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Introduction

Today, embedded systems are everywhere, and are used in various application domains (multime-
dia, audio and video, or telecommunications, for example). Unlike general-purpose computers,
embedded systems have microprocessors that are dedicated to one or a few specific tasks. Hence,
they can be designed and tuned to satisfy several constraints: in terms of area and of energy
consumption. And satisfying these constraints enables also to gain in terms of conception cost
for designers. Currently, some embedded systems integrate their own dedicated floating-point
units (FPU), but it is done to the detriment of an increase of its area and its energy consumption.
Therefore to be able to satisfy such constraints, some embedded systems do not have any FPU,
but only arithmetic and logical units (ALU’s). However, that does not affect the performances of
these architectures, which remain extremely efficient. Consequently, their low construction cost
and energy consumption together with their small area and their efficiency, make embedded sys-
tems currently widely used, especially in real-time applications (audio and video, for example).
But these applications are highly demanding on floating-point calculations, and since on this kind
of architectures floating-point arithmetic is not implemented in hardware, it has to be emulated
through a software implementation.

The problematics underlying this thesis is the design and the implementation of an efficient
software support for IEEE 754 floating-point arithmetic on integer processors, through a set of
mathematical operators offering correct rounding, handling of subnormal floating-point numbers,
and handling of special inputs [IEE08]. Mostly, these implementations are particularly optimized
for a specific target. The problem is that, by doing this “by hand”, the developing time for such
mathematical operators may be long (about up to 3 months for one function [Lau08, p. 197]),
tedious, and also particularly error-prone. Furthermore each time a new target is developed or a
new format is required, we have to rewrite some new software support for this format, optimized
for that particular target. That statement has motivated the implementation of methodologies and
tools dedicated to the automation of the implementation of floating-point operators, in hardware
(FloPoCo [dDP]) and software (Sollya [CL], Metalibm [Lau], or CGPE [Rev]). And currently, the
most important challenge aims at providing tools for generating in a fast way efficient and certified
programs, optimized for the target on which they will be used.

This problematics has thus guided the work of this thesis, which aims first at providing some
efficient and certified software support for binary32 floating-point arithmetic (formerly called
single precision) on integer processors, in particular VLIW’s and DSP’s, through a set of correctly-
rounded basic algebraic functions, but also at providing some methodologies and tools that are
expected to help the automation of the writing of some parts of these codes. Parts of this work has
been done in collaboration with the Compilation Expertise Centre of STMicroelectronics (Greno-
ble, France), and validated on the processors of the ST200 family, which are 4-issue VLIW 32-bit
embedded integer processors, more particularly the ST231 processor core. These processors are
highly used in the audio and video domains, such as in set-top boxes for HD-IPTV (High Defini-
tion Internet Protocol Television), cell phones, wireless terminals, and PDAs.
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To achieve these objectives, we bring out in this thesis several basic blocks from mathematical
operator implementations. Hence the approaches that we propose here rely on a systematic use
of these basic blocks, and thus enable to write quickly some efficient C codes. For each basic
block, we give an algorithm parametrized by the target binary floating-point format as well as an
analysis of the algorithm (especially those enabling computing correct rounding). Each of these
basic blocks used is then illustrated with a C code for the binary32 floating-point format and
optimized for the ST231 processor core.

This work yield two software developments:

• A new, fully revised version of FLIP1 (Floating-point Library for Integer Processors) that
provides some portable C software support for binary32 floating-point arithmetic on integer
processors, particularly targeted to VLIW processors like the ST231.

• CGPE2 (Code Generation for Polynomial Evaluation), which enables to write efficient and
certified C code for the evaluation of bivariate polynomials in fixed-point arithmetic. The
codes automatically produced by CGPE are integrated into those of FLIP.

We denote by “certified C code” a C code for which we can bound the evaluation error on inte-
ger arithmetic. To write such certified C codes, we proceed in two steps. First we compute with
Sollya a polynomial approximant of the function to be implemented, as well as a certified approxi-
mation error and a certified evaluation error bound. Then we check with Gappa or by using MPFI
that the evaluation error of our C code evaluating this polynomial satisfies the certified evaluation
error bound. This process will be detailed later in the introduction.

The document is organized into two parts. Part I deals with the implementation in software
of some binary floating-point operators optimized for the binary32 format and for the ST231 pro-
cessor. Particularly, we present a general approach for some of these operators based on the eval-
uation of a particular bivariate polynomial. In this first part, we will not discuss the way used for
computing the polynomial evaluation programs, which is the subject of the second part. Indeed,
in Part II, after a reminder of classical methods for evaluating polynomials and their applications
in fixed-point arithmetic, we will present a methodology for generating efficient and certified C
code for evaluating a given polynomial in fixed-point arithmetic. Now before detailing each of
these parts, let us first give an outline of Chapter 1.

Chapter 1 - Context. This first chapter is an introductory chapter to the context of this work. In-
deed, it aims at presenting some features (conditional branch reduction, called if-conversion)
and constraints (instructions bundling, data accesses in memory) of the ST231 processor,
both useful for analyzing and implementing functions (Part I), and optimizing and gener-
ating codes (Parts I and II). Then, it reminds the IEEE 754 standard for binary floating-
point arithmetic, some basics about fixed-point arithmetic, and the way used to manipulate
floating-point data on integer architectures.

Part I – Design of optimized algorithms for some binary floating-point operators and
their software implementation on embedded VLIW integer processors

This part is focused on the optimized software implementation of some binary floating-point
operators, targeted to embedded VLIW processors. So far, several software implementations of
floating-point arithmetic have already been proposed, based on integer arithmetic:

1FLIP 1.0 is now available upon request.
2CGPE has not been released yet, but it is available upon request.
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SoftFloat. In [Hau], SoftFloat provides a software implementation of the IEEE 754 binary floating-
point arithmetic (single, double, double extended, and quadruple precision), for the four
required roundingmodes, with handling of exception flags and special values. For example,
for the binary32 floating-point format, in this library, square root is implemented using a
method that refines a first approximation extracted from an array, while division relies on
64-bit integer division.

Software floating-point support of GCC. GCC provides some software floating-point support [GCC]
containing implementations of the main arithmetic operators (addition, subtraction, multi-
plication, division, and negation), and where division is implemented using an optimized
iterative method [EL94], that produces one bit of the result per iteration.

Glibc and µClibc. The GNU libc3 integrates an implementation of several mathematical func-
tions (soft-fp) for several binary formats (single, double, double extended), that can be
used on processors having no FPU [SM06]. This is based on FDlibm (Freely Distributable
LIBM [FDL]) which provides only double precision implementation of floating-point math-
ematical functions. Our interest in this library comes from the fact that it provides a software
implementation of the binary32 square root relying on integer arithmetic, which is based on
an iterative method.

Remark that µClibc (also called uClibc) is a “light” version of the Glibc, optimized for em-
bedded systems.4 This library provides a libm where, for example, the single precision
square root is implemented by calling double precision version and then casting the result
to a single precision value. In terms of accuracy, that may lead to the problem of double
rounding and thus to implementations that are not correctly-rounded.

GoFast Floating-Point Library. GoFast5 is a family of fast IEEE 754 floating-point libraries, par-
ticularly designed to be used on embedded systems. For instance, for the single precision, it
provides the addition, subtraction, multiplication, division, square root, and other elemen-
tary functions.

Hence, these methods are ill-suited to be used on ST231: first they do not exploit at best the
instruction-level parallelism of the ST231. Second, due to the ST231 memory architecture, design-
ers have to avoid methods based on look-up tables (this point will be explained in Section 1.1.4,
Chapter 1), since they lead to a large increase of latency.

Originally, STMicroelectronics was using STlib as a software support for binary32 floating-
point arithmetic in their compilation tool chain. This library based on SoftFloat (without exception
handling and subnormal support6) provides, in particular, a correctly-rounded software imple-
mentation of the five basic operations for the binary32 floating-point arithmetic in RoundTiesTo-
Even (rounding-to-nearest). In STlib, division and square root are implemented via iterative meth-
ods (see [EL94] or [PB02] for square root, or [OF97b] for division).

In [Rai06], Raina proposed a first improvement for these operators, by using multiplicative
methods, Newton-Raphson or Goldschmidt (see [Mar04] for square root, or [Mar00] for division),
that refine a first approximation of the function (or its reciprocal). This work has lead to the
development of the library FLIP 0.3 [BBdD+04]. Table 1 below gives the performances of STlib and
FLIP 0.3, in numbers of cycles and integer operations, for RoundTiesToEven, while Table 2 below
shows the speedup of FLIP 0.3 compared to STlib. We can observe a first gain of between 20.8 %

3Available at http://www.gnu.org/software/libc/ .
4Available at http://www.uclibc.org/ .
5Information about GoFast can be found at http://www.smxrtos.com/ussw/gofast.htm .
6In STlib, subnormal inputs are considered as zeros.

http://www.gnu.org/software/libc/
http://www.uclibc.org/
http://www.smxrtos.com/ussw/gofast.htm
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and 73.3 %. However, these methods do not exploit at best the instruction-level parallelism of
the ST231 processor. On the IBM Power3TM [AGS99], the evaluation of square root and division is
done via the evaluation of a power series approximation (univariate polynomial), which enables
to exploit more instruction-level parallelism than the iterative and multiplicative methods.

The contribution of this part have been integrated into FLIP 1.0, the new version of the FLIP li-
brary, which provides optimized and certified software implementation of several mathematical
operators (addition, subtraction, multiplication, division, reciprocal, (reciprocal) square root, (re-
ciprocal) cube root, ...) for the binary32 floating-point format, with subnormal number support
and for the four IEEE rounding-direction attributes (chosen at compile-time) required by the new
version of the IEEE 754 standard [IEE08]. The objective was to be as compliant to the IEEE 754-
2008 standard as possible. Today, only the exception flags are not supported in FLIP.

In Table 2 (last column), we can observe that the implementations of FLIP 1.0 are between
31.5 % and 48.8 % faster than the ones of the previous version, FLIP 0.3. To achieve these per-
formances, our approach mainly consists in approximating the functions by a particular bivariate
polynomial, and then in evaluating it as efficiently as possible on the ST231. The parenthesiza-
tion chosen for evaluating this particular bivariate polynomial is automatically generated using
CGPE (Part II).

FLIP last development version (FLIP 1.0) FLIP 0.3 STlib

RN RU RD RZ RN RN

addition 26 [87] 27 [92] 27 [91] 23 [73] 38 [114] 48 [165]

subtraction 26 [84] 26 [88] 26 [88] 23 [73] 39 [115] 49 [166]

multiplication 21 [71] 21 [73] 21 [72] 18 [59] 27 [89] 31 [86]

division 34 [103] 34 [107] 35 [106] 34 [101] 47 [116] 177 [*]

square root 23 [61] 23 [62] 23 [64] 23 [64] 45 [65] 95 [259]

reciprocal 25 [62] 27 [77] 26 [77] 26 [71] 41 [72] -

reciprocal square root 29 [68] 29 [69] 29 [69] 29 [70] 56 [96] -

cube root 34 [73] 43 [145] 45 [144] 42 [138] - -

reciprocal cube root 40 [86] 40 [94] 40 [94] 40 [88] - -

reciprocal fourth root 42 [81] 42 [82] 42 [83] 42 [83] - -

Table 1: Performances on ST231 in # cycles [# integer instructions].

[*] Division implementation cannot be flattened because of the presence of a call to 64-bit unsigned integer division.

For validation purposes (in terms of correctness of the implementations), the univariate func-
tions of FLIP have been compared exhaustively against MPFR [FHL+07] and the Glibc. Con-
cerning bivariate functions, they have been tested with the TestFloat package [Hau], and for the
particular case of division, with the “Extremal Rounding Tests Set” [MM] as well.

Outline of Part I

This first part is organized into three chapters as follows.

Chapter 2 - Basic blocks for implementing correctly-rounded floating-point operators. This chap-
ter presents the basic blockswe have brought out from implementations of correctly-rounded
floating-point operators. More particularly, for each of them, it gives some parametrized
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FLIP 0.3 vs STlib FLIP 1.0 vs STlib FLIP 1.0 vs FLIP 0.3

addition 20.8 % 45.8 % 31.5 %

subtraction 20.4 % 46.9 % 33.3 %

multiplication 12.9 % 32.2 % 22.2 %

division 73.3 % 80.7 % 27.6 %

square root 52.6 % 75.7 % 48.8 %

reciprocal - - 39.0 %

reciprocal square root - - 48.2 %

Table 2: Speed-up of FLIP 0.3 compared to STlib (FLIP 0.3 vs STlib), of FLIP 1.0 compared to STlib
(FLIP 1.0 vs STlib), FLIP 1.0 compared to FLIP 0.3 (FLIP 1.0 vs FLIP 0.3), in RoundTiesToEven∗.

∗ Here, the implementation of FLIP 1.0 supports subnormal numbers.

descriptions and analyses. Furthermore, all along this chapter, C codes are proposed for il-
lustrating them for the binary32 floating-point format. All these codes have been optimized
for the ST231. Finally, to show the interest of this preliminary definition and design of basic
blocks, a complete example of C code is given for binary32 multiplication.

Chapter 3 - A uniform approach for correctly-rounded roots and their reciprocals. This chapter
presents a new approach for implementing roots and their reciprocals, which is based on the
evaluation of a single bivariate polynomial. It turns out that this approach is more efficient
onVLIW 4-issue architectures, like the ST231, since they exploit more instruction-level paral-
lelism than classical ones. This efficiency is achieved thanks to the basic blocks of Chapter 2,
an optimized polynomial evaluation code generated using the tools that will be described in
Part II, the handling of special inputs in a way that fully exploits the binary interchange for-
mat encoding [IEE08, §3.4], and detailed and proved rounding procedures. Some elements
of automation are given for constructing accurate-enough polynomial approximants with
Sollya and for certifying their evaluation with Gappa. Finally, this approach is illustrated
through the examples of binary32 square root and reciprocal.

This work has lead to one publication at Asilomar’09 [JR09a] and to one submission to IEEE
Transactions on Computers [JKMR08].

Chapter 4 - Extension to correctly-rounded division. This chapter extends the approach of Chap-
ter 3 to division, and provides parametrized description and analysis of the division algo-
rithm based on the evaluation of a single bivariate polynomial. Here again the method is
presented with examples of C code for the binary32 floating-point format and optimized
for the ST231. Unlike roots and their reciprocals, the difficulties rely on the handling of
special inputs (since division is bivariate), the validation of the polynomial evaluation pro-
gram (which is less immediate), and the rounding condition implementation. These perfor-
mances are achieved thanks to the same reasons as for roots and their reciprocals. Moreover,
this chapter still points out the efficiency of this approach on ST231, even if a specific divs
instruction is used (that computes in 1 cycle a nonrestoring iteration of division).

Parts of this work have been published at ARITH’19 [JKM+09].
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Part II – Code generation for the efficient and certified evaluation of polynomials in
fixed-point arithmetic

The approach we have proposed in Part I is mainly based on the evaluation of a particular bivari-
ate polynomial that approximates accurately enough the function to be evaluated. The evaluation
of this polynomial represents the main part of this approach, and thus dominates the global cost
of the implementation. Hence, it may be critical for the efficiency of the code, and thus has to be
optimized as much as possible.

Clearly, the number of evaluation schemes (parenthesizations) is extremely large, even for
small polynomial degrees (≤ 5). Hence, choosing such parenthesizations “by hand” is long and
tedious, and it is difficult to conclude on the optimality of the parenthesization kept for imple-
menting the function. Therefore, we have proposed a tool called CGPE (for Code Generation for
Polynomial Evaluation) that generates efficient and certified polynomial evaluation programs in
fixed-point arithmetic. By efficient, we mean that the generated programs reduce the latency of
evaluation on the considered target architecture, while by certified, we mean that the error en-
tailed by the evaluation of the C code is no larger than a certified bound, so that we can ensure the
correct rounding of all the operators implemented.

In [HKST99], a methodology is proposed for building optimal evaluation schemes for the eval-
uation of univariate polynomials on the Itanium R© processor using only fma operations. More-
over, in [Gre02] a brute force method enables to product polynomial evaluation parenthesizations
using at best SIMD instructions of the processor of PlayStation R© 2 (Sony).

However, either these approaches are dependent to the target architecture, or use “naive”
(brute force) algorithms to converge toward evaluation parenthesizations. Therefore this part
discusses the efficient polynomial evaluation on integer architectures, especially on the ST231,
and the generation of such efficient programs tuned according to the target architecture.

Outline of Part II

This second part is organized into two chapters, as follows.

Chapter 5 - Polynomial evaluation in fixed-point arithmetic on the ST231 processor. This chap-
ter reminds some classical methods for evaluating polynomials (Horner’s rule, “second-
order” Horner’s, Estrin’s methods), and explains why they can be used efficiently for evalu-
ating polynomials on the ST231. More particularly, it shows how to implement these evalu-
ation schemes using only unsigned arithmetic (that may lead to a decrease of the evaluation
latency and an accuracy that is twice better), and how to validate such evaluation programs
with Gappa. As a conclusion, we observe that almost all these evaluation programs could
have been used for implementing mathematical operators in the FLIP library. Finally, we
explain why methods based on coefficient adaptations are not well-suited for evaluating
polynomials on integer architectures. That statement is illustrated through two examples,
the Knuth and Eve’s algorithm and the Paterson and Stockmeyer’s algorithm.

Chapter 6 - Computing efficient polynomial evaluation programs. This last chapter presents the
methodology that we have designed for generating efficient polynomial evaluation pro-
grams. The interest of our approach relies on the fact that it is able to take (a simplifiedmodel
of) the target architecture as an input parameter. Furthermore, it is based on an algorithm
that computes all the parenthesizations for evaluating given polynomials, the determination
of a lower bound of the minimal evaluation latency, and a heuristic that enables to search
in a fast way for a set of best evaluation parenthesizations. This methodology has been in-
tegrated into CGPE, and has been validated for the implementation of several functions of
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FLIP. For some of them, using this methodology, we can conclude that the polynomial evalu-
ation program generated is optimal in terms of evaluation latency. Finally, the experimental
framework presented here extends the works done in Chapters 3 and 4 on the automation of
polynomial approximant computations and on the validation of efficient polynomial eval-
uation programs for general operators. Figure 1 illustrates this framework, which will be
recalled and detailed in Chapter 6.

Problem

and with s ∈ S and t ∈ T
- precision p

evaluation programs

Generation of efficient

Architecture features
- number of issues
- latencies of integer operations

Generation of polynomial

approximant a(t)

Selection of efficient

C code / Gappa script

(mul ,+,>>)

- register size k
- constraints on operators

Generation of evaluation

- F (s, t) = c+ s · f(t) for some constant c

- global error bound ǫ

2. Minimization of the number of multiplications

3. Arithmetic operator choice

4. Expected latency after scheduling

5. Certification using Gappa

1. Minimization of the latency assuming unbounded parallelism

CGPE

evaluation parenthesizations

parenthesizations for the polynomial a

Gappa

Sollya

XML files

Figure 1: General framework for the automatic generation of efficient and certified polynomial
evaluation programs.

Notice that throughout this document, the certification of our C code relies on the following
tools:

• Sollya [CL] is a software environment created by Sylvain Chevillard [Che09] and Christoph
Lauter [Lau08]. It is addressed to “anyone who needs to perform numerical computations in
a safe environment.” Particularly, the main features of Sollya we will use in this document
are: the Remez algorithm, which approximates the “minimax” of a function on an interval
(“minimax” will be defined in Definition 3.3, Chapter 3), and the certified supremum norm,
which computes an interval enclosing the supremum norm of a function on a given interval
(that will be used for computing the approximation error of a polynomial approximant with
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respect to a given function). Examples of how to use these features are given in Chapters 3
(Listing 3.1) and 4 (Listing 4.6).

• Gappa [Mel] is a software tool developed by Guillaume Melquiond [Mel06]. It intends to
help verifying and formally proving properties on numerical programs. Actually, it ma-
nipulates logical formulas involving the inclusion of expressions in intervals, and allows to
bound rounding errors in a certified way. Gappa uses interval arithmetic and a set of the-
orems and rewriting rules for proving these properties, and providing a bound as tight as
possible. We will denote by “Gappa certificate” a Gappa script corresponding to a given C
code, so that the error bound computed by this script satisfies the required bound on the
evaluation error of the considered C code. Examples of how to write Gappa certificates are
given in Chapter 5 (Listing 5.3).



CHAPTER 1
Context

This chapter details the context of the work presented in this document.
More particularly, it gives some key features (conditional branch reduction,
called if-conversion) and constraints (instructions bundling and data ac-
cesses in memory) of the target architecture, the ST231 processor, which is a
4-issue VLIW 32-bit integer processor. These elements will guide the tech-
niques presented in Part I for providing efficient implementations of math-
ematical operators. This chapter further presents IEEE 754 binary floating-
point arithmetic as well as fixed-point arithmetic.

We have seen in introduction that the objective of our work is the design and the implementation
of efficient software support for binary32 floating-point arithmetic for integer processors. More
precisely, we aim at providing a set of correctly-rounded mathematical functions, particularly op-
timized for the ST231 processor core, a specific 4-issue VLIW integer processor of the ST200 family.
By definition, integer processors do not have floating-point units (FPU), and floating-point arith-
metic thus has to be emulated, that is, implemented in software. Hence, given a mathematical
function implementation, the input and output encode floating-point data, and internal computa-
tions are done using only operations on integers.

This first chapter is organized as follows. Section 1.1 gives an overview of the main features
of the ST231 processor core. Then Section 1.2 presents IEEE 754 binary floating-point arithmetic
as well as fixed-point arithmetic, and explains how to manipulate floating-point and fixed-point
numbers on integer processors like the ST231.

1.1 Overview of the ST231 architecture

This first section presents the ST231 architecture, through a description of the main features of this
target. After having given some key features, it explains the if-conversion mechanism, that allows
the reduction of conditional branches, shows how the instructions are encoded, and then details
the data accesses in memory. Finally, it simply gives some useful elements of the instruction
architecture set.

1.1.1 Some features of the ST231 architecture and compiler

ST231, a 4-issue VLIW 32-bit processor

The ST231 is a 4-issue VLIW 32-bit integer processor and a member of the ST200 family core of
STMicroelectronics. The VLIWmicroprocessors of ST200 family are embedded media processors,



10 Chapter 1. Context

that originate from the joint design of the Lx technology plateform by HP Labs and STMicroelec-
tronics [FBF+00]. They are mainly designed to implement advanced audio and video codecs in
consumer devices such as set-top boxes for HD-IPTV (High-Definition Internet Protocol Televi-
sion), cell phones, wireless terminals, and PDAs. In particular, the ST231 is the most recently
designed core of the ST200 family, and is widely used in STMicroelectronics SOCs for multimedia
acceleration.
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Figure 1.1: Block diagram of the ST231 architecture.

Figure 1.1 displays the block diagram of the ST231 architecture. As shown on this block dia-
gram, the ST231 architecture includes the following features:

• parallel execution units, including four integer ALU’s, Arithmetic Logic Units (or IU on
Figure 1.1), and two pipelined 32× 32 multipliers (Mul on Figure 1.1);

• a large register file of 64 general purpose 32-bit registers;

• efficient branch architecture with 8 one-bit branch registers (condition registers).

Concerning other features useful for efficiently implementing floating-point arithmetic, let us ob-
serve that the ST200 family includes:

• predicate execution through select operations;

• encoding of immediate operands up to 32 bits.

Architectural features of a VLIW processor

VLIW (Very Long InstructionWord) processors use an architectural techniquewhere ILP (instruction-
level parallelism) is explicitly exposed to the compiler [FFY05]. A VLIW processor issues simul-
taneously a fixed number of instructions, which were originally encoded in one large instruction
word. On modern VLIW architectures, in particular on the ST231, the instructions are grouped
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into a packet. In the ST231 terminology, this packet is called bundle and is composed of up to 4
instructions (see Section 1.1.3 for more details on the encoding of instructions). The processor can
thus load the bundle, the packet of instructions, and issue them simultaneously. On the ST231,
the RISC1-like operations in a same bundle are issued simultaneously and, since the delay be-
tween issue and completion is the same for all operations, complete simultaneously as well. This
is the compiler that is in charge of bundling compatible instructions with each others, and thus
of scheduling the code for the processor. (See [HP06, §2.7] or [Tan05, §8.1.1] for more details on
VLIW architectures.)

A hardware implementation of a VLIWprocessor is significantly simpler than a corresponding
multiple issue superscalar CPU. This is mainly due to the simplification of the operation grouping
and scheduling hardware. This complexity is moved to the instruction-level parallelism extrac-
tor (compiler) and the instruction scheduling system (compiler and assembler) in the software
toolchain.

Some key features of the ST231 compiler

The ST231 VLIW compiler is a C/C++ compiler based on the Open64 technology2 retargeted for
the ST200 processor family by STMicroelectronics. The compiler has been improved to support
the development for high performance embedded targets. In our context, the two most important
features of the ST231 compiler are the if-conversion and the Linear Assembly Optimizer, briefly
described below.

If-conversion The if-conversion optimization enables to generate mostly straight-line assembly
code by emitting efficient sequences of select instructions (slct ) instead of costly control
flow (this is detailed in Section 1.1.2);

Linear Assembly Optimizer In the context of loop programming, the Linear Assembly Opti-
mizer (LAO) [dD04] generates a schedule of the instructions that is very close to the optimal.
In our context, this generated schedule remains extremely efficient, and may be very close
to the optimal, not to say optimal for polynomial evaluation.

(See [ST208a] for more details on ST231 VLIW compiler.)

1.1.2 If-conversion : reduction of conditional branches

To enable the reduction of conditional branches, the architecture provides partial predication sup-
port in the form of conditional selection instruction. This optimization is called if-conversion. To
understand the interest of such an optimization, let us consider the following piece of C code
(Listing 1.1 below), that returns -1 if x < 0, and 1 otherwise.

1 int32_t expl_ifconversion( int32_t x)
2 {
3 if( x < 0 ) return -1;
4 else return 1;
5 }

Listing 1.1: Example of if-conversion.

The generated assembly code, using the ST231 C compiler (called st200cc ), is presented in List-
ing 1.2 below. Indeed, we observe on Listing 1.2 that an instruction slct is used instead of a

1RISC: Reduced Instruction Set Computer.
2See www.open64.net for details.

www.open64.net
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1 cmplt $b0 = $r16, $r0 ## (cycle 0)
2 mov $r16 = -1 ## (cycle 0)
3 ;; ## (bundle 0)
4 slct $r16 = $b0, $r16, 1 ## (cycle 1)
5 return $r63 ## (cycle 1)
6 ;; ## (bundle 1)

Listing 1.2: Assembly code generated for the example of if-conversion (Listing 1.1).

conditional branch. In line 4, the instruction slct writes $r16 in $r16 if the branch register $b0 is
true (x < 0), and it writes 1 in $r16 otherwise (x ≥ 0).

This optimization of the generated assembly code is possible thanks to an efficient if-conversion
algorithm based on theψ-SSA representation, and used in theOpen64 compiler to generate partial-
ly-predicated code based on the slct instruction [Bru06].

1.1.3 Bundle and instruction encoding

So far as we can, in our C codes, we will prefer to use “small” constants (9 signed bits), which may
lead to a reduction of the evaluation latency as well as of the size of the generated assembly code.
This section aims at presenting the way used for encoding instructions on the ST231 processor,
and at explaining the advantages of using such small constants.

Description of instruction bundling and encodings

Instructions are encoded into bundles (wide words) containing from 1 to 4 instructions. More
precisely, a bundle contains from 1 to 4 consecutive 32-bit words, called syllables. A syllable
contains either an instruction or an extended immediate (for example, a 32-bit constant). A bundle
is well-formed if it satisfies at least the following constraints:

• all syllables of a bundle must be instructions or extended immediates;

• a bundle contains at most one control instruction, that must be the first syllable;

• a bundle contains at most one memory instruction (load/store);

• a bundle contains at most 2 multiplication instructions of the form 32-bit × 32-bit→ 32-bit,
that must appear at odd word addresses;

• in a bundle, immediate extensions must appear at even word addresses;

• in a bundle, no more than one immediate extension can be associated to a single instruction.

(See [ST208b, §6.6.1] for more details on bundling constraints.)
Many instructions have an immediate form. A specificity of the ST231 processor is that these

immediate forms are by default encoded to use small immediates (9-bits signed), but can be ex-
tended to use extended immediates (32-bits) at the cost of one syllable per immediate extension.
This makes the usage of extended immediate constants (such as 32-bit polynomial coefficients)
very efficient from a memory system standpoint. In this case, the immediate extension is encoded
in a word adjacent to the one encoding the instruction, either on the left or on the right, in the
bundle.
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Example of instruction encoding

Let us consider for example the instruction mul64hu , that returns the 32 most-significant bits of
the product of two 32-bit unsigned integers. On the ST231 processor, this instruction can be used
either in register form or in immediate form. Figure 1.2 below shows for both forms how this
instruction is encoded into a syllable.

