of the result. We have proven that this overestimation factor is at most 1.18,
which means that the width of computed result is always less than 1.18 times the
width of exact result. In particular, if one of the two multipliers does not contain
zero in its interior then the computed result is exact using exact arithmetic.

The performance of the algorithm given above relies entirely on the per-
formance of the employed floating-point library. Such a library must support
directed rounding modes to be of use. This requirement is not really an is-
sue, since libraries such as LAPACK or ATLAS, which are renowned for their
performances, support directed roundings.

However, the use of directed rounding modees restricts the algorithm that
can be used as a basic algorithm to the natural one. Indeed, fast algorithms
for matrix products [1], which have a complexity below O(n3), do not preserve
the monotonicity of operations (they use substraction as well as addition and
multiplication) and they cannot be used. Furthermore, such algorithms rely
on algebraic properties such as (x + y) − y = x, which do not hold in interval
arithmetic.
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