31 30 29

stop bit

reserved bit instruction code

0 0 0 1 1 1 1 1 0

21 20 18

Rdest

17 1112 6 05

Rsrc1Rsrc2

(a) Register form.

31 30 29

stop bit

reserved bit instruction code

0 0 1 1 1 1 1 1 0

21 20 1112 6 05

Rsrc1RdestIsrc2

(b) Immediate form.

Figure 1.2: The two possible encodings of the mul64hu instruction.

In register form (Figure 1.2(a)), the addresses of input and output registers are encoded with
6 bits each (which is sufficient to encode the addresses of the 64 available registers), between the
bits of weigth 17 and 0 of the syllable. In immediate form (Figure 1.2(b)), the addresses of the
output and one of the input registers are encoded in the same way (6 bits each), between the bits
of weigth 11 and 0 of the syllable, while the immediate constant is encoded with 9 bits (between
the bits of weigth 20 and 12).

In C language, the instruction mul64hu can be called using the function mul of Appendix B
(see [ST208b, pp. 248–249] for specifications). Given X and Y two k-bit unsigned integers (here,
k = 32), we have:

mul (X,Y ) = ⌊(X · Y )/2k⌋, (1.1)

where ⌊·⌋ denotes the usual floor function. Let us now consider the following piece of C code, that
uses the function mul .

1 uint32_t expl1( uint32_t x, uint32_t y)
2 {
3 uint32_t r1 = mul(x, 0xb540304f);
4 uint32_t r2 = mul(x, 0x804f);
5 uint32_t r3 = x + y;
6 return ((r1 + r2) + r3);
7 }

Listing 1.3: First example of mul64hu use.
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In this first example, the two multiplications have a second operand that cannot be encoded in
small immediate constants (9-bit signed). Thus, the instruction mul64hu in the generated assembly
code is in the register form, and both operands are encoded in separate syllables. It follows that

1 mul64hu $r18 = $r16, 32847 ## (cycle 0)
2 mul64hu $r19 = $r16, -1254084529 ## (cycle 0)
3 ;; ## (bundle 0)
4 add $r16 = $r16, $r17 ## (cycle 1)
5 ;; ## (bundle 1)
6 add $r17 = $r18, $r19 ## (cycle 3)
7 ;; ## (bundle 2)
8 add $r16 = $r16, $r17 ## (cycle 4)
9 return $r63 ## (cycle 4)
10 ;; ## (bundle 3)

Listing 1.4: Assembly code generated for the first example of mul64hu use (Listing 1.3).

the instructions in lines 3 and 4 of Listing 1.3 above fill up the first bundle and the addition at line 5
of Listing 1.3 has to be launched in the second bundle, as can be seen on the piece of assembly code
in line 4 of Listing 1.4.

Let us now consider a second example. In this second example, we replace line 4 of Listing 1.3
by the following line of C code:

uint32_t r2 = mul(x, 0x4f);

Here, the second operand of the multiplication is between -256 and 255 (indeed, 0x4f16 = 79), and
it can be encoded directly in the instruction’s syllable as a small immediate constant. Hence this
multiplication operation is in immediate form in the generated assembly code (Listing 1.5 below).

1 mul64hu $r18 = $r16, 79 ## (cycle 0)
2 add $r8 = $r16, $r17 ## (cycle 0)
3 mul64hu $r16 = $r16, -1254084529 ## (cycle 0)
4 ;; ## (bundle 0)
5 add $r16 = $r18, $r16 ## (cycle 3)
6 ;; ## (bundle 1)
7 add $r16 = $r8, $r16 ## (cycle 4)
8 return $r63 ## (cycle 4)
9 ;; ## (bundle 2)

Listing 1.5: Assembly code generated for the second example of mul64hu use.

It follows now that the two multiplications fill up only three of the four syllables of the first bun-
dle: two for the multiplication instructions, and one for the extended immediate (0xb540304f16),
while the small immediate constant is encoded direcly in the instruction’s syllable. Therefore the
addition in line 5 (Listing 1.3 above), which does not have constant operands, can be also added
into the first bundle, and is issued simultaneously with the two multiplication operations (see
Listing 1.5 above).

Concerning code size, in Listing 1.3, we have 6 operations (2 multiplications, 3 additions, and
1 return) and 2 immediate extensions, encoded on 32 bits each: the code size is 8 × 32 bits = 32
bytes. On the contrary, on the second example (after having replaced the multiplication of line 4
in Listing 1.3), we have also 6 operations, but only 1 immediate extension: the code size is only of
7× 32 bits = 28 bytes. We gain 4 bytes (that is, 32 bits) by using a small immediate.

Obviously, on the piece of assembly code in Listing 1.5 above, the operand registers $r16 in
lines 1, 2, and 3 correspond to the same value and are used in cycle 0. However, the result register
$r16 in line 3will be effectively written and available at cycle 1. Hence, there is no conflict between
writing in $r16 in line 3 and reading this same register in lines 1, 2, and 3.
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Remark that in ST200 assembly code, the return instruction at the end of a procedure (line 8
of Listing 1.5 above, for example) corresponds to the return operation of the corresponding C
code. More particularly, the instruction return $r63 in Listing 1.4 or Listing 1.5 is a branch into
the calling frame of the assembly code (or the program), just after the call point of the function.
The address corresponding to that particular point is stored at call time into the register $r63 , also
called Link Register (see [ST208b] for details and restrictions on Link Register). The latency of
such a return instruction is the same as any classical branch (that is, 1 cycle). However, the Link
Register has to be written at least 3 cycles before this “branch”, otherwise the ST231 stalls until
the address stored in $r63 is known. Note that this constraint has no impact on code of at least 3
cycles, which is the case of the implementations we will present in this document.

How to code cleverly by using small immediate constants?

Until nowwe have observed the impact on the generated assembly code of using small immediate
constants, and in particular on code size. Let us now have a look at how to write code cleverly by
using small immediate constants. Consider the piece of C code in Listing 1.6 below. On this small

1 uint32_t expl3( uint32_t x, uint32_t y)
2 {
3 uint32_t r1 = mul(x, 0x00020000); // 0x00020000 = 217

4 // -> does not fit in a small immediate
5 uint32_t r2 = r1 + 0xb540304f;
6 return r2;
7 }

Listing 1.6: Example of C code without small immediate constant.

example, assuming that multiplication takes 3 cycles and that addition takes 1 cycle, the result r2

is obtained after 4 cycles, as shown on the assembly code in Listing 1.7 below. However, since

1 mul64hu $r16 = $r16, 131072 ## (cycle 0) -> r1 = mul(x, 0x00020000)
2 ;; ## (bundle 0)
3 add $r16 = $r16, -1254084529 ## (cycle 3) -> r2 = r1 + 0xb540304f
4 return $r63 ## (cycle 3)
5 ;; ## (bundle 1)

Listing 1.7: Assembly code generated for the third example of mul64hu use (Listing 1.6).

0x0002000016 = 217, by definition of the function mul we have

mul (x, 217) = ⌊(x · 217)/232⌋ = ⌊x · 2−15⌋.

And in integer arithmetic ⌊x · 2−15⌋ may be computed by shifting x right by 15 bits. Hence the
line 3 of Listing 1.6 above may be replaced by the following line of C code.

uint32_t r1 = x >> 15;

And finally, assuming that the “shift right” operation has a latency of 1 cycle, the result r2 is
available after only 2 cycles, as shown in Listing 1.8 below. Remark also that using the shift
operation (instead of multiplication) leads to a gain of 4 bytes, since its second operand (which in
our example is equal to 15) can be encoded in a small immediate.

Note finally that in the small piece of assembly code in Listing 1.8 below, the instruction add

in line 3 depends directly on the instruction shru in line 1, since the register $r16 written in line 1
is used as operand of instruction add in line 3.
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1 shru $r16 = $r16, 15 ## (cycle 0) -> r1 = x >> 15
2 ;; ## (bundle 0)
3 add $r16 = $r16, -1254084529 ## (cycle 1) -> r2 = r1 + 0xb540304f
4 return $r63 ## (cycle 1)
5 ;; ## (bundle 1)

Listing 1.8: Assembly code generated for the example of the “shift right” operation.

1.1.4 Data accesses in memory

For the implementation of mathematical functions, some methods, called look-up table methods,
rely on the refinement of a first approximation of the function (or its reciprocal) extracted from an
array. However, the memory architecture is ill-suited for such methods. Let us now give some
explanations.

All the datum accesses pass by the Load Store Unit (LSU), and are handled in the D-side
subsystem memory. The D-side subsystem memory consists of a writer buffer, a data cache,
and a prefetch buffer (see Figure 1.1 above). The data cache is 32-Kbyte 4-way associative cache.
(See [Tan05, pp. 319-321] or [HP06, §5] for more details on associative cache.) More precisely, the
DCache is split up into 256 sets of 4 lines (one per way) of 32 bytes each. And the prefetch buffer
contains 8 entries, with 32 data bytes each.

When the Load Store Unit requests a datum access, the following three cases may occur.

Load from DCache. If the datum is in the data cache (DCache), it is loaded directly by the Load
Store Unit. The latency of this load operation is of 3 cycles.

Load from uncached region of memory. If the datum is in an uncached region of memory (in
external memory, for example), it is transferred into the DCache by the STBus, and then to
the LSU. More precisely, the DCache stalls until the transfer from uncached memory has
completed: this is called data cache miss. When the datum is in an uncached region of
memory, the loading operation may take about 100 cycles.

Load from prefetch buffer. Finally, if the datum is in the prefetch buffer, it is transferred into the
DCache. In fact, the prefetch buffer “prefetches and stores data from external memory and
sends it to the data cache when (and if) it is necessary” [ST208b, §7.3.6]. In this case, the
loading operation takes about 10 cycles, and the cost of the transfer of data from uncached
memory to prefetch buffer is hidden, since it is not done at loading time (but before).

Therefore it follows that loading a datum from memory may be highly costly, especially if it
is still in external memory. From Table 1, in Introduction, we see for example that our imple-
mentation of the square root operation (detailed in Chapter 3, Section 3.5) has a latency of 23
cycles: adding about 100 cycles would lead to an implementation about 5 times slower. Hence in
C language, we will avoid to use arrays, and to read data from them. More precisely, when imple-
menting a mathematical function on this kind of architecture, we will not use methods based on
look-up tables (see [Mar90], for square root, for example), but prefer those based on small degree
polynomial evaluation [Rai06] for the first approximation of multiplicative methods, or based on
bivariate polynomial evaluation (detailed in Chapters 3 and 4), where evaluation points may be
computed using logical operations (see Section 3.5.3 for example).

1.1.5 Elements of the instruction architecture set

Table 1.1 below summarizes the ST231 instructions that we mostly used when designing and im-
plementing the algorithms in the next chapters, and explains how to use them in C language.
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Instruction Description / Result Use in C language

add , sub Addition, Subtraction X + Y, X - Y

addcg Addition with carry (ci) and generate carry (co) __ADDCG(R,co,X,Y,ci) (see Section 4.4.3 for an example)

and Bitwise AND X & Y

andl Logical AND X && Y

clz Count leading zeros nlz(X) (see Section B.4)

divs Nonrestoring division step __DIVS(Wj,qj,Wj,M,0) (see Section 4.4.3 for an example)

mul32 Low part (32-bit) of a 32× 32 signed product X * Y

mul64h High part (32-bit) of a 32× 32 signed product mul64h(X,Y) (see Section B.3)

mul64hu High part (32-bit) of a 32× 32 unsigned product mul(X,Y) (see Section B.3)

or Bitwise OR X | Y

orl Logical OR X || Y

max, maxu Signed, unsigned maximum max(X,Y) , maxu(X,Y) (see Section B.1)

min , minu Signed, unsigned minimum min(X,Y) , minu(X,Y) (see Section B.2)

shBadd Shift left B bits and accumulate, B ∈ {1, 2, 3, 4} (X « B) + Y

shl , shr Shift left, shift right X « B, X » B

slct , slctf Select instructions if(cond){...}else{...} (see Section 1.1.2)

xor Bitwise XOR, exclusive-or X ˆ Y

Table 1.1: Elements of the ST231 instruction architecture set.
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All these instructions have a latency of 1 cycle, except the multiplication instructions (mul32 ,
mul64h , and mul64hu ) which have a latency of 3 cycles. Recall that on the ST231 all multiplica-
tion instructions are fully pipelined.

1.2 Binary floating-point and fixed-point arithmetics

This section presents the binary arithmetics used all along this document to approximate the real
numbers. More particularly, it presents first the binary floating-point arithmetic defined in the
IEEE 754-2008 standard [IEE08]. Since the target architecture manipulates only integer numbers,
we then present the binary interchange format encoding used to represent floating-point data
with integers. Finally we give some elements on how to use the available integer arithmetic to
implement fixed-point arithmetic.

1.2.1 Binary floating-point arithmetic

In 1985, a first standard for binary floating-point arithmetic was published [Ame85], called IEEE
754-1985. This first version defined four binary floating-point formats to represent real numbers:
single, single extended, double, double extended. Since then, this standard has been revised, and
a new version, called IEEE 754-2008, was published in August 29, 2008.

Binary floating-point formats and data

The IEEE 754-2008 standard [IEE08] characterizes a floating-point format by a radix β, a precision
p, and an exponent range {emin, . . . , emax}, such that

emin = 1− emax. (1.2)

Actually it defines two kinds of formats: the binary (β = 2) and the decimal (β = 10) floating-
point formats. In all this document, we will consider only binary floating-point formats, that is,
radix β = 2.

More particularly, the IEEE 754-2008 standard defines three basic binary floating-point for-
mats : binary32, binary64, and binary128. Table 1.2 gives the parameters of these three basic for-
mats. (In the context of the implementation of mathematical functions in the FLIP library, we will

binary32 binary64 binary128

precision p of the format 24 53 113

extremal exponents emin, emax -126, 127 -1022, 1023 -16382, 16383

Table 1.2: Basic binary floating-point formats parameters.

give all code examples in the binary32 floating-point format.)
The floating-point formats allow to represent a finite subset of the set of extended real numbers

as well as “non numbers”. More particularly, each floating-point format represents a unique set of
floating-point data. Let x be a binary floating-point datum. In a given floating-point format, the
floating-point datum x can be:

• either a special number : signed zero (±0), signed infinity (±∞), or a “not-a-number” (NaN);

• or a binary floating-point number.

Recall that the standard does not interpret the sign of a NaN [IEE08, §6.3].
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Binary floating-point numbers

A nonzero binary floating-point number x is defined by a sign sx, an exponent ex, and a signifi-
candmx, as follows:

x = (−1)sx ·mx · 2ex , (1.3)

with sx ∈ {0, 1}, ex ∈ {emin, . . . , emax}, andmx = mx,0.mx,1 . . .mx,p−1, withmx,i ∈ {0, 1}, 0 ≤ i < p.
From now on, we denote by normal binary floating-point number (or normal number, for short),
a floating-point number x defined such as:

mx = 1.mx,1 . . . mx,p−1.

Note that mx ∈ [1, 2 − 21−p]. Writting Ω for the largest normal floating-point number, it follows
that every normal number satisfies:

2emin ≤ |x| ≤ Ω with Ω = 2emax · (2− 21−p).

Now, let x be a nonzero binary floating-point number with magnitude less than 2emin . Then,
necessarily,

mx = 0.mx,1 . . .mx,p−1 ∈ [21−p, 1− 21−p] and ex = emin.

Such a floating-point number is called subnormal binary floating-point number (or subnormal
number, for short). We observe that for a given format, a subnormal number x is as follows, with
α the smallest positive subnormal floating-point number:

α ≤ |x| ≤ 2emin(1− 2−p) with α = 2emin−p+1.

Remark that subnormal floating-point numbers always have fewer than p significant bits.

Normalized representation of a binary floating-point number

When implementing a mathematical function, we do not want to distinguish between these two
cases for efficiency reasons, and we prefer handling normal and subnormal floating-point num-
bers together. Hence, one of the first steps of this kind of implementation may consist in comput-
ing what we call the normalized significand of the floating-point input. To do so, let λx be the
number of leading zeros in the binary expansion of mx. If x is a normal number, then λx = 0.
Otherwise, if x is a subnormal floating-point number, we have λx ∈ {1, . . . , p− 1}. We finally get:

mx = 0.00 . . . 00
︸ ︷︷ ︸

λx

1mx,λx+1 . . .mx,p−1
︸ ︷︷ ︸

p−λx

with λx ∈ {0, . . . , p− 1}.

Letm′
x and e′x be respectively the normalized significand and the scaled exponent of a binary

floating-point number x:
m′

x = mx · 2λx and e′x = ex − λx. (1.4)

Therefore all along this document, we will call a nonzero (sub)normal binary floating-point num-
ber, a floating-point number as follows:

x = (−1)sx ·m′
x · 2e′x , (1.5)

with e′x andm′
x as above. Notice that e′x ∈ {emin − p+ 1, . . . , emax} and thatm′

x ∈ [1, 2 − 21−p].
Finally, following [MBdD+09, §8], we will denote by nx the “is normal bit” of x, defined as

follows:

nx =

{

0, if x is subnormal,

1, if x is normal.
(1.6)
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1.2.2 Binary interchange format encoding

This section details the binary interchange format encoding defined in [IEE08, §3.4] to encode a
binary floating-point datum into a k-bit unsigned integer.

Standard encoding of binary floating-point numbers

Using the binary interchange format encoding defined in the IEEE 754-2008 standard [IEE08, §3.4],
a binary floating-point number is represented by three fields:

• a sign bit,

• a w-bit biased exponent Ex = ex − emin + nx,

• a (p− 1)-bit trailing significand field Tx,

as shown in Figure 1.3. In [IEE08, §3.4], the exponent width w is defined as:

p − 1 bits

Tx = mx,1 . . . mx,p−1

w = k − p bits

Ex

1 bit

sx

Figure 1.3: Binary interchange format encoding of floating-point data.

w = k − p. (1.7)

By definition of subnormal numbers, if x is subnormal floating-point number, then its exponent
ex equals emin. Hence it follows that its biased exponent is Ex = 0. More generally, we have

Ex ∈ [0, 2w − 1],

and Ex can be encoded with a w-bit unsigned integer.
Table 1.3 gives the encoding parameters for the three basic binary floating-point formats.

Throughout this document, we will give some code examples for the binary32 floating-point for-

binary32 binary64 binary128

k, encoding bit-width 32 64 128

p, precision of the format 24 53 113

emax, maximal exponent 127 1023 16383

emin, minimal exponent -126 -1022 -16382

w, biased exponent bit-width 8 11 15

Table 1.3: Interchange format parameters for the basic binary floating-point formats.

mat, that is, for (k, p, emax) = (32, 24, 127).
Let X be the k-bit unsigned integer encoding the floating-point number x. The bit string of

X is as follows: Xk−1 encodes the sign of x, the next w bits Xk−2, . . . ,Xp−1 encode the biased
exponent Ex, and the last p− 1 bits encode the trailing significand of x. We get finally:

X = Sx + Ex · 2p−1 + (Mx − nx · 2p−1),

with Sx = sx · 2k−1 andMx = mx · 2p−1.
(Details are given in Section 2.1 about the encoding of a floating-point number into an un-

signed integer, and more particularly on how to use this encoding efficiently.)
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Example 1.1. Consider the binary32 floating-point number

x = 5.656854152679443359375

= (−1)0 · 22 · 1.41421353816986083984375.

We have sx = 0, ex = 2, and

mx = 1.41421353816986083984375

= 1.011010100000100111100112 ,

It follows that nx = 1, Sx = 0, Ex = 129 = 100000012 , and Mx = 1011010100000100111100112 .
Hence, the 32-bit unsigned integerX encoding the floating-point number x is as follows:

0 10000001 01101010000010011110011 .

Encoding of special data

Recall that binary floating-point data can also be either a signed zero (±0), a signed infinity (±∞),
or a “not a number” (NaN). For each of these special data, the IEEE 754-2008 standard defines
a specific binary interchange encoding, which is not always unique. Let X be a k-bit unsigned
integer encoding of a special datum. Then,

• Signed zeros are encoded with integers of the form

X = Sx, with Sx = sx · 2k−1,

and sx the sign bit of x;

• Signed infinities are encoded with integers of the form

X = Sx + (2k−1 − 2p−1), with Sx = sx · 2k−1,

and sx the sign bit of x;

• “Not-a-Numbers” are encoded with integers of the form

X = Sx + (2k−1 − 2p−1) + Tx, with Sx = sx · 2k−1,

and sx ∈ {0, 1}, and Tx 6= 0.

The IEEE 754-2008 standard defines two kinds of “Not-a-Numbers”: the signaling NaN’s (sNaN)
and the quiet NaN’s (qNaN), that have both a specific encoding. In particular, let X be a k-
bit unsigned integer encoding of a floating-point datum x, as above. Then x is a qNaN if and only
if the bit of weigth p− 2 of Tx equals 1. Otherwise, x is an sNaN.

Example 1.2. Consider the binary32 floating-point format, that is, (k, p, emax) = (32, 24, 127). The
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following integers encode respectively −0, +0, −∞, +∞, an sNaN, and a qNaN.

−0 1 00000000 00000000000000000000000

+0 0 00000000 00000000000000000000000

−∞ 1 11111111 00000000000000000000000

+∞ 0 11111111 00000000000000000000000

sNaN 1 11111111 01101010000010011110011

qNaN 0 11111111 11101010000010011110011

The relationship between a floating-point datum and its encoding into integer is summarized
in Table 1.4, that displays the relationship between a floating-point datum and its encoding into a
k-bit unsigned integer X.

Remark that a qNaN should be used to propagate information out of an implementation, such
as invalid or unavailable data and result. For example, in the implementation of a mathematical
function, when an invalid operation occurs and the function has to return a floating-point result,
the IEEE 754-2008 standard recommends that a qNaN be returned. To facilitate the a posteriori
diagnostic, a qNaN should preserve as much information of the inputs as possible in particular
when quieting a sNaN [IEE08, §6.2]. Here and hereafter we call payload the “diagnostic informa-
tion contained in a NaN, encoded in part of its trailing significand field” [IEE08, p. 4]. Typically,
the payload of a NaN is encoded into the last p− 2 bits of its trailing significand field.

1.2.3 Binary fixed-point arithmetic

Until now we have recalled some features of IEEE 754 binary floating-point arithmetic, and we
have seen how to use k-bit unsigned integers to store floating-point data. Moreover, since the
ST231 architecture has no FPU, the implementation of binary floating-point operators relies on
computations using available integer arithmetic on integers and fixed-point numbers.

The binary fixed-point arithmetic defined here consists in interpreting an integer as a rational
number in a given format. In particular, that rational number is obtained by multiplying this
integer by a given power of 2, which depends directly on the format. We recall here two ways to
encode a given real value in an integer using fixed-point arithmetic [EL04, §1].

Unsigned value representation

The simplest case occurs when the value represented by the integer is non negative, thus we do
not have to reserve one bit to handle the sign. To do so, letX be a k-bit unsigned integer encoding
a positive value x. The value x is in the format Qf if it is of the form:

x = X · 2−f with 0 ≤ X ≤ 2k − 1.

Here f denotes the number of fraction bits in the binary expansion of x. If i = k− f is the number
of bits of the integer part of x, then X encodes the real value x in the Qi.f format. The binary
expansion of x is as follows:

x = Xk−1 · · ·Xf .Xf−1Xf−2 · · ·X1X0.
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Value or range of integerX Floating-point datum x Bit stringXk−1 . . . X0

Xk−1 Xk−2Xk−3 · · ·Xp−1 Xp−2Xp−3 · · ·X0

0 +0 0 00 · · · 00 0000 · · · 0000
(0, 2p−1) positive subnormal number 0 00 · · · 00 Xp−2Xp−3 · · ·X1X0 with someXi = 1

[2p−1, 2k−1 − 2p−1) positive normal number 0 Xk−2Xk−3 · · ·Xp−1
︸ ︷︷ ︸

not all ones, not all zeros

Xp−2Xp−3 · · ·X1X0

2k−1 − 2p−1 +∞ 0 11 · · · 11 0000 · · · 0000
(2k−1 − 2p−1, 2k−1 − 2p−2) sNaN 0 11 · · · 11 0Xp−3 . . . X0 with someXi = 1

[2k−1 − 2p−2, 2k−1) qNaN 0 11 · · · 11 1Xp−3 . . . X0

2k−1 −0 1 00 · · · 00 0000 · · · 0000
(2k−1, 2k−1 + 2p−1) negative subnormal number 1 00 · · · 00 Xp−2Xp−3 · · ·X1X0 with someXi = 1

[2k−1 + 2p−1, 2k − 2p−1) negative normal number 1 Xk−2Xk−3 · · ·Xp−1
︸ ︷︷ ︸

not all ones, not all zeros

Xp−2Xp−3 · · ·X1X0

2k − 2p−1 −∞ 1 11 · · · 11 0000 · · · 0000
(2k − 2p−1, 2k − 2p−2) sNaN 1 11 · · · 11 0Xp−3 . . . X0 with someXi = 1

[2k − 2p−2, 2k) qNaN 1 11 · · · 11 1Xp−3 . . . X0

Table 1.4: Relationship between floating-point datum x and its encoding into integerX (k = p+ w).



24 Chapter 1. Context

It is well-known that the dynamic of the binary fixed-point numbers is lower than the one of
binary floating-point numbers, and it is much more difficult to do computations between fixed-
point numbers of different orders of magnitude. With this representation, we can represent the
subset of real values defined as follows:

{
F · 2−f

}

F=0,1,...,2k−1
.

Example 1.3. Assume k = 32. Let X be the 32-bit unsigned integer that encodes the real value
x, with

X = 101101010000010011110011001101002 .

If the integerX encodes the real value in the format Q1.31, we deduce that:

x = X · 2−31

= 101101010000010011110011001101002 · 2−31

= 1.01101010000010011110011001101002

= 1.41421356238424777984619140625.

However, if we consider that X encodes the real value x with 17 fraction bits, that is, in the
format Q15.17, we have:

x = X · 2−17

= 101101010000010.011110011001101002

= 2317.0475006103515625.

Signed value representation

When we want to represent a signed value, we have to reserve one bit to handle that sign of the
value. For example, this case may occur during the evaluation of a polynomial in fixed-point
arithmetic (see Section 5.1, for example). To do so, we consider the integerX in two’s complement
representation. Hence the real value x encoded by X is defined as follows:

x = X · 2−f with − 2k−1 ≤ X ≤ 2k−1 − 1.

Here f denotes also the number of fraction bits in the binary expansion of x. But in this case the
number of bits of the integer part of x is i = k − f − 1, since one bit is reserved for the sign. With
this representation, we can represent the subset of real values defined as follows:

{
F · 2−f

}

F=−2k−1,...,2k−1−1
.

Example 1.4. Assume k = 32. LetX be the 32-bit unsigned integer of Example 1.3:

X = 101101010000010011110011001101002 .

If the integer X encodes the real value in the signed format Q0.31, we deduce from X31 = 1 that
it encodes a negative x defined as:

X = −1257966796 and x = −0.58578643761575222015380859375

= −.10010101111101100001100110011002 .

Actually, we have 32− 31− 1 = 0 bit of integer part, since |x| < 1.
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Remark 1.1. LetX be the unsigned binary fixed-point number no larger than 2k−1−1 that encodes
a real positive value x in the format QiX .fX . If iX ≥ 1, then it follows thatX can be seen as a signed
binary fixed-point number encoding the value x in the format QiX -1.fX , with one sign bit.

Operations on fixed-point numbers

It remains now to see how to add and multiply two fixed-point numbers. Let us first consider two
unsigned binary fixed-point numbers X and Y encoding x in the format Qfx and y in the format
Qfy , respectively:

x = X · 2−fx y = Y · 2−fy , 0 ≤ X,Y < 2k.

Unsigned addition For adding x and y, we first have to scale one of them (y, for example) to
align the comma. At the implementation level, this scaling can be simply done by shifting
the unsigned integer Y .

Example 1.5. Assume k = 32. LetX and Y be two binary fixed-point numbers defined as:

x = 101101.010000010011110011001101002 and y = 1.00000010000010010100011001000102 .

We obtain:

(x) 101101.010000010011110011001101002

(y) + 000001.00000010000010010100011001000102

(r) = 101110.01000011010001100001001101000102

(r̂) = 101110.01000011010001100001001101000102

Denoting by r̂ the fixed-point number on k bits, we observe on this example that the result r̂ is
a truncation of the exact result x+ y, in the format of x.

We observe that additionmay entail overflow, or a loss of accuracy while shifting. Moreover,
if the comma are already aligned and if no overflow occurs, we remark that addition is error-
free.

Unsigned multiplication For multiplying X and Y , we do not have first to align the comma.
Hence multiplying two k-bit unsigned binary fixed-point numbers X and Y , in the formats
QiX .fX and QiY .fY , respectively, leads to an exact result R representable on 2k bits, in the
format QiR .fR with

iR = iX + iY and fR = fX + fY .

Remark that using the function mul defined in (1.1), we can compute the k-bit most signifi-
cant bits ofX · Y .

Example 1.6. Assume k = 32. ForX and Y as in Example 1.5, we have:

(x) 101101.010000010011110011001101002

(y) × 1.00000010000010010100011001000102

(r) = 0101101.1001110101100010111111011001100100101001001101000111010002

(r̂) = 0101101.1001110101100010111111011001100100101001001101000111010002
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Denoting by r̂ the fixed-point number on k bits encoded by the unsigned integer R̂, we observe
on this example that the integer R̂ can be obtained using the function mul defined in (1.1):

R̂ = mul (X,Y ).

Note that multiplication cannot entail overflow, but a loss of accuracy if we use the func-
tion mul . Let us bound the error entailed by multiplication. To do so, let R̂ be the k most
significant bits of the exact product R = X · Y · 2−k:

0 ≤ R− R̂ < 1 and 0 ≤ r − r̂ < 2iR−k. (1.8)

It follows that:

X · Y · 2−k − 1 < ⌊X · Y · 2−k⌋ = mul (X,Y ) ≤ X · Y · 2−k. (1.9)

Remark 1.2. Concerning the operations on signed binary fixed-point arithmetic, we can make two
remarks. Let us now consider X and Y be two signed binary fixed-point numbers encoding x in
the format Qfx and y in the format Qfy . Then

• The addition and multiplication of X and Y are done in the same way as in the case of
unsigned fixed-point arithmetic (see [EL04, §1] for details).

• The multiplication of two signed binary fixed-point numbers with one sign bit each gives a
result with two bits for handling the sign. (See Example 1.7 below, for example.)

Example 1.7. Assume k = 32. ForX as in Example 1.4, we have:

(x) −.10010101111101100001100110011002

(−x) × +.10010101111101100001100110011002

(r) = 0− .01010111110110000110011001100000001000101010111100001010012

(r̂) = 0− .01010111110110000110011001100000001000101010111100001010012

with x having 0 bit of integer part and 31 fraction bits. Hence the exact result r has also 0 bit of
integer part, but 62 fraction bits.
Denoting by r̂ the fixed-point number encoded by the k-bit integer R̂ and computed by truncat-
ing r on k− 2 fraction bits, we observe that R̂ can be obtained using the function mul64 defined
in Table 1.1 (and corresponding to the signed version of the function mul in (1.1)). Since R̂
encodes r̂ in the signed format Q0.30, it follows that

r̂ = −0.343145750463008880615234375 and R̂ = −368449944.

Hence the bit string of R̂ is

R̂ = 111010100000100111100110011010002 ,

where the first two bits encode the sign and indicate that the result is negative. If we had defined
r = x× x, we would have obtained

r̂ = 0.343145750463008880615234375 and R̂ = 368449944.

Hence the bit string of R̂ would have been

R̂ = 00010101111101100001100110011000,

where the first two bits indicate a positive result.
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CHAPTER 2
Basic blocks for implementing
correctly-rounded floating-point
operators

This chapter gives a high-level description of the methodology used in this
document for implementing correctly-rounded mathematical operators on
VLIW integer processors and more particularly brings out various basic
blocks useful for these implementations (in particular, the algorithms im-
plemented to deduce this correctly-rounded result from a suitable approx-
imation). For all of them, parametrized descriptions and analyses are pro-
posed, as well as C codes for the standard binary32 floating-point format
optimized for the ST231. To illustrate the interest of this definition and de-
sign of basic blocks, a complete C code example is given for the binary32
multiplication.

Until the 80’s, each processor constructor had its own floating-point arithmetic implementation,
that worked more or less [Mul06], and a numerical code might have different behaviors on dif-
ferent architectures. In 1985, the IEEE 754-1985 standard [Ame85] was published, to standardize
and homogenize the implementation, in hardware and software, of binary floating-point arith-
metic in processors. One of the main ideas was to ensure that a numerical code has the same
behavior on any architecture. At that time, it required in particular correct rounding for the basic
arithmetic operators (addition, subtraction, multiplication, and division) and the square root, for
four floating-point formats and four rounding modes (round to nearest, toward +∞, toward −∞,
toward 0).

This first version has been revised in 2008, and a new version was published on August 29,
2008. In particular, this current version extends the first one to decimal arithmetic and other binary
formats; it also specifies the behavior of other mathematical functions like the fused multiply–add
(fma ) or some elementary functions (sin, cos, log, exp,. . .). More precisely, the IEEE 754-2008 stan-
dard requires correct rounding for the four arithmetic operators (addition, subtraction, multipli-
cation, and division), the square root, and the fma [IEE08, §5.4.1], while it simply recommends
it for the other mathematical functions, such as nth roots, trigonometric functions, logarithms,
exponentials, . . . [IEE08, §9.2].

One of the goals of this work was to provide an efficient and correctly-rounded support for bi-
nary32 floating-point arithmetic on integer processors, through the correctly-rounded implemen-
tation of severalmathematical functions: addition, subtraction, andmultiplication (see [MBdD+09]
for addition and subtraction, and Section 2.4 for multiplication), nth roots (for small, given values
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of n) and their reciprocals (Chapter 3), or division (Chapter 4). To define the correctly-rounded
value of an exact result, we refer to the IEEE 754-2008 standard [IEE08, pp. 3, 16]: roughly, cor-
rect rounding is a method that converts an infinitely precise result to a floating-point number, in
a given floating-point format and according to a rounding-direction attribute; this floating-point
number is called correctly-rounded.

As shown in Figure 2.1 below for univariate function implementations,1 the computation of the
correctly-rounded result r = f(x), with f a mathematical function and x a floating-point datum
(as defined in Section 1.2.1), relies usually on several steps. While some of them are function-
dependent (in white boxes in Figure 2.1), some others may be implemented once for every func-
tion (in grey boxes in Figure 2.1), at least for the functions studied in this thesis. One of the
first steps consists in unpacking the floating-point input, as will be described in Section 2.1 for
the implementation on VLIW integer processors. Then the IEEE 754-2008 standard requires four
rounding-direction attributes [IEE08, §4.3] for binary implementations; and for each of them, Sec-
tion 2.2 will present the rounding algorithms we have used, when the result is known exactly as
well as when it can just be approximated. Section 2.3 will show the method used to construct
the correctly-rounded result, and to handle the case where the exact result overflows. Finally
Section 2.4 illustrates how to use the basic blocks introduced in this chapter to deduce an imple-
mentation for the correctly-rounded binary32 multiplication. In this chapter, we will not discuss
the detection of special input (±0, ±∞, NaN) and the selection of special output, which will be
detailed further in the document for each kind of function.

2.1 Unpacking an input floating-point number

This section presents the methods used to unpack a floating-point number x encoded into the k-
bit unsigned integerX according to the binary interchange encoding defined in Section 1.2.2, and
gives some examples of C code for the binary32 format.

2.1.1 Integer X encoding the binary floating-point number x

Let X be the k-bit unsigned integer encoding of a nonzero (sub)normal floating-point number x,
following the binary interchange encoding defined in Section 1.2.2: we have

x = (−1)sx ·mx · 2ex

and
X = Sx + Ex · 2p−1 + (Mx − nx · 2p−1),

with Sx = sx ·2k−1,Mx = mx ·2p−1, Ex = ex−emin +nx, andX =
∑k−1

i=0 Xi ·2i. Here nx denotes the
“is normal” bit of the floating-point number x: nx = 1 if x is normal, and nx = 0 if x is subnormal.
In fact, by definition ofmx in Section 1.2.1, we have nx = mx,0.

Assume that k = w + p, as in [IEE08, §3.4]. The bit string of X can be split up into 3 parts: 1
sign bit Xk−1, w exponent bits Xk−2, . . . ,Xp−1 such as Ex =

∑w−1
i=0 Xp−1+i · 2i, and p − 1 fraction

bits such asMx − nx · 2p−1 =
∑p−2

i=0 Xi · 2i (see Example 1.1).

2.1.2 Sign and biased exponent extraction

Sign extraction

Extracting of the sign of x is trivial. Let Sx = sx ·2k−1 be the k-bit unsigned integer encoding of the
sign of the floating-point number x. Computing Sx may be done by setting the bits Xk−2, . . . ,X0

1Note that for bivariate functions, Figure 2.1 has to be modified to handle the second variable.
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Floating-point data
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Figure 2.1: Flowchart for correctly-rounded function implementation, for univariate function.
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to 0, that is, by taking the bitwise AND betweenX and 2k−1 = 100 · · · 002:

Sx = X ∧ 2k−1.

Exponent extraction

It remains now to explain how to extract from X the integer Ex encoding the biased exponent of
the floating-point number x. This may be done by removing the sign bit (setting the bit Xk−1 to
zero) and extracting the following w bits by shifting right the resulting integer by p− 1 bits. Here,
removing the sign bit is done by taking the bitwise AND betweenX and 2k−1 − 1 = (011 · · · 11)2:

Ex =
(
X ∧ (2k−1 − 1)

)
≫ (p− 1).

Remark that settingXk−1 to zero consists in computing the k-bit unsigned integer encoding of the
absolute value |x| of x. This integer is denoted here and hereafter by absX:

Ex = absX ≫ (p − 1), with absX = X ∧ (2k−1 − 1).

In C and for (k, p, emax) = (32, 24, 127), the computation of Sx and Ex can be implemented as
presented in lines 1 and 3 of Listing 2.1 below.

1 Sx = X & 0x80000000; absX = X & 0x7FFFFFFF;
2
3 Ex = absX >> 23; Lx = nlz(absX); // nlz: leading zero counter
4
5 MX = max(Lx,8); nx = absX >= 0x00800000;
6
7 Tx = (X << 1) << MX; Mpx = (X << MX) | 0x80000000;

Listing 2.1: Input unpacking implementation for the binary32 format.

In this piece of code, the variable nx encodes nx, the “is normal” bit of x. Indeed, nx = 1
if and only if |x| ≥ 2emin . Since 2emin is encoded by the integer 2p−1, we deduce that nx = 1 if
and only if absX ≥ 2p−1. For (k, p, emax) = (32, 24, 127), we conclude that nx = 1 if and only if
absX ≥ 223 = 0x0080000016 (in hexadecimal representation).

As already said, computingEx could have also been done by first shifting rightX by p−1 bits,
and then removing the bit of weight w storing the sign bit, as follows for (k, p, emax) = (32, 24, 127):

Ex = (X >> 23) & 0xFF;

But the advantage of the first solution (Listing 2.1) lies in the fact that the integer absX may
be used in other parts of the code, especially for handling special input. If it is not the case, then
obviously lines 1 and 3 of Listing 2.1 may also be contracted as follows.

Ex = (X & 0x7FFFFFFF) >> 23;

Biased exponent extraction, when x is known to be positive

For some functions, the cases x = 0 and x < 0 are considered as special inputs. As we will observe
in Section 3.4 for example, the special input handling is not done from the integerEx. When in the
generic case x is known to be positive, the integer Ex may be extracted simply by right shifting
the integerX by p− 1 bits. In this case, either the sign bit Xk−1 is already set to 0, or it is equal to
1 and the negative input will be caught up through the special input handling.

This simplifies and eventually may speed up the computation of the biased exponent Ex, as
shown below, for (k, p, emax) = (32, 24, 127):
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Ex = X >> 23;

2.1.3 Normalized significand extraction

In Figure 2.1, one of the first steps of the implementation of a mathematical function consists in
normalizing the significand of the input x, in order to get m′

x instead of mx (see Section 1.2.1).
Recall that m′

x = mx · 2λx , where λx ∈ {0, . . . , p − 1} is the number of leading zeros in the binary
expansion ofmx. We define further its fractional part as

tx = m′
x − 1

= 0.mx,1+λx · · ·mx,p−1.

Example 2.1. Assume (k, p, emax) = (32, 24, 127). Let x1 and x2 be two floating-point numbers
encoded by, respectively,X1 and X2, such that

X1 = 0 10000001 01101010000010011110011 .

and
X2 = 1 00000000 00000000000010011110011 .

Here, x1 is a normal floating-point number, and we have

m′
x1

= 1.011010100000100111100112 and tx1 = 0. 01101010000010011110011
︸ ︷︷ ︸

p−1=23 bits

2.

However x2 is a subnormal floating-point number, and we have

m′
x2

= 1.00111100112 and tx2 = 0. 0011110011
︸ ︷︷ ︸

10 bits

2.

Number of leading zeros

Let us first see how to determine the number of leading zeros λx. From the definition of the
interchange format in Section 1.2.2 and Table 1.4, we know that the trailing significand field of the
k-bit integerX carries the bits ofmx (and thus of tx) as follows:

Xp−2 . . . X0 = Mx − nx · 2p−1

= 0 . . . 01
︸ ︷︷ ︸

λx+1 bits

mx,λx+1 . . .mx,p−1.

By definition, we know that a finite x is normal if and only if Ex 6= 0, that is, Xk−2 . . . Xp−1 6= 0.
Thus let Lx be the number of leading zeros of the integer absX encoding |x|. We deduce that:

• Lx ≤ w if and only if x is normal and λx = 0,

• Lx > w if and only if x is subnormal and λx > 0.

Thus, when x is subnormal, we further have :

Lx = λx +w.
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Denoting MX the maximum between the number of leading zeros of absX and the exponent
width w, we conclude:

λx = MX − w with MX = max(Lx,w). (2.1)

In fact, in the following, we will not compute λx exactly, but only MX, as shown in line 5 of
Listing 2.1.

Trailing significand field

Recall that tx is the trailing significand field ofm′
x. From now on, we associate to tx the following

k-bit unsigned integer:
Tx = tx · 2k.

The bits of Tx can be extracted by shifting the integer X left by MX + 1 bits. For (k, p, emax) =
(32, 24, 127) and w = 8, this may be implemented using the lines 3, 5 and 7 of Listing 2.1. We
observe here that we first shift X by 1 bit, and then by MX bits, instead of shifting directly by
MX + 1 bits. The advantage is twofold:

• It exposes more instruction-level parallelism, and enables to get Tx faster. For example,
assuming that nlz and max have both a latency of 1 cycle, by shifting byMX + 1 bits, the
value Tx would have been available after 5 cycles, when here, the result Tx is available after
4 cycles.

• Since |x| 6= 0 in the generic case, it follows that absX 6= 0. The C standard [Int99] requires
that 0 ≤MX < k for the shift byMX to be well defined: this is the case since w ≤MX < k
(with w > 0). If we had shifted byMX+1, we could have had an undefined behavior, since
MX + 1 could have been equal to k (when x = ±2emin−p+1, the smallest positive or largest
negative subnormal number).

Example 2.2. Assume (k, p, emax) = (32, 24, 127). Let x be defined as x2 in Example 2.1:

X = 1 00000000 01101010000010011110011 .

Here, we have Lx = 10,MX = 10, and λx = 2. From the value λx, we confirm the fact that x is
a subnormal number. Finally, the 32-bit unsigned integer Tx is computed as:

Tx = (X << 1)<< 10;

and is as follows that
Tx = 101010000010011110011000000000002 ,

or, in the Q0.32 format, tx = 0.1010100000100111100112 .

Normalized significand field construction

It remains now to compute the integerMpx that encodesm′
x, such as:

Mpx = m′
x · 2k−1.

By definition, we know thatMpx may be computed asMpx = (Tx · 2−1) + 2k−1. Note that here the
division by 2 is exact. Assuming (k, p, emax) = (32, 24, 127), the implementation is thus as follows.
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Mpx = (Tx >> 1) + 0x80000000;

Here, we have to wait for the value Tx before starting the computation of Mpx. Observe in List-
ing 2.1 that the computation of the valueMX is cheaper than that of Tx. It follows thatMpx may
also be computed faster directly by shiftingX left byMX bits, and forcing the bit of weight k− 1,
representing the bit mx,λx (the integer part of m′

x), to be 1. This may be implemented as at line 7
of Listing 2.1.

Simplifications when subnormal numbers are not supported

Until now, we have considered that x can be a subnormal floating-point number. However, if sub-
normal numbers are not supported,2 the implementation can of course be simplified, especially
the extraction of the trailing significand field and the construction of the normalized significand.
Indeed, in this case, (MX,λx) = (w, 0), and extracting the bits of the trailing significand may be
done by shifting the integerX left by w + 1 bits. For (k, p, emax) = (32, 24, 127) and w = 8, this can
be implemented in C as follows.

Tx = X << 9;

Mpx = (X << 8) | 0x80000000;

2.2 Implementation of rounding algorithms

This section defines the correctly-rounded value of a real number and the algorithms that we will
use in the sequel to compute it. It also gives some key elements for implementing these rounding
algorithms on VLIW integer processors.

2.2.1 Correctly-rounded value of a real number

Let r be a nonzero real number.3 This section defines the correctly-rounded value of r, denoted by
◦(r). First we choose to express that real value r as follows:

r = (−1)sr · ℓ · 2d, (2.2)

with sr ∈ {0, 1}, ℓ ∈ R ∩ [1, 2], and d ∈ Z. Remark that the closed interval [1, 2] comes from the
fact that for some functions, the real value ℓ lies in the range [1, 2), while for others it lies in (1, 2].
Here, we consider three cases:

• either d > emax and the exact result r overflows since then |r| > Ω;

• or emin ≤ d ≤ emax and the exact result r lies in the range of normal floating-point numbers
(or Ω < |r| ≤ 2emax+1 when 2− 21−p < ℓ ≤ 2 and d = emax

4);

• or d < emin and the exact result r lies in the range of subnormal floating-point numbers (or is
equal to 2emin when ℓ = 2 and d = 2emin−1).

2We consider in this case that an input cannot be a subnormal floating-point number.
3Recall that ±0 is considered as a special input and its handling will be described further in the document.
4If 2 − 21−p < ℓ ≤ 2 and d = emax then the exact result r is outside the normal range, but this case will be detailed

in Section 2.3.1.
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To handle all these cases simultaneously, we define the following integer λr:

λr = max(0, emin − d). (2.3)

Defining further
er = max(emin, d), (2.4)

we get clearly
r = (−1)sr · (ℓ · 2−λr ) · 2er . (2.5)

and
◦(r) = (−1)sr ·mr · 2er , with mr = ◦(ℓ · 2−λr). (2.6)

The case d > emax is explained in more details in Section 2.3.2. Remark that the maximal value
for λr depends on the function. Therefore we simply ensure here that:

• if d ∈ {emin, . . . , emax} then λr = 0 and ℓ ∈ [1, 2];

• otherwise λr > 0 and ℓ · 2−λr ∈ (0, 1].

Hencemr lies in [1, 2] or [0, 1], and may not correspond to the significand of the correctly-rounded
floating-point result ◦(r).

From now, we observe that the case mr = 2 may occur, and if furthermore er = emax then
the function overflows. We will see in Section 2.3.1 that this special case can be handled through
the rounding procedure, or as a special implementation case (see for example Section 3.6.3 for an
illustration in the case of the reciprocal function x 7→ 1/x), depending on the rounding-direction
attribute.

2.2.2 Rounding-direction attributes

For radix 2, the IEEE 754-2008 standard requires four rounding-direction attributes [IEE08, §4.3]:
RoundTiesToEven (RNp), RoundTowardPositive (RUp), RoundTowardNegative (RDp), and Round-
TowardZero (RZp), where p denotes the precision of the binary floating-point format. A fifth one,
RoundTiesToAway, is simply recommended by the IEEE 754-2008 standard [IEE08, §4.3.3] for bi-
nary implementation, but has not been implemented in FLIP. Figure 2.2 illustrates the relationship
between r and ◦(r) in (2.6) for each of the four required rounding-direction attributes.

In particular, we observe for RoundTiesToEven and RoundTowardZero that

RNp(−r) = −RNp(r) and RZp(−r) = −RZp(r),

and for these two rounding-direction attributes, the sign of the result does not affect the rounding
algorithm and its implementation, that is, we can restrict to |r|, the absolute value of r. However
for RoundTowardPositive and RoundTowardNegative, we have

RUp(−r) = −RDp(r) and RDp(−r) = −RUp(r),

and for these two rounding-direction attributes, the rounding algorithms depend on the sign sr of
the exact result r.

From Figure 2.1, for implementing a function, an objective is to compute the correctly-rounded
significand mr = ◦(ℓ · 2−λr ) in parallel with the pair (result sign, exponent), and to construct the
final result by combining these three elements. Using the definitions of r and ◦(r) in (2.6), we can
deduce Table 2.1 below, which shows the relationship required between ℓ · 2−λr andmr to ensure
correct rounding.
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r > 0r < 0

RNp(r) RNp(r)

0

(a) RoundTiesToEven.

r > 0r < 0

RZp(r)RZp(r)

0

(b) RoundTowardZero.

r > 0r < 0

RUp(r)RUp(r)

0

(c) RoundTowardPositive.

r > 0r < 0

RDp(r) RDp(r)

0

(d) RoundTowardNegative.

Figure 2.2: Rounding-direction attributes.

Rounding-direction attribute Relationship between ℓ · 2−λr andmr

RoundTiesToEven |ℓ · 2−λr −mr| ≤ 2−p

RoundTowardPositive 21−p < (−1)sr · (ℓ · 2−λr −mr) ≤ 0

RoundTowardNegative 0 ≤ (−1)sr · (ℓ · 2−λr −mr) < 21−p

RoundTowardZero 0 ≤ ℓ · 2−λr −mr < 21−p

Table 2.1: Relationship between ℓ · 2−λr andmr, for ◦ ∈ {RNp,RUp,RDp,RZp}.
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2.2.3 When the exact result is finite

This section presents the algorithms used for implementing correct roundingwhen the exact result
r has a finite number of bits and thus can be computed exactly, as presented in [EL04, pp. 436–437]
for multiplication. Recall that ℓ · 2−λr in (2.6) represents the scaled significand of the exact result
r to be rounded into mr = ◦(ℓ · 2−λr). Recall also that ℓ ∈ [1, 2]. We assume in this section that
ℓ · 2−λr has a finite binary expansion, let say in f fraction bits:

ℓ · 2−λr = 00.0 . . . 0
︸ ︷︷ ︸

λr bits

ℓ−1ℓ0ℓ1ℓ2 . . . ℓf−λr .

In our context, the implementation of mathematical functions is done using k-bit numbers,
with k > p− 2 (which is the case for each of the binary floating-point formats defined by the IEEE
754-2008 standard). In this document, we denote by truncate (n)t the truncation after t fraction
bits of the value n, such as:

truncate (n)t = ⌊n · 2t⌋/2t. (2.7)

Consequently, let u be the value of ℓ · 2−λr truncated after k − 2 fraction bits:

u = truncate (ℓ · 2−λr)k−2 (2.8)

= u−1u0.u1 . . . up−1upup+1 . . . uk−2

= 00.0 . . . 0
︸ ︷︷ ︸

λr bits

ℓ−1ℓ0ℓ1ℓ2 . . . ℓk−2−λr .

Furthermore, define a guard bit g and a sticky bit s as follows:

g = up = ℓp−λr and s = “logical or” of the bits ℓi for i ∈ {p − λr + 1, . . . , f − λr}. (2.9)

According to those two bits and the considered rounding-direction attribute, as presented in [EL04,
pp. 436–437] the rounding procedure consists then in determining a rounding bit b such that,

mr = truncate (u)p−1 + b · 21−p (2.10)

satisfies one of the conditions in Table 2.1 (depending on the chosen rounding-direction attribute).
Assume now that U andMr are k-bit unsigned integers that encode u andmr, respectively, as

U = u · 2k−2 and Mr = mr · 2p−1. (2.11)

Then, multiplying both sides of (2.10) by 2p−1 and using (2.7), we obtain:

Mr = ⌊U/2k−p−1⌋+ b.

In integer arithmetic, the computation of ⌊U/2k−p−1⌋ simply consists in shifting U right by k−p−1
bits:

Mr =
(
U ≫ (k − p− 1)

)
+ b.

Hence, assuming for example that (k, p, emax) = (32, 24, 127) and given the integers U and b, the
computation ofMr can be done with the following line of C code:

Mr = (U >> 7) + b;

Once the integer Mr is known, the final result will follow from the packing procedure we shall
describe in Section 2.3.

Now, the problem is from u, g, and s to determine the rounding bit b. In the remainder of this
section, we describe the computation of b for each rounding-direction attribute. Since the method
used to compute u, g, and s is function-dependent, it will simply be detailed on an example (mul-
tiplication) in Section 2.4.
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Computing b for RoundTiesToEven

From Table 2.1, in RoundTiesToEven, we know that the rounded significand mr is defined by
∣
∣ℓ · 2−λr −mr

∣
∣ ≤ 2−p, and if a tie occurs (that is, ℓ · 2−λr is exactly between two floating-point

numbers) then the IEEE 754-2008 standard requires that the least significant bit ofmr be zero (that
is, mr has an even significand). This is illustrated in Figure 2.3 below. Hence, the rounding bit b
can be computed from g, s, and up−1 as follows:

b =







0, if g = 0,

1, if g = 1 and s = 1,
up−1, if g = 1 and s = 0.

(2.12)

ℓ · 2−λr

u = u−1u0.u1u2 . . . up−10

mr = u

(a) g = 0.

ℓ · 2−λr

u = u−1u0.u1u2 . . . up−11

mr

(b) g = 1 and s = 1.

u = u−1u0.u1u2 . . . up−201

mr

ℓ · 2−λr

(c) g = 1, s = 0, and up−1 = 0.

mr

ℓ · 2−λr

u = u−1u0.u1u2 . . . up−211

(d) g = 1, s = 0, and up−1 = 1.

Figure 2.3: RoundTiesToEven for r > 0.

Indeed, if g = 0 (Figure 2.3(a)) then mr = truncate (u)p−1 in (2.10), and if g = 1 and s = 1
(Figure 2.3(b)) then mr = truncate (u)p−1 + 21−p: in both cases, it is the expected result. If
g = 1 and s = 0, the value u is exactly halfway between two floating-point numbers. In this case,
the expected result is the floating-point number having even significand, which is the returned
result: if up−1 = 0 (Figure 2.3(c)) thenmr = truncate (u)p−1, and if up−1 = 1 (Figure 2.3(d)) then
mr = truncate (u)p−1 + 21−p. From the definition of b in (2.12), we can deduce the following
boolean formula

b = g ∧ (up−1 ∨ s).
Getting the bit up−1 from U in (2.11) may be done by shifting U right by k − p − 1 bits, and then
removing the first k − 1 bits of the resulting integer:

up−1 =
(
U ≫ (k − p− 1)

)
∧ 1.

For (k, p, emax) = (32, 24, 127), this may be implemented in C as follows, with g and s two k-
bit unsigned integers encoding g and s, respectively.

u_p_1 = (U >> 7) & 1;

b = g & (u_p_1 | s);
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Example 2.3. Assume (k, p, emax) = (32, 24, 127). Let λr = 0 and let ℓ be the exact significand of
a real number r, whose binary expansion is exactly representable on 48 bits:

ℓ = 01. 11111111111111111111111
︸ ︷︷ ︸

p−1=23 bits

011011001111110101010012 .

Here, we have the guard bit g = 0 (underlined in the above binary expansion) and the sticky bit
s = 1. Thus, from (2.12) we deduce that the rounding bit is b = 0 and that

mr = ◦(ℓ) = 01.111111111111111111111112 + 0 · 2−23

= 01.111111111111111111111112 ,

which is actually the number with 23 fraction bits that is closest to ℓ.

Computing b for RoundTowardPositive

In RoundTowardPositive, we see from Table 2.1 that the resulting mr has to satisfy the following
condition: 21−p < (−1)sr · (ℓ · 2−λr − mr) ≤ 0. Assume first that the result r is positive, that is,
sr = 0. In this case the rounding bit b can be computed from the bits of u as follows:

b =

{

0 if g = 0 and s = 0,

1 otherwise.
(2.13)

u = u−1u0.u1u2 . . . up−10

mr = u

ℓ · 2−λr

(a) g = 0 and s = 0.

ℓ · 2−λr

u = u−1u0.u1u2 . . . up−10

mr

(b) g = 0 and s = 1.

mr

ℓ · 2−λr

u = u−1u0.u1u2 . . . up−11

(c) g = 1.

Figure 2.4: RoundTowardPositive for r > 0.

This means that if g = 0 and s = 0 (Figure 2.4(a)), the value u is already the significand
of a floating-point number, and mr = truncate (u)p−1 in (2.10). Otherwise, the exact result is
strictly between two consecutive floating-point numbers (Figure 2.4(b) and Figure 2.4(c)), and
mr = truncate (u)p−1 + 21−p, which is the floating-point number above. Assume now that
the result is negative, that is, sr = 1. Since RUp(−r) = −RDp(r), the rounding bit is always 0
(see the next paragraph for details on computing b for RoundTowardNegative). In summary, for
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RoundTowardPositive, the rounding bit b is given by the following formula

b = ¬sr ∧ (g ∨ s).
Since Sr is the k-bit unsigned integer that encodes sr as sr = Sr · 21−k , for (k, p, emax) =

(32, 24, 127) the computation of b can be implemented in C using the following piece of code.

b = (!(Sr >> 31)) & (g | s);

Example 2.4. Assume (k, p, emax) = (32, 24, 127). Let sr = 0 and let λr, ℓ be defined as in Exam-
ple 2.3:

ℓ = 01. 11111111111111111111111
︸ ︷︷ ︸

p−1=23 bits

011011001111110101010012 .

Recall that the guard bit is g = 0 (underlined in the above binary expansion) and that the sticky
bit is s = 1. Thus, from (2.13) we deduce that the rounding bit is b = 1 and that

mr = 01.111111111111111111111112 + 1 · 2−23

= 10.000000000000000000000002 .

Computing b for RoundTowardNegative

From Table 2.1, for RoundTowardNegative, the valuemr has to satisfy 0 ≤ (−1)sr ·(ℓ·2−λr−mr) <
21−p. Here, assume again first that the result r is positive, that is, sr = 0.

u = u−1u0.u1u2 . . . up−10

ℓ · 2−λr

mr = u

(a) g = 0.

ℓ · 2−λr

u = u−1u0.u1u2 . . . up−11

mr

(b) g = 1.

Figure 2.5: RoundTowardNegative for r > 0.

In this case, the computation is trivial since truncate (u)p−1 is already the significand of
ℓ · 2−λr rounded downward, and whatever the value of the bits g and s are, the expected result
is truncate (u)p−1. This is illustrated in Figure 2.5 above. Hence the rounding bit b is always 0.
Assume now that sr = 1 (the result is negative). Since RDp(−r) = −RUp(r), the rounding bit b has
to be equivalent to the one defined previously for RoundTowardPositive when sr = 0. It follows
that the rounding bit is given by

b = sr ∧ (g ∨ s). (2.14)

Its implementation for (k, p, emax) = (32, 24, 127) may be derivated from the one defined above for
the RoundTowardPositive, and the piece of C code below follows.

b = (Sr >> 31) & (g | s);

Example 2.5. Assume (k, p, emax) = (32, 24, 127). Let sr = 0 and let λr, ℓ be defined as in Exam-
ple 2.3:

ℓ = 01. 11111111111111111111111
︸ ︷︷ ︸

p−1=23 bits

011011001111110101010012 .
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Recall that the guard bit is g = 0 (underlined in the above binary expansion) and that the sticky
bit is s = 1. Thus, from (2.14) we deduce that the rounding bit is b = 0 and that

mr = 01.111111111111111111111112 + 0 · 2−23

= 01.111111111111111111111112 .

Computing b for RoundTowardZero

For the last rounding-direction attribute, from Table 2.1, the returned value mr has to satisfy:
0 ≤ ℓ · 2−λr −mr < 21−p. This rounding-direction attribute can be considered as the simplest to
implement, since it does not depend on the sign of the result and truncate (u)p−1 is already the
expected output. Thus the rounding bit is always b = 0, and its implementation in C is trivial:

b = 0;

2.2.4 When the exact result may have an infinite number of digits

This section presents the algorithms used to compute the correct rounding of an exact result r that
may have an infinite binary expansion. Indeed, in this case, the sticky bit in (2.9) cannot always
be computed in a finite amount of time, and the rounding bit cannot be determined as described
in Section 2.2.3. Recall that we want to compute the correctly-rounded result r defined in (2.6) as
◦(r) = (−1)sr ·mr · 2er , with mr = ◦(ℓ · 2λr ). To ensure correct rounding, in this case, the main
idea consists in computing an approximation u of the real value ℓ · 2−λr exactly representable on p
fraction bits: u = u−1u0.u1u2 . . . up, such as

|ℓ · 2−λr − u| < 2−p. (2.15)

In our context, computing such an approximation u will rely on the computation of a one-sided
approximation v of ℓ ·2−λr , that approximates the real value from above, such as−2−p < ℓ ·2−λr −
v ≤ 0, as in [EL04]. It follows that the value umay be obtained by truncating v after p fraction bits:
indeed truncation gives 0 ≤ v − u < 2−p and (2.15) holds. (This will be explained later on in more
details for each of the functions studied in this thesis; see Chapters 3 and 4.)

Now we can distinguish two cases: either u is the significand of a floating-point number rep-
resentable on p − 1 bits (Figure 2.6(a)), or it is halfway between two consecutive floating-point
numbers (Figure 2.6(b)).

ℓ · 2−λr

u

(a) up = 0.

ℓ · 2−λr

u

(b) up = 1.

Figure 2.6: Relationship between ℓ · 2−λr and u, when ℓ is approximated from above.

Given the values u and ℓ · 2−λr and a rounding-direction attribute, recall from (2.6) that the
correctly-rounded result ◦(r) is defined as:

◦(r) = (−1)sr ·mr · 2er , with mr = ◦(ℓ · 2λr).

Here, obtaining the correctly-rounded significand mr relies on determining if the “rounding con-
dition” u ≥ ℓ · 2−λr or u > ℓ · 2−λr , depending on the rounding-direction attribute, is true. In
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this section, we do not discuss the implementation of this rounding test: we will consider in the
following that the variable cond is equal to 1 (true) if and only if the rounding test is satisfied,
and 0 (false) otherwise. Its implementation will be detailed in Chapters 3 and 4, depending on the
function considered.

In the remainder of this section, we describe the rounding algorithm used to deduce mr and
give some key elements for constructing the integer resultMr from U , for each rounding-direction
attribute. As in the previous section, we assume the following definition for U andMr:

U = u · 2k−2 and Mr = mr · 2p−1. (2.16)

Recall also that truncate (n)t denotes truncation after t fraction bits of the real value n:

truncate (n)t = ⌊n · 2t⌋/2t.

Computingmr for RoundTiesToEven

Recall that from Table 2.1 in RoundTiesToEven, we want to compute the floating-point number
mr of even significand such that

∣
∣mr − ℓ · 2−λr

∣
∣ ≤ 2−p.

Rounding algorithm 2.1 (RoundTiesToEven). In RoundTiesToEven, the floating-point mr can be
computed as follows:

if u > ℓ · 2−λr or
(
u = ℓ · 2−λr and up−1 = 0

)
then

mr = truncate (u)p−1

else

mr = truncate (u+ 2−p)p−1.

Proof. Since u is exactly representable on p fraction bits, if up = 0 this algorithm always returns
the value u. This is the required result, since u is already the significand of a floating-point number
with p − 1 fraction bits (Figure 2.7(a)). If up = 1, the value u is exactly halfway between the two
consecutive floating-point numbers u− 2−p and u+ 2−p: the former is returned if u > ℓ · 2−λr or if
u = ℓ · 2−λr and up−1 = 0 (Figure 2.7(b)), the latter is returned if u < ℓ · 2−λr or if u = ℓ · 2−λr and
up−1 = 1 (Figure 2.7(c)), that are both the expected result. Here, if ℓ · 2−λr is a midpoint between
two consecutive floating-point numbers,mr has an even significand has required in [IEE08].

It remains now to explain how to deduce the integerMr from the integer U in (2.16). Consider
the case mr = truncate (u + 2−p)p−1. We deduce thatMr = truncate (u + 2−p)p−1 · 2p−1, and
thus, multiplying both sides by 2p−1, and using (2.16) and the definition of truncation in (2.7),
we obtainMr = ⌊(U + 2k−p−2)/2k−p−1⌋. Similarly, Mr = truncate (u)p−1 · 2p−1 = ⌊U/2k−p−1⌋.
In integer arithmetic ⌊U/2i⌋ is easily computable using a right shift by i bits. Consequently, for
(k, p, emax) = (32, 24, 127), the following piece of C code implements the rounding procedure and
computes the integerMr encoding the correctly-rounded significandmr.

if(cond){
Mr = U >> 7;

} else{
Mr = (U + 0x40) >> 7;

}

As we have seen above in introduction, here we consider that cond is true if and only if the
rounding condition

(
u > ℓ ·2−λr or (u = ℓ ·2−λr and up−1 = 0)

)
is true. We will study in Chapters 3

and 4 how to implement this rounding test, depending on the function being implemented.
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ℓ · 2−λr

mr = u

u = u−1u0.u1u2 . . . up−10

(a) up = 0.

ℓ · 2−λr

mr

u = u−1u0.u1u2 . . . up−201

(b) up−1 = 0 and up = 1.

mr

ℓ · 2−λr

u = u−1u0.u1u2 . . . up−211

(c) up−1 = 1 and up = 1.

Figure 2.7: RoundTiesToEven for r > 0.

Computingmr for RoundTowardPositive

In RoundTowardPositive, the correctly-rounded result depends on the sign of the result sr, as
follows: RUp(−r) = −RDp(r), where r denotes the exact result. From Table 2.1, the goal consists
here in computing the floating-point number mr such that −21−p < (−1)sr · (ℓ · 2−λr −mr) ≤ 0.
Assume first that the exact result is positive, that is, sr = 0.

Rounding algorithm 2.2 (RoundTowardPositive). Assuming r > 0, in RoundTowardPositive, the
computation of the floating-point numbermr (such as −21−p < ℓ · 2−λr −mr ≤ 0) can be done as
follows:

if u ≥ ℓ · 2−λr then

mr = truncate (u+ 2−p)p−1

else

mr = truncate (u+ 21−p)p−1.

Proof. Recall that u has a finite representation on p fraction bits. If up = 1 then the value u is
halfway between the two floating-point numbers u− 2−p and u+ 2−p, and this algorithm always
returns u+ 2−p, which is the required result (Figure 2.8(c)). If up = 0 then u is already the signifi-
cand of a floating-point number. If u ≥ ℓ · 2−λr thenmr = u (Figure 2.8(a)) and if u < ℓ · 2−λr then
mr = u+ 21−p (Figure 2.8(b)). In both cases the algorithm returns the expected result.

Following the same approach as for RoundTiesToEven, we deduce that the resulting integer is
defined as:

Mr =

{

⌊(U + 2k−p−2)/2k−p−1⌋ if u ≥ ℓ · 2−λr ,

⌊(U + 2k−p−1)/2k−p−1⌋ otherwise.
(2.17)

For (k, p, emax) = (32, 24, 127), the following piece of C code implements the rounding procedure,
using the formulae in (2.17) and for Sr = sr = 0:
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ℓ · 2−λr

mr = u

u = u−1u0.u1u2 . . . up−10

(a) up = 0 and u ≥ ℓ · 2−λr .

mr

ℓ · 2−λr

u = u−1u0.u1u2 . . . up−11

(b) up = 0 and u < ℓ · 2−λr .

mr

ℓ · 2−λr

u = u−1u0.u1u2 . . . up−11

(c) up = 1.

Figure 2.8: RoundTowardPositive for r > 0.

if(cond){
Mr = (U + (0x40 - (Sr >> 24))) >> 7;

} else{
Mr = (U + (0x80 - (Sr >> 24))) >> 7;

}

In fact, the above code works for sr = 1 as well, since in this case we want mr = RDp(ℓ · 2−λr).
Indeed we may check that if the result is negative then Sr = 2k−1, and it follows that:

U − 2k−p−2 = U + 2k−p−2 − Sr · 2−p,

and
U = U + 2k−p−1 − Sr · 2−p,

that will both be used in the next paragraph to define the integerMr in (2.18) for RoundToward-
Negative. Hence, when sr = 1 this code actually implements the rounding algorithm presented
below for RoundTowardNegative and sr = 0.

Computingmr for RoundTowardNegative

From Table 2.1, in RoundNowardNegative, we also have to consider the sign of the result to han-
dle the correctly-rounded value mr, such as 0 ≤ (−1)sr · (mr − ℓ · 2−p) < 21−p.When sr = 0, we
can use the following algorithm.

Rounding algorithm 2.3 (RoundTowardNegative). Assuming r > 0, in RoundTowardNegative,
the floating-point numbermr can be computed as follows:

if u > ℓ · 2−λr then

mr = truncate (u− 2−p)p−1

else

mr = truncate (u)p−1.
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Proof. The value u having a finite binary expansion on p fraction bits, if up = 1 then the value
u is exactly halfway between the two consecutive floating-point numbers u − 2−p and u + 2−p,
and this algorithm always returns u − 2−p, which is the expected result (Figure 2.9(c)). If up = 0
then u is already the significand of a floating-point number: if u > ℓ · 2−λr then mr = u − 21−p

(Figure 2.9(a)), and if u ≤ ℓ · 2−λr thenmr = u (Figure 2.9(b)); and in both casesmr is the required
result.

ℓ · 2−λr

u = u−1u0.u1u2 . . . up−10

mr

(a) up = 0 and u > ℓ · 2−λr .

ℓ · 2−λr

u = u−1u0.u1u2 . . . up−11

mr = u

(b) up = 0 and u ≤ ℓ · 2−λr .

ℓ · 2−λr

mr

u = u−1u0.u1u2 . . . up−11

(c) up = 1.

Figure 2.9: RoundTowardNegative for r > 0.

Still using the same approach as for previous rounding-direction attribute, we deduce that the
resulting integerMr is as follows:

Mr =

{

⌊(U − 2k−p−2)/2k−p−1⌋ if u > ℓ · 2−λr

⌊U/2k−p−1⌋ otherwise.
(2.18)

For (k, p, emax) = (32, 24, 127), some corresponding C code, for Sr = 0, is:

if(cond){
Mr = (U - (0x40 - (Sr >> 24))) >> 7;

} else{
Mr = (U + (Sr >> 24)) >> 7;

}

The above code has been given for sr = 0, but notice that it also works when sr = 1, since in this
case, we wantmr = RUp(ℓ · 2−λr ). Indeed, observe now that if sr = 1 then Sr = 2k−1 and thus:

U + 2k−p−2 = U − (2k−p−2 + Sr · 2−p),

and

U + 2k−p−1 = U + 2−p,

that were both used to define the integerMr in (2.17) for RoundTowardPositive, and which pre-
cisely encode RUp(ℓ · 2−λr ), as wanted.
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Computingmr for RoundTowardZero

For RoundTowardZero, from Table 2.1, the expected result mr is the floating-point number such
that 0 ≤ ℓ · 2−λr −mr < 21−p.

Clearly, whatever the sign sr is, the RoundTowardZero algorithm is equivalent to the Round-
TowardNegative for sr = 0. Therefore, for sr ∈ {0, 1}, the resulting integer Mr encoding the
floating-point numbermr may be defined as follows:

Mr =

{

⌊(U − 2k−p−2)/2k−p−1⌋ if u > ℓ · 2−λr ,

⌊U/2k−p−1⌋ otherwise.

For (k, p, emax) = (32, 24, 127), the following piece of C code implements the rounding proce-
dure for the RoundTowardZero attribute and sr ∈ {0, 1}.
if(cond){

Mr = (U - 0x40) >> 7;
} else{

Mr = U >> 7;
}

2.3 Packing the correctly-rounded result

This last section presents the method used for implementing the standard integer encoding of
the correctly-rounded result, when |r| either lies in the range [α,Ω] of (sub)normal floating-point
numbers or overflows.

2.3.1 Explicit formula for the standard encoding of the correctly-rounded result

How to compute the resulting integer R?

From Section 2.2.1, we know that the correctly-rounded result is defined as ◦(r) = (−1)sr ·mr ·2er ,
with mr ∈ [0, 2] and emin ≤ er ≤ emax. Here, we consider the given k-bit unsigned integers Sr,Mr,
and Er encoding respectively sr,mr, and the biased value of er , such as:

Sr = sr · 2k−1, Mr = mr · 2p−1 and Er = er − emin + nr,

with nr the “is normal” bit of the result (that is, nr = 1 if and only ifmr > 1, and nr = 0 otherwise).
Let R be the k-bit unsigned integer encoding of r, defined using the binary interchange encoding
defined in Section 1.2.2. By definition, mr ≤ 2 and Mr ≤ 2p. It follows that if mr < 2, then the
resulting integer Rmay be computed as:

R = Sr + Er · 2p−1 + (0.mr,1mr,2 · · ·mr,p−1) · 2p−1. (2.19)

Otherwise,mr = 2, and the resulting integer R then is simply given by:

R = Sr + (Er + 1) · 2p−1. (2.20)

The main drawbacks of using (2.19) and (2.20) is that it requires:

• to remove the bits of the integer part of the floating-point numbermr;

• to increment Er by one whenmr = 2.
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Example 2.6. Assume (k, p, emax) = (32, 24, 127). Let ◦(r) = 1.41421353816986083984375 be the
correctly-rounded value of

√
2.0 in RoundTiesToEven. We have

◦(r) = (−1)0 · 20 · 1.011010100000100111100112 ,

with sr = 0, Sr = 231, er = 0, nr = 1, Er = nr − emin = 127, and Mr =
1.011010100000100111100112 · 223. Hence, using (2.19) we get the following resulting integer
R:

(Sr) 0 00000000 00000000000000000000000

(Er · 223) + 0 01111111 00000000000000000000000

(mr − nr) · 223 + 0 00000000 01101010000010011110011

R = 0 01111111 01101010000010011110011

Property 2.1. LetD = Er − nr. Then

R = Sr +D · 2p−1 +Mr. (2.21)

Proof. It suffices to show that R in (2.19) and (2.20) satisfies:

R = Sr + (Er − nr) · 2p−1 +mr · 2p−1. (2.22)

Ifmr < 2 then it follows from (2.19) that R = Sr +Er · 2p−1 + (mr −nr) · 2p−1, which is equivalent
to (2.22).

Otherwise, since er ≥ emin, ifmr = 2 then r cannot be a subnormal floating-point number, and
thus nr = 1. Then, rewriting (2.20) asR = Sr+(Er−1)·2p−1+2·2p−1 immediately gives (2.22).

Example 2.7. Assume (k, p, emax) = (32, 24, 127). Let ◦(r) = 1.41421353816986083984375 the
correctly-rounded value of

√
2.0, as defined in Example 2.6. We have

◦(r) = (−1)0 × 20 · (1.01101010000010011110011)2 ,

with sr = 0 and Sr = 231, er = 0 and D = Er − nr = −emin = 126, and Mr =
1.011010100000100111100112 · 2p−1. Hence, using (2.21) we have the following resulting inte-
ger R:

(Sr) 0 00000000 00000000000000000000000

(D · 223) + 0 01111110 00000000000000000000000

(Mr) + 0 00000001 01101010000010011110011

R = 0 01111111 01101010000010011110011

Hence the computation of R using (2.21) in Property 2.1 may be done without any exponent
update or bits removing. Moreover, by definition, we have R ≤ Sr + (Er + 1) · 2p−1. Since
er ≤ emax = 1− emin and since nr ≤ 1, we deduce that Er ≤ 2emax, from it follows that:

(Er + 1) · 2p−1 ≤ 2k−1 − 2p and R ≤ 2k − 2p−1.
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It follows that no carry is propagated to the sign bit when computing (Er + 1) · 2p−1, and also
that R fits in a k-bit unsigned integer. In the remainder of this thesis, our implementations will
heavily rely on the computation of these three elementsSr,D, andMr and the result will be packed
according to Property 2.1.

For (k, p, emax) = (32, 24, 127), Property 2.1 shows that, given Sr,D, andMr the integers defined
above, the computation of the resulting integer R may be implemented using the following C
code.

R = (Sr + (D << 23)) + Mr;

We expect that the integer Mr is more expensive to compute than Sr and D. This is why we
compute first Sr + (D << 23) before adding the correct significand.

Special case: ℓ = 2 and d = emax

Consider now the case where ℓ = 2 and d = emax: we deduce that mr = 2 and |r| > Ω. In this
document, this special case concerns only the implementation of the reciprocal function, studied
in Section 3.6. Since emax = 2k−p − 1, in this case the resulting integer constructed using (2.21) is as
follows:

R = Sr + (2k−1 − 2p−1). (2.23)

From Table 1.4, we may check that this integer encodes either +∞ or −∞.
However, when the infinitely precise result r satisfies |r| > Ω, then the IEEE 754-2008 stan-

dard requires various results to be returned [IEE08, §4.3], depending on the rounding-direction
attribute and the sign of the result sr, and not only ±∞, as described below:

RoundTiesToEven. In this case the standard [IEE08, §4.3.1] requires that infinity with the correct
sign be returned (Figure 2.10(a)):

RNp(r) = (−1)sr∞.

RoundTowardPositive. In this case, from [IEE08, §4.3.2], it follows that the returned result has to
be a floating-point number or an infinity no less than the exact result (Figure 2.10(b)). Hence
if the result is positive (sr = 0) then +∞ has to be returned, while if the result is negative
(sr = 1), the smallest floating-point number −Ω has to be returned:

RUp(r) =

{

+∞ if sr = 0,

−Ω if sr = 1.

RoundTowardNegative. On the contrary, in this case, from [IEE08, §4.3.2], the returned result has
to be a floating-point number or an infinity no greater than the exact result (Figure 2.10(c)).
Therefore if the result is negative (sr = 1) then −∞ has to be returned, while if the result is
positive (sr = 0), the largest positive floating-point number +Ω has to be returned:

RDp(r) =

{

+Ω if sr = 0,

−∞ if sr = 1.

RoundTowardZero. In this final case, the standard requires that the result be a floating-point
number no greater in magnitude than the exact result (Figure 2.10(d)). And whatever the
sign of the result is, the largest floating-point ±Ω (with the correct sign) has to be returned:

RZp(r) = (−1)srΩ.
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+∞−∞

−Ω +Ω

(a) RoundTiesToEven.

+∞−∞

−Ω +Ω

(b) RoundTowardPositive.

+∞−∞

−Ω +Ω

(c) RoundTowardNegative.

+∞−∞

−Ω +Ω

(d) RoundTowardZero.

Figure 2.10: Rounding, when overflow occurs.

Remark that if the exact result ℓ defined in (2.2) is strictly less than 2 (that is, 2 − 21−p < ℓ <
2), these cases above will be handled through the rounding procedures detailed in Section 2.2.4.
However if ℓ = 2, using these rounding procedures may lead to a result not compliant to the IEEE
754-2008 standard (see Example 2.8 below).

Example 2.8. Assume (k, p, emax) = (32, 24, 127). Let x1 and x2 be two floating-numbers and
f(x) a function such as

f(x1) = ℓ1 · 2emax and f(x2) = ℓ2 · 2emax ,

with ℓ1 = 2 and 2 − 2−24 < ℓ2 < 2, having both an infinite binary expansion. Considering
RoundTowardNegative rounding-direction attribute, in both cases, the returned result should
be +Ω. However it follows from the rounding procedure presented in Section 2.2.4 thatmr1 = 2
and that the returned result is +∞ (instead of +Ω), while on the other hand,mr2 = 2− 2−23 and
the returned result is +Ω as required by the IEEE 754-2008 standard.

For example, considering the reciprocal function presented in Section 3.6, the number of inputs
for which these special cases (ℓ = 2 and er = emax) occur is small 5, and they may be listed and
handled separately. Section 3.6.3 presents the handling of such so-called special implementation
case for reciprocal.

2.3.2 Overflow handling

The last case to be considered when dealing with the returned integer packing is the case where
d > emax. In this case er = d, andD = er − emin givesD > 2emax − 1. SinceD is an integer, it follows
that d > emax if and only if D ≥ 2emax. Once we have detected that an overflow occurs, we have
to decide which result must be returned. Using the same approach as for the special case where
ℓ = 2 and d = emax (presented in Section 2.3.1 above), and by definition of the rounding-direction
attributes in [IEE08, §4.3] we deduce the following C codes, for (k, p, emax) = (32, 24, 127).

RoundTiesToEven: R = Sr + (2k−1 − 2p−1).

if (D >= 0xFE) return Sr + 0x7F800000;

5For the reciprocal function, this case occurs for two inputs: x = ±2emin−2.
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RoundTowardPositive: R = Sr + (2k−1 − 2p−1 − sr), with Sr = sr · 2k−1.

if (D >= 0xFE) return Sr + 0x7F800000 - (Sr >> 31);

RoundTowardPositive: R = Sr + (2k−1 − 2p−1 − 1 + sr), with Sr = sr · 2k−1.

if (D >= 0xFE) return Sr + 0x7F7FFFFF + (Sr >> 31);

RoundTowardZero: R = Sr + (2k−1 − 2p−1 − 1).

if (D >= 0xFE) return Sr + 0x7F7FFFFF;

2.4 Example of correctly-rounded multiplication

This section presents the implementation of multiplication with correct rounding, for which the
sticky bit can be computed exactly. The algorithm is well-known [MBdD+09], but we illustrate
here that using the basic blocks presenting all along this chapter enables to write efficient and
provably-correct code in a faster way.

This section is organized as follows. First we detail the range reduction of the multiplication
in Section 2.4.1. Then, we show how to compute the correctly-rounded significand mr in Sec-
tion 2.4.2, before explaining how to implement this operation on VLIW integer processors for the
binary32 floating-point format in Section 2.4.3.

2.4.1 Range reduction

Let x and y be two (sub)normal nonzero floating-point numbers as in (1.3). This section presents
the range reduction for themultiplication operation, that is, theway used to deduce the expression
of the exact result r (from those of x and y) required in (2.2):

r = (−1)sr · ℓ · 2d with sr ∈ {0, 1}, ℓ ∈ [1, 2], and d ∈ Z. (2.24)

To do so, since x, y may be subnormal numbers, we consider x and y in their normalized
representation, as in (1.5):

x = (−1)sx ·m′
x · 2e′x and y = (−1)sy ·m′

y · 2e′y ,

with sx, sy ∈ {0, 1}, m′
x,m

′
y ∈ [1, 2 − 21−p] and e′x, e

′
y ∈ {emin − p + 1, . . . , emax}. It follows that the

exact result r of the product x · y can be defined as follows:

r = (−1)sr · (m′
x ·m′

y) · 2e′x+e′y ,

with sr = sx XOR sy. Here, by definition ofm′
x andm′

y, we know thatm′
x ·m′

y ∈ [1, 4). Hence, let
us define the value c ∈ {0, 1} as follows:

c =

{

0 ifm′
x ·m′

y < 2,

1 ifm′
x ·m′

y ≥ 2.
(2.25)

Therefore in order to achieve the range requirements in (2.24), we can deduce the following defi-
nition for ℓ and d,

ℓ = 2−c ·m′
x ·m′

y and d = e′x + e′y + c. (2.26)
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Indeed, it follows fromm′
x,m

′
y ∈ [1, 2 − 21−p] and from c ∈ {0, 1} that ℓ ∈ [1, 2) and that

d ∈ {2emin, . . . , 2emax + 1}. (2.27)

From (2.24) and 2.27 we deduce that the exact product may underflow or overflow, that is, we
may have one of the following cases:

|r| < 2emin or |r| > 2emax · (2− 21−p).

This is illustrated by Example 2.9 below.

Example 2.9. Let x1, x2, y1, and y2 four nonzero positive (sub)normal floating-point numbers
defined as follows:

x1 = 2emin−p+1, x2 = 2(emax+1)/2+1, y1 = 2p−2, and y2 = 2(emax+1)/2.

We finally get

x1 · y1 = 2emin−1 < 2emin and x2 · y2 = 2emax+2 > 2emax · (2− 21−p).

From that statement, we have to distinguish the three cases presented in Section 2.2.1: d > emax,
emin ≤ d ≤ emax, and d < emin. The case where d > emax and the exact result r overflows is handled
has presented in Section 2.3.2, and will not be discussed in more details in this section. Here we
consider the two last cases:

d ∈ {emin, . . . , emax} or d < emin.

As mentioned in (2.3), to handle both cases together, let us define λr and the exponent er as fol-
lows:

λr = max(0, emin − d) and er = max(emin, d),

with er ∈ {emin, . . . , emax} and λr ∈ {0, . . . , emax−1} by definition of the exponent d in (2.27). Finally,
the correcly-rounded result to be returned is defined as in (2.5), that is:

◦(r) = (−1)sr × ◦(ℓ · 2−λr)× 2er . (2.28)

Remark here that the exact value ℓ cannot be equal to 2 (and ℓ · 2−λr as well, since λr ≥ 0).
Hence the case ℓ = 2 and d = emax can never occur, and no special implementation case has to
be handled. This means that, when implementing multiplication, the returned integer computed
as presented in Property 2.1 is always the expected one (for x,y two (sub)normal floating-point
numbers).

2.4.2 Computation of the correctly-rounded significand

This section defines the real value ℓ, and explains how to deduce the correctly-rounded floating-
point number mr. Then, it shows how to compute the bits useful for determining the rounding
bit b.

Defining the binary expansion of ℓ and deducingmr

Let us first define the real value ℓ in (2.28), and then let us show how to deduce the correctly-
rounded floating-point number mr. By definition, the normalized significand of x and y, m′

x and
m′

y , respectively, have both at most p significant bits, with p < k. Hence, we know that the exact
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product m′
x · m′

y has a binary expansion on at most 2p bits. Let s be the exact product m′
x · m′

y.
Then

s = s−1s0.s1s2 · · · s2p−2 ∈ [1, 4).

In our context, the implementation is done using k-bit numbers. Since k < 2p < 2k (which is at
least the case for each of the binary floating-point formats defined in the IEEE 754-2008 standard),
the binary expansion of s has to be stored with two k-bit values. Let shigh and slow be defined as

shigh = truncate (s)k−2 and s = shigh + slow · 22−k. (2.29)

This implies that

shigh = s−1s0.s1s2 · · · sk−2 and slow = 0.sk−1sk · · · s2p−2 000 · · · 000
︸ ︷︷ ︸

2k−2p zeros
. (2.30)

Moreover, by definition of the value c in (2.25), it follows that

c =

{

0 if s−1s0 = 01,

1 if s−1s0 = 1∗,

that is, c = s−1. Finally from the definition of ℓ in (2.26), it follows that

ℓ · 2−λr = 00.0 . . . 0
︸ ︷︷ ︸

λr zeros
1s1−cs2−c . . . s2p−2, and ℓi = si−c. (2.31)

As in (2.8) let us denote by u the truncation of ℓ · 2−λr after k− 2 fraction bits. Since λr ≥ 0 and
since s−1−c = 0, we deduce from (2.29) and (2.31) that

u =

{

0 if λr ≥ k − 1,

truncate (shigh · 2−(λr+c))k−2 otherwise.

Hence, we conclude that umay be defined as follows:

u = truncate (shigh · 2−min(k−1,λr+c))k−2. (2.32)

Using the definition of the correctly-rounded floating-point numbermr in (2.10) together with
the definition of truncation in (2.7), and (2.32), we finally get:

mr = truncate (shigh · 2−min(k−1,λr+c))p−1 + b · 21−p

= ⌊shigh · 2−min(k−1,λr+c) · 2p−1⌋/2p−1 + b · 21−p (2.33)

In this case, we can computemr directly from the value shigh, and more particularly without com-
puting first the value u, which will not be the case for the functions studied in Chapters 3 and 4.

We know how to compute shigh. It remains now to see how to determine the rounding bit b,
and more particularly the bits useful for computing it.

Determining the bits useful for computing the rounding bit b

Let us deduce now, from the binary expansion of ℓ · 2−λr , the three bits useful for computing the
rounding bit b, as given in Section 2.2.3. These three bits are ℓp−1−λr , the guard bit g = ℓp−λr , and
the sticky bit s. From (2.31), it follows that:

ℓp−1−λr = sp−1−c−λr , g = sp−c−λr , and s = sp+1−c−λr ∨ · · · ∨ s2p−2. (2.34)

Remark that depending on the rounding-direction attribute considered, some of these bits may be
not used. But for the sake of generality of this section, we present now the way used to decide
each of them.
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• We know from (2.31) that the bit ℓp−1−λr = sp−1−c−λr , and since s−1−c = 0, then ℓp−1−λr is
defined as follows:

ℓp−1−λr =

{

0 if λr ≥ p,
sp−1−c−λr otherwise.

It follows that the bit ℓp−1−λr can always be deduced from the bit string of shigh. Let Shigh be
the k-bit unsigned integer encoding shigh such as:

Shigh = shigh · 2k−2. (2.35)

Hence, the bit ℓp−1−λr may be extracted from the bit string of Shigh by shifting right Shigh by
k− 1− p+ c+ min(p, λr) bits, and by taking the bitwise AND between the resulting integer
and 1:

ℓp−1−λr =
(
Shigh ≫ (k − 1− p+ c+ min(p, λr))

)
AND 1.

However, if λr ≥ p and c = 1, then Shigh is shifted right by k bits, then the shift operation is
not well-defined in the sense of the C standard [Int99], that requires the shift to be of strictly
less than k bits. In this case, we may have an undefined behavior. Hence, to solve this
problem, we first shift Shigh right by k − 1− p bits and then by c+ min(p, λr). We finally get:

ℓp−1−λr =
(
Shigh ≫ (k − 1− p)

)
≫ (c+ min(p, λr)) AND 1, (2.36)

with 0 ≤ k − 1 − p, c + min(p, λr) < k. We observe also that this solution enables to expose
sligthly more instruction-level parallelism than the previous one.

• From (2.31) and (2.34), we know that g = sp−c−λr . More precisely, we have:

g =

{

0 if λr ≥ p+ 1

sp−c−λr otherwise.

Actually, the guard bit g can be extracted from the bit string of Shigh in (2.35) in the same way
as presented above for ℓp−1−λr . It follows that g is defined as:

g =
(
Shigh ≫ (k − 2− p)

)
≫ (c+ min(p + 1, λr)) AND 1, (2.37)

with 0 ≤ k − 2− p and c+ min(p+ 1, λr) < k.

• Finally, from (2.9), (2.31), and (2.34), it follows that the sticky bit s is defined as a “logical or”
of the bits si for i ∈ {p−c−λr +1, . . . , 2p−2}. Since c ≥ 0 and λr ≥ 0, we deduce from (2.30)
that the sticky bit s equals 0 if and only if

sp−c−λr+1 · · · sk−2 = 0 and slow = 0.

Let Slow be the k-bit unsigned integer encoding slow such as:

Slow = slow · 2k. (2.38)

It is obvious that slow = 0 if and only if Slow = 0. It remains now to decide if sp−c−λr+1 · · · sk−2

equals 0. Notice first that λr ≥ p + 2− c implies sp−c−λr+1 · · · sk−2 = shigh. It follows that the
bits sp−c−λr+1, · · · , sk−2 can be extracted from the bit string of Shigh by removing its p + 2 −
c − λr leading bits, which may be done by shifting Shigh left by max(0, p + 2 − c − λr) bits,
since p+ 2− c− λr may be less than 0. Finally, the sticky bit is defined as follows:

s =
(
(Shigh ≪ max(0, p + 2− c− λr)) 6= 0

)
∨
(
Slow 6= 0

)
. (2.39)

In this section, we have defined all the elements useful for the implementation of correctly-
rounded multiplication. Let us now explain how to implement this operator on the ST231 proces-
sor, for the binary32 floating-point format.
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x× y y

±0 (sub)normal ±∞ NaN

x

±0 ±0 ±0 qNaN qNaN

(sub)normal ±0 ◦(x× y) ±∞ qNaN

±∞ qNaN ±∞ ±∞ qNaN

NaN qNaN qNaN qNaN qNaN

Table 2.2: Specification of the multiplication operation x× y.

2.4.3 Implementation of multiplication in the binary32 format

This section presents in Listing 2.2 a complete code implementing multiplication for the binary32
floating-point format. Let x and y be two floating-point data, encoded in the k-bit unsigned inte-
gers X and Y , respectively, according to the interchange encoding defined in Section 1.2.2. Here,
we do not discuss how to handle special inputs. Indeed, the manner used to decide whether x or y
is a special input is done as presented for division in Section 4.3, Chapter 4. And the output result
is determined according to the specification of the multiplication in Table 2.2 above. In Listing 2.2,
this is done between lines 15 and 24.

Therefore, from now on we consider that x and y are two (sub)normal floating-point num-
bers. In Listing 2.2, the input unpacking in done in lines 9, 12, and 27 to 31, as presented in List-
ing 2.1. Herewe detail the implementation for the RoundTiesToEven rounding-direction attribute:
handling of overflow (line 47, Listing 2.2), and implementation of the rounding bit b (line 49, List-
ing 2.2) are done as presented in Section 2.3.2 and Section 2.2.3, respectively, for RoundTiesToEven.
(From Section 2.3.2 and Section 2.2.3, the correctly-rounded implementation for other rounding-
direction attribute may be derivated easily, by replacing those two lines.) It remains finally to
explain how to implement the computation of sign Sr, the exponent D, and the scaling λr, and
then how to implement the computation of the resulting integer R.

Computing the result sign Sr, the exponentD, and the scaling λr

The computation of the sign Sr is done by extracting first the sign of the input X and Y , and
by taking the XOR between both of them. Using Listing 2.1, it follows that the sign Sr may be
computed, for (k, p, emax) = (32, 24, 127), as presented in lines 9 and 10 in Listing 2.2.

Moreover, let Er be the w-bit unsigned integer encoding the biased value of er such as Er =
er − emin + nr. From (2.21), we know that the goal is to compute D = Er − nr instead of Er, that
is, D = er − emin. From (2.4), we know also that er = max(emin, d), and from the definition of d
in (2.26), we conclude that D = max(0, d− emin), that is:

D = max(0, e′x + e′y + c− emin). (2.40)

Let Ex and Ey be the w-bit unsigned integers encoding ex and ey , respectively. It follows from
Section 1.2.2 that

Ex = ex − emin + nx and Ey = ey − emin + ny,

with nx and ny the “is normal bit” of the floating-point number x and y, respectively. Using (1.5)
and (2.1), together with (2.40), we finally get:

D = max
(
0, Ex + Ey − nx − ny −MX −MY + c+ (2w + emin)

)
. (2.41)

Finally, let us denote by Lr the k-bit unsigned integer encoding of λr. From (2.3), we know that
λr = max(0, emin − d). Using the same approach as for the implementation ofD, it follows that:

Lr = max
(
0,−(Ex + Ey − nx − ny −MX −MY + c+ (2w + emin))

)
. (2.42)
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The implementation of D and Lr, for (k, p, emax) = (32, 24, 127), is done in line 37 in Listing 2.2.
(Remark that cmay easily extracted by shifting right Shigh by k − 1 bits, as in line 34.)

Computing the resulting integer R

It remains to compute the k-bit resulting integer R, as in (2.21): R = Sr +D · 2p−1 +Mr, withMr

the k-bit unsigned integer encoding of the floating-point numbermr defined in (2.33), as in (2.16):

Mr = mr · 2p−1 and ⌊Shigh · 21+p−k · 2−min(k−1,λr+c)⌋+ b.

Here, the rounding bit b is expected to be more expensive to be computed than ⌊Shigh · 21+p−k ·
2−min(k−1,λr+c)⌋. Hence, we will parenthesize the computation of R as follows:

R =
(

(Sr +D · 2p−1) + ⌊Shigh · 21+p−k · 2−min(k−1,λr+c)⌋
)

+ b,

as implemented in line 51 in Listing 2.2, for (k, p, emax) = (32, 24, 127). Recall that Mpx and Mpy

are the k-bit unsigned integers encoding of the significands m′
x and m′

y, respectively, as in Sec-
tion 2.1.3:

Mpx = m′
x · 2k−1 and Mpy = m′

y · 2k−1. (2.43)

Recall also that Shigh and Slow are the k-bit unsigned integers encoding of shigh and slow, respectively,
as in (2.35) and (2.38). From the definition of the function mul and the operator * defined in
Table 1.1, as:

mul (X,Y ) = ⌊(X · Y )/2k⌋ and X* Y = (X · Y ) mod 2k,

it follows together with (2.29) and (2.43) that:

Shigh = mul (Mpx,Mpy) and Slow = Mpx ∗Mpy,

as shown in line 33 (Listing 2.2). Finally, in integer arithmetic, ⌊Shigh · 21+p−k · 2−min(k−1λr+c)⌋ can
be simply implemented using two shifting operations, as in line 45:

(
Shigh ≫ (k − 1− p)

)
≫ min(k − 1, λr + c).

It remains to explain the implementation of the rounding bit b in line 49. Let s1 and s2 be such
as s = s1 ∨ s2 with:

s1 =
(
Shigh ≪ max(0, p + 2− c− λr)

)
6= 0 and s2 = Shigh 6= 0,

so that b = g ∧
(
ℓp−1−λr ∨ (s1 ∨ s2)

)
. Since s1 is expected to be more expensive to be computed

than ℓp−1−λr and s2, we define b, for RoundTiesToEven, as follows:

b = g ∧
(
(ℓp−1−λr ∨ s1) ∨ s2)

)
. (2.44)

Finally, from (2.36), (2.37), and (2.39), the implementation of the bits useful for computing b is
done from lines 40 to 43 (Listing 2.2), where lsb encodes ℓp−1−λr . Remark finally that, since
(
(ℓp−1−λr ∨ s1) ∨ s2

)
∈ {0, 1} in (2.44), the bitwise AND in (2.37) is not necessary, and is actually

not used in line 40 of Listing 2.2.
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1 uint32_t flip_binary32_mul( uint32_t X , uint32_t Y)
2 {
3 uint32_t absX, absY, Min, Max, Inf;
4 uint32_t Sx, Lx, nx, Ex, MX, mpX, Sy, Ly, ny, Ey, MY, mpY;
5 uint32_t R = 0, Sr, D, Lr, Mr_minus_b, Shigh, Slow, c;
6 uint32_t b, g, lsb, s1, s2;
7 int32_t tmp;
8
9 Sx = X & 0x80000000; Sy = Y & 0x80000000;
10 Sr = Sx ^ Sy;
11
12 absX = X & 0x7FFFFFFF; absY = Y & 0x7FFFFFFF;
13
14 // Special value handling // see Section 4.3 for more details
15 if (maxu(absX-1, absY-1) >= 0x7F7FFFFF) {
16 Min = minu(absX, absY); Max = maxu(absX, absY); Inf = Sr | 0x7F 800000;
17
18 if (Max > 0x7F800000 || (Min == 0 && Max == 0x7F800000))
19 return (Inf | 0x00400000) | Max; // qNaN with payload equal to
20 // the last 22 bits of X or Y
21 if (Max != 0x7F800000)
22 return Sr;
23
24 return Inf;
25 } else{
26 // Floating-point number handling: X,Y != {-0,+0,-Inf,+Inf,NaN}
27 Ex = absX >> 23; Ey = absY >> 23;
28 nx = absX >= 0x00800000; ny = absY >= 0x00800000;
29 Lx = nlz(absX); Ly = nlz(absY);
30 MX = maxu(Lx , 8); MY = maxu(Ly , 8);
31 mpX = (X << MX) | 0x80000000; mpY = (Y << MY) | 0x80000000;
32
33 Shigh = mul(mpX , mpY); Slow = mpX * mpY;
34 c = Shigh >> 31;
35
36 tmp = Ex + Ey - nx - ny - MX - MY + c - 110;
37 D = max( 0 , tmp ); Lr = max( 0 , 0x0 - tmp );
38
39 // Bits useful for rounding
40 g = (Shigh >> 6) >> (c + min(Lr , 25));
41 lsb = (Shigh >> 7) >> (c + min(Lr , 24))&0x1;
42 s1 = (Shigh << max(0 , 26 - c - Lr)) != 0;
43 s2 = Slow != 0;
44
45 Mr_minus_b = (Shigh >> 7) >> min(31 , Lr + c);
46
47 if (D >= 0xFE) return Sr | 0x7F800000;
48
49 b = g & ((lsb | s2) | s1);
50
51 R = ((Sr | (D << 23)) + Mr_minus_b) + b;
52 }
53 return R;
54 }

Listing 2.2: Correctly-rounded multiplication for the binary32 format and RoundTiesToNearest
rounding-direction attribute.





CHAPTER 3
A uniform approach for
correctly-rounded roots and their
reciprocals

This chapter presents a uniform approach for the implementation of roots
and their reciprocals, based on the evaluation of a particular bivariate poly-
nomial. It turns out that this approach is more efficient on VLIW integer
processors (like the ST231) than the classical ones ( iterative methods, mul-
tiplicative methods, or univariate polynomial-based methods). This ap-
proach is presented here in a fully parametrized way, with detailed analy-
ses. Its efficiency is mainly achieved thanks to the optimized and certified
polynomial evaluation pogram generated using CGPE (Part II). Finally two
detailed examples of such an implementation for the binary32 format are
given: the square root and the reciprocal. Notice that this approach has al-
ready been used for implementing several other functions of FLIP, with an
average speedup of a factor of about 1.85 compared to those of FLIP 0.3.

This chapter presents a uniform approach for implementing, for a given n ∈ Z \ {0, 1}, the func-
tion x1/n, with correct rounding and optimized for VLIW integer processors. Recall that our work
aims at the design of some basic mathematical functions optimized for the ST231, a 4-issue VLIW
integer processor of the ST200 family of cores of STMicroelectronics. ST200 processors are embed-
ded media processors highly used in the audio and video domains, and in particular designed to
implement advanced audio and video codecs in consumers devices (set-top boxes for HP-IPTV,
cell phones, wireless terminals, and PDAs). In these domains, it can be useful to have an efficient
support for functions like square root x1/2, cube root x1/3, ... and their reciprocals.

Many different algorithms are known for the implementation in hardware and software of
such functions (see [PPB03], and, for square root for example, the survey [MM90] or the refer-
ence books [EL04], [Mar00], or [CHT02]). Iterative methods (restoring, nonrestoring, SRT,...) are
based on an iterative process that produces one or a few bits of the result per iteration (see [EL94]
or [PB02] for square root, and [PBLM08] for cube root, or [MBCP07] for an extension to general
nth roots, for example). Unfortunately, these methods, that have linear convergence, are ill-suited
in our context, since they are highly sequential. Indeed their implementation uses most probably
only 1 issue out of the 4 available on the target architecture, and thus may be slow. Multiplicative
methods [EL04, §7] (Newton-Raphson or Goldschmidt methods [EIM+00]) converge quadrati-
cally by refining a first approximation of the function, that may be obtained in various ways.
For example, reciprocal square root is implemented via Newton-Raphson algorithm in [FHL+07],
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[Zim08], [BZ09], or Newton-like iterations in [SW99]. OnHP/Intel’s Itanium processor, the square
root is implemented using a Newton-Raphson algorithm that refines a first approximation ob-
tained by calling a specific hardware instruction frsqrta (on the IA-64 architecture) that ap-
proximates the reciprocal square root to around 8 bits [Mar00, §9.1.1,§9.3.1], [CHN99], [GHH+01],
[CHT02, p.238], [Mar04]. However this approach requires that this kind of instruction be available,
which is not the case on most architectures. On IBM’s RS/6000 [Mar90] or Power3 [AGS99], the
first approximation is obtained by look-up table and refined by Newton-Raphson iteration, while
on AMD-K7TM it is refined using Goldschmidt-like iteration [Obe99]. It may also be obtained by
evaluating small-degree polynomial approximants: for example in the previous version of square
root and reciprocal square root in FLIP 0.3 [Rai06, §11, §12], the first approximation was computed
via the evaluation of degree-3 polynomial approximants and refined using Goldschmidt methods;
a similar example, but with degree-2 polynomials and in hardware, can be found in [PB02]. The
last methods that may be used for implementing such functions are polynomial-based methods.
For example, in [JKMR07] we have implemented the square root via the evaluation of several
small-degree univariate polynomials, while in [AGS99] it is implemented through the combina-
tion of look-up tables and univariate Chebychev’s polynomial evaluation.

The uniform approach we propose here relies on the efficient evaluation of a single bivariate
polynomial. The interest of this fully parametrized approach is that it can be easily integrated into
an automatic tool to generate code for the implementation of nth roots, and then derive quickly
several implementations. It has already been used to implement several functions: square root
(see [JKMR08] and Section 3.5), division (see [JKM+09] and Chapter 4), reciprocal (see Section 3.6),
or reciprocal square root (see [JR09a]), and enables to achieve implementations about 1.85 times
faster than the implementations of FLIP 0.3.

This chapter is organized as follows: Section 3.1 presents a fully parameterized approach for
implementing nth roots and their reciprocals; Section 3.2 discusses how to approximate the func-
tion by a particular single bivariate polynomial; Section 3.3 details how to compute the sign and
the exponent of the result; and Section 3.4 explains how to handle special input in all cases (n
positive or negative). Finally in Sections 3.5 and 3.6, we present two detailed implementation
examples for, respectively, the square root function and the reciprocal function.

3.1 General properties of the real function x 7→ x1/n

Here and hereafter we shall consider the root functions and their reciprocals as special cases of
the real function x 7→ x1/n over R, for given values n ∈ Z

∗, recommended in the IEEE 754-2008
standard [IEE08, §9.2]. More precisely, here let us define x1/n over R as follows:

• If x ∈ R>0 then x1/n is defined as the unique y ∈ R>0 such that yn = x;

• If x ∈ R<0 then x1/n = −(−x)1/n if n is odd, and is undefined if n is even;

• If x = 0 then x1/n = 0 if n > 0, and is undefined if n < 0.

Remark that, for example, the MPFR library [FHL+07] provides, in addition to the specific imple-
mentation of the square root, cube root, and reciprocal square root [Zim08], an implementation of
the function root (x, n). On the contrary, here, we present a general framework for implementing
the function x1/n for given values n (square root x1/2, reciprocal square root x−1/2, cube root x1/3,
...). Figure 3.1 shows the graphs obtained by applying this definition of x1/n to various values n:
Figure 3.1(a) shows the graphs where n > 0 for square root (n = 2), cube root (n = 3), and fourth
root (n = 4), while Figure 3.1(b) displays those where n < 0 for reciprocal (n = −1), reciprocal
square root (n = −2), and reciprocal cube root (n = −3).
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In this chapter, we will not consider the case n = 1, which obviously yields the identity func-
tion. Without loss of generality, we consider that |n| ≥ 2 or n = −1.
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Figure 3.1: Graph of x1/n for various values of n.

Let x be a floating-point datum defined as in Section 1.2.1 and [IEE08, §3.3]. It follows from
the above definition of the function x1/n that we can restrict the study to positive input, while
negative input will be handled as follows:

• if n is even, then x negative is considered as special input, just like ±0, ±∞, or NaN;

• if n is odd, then x negative is considered as a positive input, with the correct sign adjoined
to the result.

From that statement, in this section, we consider finally that x is a nonzero positive (sub)normal
floating-point number:

x = m′
x · 2e′x with m′

x ∈ [1, 2 − 21−p] and e′x ∈ {emin − p+ 1, . . . , emax}.

The goal is thus to express the exact result r = x1/n as required in Section 2.2.1 to ensure correct
rounding, that is, recalling (2.2), as

r = ℓ · 2d, with ℓ ∈ R ∩ [1, 2] and d ∈ Z. (3.1)

Here we do not specify any range for the exponent d: according to its value, either the exact result
r overflows or lies in the range of (sub)normal floating-point numbers; and all these cases are
handled as presented in Section 2.2.1. Recall that to handle them, we define λr and er as in (2.3):

λr = max(0, emin − d) and er = max(emin, d). (3.2)

Finally the exact result r and its correctly-rounded value ◦(r) are as follows:

r = (ℓ · 2−λr ) · 2er and ◦(r) = mr · 2er , with mr = ◦(ℓ · 2−λr). (3.3)
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In the remainder of this section, we give some properties of the function x1/n in binary floating-
point arithmetic, before detailing the range reduction, and thus giving explicit formulas for the
values ℓ and d in (3.1). Finally we expose some properties that are useful for correct rounding,
especially to deduce whether r can be halfway between two floating-point numbers, or exactly a
floating-point number.

3.1.1 Basic properties of x1/n in binary floating-point arithmetic

Recall that x is a nonzero positive (sub)normal floating-point number defined in (1.5), and that
r > 0 is the exact result of x1/n. We have

x = m′
x · 2e′x and r = x1/n,

with m′
x ∈ [1, 2 − 21−p], e′x ∈ {emin − p + 1, . . . , emax}, and n ∈ Z \ {0, 1}. The following properties

deal with the range in which the exact result r = x1/n lies, depending on the value of n. These
properties will allow us to determine if the exact result r denormalizes or not.

Neither underflow nor overflow occur when |n| ≥ 2

We show in Property 3.1 below that, when |n| ≥ 2, the exact result r = x1/n lies always in the
range of normal floating-point numbers. We can deduce that the exact result cannot denormalize,
and also never underflows nor overflows. This will simplify the implementation of x1/n, since we
will not have to detect and handle the case where r < 2emin or r ≥ 2emax+1 to decide the result that
shall be returned.

Property 3.1. For x a nonzero positive (sub)normal floating-point number defined in (1.5) in Sec-
tion 1.2.1 and |n| ≥ 2, the real value r = x1/n lies in the range of normal floating-point numbers,
that is,

x1/n ∈ [2emin ,Ω].

Proof. By definition, we have 21−p+emin ≤ x < 21+emax . Assume first that n ≤ −2. The function
x 7→ x1/n being monotonically decreasing, we deduce that 2(1+emax)/n < x1/n ≤ 2(1−p+emin)/n. To
get the lower bound 2emin ≤ x1/n, let us show that emin ≤ (1+emax)/n. Since n < 0 and emin = 1−emax,
this means n·(1−emax) ≥ 1+emax, that is, |n|·(emax−1) ≥ 1+emax. This last inequality is true because
|n| ≥ 2 and because emax ≥ 2 is odd, thus emax ≥ 3. On the other hand, since emax = 1 − emin and
p ≤ 1− emin, we have 1− p+ emin ≥ −2emax, and using n ≤ −2, we deduce that 2(1−p+emin)/n ≤ 2emax .
From 1 ≤ 2− 21−p, we conclude the upper bound x1/n ≤ (2− 21−p) · 2emax .

Assume now that n ≥ 2. The function x 7→ x1/n being monotonically increasing, we deduce
that 2(1−p+emin)/n ≤ x1/n < 2(1+emax)/n. Since p ≤ 1 − emin and n ≥ 2, we deduce the lower bound
2emin ≤ x1/n. Moreover from emax ≥ 1 and n ≥ 2 we have 2(1+emax)/n < 2emax , and p ≥ 1 implies
1 ≤ 2 − 21−p. Thus we deduce the upper bound x1/n ≤ (2 − 21−p) · 2emax , that concludes the
proof.

Recall from (3.1) that r = ℓ · 2d with ℓ ≥ 1 and, from (3.2), that λr = max(0, emin − d). Hence
Property 3.1 implies:

d ≥ emin and λr = 0, if |n| ≥ 2. (3.4)

From Property 3.1, and by definition of rounding-direction attributes in Section 2.2.1, we deduce
that the correctly-rounded value ◦(r) lies also in the range of normal floating-point numbers. That
means especially that no overflow may occur while rounding. From that statement, it follows
from (3.2) and (3.3) that r and ◦(r) are defined as follows:

r = ℓ · 2er and ◦(r) = mr · 2er , with mr = ◦(ℓ) and er ∈ {emin, . . . , emax}. (3.5)
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When n = −1, the exact result may underflow or overflow

For n = −1, the function x1/n obviously corresponds to the reciprocal function. In this case, the
exact result r = 1/x, with x being a nonzero positive (sub)normal floating-point number may
underflow (that is, |r| < 2emin) or overflow (that is, |r| > (2− 21−p) · 2emax).

Example 3.1. Assume p ≥ 3. Let x = 2emax and y = 2emin−p+1. Since emax = 1− emin, we have

1/x = 2emin−1 < 2emin and 1/y = 2emax−2+p > 2emax · (2− 21−p).

The characterization of underflow and overflow is presented in Section 3.6.3 discussing the
implementation of the reciprocal. Here we focus on the representation of the exact result r and its
correctly-rounded value ◦(r). In this case, if an underflow occurs, since ℓ ≤ 1, then we know that
the exponent d is strictly less than emin, and that λr 6= 0 in (3.2).

Property 3.2. For x a nonzero positive (sub)normal floating-point number defined in (1.5) in Sec-
tion 1.2.1 and n = −1, the real value x−1 lies in the range

2emin−2 < x−1 ≤ 2emax−2+p. (3.6)

Proof. By definition, 21−p+emin ≤ x < 21+emax . By definition n = −1. The function x 7→ x−1 being
monotonically decreasing, we deduce 2−(1+emax) < x−1 ≤ 2−(1−p+emin). Since emin = 1 − emax, we
have finally 2emin−2 < x−1 ≤ 2emax−2+p.

More precisely, we deduce from Property 3.2 above that, when p ≥ 3 (which is the case for
the binary floating-point formats in the standard [IEE08]), the exact result r = 1/x may overflow.
Otherwise, when p ≤ 2, the exact result cannot overflow.

Another interesting consequence of Property 3.2 is that λr in (3.2) lies in a very small range.
More precisely, combining (3.6) with the fact that ℓ ∈ [1, 2] gives 2emin−2 < 2d+1 and 2d ≤ 2emax−2+p.
Therefore,

emin − 2 ≤ d ≤ emax − 2 + p. (3.7)

Since λr = max(0, emin − d), it follows that

λr ∈ {0, 1, 2}. (3.8)

And when d ≤ emax, the correctly-rounded result ◦(r) of r that we shall return, is defined as

◦(r) = mr · 2er , with mr = ◦(ℓ · 2−λr ) and er ∈ {emin, . . . , emax}.

As we will see in Section 3.6 when discussing the implementation of the reciprocal function,
this property will make the implementation more complicated since we will need to detect over-
flow, and compute the value λr in order to deduce the correctly-rounded result ◦(r).

3.1.2 Range reduction of x1/n

The goal of the section is now to deduce from the expression of the input x = m′
x ·2e′x an expression

for the exact result r = x1/n, and more particularly for ℓ and d in (3.1). We know that the exact
result is r = x1/n, with x1/n = (m′

x)1/n · 2e′x/n by definition of x. Remark that, by definition of
m′

x ∈ [1, 2 − 21−p], the exact value (m′
x)1/n satisfies:

(m′
x)1/n ∈ (1/2, 1] if n ≤ −1, and (m′

x)1/n ∈ [1, 2) if n ≥ 2.
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Recall that we have to ensure that the value ℓ in (3.1) is a real value lying in the range [1, 2]. Hence,
we will distinguish now two cases. To do so, let us define µ as follows:

µ =

{

0, if n ≥ 0,
1, if n < 0.

(3.9)

Before detailing the range reduction of the function x1/n, let us also recall the usefulmod notation
in Definition 3.1 below.

Definition 3.1 (modulo). Let a, b ∈ Z, with b 6= 0. We define a mod b as the remainder of the
quotient of a divided by b [GKP94, §3.4]. In other words,

a mod b = a− b · ⌊a/b⌋,

where ⌊·⌋ denotes the usual floor function.

Let us now detail the range reduction precisely. Let x be a nonzero positive (sub)normal
floating-point number defined as x = m′

x · 2e′x with m′
x ∈ [1, 2 − 21−p]. Using (3.9), we define

the value c as follows:
c = (e′x + µ) mod n. (3.10)

Therefore, using Definition 3.1 above, we can write the exact result r = x1/n as:

r = ℓ · 2d, with ℓ = (2c−µ ·m′
x)1/n and d = ⌊(e′x + µ)/n⌋. (3.11)

More particularly, we write the exact value ℓ in (3.11) as follows:

ℓ = s · (2−µ ·m′
x)

1/n with s = 2c/n. (3.12)

It follows from Lemma 3.1 below that the real number s satisfies s ∈ [1, 2), and, more precisely,
that it can only take the following n values:

s ∈
{
2i/|n|

}

i=0,...,|n|−1
. (3.13)

Lemma 3.1. Let a, b ∈ Z and b 6= 0. Define c = a mod b. Then

|c| ∈ {0, . . . , |b| − 1} and c/b ∈ {0, . . . , (|b| − 1)/|b|}.

Proof. From Definition 3.1, we know that c = a − b · ⌊a/b⌋. Assume first that b > 0. By definition
of the floor function, ⌊a/b⌋ ≤ a/b < ⌊a/b⌋ + 1. Since b > 0, the left inequality together with the
definition of c implies c ≥ 0, and the right one implies c < b, that is, c ≤ |b| − 1 and c/b ≥ 0, since
b is a positive integer.

Assume now that b < 0. Recall also that ⌊a/b⌋ ≤ a/b < ⌊a/b⌋ + 1. Since b < 0, the left
inequality implies c ≤ 0, and the right one implies c ≥ b+ 1. Hence, since b < 0, we conclude that
|c| ∈ {0, . . . , |b| − 1} and c/b ≥ 0.

Since in both cases c/b ≥ 0 and |c| ∈ {0, . . . , |b| − 1}, we deduce that

c/b ∈ {0, . . . , (|b| − 1)/|b|},

which ends the proof.

Until now, we have seen how to rewrite the exact result r = x1/n as r = ℓ · 2d, and we have
given a definition for ℓ and the exponent d. Let us now determine the range in which the exact
value ℓ lies.
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Property 3.3. For x a nonzero positive (sub)normal floating-point number defined in (1.5) in Sec-
tion 1.2.1, the exact value ℓ satisfies:

ℓ ∈ [1, 2) if n ≥ 0, and ℓ ∈ (1, 2] if n < 0. (3.14)

Proof. From (3.9) and (3.12), we know that ℓ = s · (m′
x)1/n if n ≥ 0, and ℓ = s · (2/m′

x)1/n if n < 0.
By (3.13), s ∈ [1, 2(|n|−1)/|n|]. Besides, m′

x ∈ [1, 2 − 21−p] implies (m′
x)1/n ∈ [1, 21/n) if n > 0, and

(m′
x)1/n ∈ (1, 21/|n|]. The conclusion follows immediately.

We conclude from (3.14) that ◦(ℓ) ∈ [1, 2], for ◦ ∈ {RNp,RUp,RDp,RZp}, as required in Sec-
tion 2.2.1.

Remark when n = 2. Moreover, we will see in Corollary 3.1 below that when n = 2, then the
exact value ℓ in (3.12) is always strictly less than 2 − 2−p. Consequently, the correctly-rounded
value of ◦(ℓ) may be equal to 2 only for ◦ = RUp:

when n = 2, ◦(ℓ) ∈
{

[1, 2 − 21−p] for ◦ ∈ {RNp,RDp,RZp},
[1, 2] for ◦ = RUp.

Corollary 3.1. When n = 2 the exact value of ℓ as in (3.12) satisfies

1 ≤ ℓ < 2− 2−p.

Proof. By definition, m′
x ∈ [1, 2 − 21−p] and (m′

x)1/2 ∈ [1, 2 − 21−p]. Assume first that s = 1: it is
obvious to see that in this case, ℓ in (3.12) satisfies ℓ ∈ [1, 2 − 21−p].

Assume now that s = 21/2. We have ℓ ≥ 21/2 ≥ 1. Let us consider ℓ ≥ 2 − 2−p: we know by
definition that (m′

x)1/2 ≥ (2/21/2) · (1 − 2−p−1). It follows that m′
x ≥ 2 · (1 − 2−p + 2−2p−2), and

m′
x ≥ 2− 21−p + 2−2p−1. However, we know thatm′

x ≤ 2 − 21−p. Hence, when s = 21/2, we have
1 ≤ ℓ < 2− 2−p as well, that ends the proof.

This property on ℓ in the particular case n = 2 does not improve the method presented in
Section 2.3.1 for packing the result. However, it is worth being noticed, since it can be used for
implementations that return, for example the triple (sign, exponent, trailing significand) in three
separated fields: in this case, an exponent and trailing significand update would indeed be needed
if ◦(ℓ) = 2.

3.1.3 Properties useful for correct rounding

This section gives now some properties that can be useful for implementing correct rounding, es-
pecially to determine if r can be exactly a floating-point number, or halfway between two floating-
point numbers. Such properties are given in [IM99] for reciprocal, square root, and reciprocal
square root. Here, we extend this approach to any function x1/n, n ∈ Z \ {0, 1}. Table 3.1 below
summerizes the properties presented in the remainder of the section.

Exact point Midpoint Underflow

n ≥ 2 yes (Property 3.4) no (Property 3.6) no (Property 3.1)

n = −1
no (Property 3.5) no (Property 3.6)

yes (Property 3.2)

n ≤ −2 no (Property 3.1)

Table 3.1: Summary of properties useful for rounding x1/n correctly (for non trivial input).

To do so, let us first define what we call a trivial input.
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Definition 3.2 (trivial input). Let x be a nonzero positive (sub)normal floating-point number. It is
a trivial input if and only if the normalized significandm′

x equals 1.

Can x1/n be exactly a floating-point number?

We know from the definition of the result r = x1/n in (3.3) that it is exactly a floating-point number
if the value ℓ · 2−λr is representable with at most p− 1 fraction bits, that is, if ℓ · 2−λr is a floating-
point number in precision p. Let us now see if ℓ · 2−λr can be exactly a floating-point number. But
before, let us define q as follows:

q ∈ N such as ℓ · 2p−1−q is an odd integer. (3.15)

More precisely, if the exact value ℓ is exactly a floating-point number, using the ranges for ℓ
in (3.14), we obtain

q ∈ {0, . . . , p− 1} if n > 0, and q ∈ {0, . . . , p} if n < 0.

• First case: n ≥ 2. When n ≥ 2, we will see in Property 3.4 below when the exact significand
ℓ in (3.12) can be exactly a floating-point number (see Example 3.2). And since λr = 0 the exact
result in (3.3) does not denormalize, we conclude that when n ≥ 2, the exact result r may be
exactly a floating-point number.

Property 3.4. For x a nonzero positive (sub)normal floating-point number defined in (1.5) in Sec-
tion 1.2.1 and n ≥ 2, the exact value ℓmay be exactly a floating-point number if and only if

0 ≤ c+ (p − 1− q) · n ≤ p− 1. (3.16)

Proof. By definition,m′
x ∈ [1, 2− 21−p] and ℓ = 2c/n · (m′

x)1/n. Assume that ℓ is exactly a floating-
point number: ∃ q ∈ {0, . . . , p − 1} such that ℓ · 2p−1−q is an odd integer. By definition of ℓ, we
have

(ℓ · 2p−1−q)n =
(
(m′

x)1/n · 2c/n · 2p−1−q
)n
,

with (ℓ · 2p−1−q)n an odd integer. But
(
(m′

x)1/n · 2c/n · 2p−1−q
)n

= (m′
x) · 2c+(p−1−q)·n, thus ℓ is a

floating-point number if and only if (m′
x) · 2c+(p−1−q)·n is an odd integer, that is, by definition of

m′
x if and only if

0 ≤ c+ (p − 1− q) · n ≤ p− 1.

However, from (3.1), we have 0 ≤ c ≤ n− 1. Hence, we know that 0 ≤ c+(p− 1− q) ·n ≤ n · p− 1.
Thus, we can find some m′

x for which ℓ satisfies the condition (3.16). That is ℓ may be exactly a
floating-point number, that ends the proof.

Example 3.2. Let us definem′
x as

m′
x = 1.000000110001010110000002 .

For n = 3 and c = 2, we have ℓ = 22/3 · (m′
x)1/3 and

ℓ = 1.100110000000000000000002 ,

that is exactly a significand on p − 1 fraction bits. Let us now verify that ℓ satisfies the condi-
tion (3.16). Here, we have q = 18, c+ (p− 1− q) · n = 17, that satisfies (3.16).
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This property makes the rounding procedure more complicated, especially for RoundToward-
Positive or RoundTowardNegative, with negative or positive results, respectively, since the test
u > ℓ is more complicated to be implemented in our context than u ≥ ℓ (for example, see 3.5.6 for
more details).

Let us now study the possible values that q can take so that the condition (3.16) remains sat-
isfied. From Property 3.4, and more particularly from (3.16), we know that ℓ is exactly a floating-
point number if and only if 0 ≤ c + (p − 1 − q) · n ≤ p − 1, that is, if and only if the integer q
satisfies:

⌈(1 − p+ n · p− n)/n⌉ ≤ q ≤ p− 1. (3.17)

For example, assume that p = 24. Table below shows the range of possible values q for various
values n. We can observe that for n ≥ 24, the single possible value q is 23. In this case, we have
ℓ = 1.0 andm′

x = 1.0.

Value of n 2 3 4 · · · 23 24

Range for q 12 ≤ q ≤ 23 16 ≤ q ≤ 23 18 ≤ q ≤ 23 · · · 22 ≤ q ≤ 23 23 ≤ q ≤ 23

More generally, we can observe that when n ≥ p, we have:

p− 2 < (1− p+ n · p− n)/n ≤ p− 1 (when n ≥ p),

and in this case, the value q in (3.17) satisfies:

p− 1 ≤ q ≤ p− 1 that is q = p− 1.

From that statement, we can observe that the only real value ℓ that can be an exact floating-point
number is ℓ = 1, which is obtained withm′

x = 1 and c = 0. Hence, Remark 3.1 follows.

Remark 3.1. Assume that x is a nonzero positive (sub)normal floating-point number defined
in (1.5) in Section 1.2.1 and n ≥ 2. If n ≥ p, then the exact result x1/n is exactly a floating-point
number if x is a trivial input as follows:

x = 2e′x , with e′x mod n = 0.

This remark may be useful for implementing the function x1/n for n ≥ p. In these cases,
the inputs that lead to an exact floating-point number ℓ may be handled separately. Hence, the
rounding u > ℓ, may be replaced by u ≥ ℓ in RoundTowardPositive and RoundTowardNegative,
when the exact result is negative and positive, respectively, which is easier to be implemented on
the ST231 processor.

• Second case: n ≤ −1. In this case, Property 3.5 below says that, except for some trivial input,
the exact value of ℓ cannot be exactly a floating-point number, and the exact result cannot be a
floating-point number neither.

Property 3.5. For x a nonzero positive (sub)normal floating-point number defined in (1.5) in Sec-
tion 1.2.1 and n ≤ −1, ℓ cannot be exactly a floating-point number, except for inputs of the form

x = 2e′x , with (e′x + 1) mod n = n+ 1.

Proof. By definition, m′
x ∈ [1, 2 − 21−p] and ℓ = 2c−1/n · (m′

x)1/n. If ℓ is exactly a floating-point
number and since ℓ ∈ [1, 2], then ∃ q ∈ {0, . . . , p} such that ℓ·2p−1−q is an odd integer. By definition
of ℓ, we have

(ℓ · 2p−1−q)n =
(
(m′

x)1/n · 2(c−1)/n · 2p−1−q
)n
,
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with (ℓ · 2p−1−q)n an odd integer. But
(
(m′

x)1/n · 2(c−1)/n · 2p−1−q
)n

= (m′
x) · 2c−1+(p−1−q)·n, thus ℓ is

a floating-point number if and only if (m′
x) · 2c−1+(p−1−q)·n is an odd integer, that is by definition

ofm′
x if 0 ≤ c− 1 + (p− 1− q) · n ≤ p− 1. But by definition of c ≤ 0 and n ≤ −1, and since q ≤ p,

then we know that c−1+(p−1− q) ·n ≤ 0. More particularly, we have c−1+(p−1− q) ·n = 0 if
and only if q = p and c = n+ 1. Otherwise c− 1 + (p− 1− q) · n ≤ −1. Thus ℓ cannot be exactly a
floating-point number, except when q = p and c = n+ 1, that is when ℓ = 1.0, and more generally
whenm′

x = 1.0 and (e′x + 1) mod n = n+ 1: only for some trivial inputs.

From Property 3.5, we can observe that for n ≤ −1 the exact value is a floating-point number
only for input of the form x = ±2e′x with (e′x + 1) mod n = n + 1: in this case, ℓ = 1. From (3.4)
and (3.8), when n ≤ −1, we know that λr ∈ {0, 1, 2}: in this case, if the exact value ℓ = 1 then we
conclude that the value ℓ · 2−λr is exactly representable with p− 1 fraction bits.

In this case, this remark can also be used to simplify the rounding procedure for RoundTo-
wardPositive and RoundTowardNegative when the exact result is negative and positive, respec-
tively, while the case where the exact result is a floating-point number may be handled separately.

Can x1/n be halfway between two floating-point numbers?

It remains now to see if x1/n can be exactly halfway between two floating-point numbers, that is,
if ℓ · 2−λr is representable with exactly p fraction bits. Let us consider the cases |n| ≥ 2 and n = −1
separately.

• First case: |n| ≥ 2. When |n| ≥ 2, we know from the definition of the result r = x1/n in (3.3),
since λr = 0, that r is exactly halfway between two floating-point numbers if and only if ℓ is
representable with exactly p fraction bits, that is, ℓ is halfway between two floating-point numbers.
We will show in Property 3.6 that the exact value ℓ, defined in (3.3) as ℓ = s · (m′

x)1/n, cannot be
exactly halfway two floating-point numbers.

Property 3.6. For x a nonzero positive (sub)normal floating-point number defined in (1.5) in Sec-
tion 1.2.1 and |n| ≥ 2 or n = −1, the exact value ℓ cannot be exactly halfway between two floating-
point numbers.

Proof. By definition,m′
x ∈ [1, 2 − 21−p] and ℓ = 2(c−µ)/n · (m′

x)1/n. If ℓ is exactly halfway between
two floating-point numbers, then ℓp = 1 and ℓ = ℓ0.ℓ1ℓ2 . . . ℓp−11. By multiplying by 2p and raising
to the power n, we get

(ℓ · 2p)n =
(
(m′

x)1/n · 2(c−µ)/n · 2p
)n
. (3.18)

Assume first n ≥ 0. Here the left-hand side of (3.18) is an odd integer. However, in this case µ = 0
and c ≥ 0, and the right-hand side of (3.18) equals (m′

x) · 2c+p·n. Using the fact that p ≥ 1 and
n ≥ 2, we deduce that c + p · n > 2p, and the right-hand side of (3.18) is an even integer. This
yields a contradiction, and ℓ cannot be exactly halfway between two floating-point numbers.

Assume now n < 0, then µ = 1 and c ≤ 0. Thus, we can rewrite (3.18) as follows

(ℓ · 2p)|n| ·m′
x = 2|n|·p−c+1. (3.19)

It follows that the odd integer ℓ · 2p divides the right-hand side of (3.19). However, using p ≥ 1
and c ≤ |n| − 1, we conclude the righ-hand side of (3.19) is a positive power of two. Hence this
yields also a contradiction, and ℓ cannot be exactly halfway between two floating-point numbers
neither.
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Let us assume a value u that approximates ℓ such that |ℓ−u| < 2−p, as in (2.15) and since λr = 0.
In the rounding algorithm presented in Section 2.2.4 for the RoundTiesToEven rounding-direction
attribute, to handle the case where ℓ is exactly halfway between two floating-point numbers, we
introduce the condition u = ℓ ∧ up−1 = 0. But since in the present case (|n| ≥ 2), ℓ cannot
be exactly halfway between two floating-point numbers, the rounding test of Section 2.2.4 for the
RoundTiesToEven rounding-direction attribute can be simplified (and its implementation as well),
as follows

if u ≥ ℓ then
mr = truncate (u)p−1,

else

mr = truncate (u+ 2−p)p−1.

(3.20)

(Remark here that the rounding test u ≥ ℓ is preferred to u > ℓ, since here they are equivalent and
the former is easier to be implemented.)

• Second case: n = −1. In this case, we know from Property 3.6 that the real value ℓ defined
in (3.12) (for n < 0) can never be halfway between two floating-point numbers. In order to con-
clude that r cannot be halfway between two floating-point numbers neither, let us distinguish two
cases:

• If λr = 0, then it is obvious that ℓ = ℓ · 2−λr , and r = x−1 defined as r = ℓ · 2d cannot be
exactly halfway between two floating-point numbers.

• If λr ∈ {1, 2}: in this case, r is exactly halfway between two floating-point numbers if ℓ is a
floating-point number on p−λr fraction bits. However from Property 3.5, ℓ cannot be exactly
a floating-point number, more particularly a floating-point number on p−λr fraction bits. It
follows that r = x−1 cannot be exactly a floating-point number neither.

Therefore, n = −1, the exact result r = x−1 cannot be exactly halfway between two floating-point
numbers. This property makes the rounding procedures simpler, especially for the RoundTiesTo-
Even rounding-direction attribute, for which the rounding algorithm can be simplified as in (3.20).

3.2 Computation of a one-sided approximation

In this section, we discuss now how to approximate the real value ℓ defined in the previous sec-
tion. As we have seen in Section 2.2.4, to ensure correct rounding, we may compute a one-sided
approximation v of the exact value ℓ, defined as in [EL04]. The value v approximates ℓ from above,
such that −2−p < ℓ− v ≤ 0, which is implied by the more symmetric constraint

|(ℓ+ 2−p−1)− v| < 2−p−1. (3.21)

By Property 3.3, ℓ ∈ [1, 2], thus v ≤ 3 and its integer part can be represented using at most 2 bits:

v = (v−1v0.v1v2 · · · vk−2)2.

As we will see further, this form will in fact be the natural result of some derivations based on the
triangular inequality. Themain idea consists in considering the value ℓ+2−p−1 to be approximated
as the exact result of a particular function F , approximating this function by a suitable polynomial
P , and then evaluating this polynomial P using an evaluation program P. If the polynomial P
is “accurate enough” with respect to the function F , and the evaluation of P entails a “small
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enough” evaluation error, then we may ensure that the computed value v is “close enough” to the
exact value ℓ+2−p−1, so that we are able to compute the correctly-rounded value ◦(ℓ) or ◦(ℓ ·2−λr ).

This approach is well-known (see [EL04, §8.6], for example) and, as we have seen in introduc-
tion, computing such an approximation v usually relies on iterative,multiplicative, or polynomial-
based methods. In most cases, these methods are univariate methods, while the range reduction
is handled through a last operation. However the novelty of our approach relies on the approxi-
mation of ℓ+ 2−p−1 by a suitable bivariate polynomial, where the range reduction is incorporated
into the evaluation of this polynomial. The remainder of this section presents this approach in
more detail.

3.2.1 Bivariate polynomial approximation

Definition of the bivariate polynomial

In this section we define the polynomial used to compute the value v that approximates the exact
value ℓ from above as in (3.21). Recall that x is a nonzero positive (sub)normal floating-point
number written: x = m′

x · 2e′x as usual (see for example Section 1.2.1). First, using the expression
of ℓ in (3.12), we consider the value ℓ+ 2−p−1 to be computed as the exact value F (s∗, t∗), where

s∗ = 2c/n and t∗ = m′
x − 1 ∈ T = [0, 1 − 21−p],

and where
F : (s, t) 7→ 2−p−1 + s · f(t), (3.22)

with f(t) a univariate function defined, according to the sign of n, as follows

f : t 7→
{

(1 + t)1/n, if n ≥ 2,
2−1/n · (1 + t)1/n, if n ≤ −1.

(3.23)

Example 3.3. Let n = 3, p = 24, and x be a positive (sub)normal floating-point number. Then
using (3.12),

ℓ = 2c/3 · (m′
x)1/3, with c ∈ {0, 1, 2}.

Furthermore, the exact value ℓ+ 2−25 can be seen as the exact result of the function

F : (s, t) 7→ 2−25 + s · (1 + t)1/3,

at the point (s∗, t∗), with s∗ = 2c/3 and t∗ = m′
x − 1.

Whatever the value of n, the function F cannot in general be evaluated directly on a computer.
A second step thus consists in approximating F over S×T by a single bivariate polynomial P . We
observe that when n = −1 then c = 0 and s∗ = 1. Thus, the function F can be defined in a simpler
way as F : t 7→ 2−p−1 + 2−1/n · (1 + t)1/n, and in this case, we shall approximate F by a univariate
polynomial. But for the generality of this approach, we consider that we approximate the function
F by a bivariate polynomial P (s, t), where the first variable enables to handle the range reduction,
while the second depends on the input scaled significand m′

x. The interest of approximating the
function F by a bivariate polynomial comes from the fact that a polynomial can be evaluated using
only additions, subtractions, and multiplications, that are the only efficient instructions available
on most processors, as the ST231 processor.
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Since the function F is linear with respect to the variable s, we reduce the approximation to
univariate approximation by taking

P (s, t) = 2−p−1 + s · a(t), (3.24)

with a(t) a univariate polynomial of degree δ that approximates the function f(t) in (3.23) over T .
This first step entails an approximation error denoted by α(a) and defined as the real number

α(a) = max
t∈T
|a(t)− f(t)| , (3.25)

with f(t) as in (3.23).

Definition 3.3 (minimax). The minimax polynomial of degree δ with respect to the function f(t)
over T is the unique real polynomial a∗ ∈ R[t]δ, where R[t]δ denotes the set of univariate real
polynomials of degree at most δ ∈ N, such that

α(a∗) ≤ α(a) and a ∈ R[t]δ.

(See [PT09] or [Ste98, p. 12] for details on the uniqueness of the minimax polynomial.) This best
polynomial approximant a∗ may be approximated using Remez’algorithm [Rem34].

The polynomial approximant is actually computed using Remez’algorithm of the software
environment Sollya [Che09], [Lau08], [CL].

Making the polynomial coefficients and evaluation point machine-representable

The memory of a processor, and especially of the ST231, is finite and the coefficients of the poly-
nomial approximant as well as the input point (s∗, t∗) have to be adjusted to be stored in finite
precision k. Concerning the coefficients, the polynomial a(t) is built in this sense, by computing
an approximant polynomial whose all coefficients can be exactly representable using only k bits.
(This polynomial approximant is computed using Remez’ algorithm of Sollya.) Concerning the
input (s∗, t∗), we see that t∗ fits into a k-bit number, since

t∗ = m′
x − 1

= 0.mλx+1 · · ·mp−1, with λx ≥ 0 and p < k.

However s∗ may have an infinite binary expansion, or at least may require more than k bits to be
represented, and it has to be rounded. Assuming k = 32, in Example 3.3, the value s∗ belongs to
{1, 21/3, 22/3}, that is,

s∗ ∈ {1, 1.0100001010001010001011111001100
︸ ︷︷ ︸

32 bits

0110 · · ·2 ,

1.1001011001011111111010100101001
︸ ︷︷ ︸

32 bits

1110 · · ·2}.

By definition, we know that s∗ ∈ [1, 2), and it cannot be stored in k-bit unsigned integer in pre-
cision k (with k − 1 fraction bits). For s ∈ S , let ŝ = RNk be the rounded to nearest value of
s:

|s− ŝ| ≤ 2−k. (3.26)

We could improve the bound in (3.26) entailed by the rounding of s, by considering the fact that s
can just take n different values. For example, for (k, n) = (32, 3), we can show that |s− ŝ| < 2−32.25
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(obtained for s = 21/3). However, this source of error is completely negligible compared to the
other sources of error. Consequently, in pratice the bound in (3.26) is sufficient.

Now we should bound the error entailed on the evaluation by the rounding of input s. To do
so let γ(s) = max(s,t)∈S×T |P (s, t) − P (ŝ, t)| be the error on the evaluation due to the rounding of
input s. By definition of the polynomial P , we deduce that |P (s, t)− P (ŝ, t)| = |s− ŝ| · |a(t)| and

γ(s) = max
(s,t)∈S×T

(
|s− ŝ| · |a(t)|

)
. (3.27)

Polynomial evaluation

Once we have built the bivariate polynomial P and made the input machine representable, it
remains to write a program P to evaluate P at the point (ŝ∗, t∗). Since the evaluation is done by a
finite precision evaluation program, it entails a third source of error, called evaluation error and
defined as

ρ(P) = max
(ŝ,t)∈Ŝ×T

|P (ŝ, t)− P(ŝ, t)| . (3.28)

Property 3.7. Given ℓ, v, a and α(a), P and α(P), if the condition

21−1/|n|α(a) + γ(s) + ρ(P) < 2−p−1 (3.29)

is satisfied then (3.21) holds.

Proof. At each point (s∗, t∗) ∈ S × T , we may check using the triangular inequality that

∣
∣ℓ+ 2−p−1 − v

∣
∣ = |F (s∗, t∗)− P(s∗, t∗)|
≤ |F (s∗, t∗)− P (s∗, t∗)|+ |P (s∗, t∗)− P (ŝ∗, t∗)|+ |P (ŝ∗, t∗)−P(ŝ∗, t∗)|
≤ 21−1/|n|α(a) + γ(s) + ρ(P).

But, from (3.21), the overall error has to be strictly less than 2−p−1. Thus, if we can ensure that

21−1/|n|α(a) + γ(s) + ρ(P) < 2−p−1,

then (3.21) holds.

In short, this approach consists in two main steps: finding a polynomial approximant a(t)
approximating the function f(t) over T , and an evaluation program P evaluating P = 2−p−1 + s ·
a(t), such that the condition (3.29) defined above is satisfied.

3.2.2 Certified approximation and evaluation error bounds

Now in this section, wewill give some sufficient certified bounds on the approximation and evalu-
ation errors in (3.25) and (3.28), so that if wemanage to compute a polynomial P and an evaluation
program P satisfying these conditions and such as the condition (3.29) holds, we are sure that the
computed value v is close enough to the value ℓ in the sense of (3.21).
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Approximation error bound

We know by definition that the rounding input and evaluation errors are non negative: γ(s) ≥ 0
and ρ(P) ≥ 0. Thus, from the required condition (3.29), we deduce that the approximation error
α(a) of the polynomial approximant a(t) with respect to the function f(t) over T has to satisfy
21−1/|n|α(a) < 2−p−1 − γ(s), that is,

α(a) < (2−p−1 − γ(s))/21−1/|n|. (3.30)

In practice, we will compute a polynomial a(t) together with a certified approximation bound θ,
such as

α(a) ≤ θ and θ < (2−p−1 − γ(s))/21−1/|n|, (3.31)

with θ a dyadic number and γ(s) defined in (3.33) in the next paragraph.
Property 3.8 below bounding the range of a(t) when (3.31) holds will be useful for bounding

γ(s) in the next paragraph.

Property 3.8. Assume n ≥ |2|. Given the polynomial approximant a defined above, for t∗ ∈
[0, 1− 21−p], we have

0 < a(t) <
√

2 if n ≥ 2, and 0 < a(t) < 2 if n ≤ −2. (3.32)

Proof. Assume first that n ≥ 2. Consider the case when n = 2. Using (3.25) together with (3.31),
we know that (1 + t)1/2 − 2−p−3/2 < a(t) < (1 + t)1/2 + 2−p−3/2. Thus, using t ≥ 0 gives a(t) >
1− 2−p−3/2. Then using t ≤ 1 − 21−p gives a(t) < (2 − 21−p)1/2 + 2−p−3/2 ≤ 21/2 − 2−p−3/2, since
2 − 21−p ≤ 2 − 21−p + 2−2p−1 with 2 − 21−p + 2−2p−1 = (21/2 − 2−p−1/2)2 together with the fact
that the function x 7→ x1/2 is monotonically increasing. Consider now that n > 2. Here we have
a(t) > 1− 2−p−3/2 (since t ≥ 0). Using t ≤ 1− 21−p, as (2− 21−p)1/n < (2− 21−p)1/2, we conclude
that a(t) ≤ 21/2 − 2−p−3/2.

Assume now that n ≤ −2. Using (3.25) togetherwith (3.31), we know in this case that 21/2 ·(1+
t)−1/2− 2−p−3/2 < a(t) < 21/2 · (1+ t)−1/2 + 2−p−3/2. Thus, using t ≥ 0 gives a(t) < 21/2 + 2−p−3/2,
and then, using t ≤ 1− 21−p gives a(t) > 1− 2−p−3/2, that ends the proof.

Actually, the bounds in (3.32) on a(t) are pessimistic, independent of n and the precision p. But
in practice, they are sufficient for expressing the bound on γ(s), since they will be multiplied by
2−k which is tiny.

Polynomial input error bound

Recall that for n = −1, the value of s is always 1, so that s = ŝ and γ(s) = 0 in (3.27). Otherwise,
that is, when |n| ≥ 2, we deduce from (3.26) and (3.32) in Property 3.8 an upper bound on the loss
of accuracy when rounding input, defined as follows

γ(s) <

{

21/2−k if n ≥ 2,
21−k if n ≤ −2.

(3.33)

Evaluation error bound

Assume now that we have a polynomial a(t) such as (3.31). From (3.29) above, the evaluation
error has to be such that the overall error is strictly less than 2−p−1, that is, the evaluation program
P has to be such that

γ(s) + ρ(P) < 2−p−1 − 21−1/|n| · θ. (3.34)
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Recall that if n = −1, then s = ŝ and γ(s) = 0. Consequently, the evaluation error ρ(P) simply
has to be such that

ρ(P) < 2−p−1 − θ if n = −1. (3.35)

When |n| ≥ 2, it follows from (3.33) and (3.34) that

ρ(P) ≤
{

2−p−1 − 21−1/|n| · θ − 21/2−k, if n ≥ 2,

2−p−1 − 21−1/|n| · θ − 21−k, if n ≤ −2.
(3.36)

These results are summarized in Table 3.2 below.

Condition on n Evaluation error bound

n ≥ 2 ρ(P) ≤ 2−p−1 − 21−1/|n| · θ − 21/2−k

n = −1 ρ(P) < 2−p−1 − θ
n ≤ −2 ρ(P) ≤ 2−p−1 − 21−1/|n| · θ − 21−k

Table 3.2: Evaluation error bound, according to n.

We aim at giving certified error bounds. And since 21−1/|n| may have an infinite binary expan-
sion, the bound 2−p−1 − 21−1/|n| · θ − γ(s) may not be evaluated exactly, and may not be certified.
Thus let us define RoundDownward(·) a function that computes a rounding downward of a given
value. Let finally η be a certified evaluation error bound, defined as follows

η =







RoundDownward(2−p−1 − 21−1/|n| · θ − 21/2−k) if n ≥ 2,

RoundDownward(2−p−1 − θ) if n = −1.
RoundDownward(2−p−1 − 21−1/|n| · θ − 21−k) if n ≤ −2,

(3.37)

with η a dyadic number.
Once we have written an evaluation program P, we just have to check that ρ(P) ≤ η (for

n 6= −1) or ρ(P) < η (for n = −1), to ensure that the overall error is strictly less than 2−p−1 and thus
ensure correct rounding. Here, we observe that the accuracy sufficient for the evaluation depends
on the accuracy of the polynomial approximant a(t). And, the more accurate the polynomial a(t)
is with respect to the function f(t) over T , the less accurate the evaluation program P might be.

3.2.3 Automatic generation of polynomial coefficients

Description of the automatic process

This section presents an automatic approach for generating the coefficients of the polynomial a(t)
together with the sufficient error bounds θ and η. Indeed, we deduced that the implementation of
the nth roots, and their reciprocals, relies (for given values n) on the approximation of a particular
function F defined in (3.22) by a bivariate polynomial P defined in (3.24). Once we have computed
the coefficients of the polynomial approximant a(t) and the sufficient error bounds θ and η, the
main part will be to write an accurate enough evaluation program, that is, satisfying the bound η
in (3.37).

Hence, we can already deduce a methodology for generating the coefficients of a(t) and the
certified bounds θ and η in an automatic way. This automatic generation process, implemented
as a Sollya script, is presented in Listing 3.1 below. From the value n, we compute an estimation
of the minimal degree δ of a(t) using the function guessdegree of Sollya in line 24. Then we
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compute a(t) by truncating on the same format each coefficient of the Remez’polynomial of de-
gree δ, in line 35. Here, all the coefficients are represented in the same format in absolute value
(without bit handling the sign), while their signs will be handled through an appropriate choice of
arithmetic operator (see Section 3.5.4 below, or paragraph “Unsigned fixed-point evaluation and
arithmetic operator choice” of Section 5.1.1 for examples). Once we know the polynomial approx-
imant a(t), it simply remains to compute the certified error bound θ in lines 38 and 39 and check
if it satisfies (3.31) (if it is not the case, we increase δ). Finally, the bound η is computed using a
certified supremum norm of Sollya (see [CL07] or [CJL09]) and (3.37), in line 50.

Example 3.4 displays the result of an execution of the script in Listing 3.1, for (k, p, n) =
(32, 24, 3), that is, for implementing the cube root in binary32 floating-point arithmetic. The out-
put of this script contains in particular the coefficients of the polynomial approximant a(t), the
certified error bounds, and the possible values of ŝ∗. From now, the full implementation can be
obtained, in an automatic way, using the basic blocks presented in Chapter 2. It simply remains:

1. to compute the exponentD and the value c, as shown in Section 3.3.2;

2. to select the input s∗, among those returned by the script;

3. to handle special inputs, as presented in Section 3.4;

4. to generate automatically an efficient polynomial evaluation program, as explained in Part II;

5. to implement the rounding condition.

The selection of the input s∗ may be done naively by testing the value c and deducing the cor-
responding input s∗. Therefore the last part to be automated is the implementation of rounding
condition, so that the correct rounding can be computed. Currently, this part is based on the
inversion of the function, and is done separately for each function. Two examples are given in
Sections 3.5.6 and 3.6.5, for square root and reciprocal, respectively.

Example 3.4. Assume n = 3, (k, p) = (32, 24), as defined in Example 3.3. Using the script in
Listing 3.1 by calling nroot(32,24,3); , the results are the following.

---------------------------------------------------
Register size k: 32
Working precision p: 24

Value n: 3
Function f: (1 + x)^(1 / 3)
Interval T: [0;0.99999988079071044921875]
Approximation error bound: (2.98023223876953125e-8 - 2^( -3.15e1))/2^(1-1/3)
Polynomial input error bound: 2^(-3.15e1)

Required degree (delta): 8
Coefficient format: Q31
Coefficients:

a0 = 0x80000008; // (+) 0x80000008p-31 = 1.000000003725290 2984619140625
a1 = 0x2aaaa4ce; // (+) 0x2aaaa4cep-31 = 0.333332634530961 513519287109375
a2 = 0x0e383a31; // (-) 0x0e383a31p-31 = 0.111090921331197 0233917236328125
a3 = 0x07df4484; // (+) 0x07df4484p-31 = 6.150108762085437 774658203125e-2
a4 = 0x05197b56; // (-) 0x05197b56p-31 = 3.984014224261045 4559326171875e-2
a5 = 0x034b760a; // (+) 0x034b760ap-31 = 2.574038971215486 5264892578125e-2
a6 = 0x01c8cb96; // (-) 0x01c8cb96p-31 = 1.394028495997190 4754638671875e-2
a7 = 0x00a79101; // (+) 0x00a79101p-31 = 5.113721359521150 5889892578125e-3
a8 = 0x001d5785; // (-) 0x001d5785p-31 = 8.954429067671298 980712890625e-4
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Value for s:
c = 0 -> s = 0x80000000
c = +1 -> s = 0xa14517cc
c = +2 -> s = 0xcb2ff52a

Sufficient bounds
theta: 1457686136516498959773827101 * 2^(-118)

~ 2^(-2.776426132059602323273293212127951964e1)
eta: 1003971198736585723965491196221122347 * 2^(-145)

~ 2^(-2.540487070125620435548349606410508556e1)
---------------------------------------------------

We deduce from the execution that for the implementation of cube root in the binary32 format,
the polynomial a(t) is a degree-8 polynomial that approximates the function f(t) = (1 + t)1/3

with an approximation error α(a) ≤ θ ≈ 2−27.76, which is actually strictly less than (2−25 −
2−31.5)/22/3 ≈ 2−25.68. Also the evaluation of the polynomial P has to entail an evaluation error
ρ(P) ≤ η ≈ 2−25.40.

Remark 3.2. Remark here that the RoundDownward function is implemented using Sollya, and
consists in evaluating the expression by interval arithmetic in the current precision, and returning
the lower bound of the resulting interval.

Some numerical examples for the binary32 format

Using the script presented in Listing 3.1 below, we can generate, in a faster way, the polynomial
coefficients as well as the certified error bounds θ and η, for several values of n. Table 3.3 below
shows, for −4 ≤ n ≤ 4 and n /∈ {0, 1}, the degree δ of the polynomial approximant a(t) and the
bounds θ and η. These results have been generated in about 20s.

We can observe that for these small values of n, the polynomial is of degree between 8 and
10. For larger values of n, the polynomial approximant tends to be of smaller degree (of degree
δ = 7 for n = 50, of degree δ = 6 for n = 100). Therefore, for larger values n, the selection of
the input s∗ and the implementation of the rounding condition will dominate the cost of the full
implementation, since the polynomial evaluation will not be of larger degree.

Value of n Degree δ Approximation error bound θ Evaluation error bound η

-4 8 ≈ 2−25.95 ≈ 2−28.09

-3 9 ≈ 2−27.76 ≈ 2−25.41

-2 9 ≈ 2−26.60 ≈ 2−25.94

-1 10 ≈ 2−26.39 ≈ 2−25.69

2 8 ≈ 2−27.99 ≈ 2−25.30

3 8 ≈ 2−27.76 ≈ 2−25.40

4 8 ≈ 2−27.74 ≈ 2−25.43

Table 3.3: Degree of the polynomial approximant a(t), and approximation of the certified error
bounds θ and η, for various values of n, and for (k, p) = (32, 24).

3.2.4 Evaluation of the bivariate polynomial

Once we have computed the polynomial approximant using the script presented in Listing 3.1, we
have seen that it remains to write an evaluation program P that evaluates the polynomial P , with
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1 nroot = proc(k,p,n){
2 // Definition of the function f, according to the sign of n
3 if( n < 0 ) then {
4 f = 2^(-1/n) * (1+x)^(1/n);
5 } else {
6 f = (1+x)^(1/n);
7 };
8
9 // Definition of the interval T
10 T = [0,1-2^(1-p)];
11
12 // Determination of the polynomial input error bound
13 gamma = 0; // n = -1
14 if( n >= 2 ) then {
15 gamma = 2^(1/2-k); // n >= 2
16 } else if ( n <= -2 ) then {
17 gamma = 2^(1-k); // n <= -2
18 };
19
20 // Computation of the approximation error bound, defined in (3.30)
21 approx = (2^(-p-1)-gamma)/2^(1-1/abs(n));
22
23 // Determination of the minimal degree δ=delta
24 dinterval = guessdegree(f,T,approx); // Sollya’s guessdegree function
25 delta = inf(dinterval);
26
27 minimal = 0; while( minimal == 0 ) do {
28 // Computation of the Remez’s polynomial approximant
29 astar = remez(f,delta,T,1,1e-7); // Sollya’s remez function
30
31 // Determination of the size of the integer part of the coefficient
32 Qf = k - GetIntegerPartSize(astar,n,p);
33
34 // Truncation of each coefficient on Qf fraction bits
35 a = TruncatePoly(astar,Qf); // returns the truncated Reme’z polynomial
36
37 // Computation of the certified error bound θ=theta in (3.31)
38 diam=1e-8!; thetainterval = infnorm(f-a,T); // Sollya’s infnorm function
39 theta = sup(thetainterval);
40
41 // Checking if theta satisfies the condition in condition in (3.31)
42 if( theta >= approx ) then {
43 delta = delta + 1;
44 } else {
45 minimal = 1;
46 };
47 };
48
49 // Computation of the certified evaluation error bound η=eta in (3.37)
50 eta = RoundDownward(2^(-p-1) - 2^(1-1/abs(n)) * theta - gamma);
51
52 // Computation of each possible value of s
53 lists = [||];
54 for c from 0 to abs(n)-1 do
55 {
56 s = RNnroot(c,n,k-1); // returns RNk(2c/|n|), rounding to nearest
57 lists = lists:.s; // of 2c/|n| on k-1 fraction bits
58 };
59
60 return [|k,p,n,f,T,approx,gamma,delta,astar,a,Qf,lists,the ta,eta|];
61 };

Listing 3.1: Sollya script for automatic generation of polynomial coefficients.
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an evaluation error satisfying the evaluation error bound η. Recall that we have to evaluate this
polynomial at runtime. Of course, we have chosen a polynomial approximant of smallest degree,
but we still have to try to evaluate it as efficiently as possible.

Among the most classical ways to evaluate the polynomial P , let us first quote Horner’s
rule [Knu98, §4.6.4], [Rev06, §1.3.1]. It evaluates the polynomial in a fully sequential way. Other
classical methods enable to reduce the evaluation latency by exposing more instruction-level par-
allelism: the second-order Horner’s rule [Knu98, §4.6.4] or the Estrin’s method [Knu98, §4.6.6],
[Rev06, §1.3.2]. This is usually done to the detriment of an increase of the total number of op-
erations, especially of multiplications. These schemes are well-adapted for evaluating univariate
polynomials, and the evaluation of the polynomial P usually relies on the evaluation of a(t) and
a last Horner’s step (multiplication by s and addition). A first improvement may consists in dis-
tributing the multiplication by s over the evaluation of a(t). The interest of using these schemes in
fixed-point arithmetic will be presented in Chapter 5 through detailed implementation examples.

Others methods enable to evaluate a given polynomial by reducing the number of operations,
and more particularly the number of multiplications. This is done by adapting the coefficients
of the polynomial to be evaluated. Among these, let us quote, for example, Knuth and Eve’s al-
gorithm [Knu98, §4.6.4, Theorem E], [Eve64] and Paterson and Stockmeyer’s algorithm [PS73].
However, we will see in Chapter 5 that these algorithms are not well-adapted for evaluating poly-
nomials on fixed-point arithmetic, and that the adaptation of coefficients may lead to a loss of
accuracy.

Wewill see in Chapter 5 that we can evaluate the polynomial P in a more efficient way than the
classical methods, that is, with evaluation programs with smaller evaluation latency, especially on
ST231 processor. The problem is that there is a very large number of evaluation programs for eval-
uating a given polynomial, even for small degrees (see Chapter 5). Therefore, in the remainder
of this section, we will consider that we evaluate the polynomial P using a best evaluation pro-
gram, that is, that reduces the evaluation latency and that is accurate enough. This best evaluation
program can be obtained by using the tool and methodology presented in Chapter 6, integrated
into CGPE.

3.3 Sign and exponent result implementation

In this section, we describe how to implement the computation of the sign and the exponent of
the result from the input x, and more particularly from the k-bit unsigned integer X encoding x.
Recall from (2.21) that the returned k-bit unsigned integer R that encodes the correctly-rounded
result ◦(r) is defined as

R = Sr +D · 2p−1 +Mr. (3.38)

3.3.1 Sign result computation

The computation of the sign sr of the result is trivial since sr = sx if n is odd, and sr = 0 if n is
even. Let Sr be the unsigned integer encoding sr such that Sr = sr · 2k−1. Then

Sr =

{

0, if n is even,
X ∧ 2k−1, if n is odd.

Assuming that n is odd, for (k, p, emax) = (32, 24, 127), the computation of the sign of the result
may be implemented with the following piece of C code.

Sr = X & 0x80000000;
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3.3.2 Exponent result computation

Now let us have a look at how to implement the computation of the integer D in (3.38). As in
Section 2.3 which discusses how to pack the correctly-rounded result, let Er be the k-bit unsigned
integer encoding the biased value of the result exponent er . Given nr the “is normal bit” of the
exact result r (nr = 1 if the result is normal, and 0 otherwise), let D be the k-bit unsigned integer
such that D = Er − nr. By definition of the interchange encoding presented in Section 1.2.2, we
know that Er = er − emin + nr, and it follows that

D = er − emin.

When |n| ≥ 2

In this first case, we know from Property 3.1 that the exact result never denormalizes and the
exponent er is equal to the exponent d = ⌊(e′x + µ)/n⌋ defined in (3.11). Thus, we have D =
⌊(e′x − n · emin + µ)/n⌋. Now recall that

e′x = ex − λx, with ex = Ex + emin − nx and λx = MX − w. (3.39)

We then deduce

D = ⌊(−1)µ · (Ex − nx −MX + C)/|n|⌋, with C = (1− n) · emin + w + µ. (3.40)

Notice that once the value of n and the floating-point parameters are fixed, C is a constant (and
thus independent of x).

When n = −1

In this case, we know that er = max(emin, d), and, from (3.11), d = −e′x − 1. Consequently, D =
max(0,−e′x − emin − 1). Using as before the identity (3.39), we obtain

D = max(0,−(Ex − nx −MX + C)), (3.41)

with C as in (3.40) for n = −1 (and µ = 1), that is, C = 2emin + w + 1.

Implementation of integer division and its remainder

OnceEx, nx,MX, and the constantC are known, themost difficult part is to implement the integer
division by |n|. Here, we will thus consider only the case |n| ≥ 2. (For n = −1, the computation
of the exponentD is detailed in Section 3.6.2 below.) More particularly, we consider here the case
when |n| is not a power of two. If |n| is a power of two, the implementation of integer division
can be simply implemented with a shift in integer arithmetic (at least if |n| < 2k), as shown in
Section 3.5.2 for square root.

Moreover, by definition of D = er − emin together with er ∈ {emin, . . . , emax}, it follows that
D ≥ 0, and thus (−1)µ · (Ex − nx −MX +C) ≥ 0 in (3.40) also. For clarity, we denote this integer
byDn, as follows:

Dn = (−1)µ · (Ex − nx −MX + C) with 0 ≤ Dn < 2k/|n|. (3.42)

Let us now see how to implement the computation of ⌊Dn/|n|⌋. Using the fact thatDn < 2k/|n|
enables to gain some instructions, compared to what is proposed in [Jr.03] or implemented in the
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ST200 compiler, since it can be done by simply using the multiplication function mul . Actually, let
N be the k-bit unsigned integer encoding of 1/|n|, such that:

N = ⌈2k/|n|⌉ with 0 ≤ ⌈2k/|n|⌉ · 2−k − 1/|n| < 2−k.

It follows that
Dn/|n| ≤ (Dn ·N)/2k < Dn/|n|+ 2−k ·Dn,

Then we can show (see [JR09b, Theorem 4.1]) that, if n2 ≤ 2p,

⌊Dn/|n|⌋ = ⌊(Dn ·N)/2k⌋. (3.43)

= mul (Dn, N).

Assuming as in Example 3.4 that n = 3 and p = 24, we deduce that N = 0x5555555616. Hence,
for (k, p, emax) = (32, 24, 127), the implementation of D can be done as follows:

1 Dn = Ex - nx - MX + C;
2
3 D = mul(Dn , 0x55555556);
4
5 c = Dn - D * 3;

Listing 3.2: ExponentD computation for n = 3 and (k, p, emax) = (32, 24, 127).

It remains now to see how to compute the value c defined in (3.10) as c = (e′x + µ) mod n.
Recall that D = ⌊(e′x + µ)/n⌋ − emin. Using this together with Definition 3.1, we deduce that

c = (e′x + µ)− n · ⌊(e′x + µ)/n⌋
= (e′x + µ)− n · (D + emin). (3.44)

Using Ex = ex − emin + nx, and e′x = ex − λx with λx = MX − w, it follows

c = (Ex − nx −MX + C)− n ·D. (3.45)

From Lemma 3.1, we know that c/n ≥ 0. Hence, to compute s∗ = 2c/n, we will prefer to extract
|c| and compute s∗ = 2|c|/|n|. The interest of this approach is that it enables to write the same
extraction code for |n| and −|n|.

And finally, from (3.42), we have

|c| = Dn − |n| ·D. (3.46)

For n = 3, (3.45) is equivalent to (3.46), and the remainder c of the integer division in computed in
line 5 (Listing 3.2), and will be used for the selection of the input s∗. Remark that the extraction of
the value cmay be done in a more efficient way when n is a power of two, as presented in 3.5.3.

3.4 Implementation of special input handling

Until now we have seen how to compute nth roots and their reciprocals, for given values n and
for general input x. Before describing two implementation examples in Section 3.5 and 3.6, we
present in this section an efficient way of handling special input x.

Let x be a floating-point datum. From Properties 3.1 and 3.2, we know that the exact result
of x1/n never under/overflows, and similarly for the correctly-rounded value, except for n = −1.
Here, we consider the cases where n 6= −1, while this special case is presented in Section 3.6.3.

The remainder of this section is divided into three parts. First, we give the definition of what
we call special input for the function x1/n according to the sign and the parity of n; thenwe present
an efficient way to decide whether a floating-point datum x is a special input or not; and finally,
we show how to compute the output prescribed by the IEEE 754-2008 standard.
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3.4.1 Definition of special operands for x1/n

Consider first the function x1/n for n ≥ 2. Table 3.4 below shows the behavior of this function
defined as the function rootn of the IEEE 754-2008 standard [IEE08, p. 44] for a given n > 0 and
a given rounding-direction attribute ◦.

Input x +0 −0 +∞ −∞ x > 0 x < 0 NaN

Result r when n = 2 +0 −0 +∞ qNaN ◦(x1/n) qNaN

Result r when n is even and 6= 2 +0 +∞ qNaN ◦(x1/n) qNaN

Result r when n is odd +0 −0 +∞ −∞ ◦(x1/n) qNaN

Table 3.4: Special values for x1/n for n ≥ 2.

Let us now consider that n ≤ −1. In this case, Table 3.5 below shows the behavior of this
function, defined as the function rootn in the standard [IEE08, p. 44] for a given n < 0 and a
given rounding-direction attribute ◦.

Input x +0 −0 +∞ −∞ x > 0 x < 0 NaN

Result r when n = −2 +∞ −∞ +0 qNaN ◦(x1/n) qNaN

Result r when n is even and 6= −2 +∞ +0 qNaN ◦(x1/n) qNaN

Result r when n is odd +∞ −∞ +0 −0 ◦(x1/n) qNaN

Table 3.5: Special values for x1/n for n ≤ −1.

Therefore, the input x will be said “special” when

• n is even and x ∈ {x < 0, ±0, ±∞, NaN},

• or n is odd and x ∈ {±0, ±∞, NaN}.

In all these cases, the IEEE 754-2008 standard [IEE08] specifies that a special value to be returned.
It remains now to see how to decide if a given input x is “special”, and in this case what result
shall be returned.

Remark here that the functions x1/2 and x−1/2 are defined as the square root (squareRoot) and
the reciprocal square root (rSqrt), respectively, in the IEEE 754-2008 standard.

3.4.2 How to filter out special input?

Let X be the k-bit unsigned integer encoding the floating-point datum x, assuming the binary
interchange encoding presented in Section 1.2.2.

Detecting whether x belongs to {x < 0, ±0, ±∞, NaN}

To detect if x ∈ {x < 0, ±0, ±∞, NaN}, let us consider the unsigned integer X encoding the
floating-point datum x. From Table 1.4 and for (k, p, emax) = (32, 24, 127), we can deduce the
following piece of C code.

if(X > 0x80000000){ /* x < 0 */ }
else if((X & 0x7FFFFFFF) == 0x00000000){ /* +0 / -0 */ }
else if((X & 0x7FFFFFFF) == 0x7F800000){ /* +inf / -inf */ }
else if((X & 0x7FFFFFFF) > 0x7F800000){ /* NaN */ }
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Notice however that this method does not use the binary interchange encoding as much as possi-
ble. To do so, let us observe that x is special input if and only if X = 0 or X ≥ 2k−1 − 2p−1. And
since addition and subtraction are donemodulo 2k, the above condition turns out to be equivalent
to the following one:

X − 1 ≥ 2k−1 − 2p−1 − 1.

For (k, p, emax) = (32, 24, 127), this second condition yields a code that is much simpler:

if((X - 1) >= 0x7F7FFFFF){
/* x < 0, +0 / -0, +inf / -inf, NaN */

}

In practice, the interest of using the second piece of C code relies on the fact that it uses fewer tests,
and the generated assembly code will contain fewer instructions. Hence, we expect that it will be
faster.

Detecting whether x belongs to {±0, ±∞, NaN}

To decide if x ∈ {±0, ±∞, NaN} we may use a similar method to the one presented above.
However we can now restrict to the absolute value |x| of x, whose integer encoding is absX (see
Section 2.1.2). Clearly, x ∈ {±0,±∞, NaN} if and only if |x| ∈ {+0,+∞,NaN}. Using k-bit integer
arithmetic modulo 2k, this is equivalent to:

absX − 1 ≥ 2k−1 − 2p−1 − 1.

For (k, p, emax) = (32, 24, 127), this condition can be implemented using the following piece of C
code.

absX = X & 0x7FFFFFFF;
if((absX - 1) >= 0x7F7FFFFF){

/* x < 0, +0 / -0, +inf / -inf, NaN */
}

3.4.3 How to determine the output to be returned?

Now let us consider that x is a special input. To decide which output has to be returned, let us
consider two cases: n is positive or n is negative.

When n is positive

Fom Table 3.4, in this case, we observe that if x is a special input, we return

• x or a quiet NaN (qNaN) if n = 2 or n is odd,

• |x| or a quiet NaN (qNaN) otherwise.

When n = 2. In this case, we have to return x when x ∈ {±0,+∞} and qNaN otherwise. Con-
sider that X is the k-bit unsigned interger encoding of x. Using Table 1.4, the output can be
decided from the bit string ofX as follows (since x is known to be a special input): we returnX if

X ≤ (2k−1 − 2p−1) ∨ X = 2k−1.

If this condition is not satisfied, that means that x is either −∞, NaN, or a negative input (x < 0),
and a quiet NaN (qNaN) has to be returned. Since the IEEE 754-2008 standard does not specify
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the sign of the NaN, the returned quiet NaN can be constructed by setting the bitsXk−2, . . . ,Xp−2

to 1 and leaving the others unchanged. This can be done by taking the bitwise OR betweenX and
2k−1−2p−2. The full special input handling can thus be implemented for (k, p, emax) = (32, 24, 127),
for example, using the following piece of C code.
if((X - 1) >= 0x7F7FFFFF){

if((X <= 0x7F800000) || (X == 0x80000000)) return X;
return X | 0x7FC00000;

}

When n is odd. In this case, the returned output is also x or qNaN. However, this output is
easier to construct, since the only situation where it is a qNaN is when x is a NaN. Assuming that
x is a NaN, the quiet NaN to be returned may be constructed by setting the bit Xp−2 to 1, that
is, by taking the bitwise OR between X and 2p−2. Since from Table 1.4 x is NaN if and only if
absX > 2k−1 − 2p−1, an implementation for (k, p, emax) = (32, 24, 127) is as follows:
if((absX - 1) >= 0x7F7FFFFF){

if(absX > 0x7F800000) return X | 0x00400000;
return X;

}

When n is even and 6= 2. In this last case, the output can be deduced in a similar way to what
has been done when n = 2, except that |x| is returned when x ∈ {±0,+∞}. The following
implementation for (k, p, emax) = (32, 24, 127) can be easily derived.
if((X - 1) >= 0x7F7FFFFF){

if((X <= 0x7F800000) || (X == 0x80000000)) return absX;
return X | 0x7FC00000;

}

When n is negative

From Table 3.5, in this second case, we deduce that if x is a special input then we return

• +0, ±∞, or qNaN if n = −2,

• ±0, ±∞, or qNaN if is odd,

• +0, +∞, or qNaN otherwise.

When n = −2. In this case, we have to return +0 when x = +∞,∞when x = 0 (with the correct
sign), and qNaN otherwise. Recall that x is known to be a special input. Assuming that X is
the k-bit unsigned integer encoding of x, the output can also be decided from the bit string of X.
Using Table 3.6, we can deduce that if x = ±0 or x = +∞, thenX ≤ 2k−1− 2p−1 orX = 2k−1, and
the returned output may be obtained by taking the XOR betweenX and 2k−1 − 2p−1. Otherwise,
x is either −∞, NaN, or a negative input (x < 0), and since the IEEE 754-2008 standard does not
specify the sign of the NaN’s, the returned quiet NaN can be constructed by taking the bitwise OR
betweenX and 2k−1−2p−2, as for n = 2. The full special input handling can thus be implemented
for (k, p, emax) = (32, 24, 127), for example, using the following piece of C code:
if((X - 1) >= 0x7F7FFFFF){

if((X <= 0x7F800000) || (X == 0x80000000)) return X ^ 0x7F800000;
return X | 0x7FC00000;

}
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Input x IntegerX Returned value bit string

−0 1 00 · · · 00
︸ ︷︷ ︸

w bits

00 · · · 00 1 11 · · · 11
︸ ︷︷ ︸

w bits

00 · · · 00

+0 0 00 · · · 00
︸ ︷︷ ︸

w bits

00 · · · 00 0 11 · · · 11
︸ ︷︷ ︸

w bits

00 · · · 00

+∞ 0 11 · · · 11
︸ ︷︷ ︸

w bits

00 · · · 00 0 00 · · · 00
︸ ︷︷ ︸

w bits

00 · · · 00

Table 3.6: Relationship between input x, encoding integer X, and the bit string of the returned
value, for x ∈ {±0,+∞}.

When n is odd. In the second case, the returned output is a quiet NaN if and only if the input
x is a NaN. This quiet NaN may be constructed as when n > 0 is odd, by taking the bitwise OR
between X and 2p−2 that is by setting the bit Xp−2 to 1. Otherwise, from Table 3.6, we observe
that the output can be obtained by taking the bitwise XOR between X and 2k−1 − 2p−1. For
(k, p, emax) = (32, 24, 127), this special input handling can be implemented using the following
piece of C code:

if((absX - 1) >= 0x7F7FFFFF ){
if(absX > 0x7F800000) return X | 0x00400000;
return (X ^ 0x7F800000);

}

When n 6= −2 is even. For this last case, the output to be returned may be deduced in a similar
way as for n = −2, except for x = −0 for which the output is also +∞ [IEE08]. Hence that relies
on adjoining the correct sign to the returned output, which is 0 if x = ±0, and Xk−1 otherwise.
Adjoining the correct sign, especially when x = −0, may be done in several ways. Let x = −0
and X = 2k−1. Following what is done for both previous cases, taking the XOR between X and
2k−1 − 2p−1 leads to 2k − 2p−1, which encodes −∞ (see Table 1.4). In such a case, adjoining the
correct sign relies on adding 2k−1. In this special case, the carry is propagated outside the k-
bit unsigned integer (since additions are done module 2k), and we get 2k−1 − 2p−1 which encodes
+∞ as required. For (k, p, emax) = (32, 24, 127), this special input handling can be implemented
using the following piece of C code:

if((X - 1) >= 0x7F7FFFFF){
sign_of_zero = (X == 0x80000000) << 31;
if((X <= 0x7F800000) || (X == 0x80000000))
return ((X ^ 0x7F800000) + sign_of_zero);

return X | 0x7FC00000;
}

General remark concerning quiet NaN output

When a qNaN has to be returned, we contruct the output integer using X | 0x00400000; or X

| 0x7FC00000; . And in both cases we observe that the returned qNaN keeps as much of the
information ofX as possible, as recommended in [IEE08, §6.2]:

• the payload is preserved when quieting an signaling sNaN (sNaN),

• x is returned when x is a quiet NaN (qNaN).
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3.5 First application example: square root (n = 2)

This section is devoted to the implementation of the square root in the binary32 format, as pre-
sented in [JKMR08]. The objective is to show the interest on a first example of the uniform ap-
proach presented above. Thus let us now consider that n = 2. From Table 3.4, we know that the
function

√
x = x1/2 is defined for x > 0. Here, we do not discuss the handling of special input

(when x ∈ {±0,±∞,NaN}), which has just been presented in Section 3.4. Hence assume in this
section that x is a nonzero positive (sub)normal floating-point number.

The result being always positive, we do not present the computation of the sign of the result.
Hence, first we recall the range reduction of the square root. Then we will see how to compute
efficiently the exponent D of the result. Then, we will detail the way used for constructing the
evaluation points (ŝ∗, t∗) and for approximating the function. Finally, we will explain how to
implement the rounding condition.

3.5.1 Range reduction for square root

Recall now the range reduction we have seen in Section 3.1.2, for the particular case n = 2 and
µ = 0. Let r be the exact result of the function x1/2. By definition, we know from (3.10) and (3.11)
that the exact result r = x1/2 is as follows

r = (2c/2 ·m′
x)1/2 × 2d,

with c = e′x mod 2 ∈ {0, 1} and d = ⌊e′x/2⌋ = (e′x − c)/2. More particularly, we have

r =

{

(m′
x)1/2 × 2e′x/2 if e′x is even,

21/2 · (m′
x)1/2 × 2(e′x−1)/2 if e′x is odd.

Here, we express the exact value ℓ as in Section 3.1.2 (for n > 0), that is, from (3.12) together
with (3.13), we have

ℓ = s · (m′
x)1/2 with s ∈ {1, 21/2}.

By Property 3.3, the value ℓ lies in the range [1, 2), andmore particularly by Corollary 3.1, the exact
value ℓ is strictly less than 2 − 2−p which the middle between 2− 21−p and its successor 2. Hence
for ◦ = RUp, we have ◦(ℓ) ∈ [1, 2], otherwise ◦(ℓ) ∈ [1, 2).

Finally from Property 3.1, we know that the exact result r never denormalizes nor underflows
and overflows. From these statements, we conclude that we shall return the correctly-rounded
value ◦(r) defined as in (3.5), that is,

◦(r) = ◦(ℓ) · 2er , with er = d and er ∈ {emin, . . . , emax}, (3.47)

It remains now to see how to implement the exponent d and the correctly-rounded significand
mr = ◦(ℓ).

3.5.2 Result exponent computation

In this section we explain how to implement the computation of the result exponent D defined
in (2.21). Indeed as we have seen in Section 2.3, and since the exact result r is always positive
(sr = 0), the k-bit unsigned integer R encoding the correctly-rounded value ◦(r) is defined as
follows

R = D · 2p−1 +Mr.
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It remains now to computeD andMr. In this section, we focus on the computation of the integer
exponentD, while the computation of the integer significandMr is discussed in Section 2.2.4 and
uses what is done in Section 3.5.6.

From Section 3.3.2, we know that when n ≥ 2, that is |n| ≥ 2 and µ = 0, the integer D is
defined as in (3.40), for µ = 0:

D = ⌊(Ex − nx −MX + C/n⌋ with C = (1− n) · emin + w.

Finally for (k, p, emax) = (32, 24, 127) and w = 8, we obtain C = 134, and D can be computed as
follows:

D = ⌊(Ex − nx −MX + 134)/2⌋.
The value MX can be computed using the instructions max and nlz available on the ST231 (see
Section 2.3 and Listing 2.1 for more details). Recall that on an integer architecture, taking the
integer part of a division by 2 can be done using a right shift by one bit, and do not need to
implement the integer division presented in Section 3.3.2. Thus for (k, p, emax) = (32, 24, 127), the
computation of the result exponentD can be implemented as follows.

nx = ( X >= 0x00800000 ); Ex = X >> 23;

MX = maxu( nlz( X ) , 8 );

D = (Ex - nx - MX + 134) >> 1;

(The implementation of the remainder c of the integer division is presented in the next section,
discussing the computation of the evaluation points (ŝ∗, t∗).)

3.5.3 Extraction of the evaluation point (ŝ∗, t∗)

In Section 3.2.1, we have seen that the evaluation point (s∗, t∗) may be not representable with k
bits, and has to be rounded. Section 2.1 and Listing 2.1 explain how to extract the input t∗, as
t∗ = m′

x− 1. Here we focus on the implementation of the computation of ŝ∗, the rounded value of
s∗ defined (3.11), and more particularly the integer S encoding the input ŝ∗ such that

S = ŝ∗ · 2k−1.

Then, we explain how to compute the value c, that is, useful for computing S.

Computation of S

We know by definition that s∗ ∈ {1, 21/2} and may be unrepresentable on precision k. So let ŝ∗ be
the rounded to nearest value of s∗ in precision k. From (3.11) and the definition of ŝ∗, it follows
that

ŝ∗ =







1 if c = 0,

1.0110101000001001111001100110011111110011101111 · · ·
︸ ︷︷ ︸

k bits

2 if c = 1. (3.48)

The value of s∗ could be selected according to the value of c. This is actually a manner to deduce s∗

that can be easily automated. Here we present how to extract the value s∗, and more particularly
the integer S, by using logical and integer operations. We deduce from (3.48) that

ŝ∗ = 1 + c · (0.0110101000001001111001100110011111110011101111 · · ·
︸ ︷︷ ︸

k bits

2).
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Recall that S is the k-bit unsigned integer encoding the input point ŝ∗, such as S = ŝ∗ · 2k−1. The
bit string of the integer S is defined as follows:

S =







1000 · · · 00 if c = 0,

101 ∗ · · · ∗ ∗
︸ ︷︷ ︸

k bits

if c = 1.

where ∗ ∈ {0, 1}. Since the twomost significant bits of S are 10, the right value for S can be chosen
by taking the bitwise AND between 101 ∗ · · · ∗ ∗2 and

2k−1 + 2k−2 − c =







1100 · · · 00 if c = 0,
1011 · · · 11
︸ ︷︷ ︸

k bits

if c = 1.

It follows that the integer S can be computed as

S = 101 ∗ · · · ∗ ∗2 ∧ (2k−1 + 2k−2 − c).

When k = 32, the value ŝ∗ belongs to {1, 1.0110101000001001111001100110100}, and the inte-
ger S is as follows

S =

{

100000000000000000000000000000002 = 0x8000000016 if c = 0,

101101010000010011110011001101002 = 0xb504f33416 if c = 1.

Hence, given the value c, we deduce that S = 0xb504f33416 ∧
(
0xc000000016 − c

)
, and its compu-

tation on the ST231 processor can be implemented as follows.

S = 0xB504F334 & (0xC0000000 - c);

Note that the values that s can take are actually encoded into the program. Indeed for large values
of n (n = 100, for example), that leads to an increase of the latency for determining input s, as well
as an increase of the size of the generated assembly code. Here we aim at proposing a uniform
approach, and in the cases we have studied, the fact that the different values of s are directly
encoded into the C codes is not an issue, since we have just studied the implementation of the
function x 7→ x1/n for small values of n like 2, 3, or 4.

Now it simply remains to see how to compute the value of c.

Computation of c

Recall that the value c is defined as the remainder of the division ⌊e′x/2⌋, that is, defined as c =
e′x mod 2 or

c =

{

0 if e′x is even,
1 if e′x is odd.

Recall that x is a nonzero positive (sub)normal floating-point number and X the k-bit unsigned
integer encoding it. Using e′x = ex − λx, we have e′x = Ex + emin−nx−MX −w. By definition emin

is an even integer, so e′x is even (and c = 0) if and only if Ex − nx−MX −w is even, that is, if and
only if the last bit of Ex − nx −MX − w equals 0. Finally, we get that

c is the last bit of Ex − nx −MX − w.

For (k, p, emax) = (32, 24, 127) and w = 8, since w is even, c = 0 if and only if Ex − nx −MX is
even. This computation can be implemented as follows.
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c = (Ex - nx - MX) & 0x1;

We may remark that in other formats for which the exponent width w is odd (in binary64
format, for example), the value of c is not the last bit of Ex − nx − MX but its negation. In
this case, the computation of c can be implemented as: c = 1 - ((Ex - nx - MX)& 0x1); or
derived form.

Delay on S compared to the trailing significand Tx

We deduced from Section 2.1.3 that the first evaluation t∗ encoded into the k-bit unsigned integer
Tx can be obtained in 3 cycles, assuming unbounded parallelism.

Here, with unbounded parallelism, the computation of c consists in computingMX together
with Ex − nx (2 cycles since x is positive), then computing c (4 cycles). Finally, S is obtained in 2
more cycles, thus in 6 cycles, that is with a delay of 3 cycles compared to the first input Tx.

How to cope with this delay will be explained in Chapter 5 discussing the generation of certi-
fied and efficient evaluation program.

3.5.4 Bivariate approximant computation for binary32 implementation

We have seen in introduction that the implementation of square root may be done through several
methods. The new approach we proposed here is based on the efficient evaluation of a single
bivariate polynomial P , defined in Section 3.2.1. Here we present the way used to compute this
polynomial P and the evaluation program we have chosen for evaluating it.

Bivariate approximant computation

Assume now (k, p, emax) = (32, 24, 127). As described in Section 3.2.1, the goal is now to compute
a bivariate polynomial P defined as

P = 2−25 + s · a(t), with s ∈ {1, 21/2} and t ∈ T = [0, 1 − 2−23].

It follows from (3.30) that here the polynomial a(t) has to be a univariate polynomial that approx-
imates the function (1+ t)1/2 over T with an approximation error α(a), defined in (3.30) for n = 2,
as follows

α(a) < (2−25 − 2−31.5)/21/2 ≈ 2−25.51.

In order to compute such a polynomial a(t), we use the Remez’ algorithm [Rem34] of Sollya. Ta-
ble 3.7 below shows an estimation of α(a∗), with a∗ theminimax polynomial of degree δ (defined
in Definition 3.3), when δ varies from 6 to 11. From Table 3.7, we deduce that the polynomial a(t)

δ 6 7 8 9 10 11

α(a∗) 2−22.47 2−25.31 2−28.12 2−30.89 2−33.64 2−35.63

Table 3.7: Numerical estimation of α(a∗), for 6 ≤ δ ≤ 11.

has to be of degree at least 8 to satisfy the bound (2−25 − 2−31.5)/21/2 ≈ 2−25.51. Since it has to be
evaluated at runtime, we choose a polynomial of smallest degree, that is, δ = 8. The same degree
could have been deduced using the guessdegree function of Sollya, as described in Section 3.2.3
and Listing 3.1.



3.5 First application example: square root (n = 2) 89

Once we have determined the degree δ of the polynomial approximant, it remains to compute
amachine-representable polynomial a(t), that is, in our case, a polynomial a(t) having k-bit coeffi-
cients. Assuming k = 32, Table 3.8 shows the coefficients of the polynomial a(t) obtained by trun-
cating on 32 bits the coefficients of the Remez’s polynomial approximant, so that a(t) =

∑8
i=0 ai ·ti

and
a0 = A0 · 2−31 and ai = (−1)i+1Ai · 2−31, with 1 ≤ i ≤ 8,

where the integer Ai encodes the coefficient ai in absolute value in Q1.31 format, defined in Sec-
tion 1.2.3. Here the coefficients are stored in absolute value in the k-bit integers, so that we gain
one bit of accuracy on each coefficient since we do not store the sign. Therefore while writing the
evaluation program, we will have to handle these coefficient signs through the choice of appropri-
ate arithmetic operators (see paragraph “Unsigned fixed-point evaluation and arithmetic operator
choice” of Section 5.1.1 for details).

Coefficient Sign Value Encoding integer Format

a0 + 1.0000000032596290111541748046875 0x80000007 Q1.31

a1 + 0.49999940209090709686279296875 0x3ffffafc Q1.31

a2 - 0.1249827560968697071075439453125 0x0fff6f59 Q1.31

a3 + 0.062306254170835018157958984375 0x07f9a6be Q1.31

a4 - 0.037947035394608974456787109375 0x04db72ce Q1.31

a5 + 0.02358471788465976715087890625 0x0304d2f4 Q1.31

a6 - 0.0124784442596137523651123046875 0x0198e4c7 Q1.31

a7 + 0.0045159035362303256988525390625 0x0093fa25 Q1.31

a8 - 0.0007844865322113037109375 0x0019b4c0 Q1.31

Table 3.8: Coefficients of polynomial approximant for square root implementation.

Once the polynomial approximant is known, we compute the certified approximation error
bound θ defined in (3.31), as described in Section 3.2.3 and Listing 3.1, that is, by using the supre-
mum norm algorithm of Sollya (see [CL07] or [CJL09]). We conclude that the approximation error
α(a) of the polynomial a(t) with respect to (1 + t)1/2 over T is such as

α ≤ θ with θ = 166306437400395567390185987137844671 × 2−145 ≈ 2−27.99. (3.49)

We observe that the certified bound θ is strictly less than (2−25− 2−31.5)/21/2 ≈ 2−25.51 as required
in (3.31).

Finally, let us determine the evaluation error bound η. Given this certified approximation error
bound θ in (3.49), we have now to evaluate P (s, t) = 2−25 + s · a(t) with a finite-precision straight
line evaluation program P, such as ρ(P) ≤ η and

η = RoundDownward(2−25 − θ · 21/2 − 2−31.5) (3.50)

= 269837285807227497773782362822784117 × 2−143 ≈ 2−25.30,

as in (3.37).
Before seing how to evaluate the polynomial P (s, t) in next section, let us first see how to

compute a polynomial approximant optimized for integer processors, like the ST231.

Structured polynomial for evaluating the binary32 square root

As we have seen in Chapter 1, multiplications by powers of two may lead to better performances
(in terms of evaluation latency and code size). Hence, here we propose to construct a new polyno-
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mial by favoring coefficients to be powers of two. This polynomial is called structured coefficient
polynomial. Using it for implementing the square root may lead to latency as well as code size
reductions. We may find the polynomial a(t) having the most structured coefficients through an
iterative process, by forcing each coefficient to be a power of two.

Thus in this case, we have found a degree-8 polynomial approximant a(t) with 4 structured
coefficients:

a0 = 1, a1 = 2−1, a2 = 2−3, and a8 = 2−10,

as shown in Table 3.9 below.

Coefficient Sign Value Encoding integer Format

a0 + 1 0x80000000 Q1.31

a1 + 0.5 0x40000000 Q1.31

a2 - 0.125 0x10000000 Q1.31

a3 + 0.06245659478008747100830078125 0x07FE93E4 Q1.31

a4 - 0.03854257799685001373291015625 0x04EEF694 Q1.31

a5 + 0.0248229815624654293060302734375 0x032D6643 Q1.31

a6 - 0.0138796255923807621002197265625 0x01C6CEBD Q1.31

a7 + 0.0053327665664255619049072265625 0x00AEBE7D Q1.31

a8 - 0.0009765625 0x00200000 Q1.31

Table 3.9: Coefficients of polynomial approximant for square root implementation.

This polynomial approximant a(t) approximates the function (1+t)1/2 over T with an approx-
imation error α(a) such that

α ≤ θ with θ = 677489053545680469987359300431711267 × 2−145 ≈ 2−25.97. (3.51)

As required in (3.31), the certified error bound θ is strictly less than (2−25 − 2−31.5)/21/2 ≈ 2−25.51.
However, we observe that this bound is slightly larger than the one in the previous case, and the
polynomial has to be evaluated more accurately. Once the polynomial a(t) and the bound θ are
known, it remains to determine the evaluation error bound η, so that ρ(P) ≤ η. Using (3.37), it
follows that

η = 178213877313444108185528971841309235 × 2−144 ≈ 2−26.89. (3.52)

In the remainder of this section, we will consider these two polynomial approximants. We will
now see how to evaluate them on the ST231 processor.

3.5.5 Bivariate polynomial evaluation program

The problem of evaluating the function is finally reduced to the evaluation of the bivariate poly-
nomial P (s, t) defined in (3.24). Recall that we denote by P the evaluation program that evaluates
this polynomial P (s, t). The objective is thus to compute a k-bit unsigned integer V , defined as

V = v · 2k−2 with v = P(ŝ∗, t).

Let us now see how to evaluate P efficiently. By efficiently, we mean with an evaluation program
that reduces the evaluation latency as well as the number of operations, especially the number of
multiplications.

Before presenting the programs, recall that the target architecture is the ST231 processor core,
which is a 4-issue VLIW 32-bits integer processor on which only 2 (pipelined) multiplications can
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be launched each cycle. As we have already said in Section 3.2.4, several methods may be used
for evaluating the polynomial P . These methods are presented in Chapter 5. And to be able to
point out the efficiency of the polynomial evaluation programs proposed in the section, let us
observe that the most classical evaluation program, Horner’s rule would evaluate the polynomial
P in 4 · (δ + 1) cycles, that is, 36 cycles for the square root. We expect that we can evaluate
this polynomial faster, thus it turns out to be interesting to find a best evaluation program for
evaluating P . These schemes have been found using CGPE described in Chapter 6. Here we
present the results, while the method used to obtain them is presented in Chapter 6.

Unstructured polynomial approximant evaluation

Let us first consider the polynomial P defined in Table 3.8, that does not have any structured
coefficients.

First, we may consider a best scheme for evaluating the polynomial a(t) and compute the final
result using a last Horner’s iteration. Using this, P is evaluated as follows:

P (s, t) = 2−25 + s ·
[(

(a0 + t · a1) + t2 · (a2 + t · a3)
)

+ (3.53)

(t2 · t2) ·
((

(a4 + t · a5) + t2 · (a6 + t · a7)
)

+ (t2 · t2) · a8

)]

.

With this first best scheme, the polynomial a(t) may be evaluated in 13 cycles and the whole eval-
uation is achieved in 17 cycles. The last multiplication by s is a bottleneck for evaluation. Hence,
let us now see how to distribute this multiplication by s over the evaluation of the polynomial
a(t). We get finally the following evaluation scheme:

P (s, t) =
[(

2−25 +
(
s · (a0 + t · a1)

))

+
(

(s · t2) ·
(
(a2 + t · a3) + t2 · a4

))]

+ (3.54)
[(

(t · t2) · (s · t2)
)

·
(

(a6 + t · a7) +
(
t2 · (a8 + t · a9)

))]

,

that enables to evaluate the polynomial P in 13 cycles, that is, 4 cycles faster than the previous
scheme.

These schemes have been implemented on ST231, as well as the one presented in Chapter 5.
Table 3.10 summarizes the results. For each evaluation scheme, it presents the latency (L), the
number of instructions (N), the number of instructions per cycle (IPC), and the code size (CS). In

L (cycles) N IPC CS (bytes) ρ(P)

MPFI Gappa

Horner’s rule 36 19 0.52 144 2−28.0632 2−28.0633

2nd order Horner’s rule 23 21 0.91 152 2−27.843 2−27.843

Estrin’s method 18 21 1.17 136 2−28.0632 2−28.0633

2nd Estrin’s method 16 22 1.38 144 2−27.8397 2−27.8398

Best univariate 17 22 1.29 144 2−28.0632 2−28.0633

Best bivariate 13 23 1.77 152 2−27.9362 2−27.9362

Table 3.10: Performances on ST231, for square root implementation using unstructured polyno-
mial coefficients.

this table, the latency L corresponds to the evaluation latency on unbounded parallelism as well
as on a simplified model of the ST231 processor and in practice on the ST231. In each case, the
evaluation program is scheduled optimally (in terms of latency) by the st200cc compiler.
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We can observe that the best evaluation program found here (called Best bivariate in the table)
is 2.77 times faster than Horner’s rule. Remark also that it turns out to be efficient to distribute
the multiplication by s over the evaluation of the polynomial a(t). Otherwise, we would get an
evaluation program almost as efficient as the Estrin’s method.

The C code for the implementation of the square root using the best bivariate evaluation pro-
gram is given in Listing 3.3. Here and hereafter, comment // 1.31 in listings indicates that
the corresponding integer encodes an unsigned fixed-point value in the format Q1.31 (see line 3
of Listing 3.3 below, for example), while // s0.31 indicates that the integer encodes a signed
fixed-point value in the format Q0.31 with one bit for handling the sign (see line 5 of Listing 5.1
(Chapter 5), for example). For this program, the IPC of 1.77 shows the parallel nature (as shown
on the evaluation tree in Figure 3.2 as well) of the evaluation scheme compared to the others. This
feasible schedule of this program on ST231 is presented in Table 3.11. Remark here that three
issues are enough.

1 uint32_t __best_bivariate_eval__ ( uint32_t x, uint32_t y)
2 {
3 uint32_t r0 = mul(x, 0x3ffffafc); // 1.31
4 uint32_t r1 = 0x80000007 + r0; // 1.31
5 uint32_t r2 = mul(y, r1); // 2.30
6 uint32_t r3 = 0x00000020 + r2; // 2.30
7 uint32_t r4 = mul(x, x); // 0.32
8 uint32_t r5 = mul(y, r4); // 1.31
9 uint32_t r6 = mul(x, 0x07f9a6be); // 1.31
10 uint32_t r7 = 0x0fff6f59 - r6; // 1.31
11 uint32_t r8 = mul(r4, 0x04db72ce); // 1.31
12 uint32_t r9 = r7 + r8; // 1.31
13 uint32_t r10 = mul(r5, r9); // 2.30
14 uint32_t r11 = r3 - r10; // 2.30
15 uint32_t r12 = mul(x, r4); // 0.32
16 uint32_t r13 = mul(r12, r5); // 1.31
17 uint32_t r14 = mul(x, 0x0198e4c7); // 1.31
18 uint32_t r15 = 0x0304d2f4 - r14; // 1.31
19 uint32_t r16 = mul(x, 0x0019b4c0); // 1.31
20 uint32_t r17 = 0x0093fa25 - r16; // 1.31
21 uint32_t r18 = mul(r4, r17); // 1.31
22 uint32_t r19 = r15 + r18; // 1.31
23 uint32_t r20 = mul(r13, r19); // 2.30
24 uint32_t r21 = r11 + r20; // 2.30
25 return r21;
26 }

Listing 3.3: Best evaluation program for binary32 square root implementation.

Evaluation program validation

Once we have written an efficient evaluation program (in Listing 3.3), we have to check if the
evaluation entailed is less than the required bound η ≈ 2−25.30 in (3.50). This is done using
Gappa [Mel], [Mel06], and presented in Section 5.1.1 (paragraph “Evaluation program valida-
tion”). The main objectives are to check:

• if each evaluation variable ri fits in a 32-bit unsigned integer,

• and if it is accurate enough, that is, if its evaluation error is no larger than η in (3.50).
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Figure 3.2: Evaluation tree for square root implementation using best scheme.
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Issue 1 Issue 2 Issue 3 Issue 4

Cycle 0 r0 r4
Cycle 1 r6 r16
Cycle 2 r14
Cycle 3 r5 r12
Cycle 4 r8 r17
Cycle 5 r7 r18
Cycle 6 r1 r13
Cycle 7 r2 r9 r15
Cycle 8 r10 r19
Cycle 9 r20
Cycle 10 r3
Cycle 11 r11
Cycle 12 r21

Table 3.11: Feasible scheduling on ST231, for square root implementation.

Concerning the computation of the evaluation error bound, it has also been implemented using
interval arithmetic with MPFI [CLN+] (see also [RR05]). This is mainly done by computing a
certified enclosure of the error entailed by the evaluation of each instruction of the program. More
precisely, given an instruction, it consists in propagating the errors entailed by the computation
of its operands and then computing an interval enclosing the error on the considered instruction,
where bounds are multiple-precision floating-point numbers. The last column of Table 3.10 shows
the certified evaluation error computed using MPFI and Gappa.

We can observe that all the schemes implemented above are all accurate enough, and their
evaluation errors are less than the certified bound η in (3.50). More example, using MPFI and
Gappa, we may observe that the best bivariate generated evaluation program has an evaluation
error less than the required bound η ≈ 2−25.30 in (3.50). Remark also that the evaluation error
bounds, computed using both methods (MPFI or Gappa), are almost equivalent. In practice, we
observe that the bound is faster to be computed using MPFI than Gappa.

Structured polynomial for evaluating the binary32 square root

Let us now consider the structured polynomial approximant, whose coefficients are displayed
in Table 3.9. As for the previous polynomial approximant, we have also implemented several
evaluation methods. Table 3.12 shows, for each of these methods, the latency (L), the number
of instructions (N), the number of instructions per cycle (IPC) and the code size (CS) of several
evaluation schemes, while the last column shows the certified evaluation error bound η computed
using interval arithmetic (MPFI) and Gappa.

Remark first, that all these evaluation programs are scheduled optimally (in term of latency)
using the st200cc compiler. Concerning the impact of using structured coefficients, we observe
that it may lead to a speed-up of up to 2 cycles, for “naive” method. But for the most efficient
evaluation programs, we do not remark any speed-up. Actually these schemes expose a lot of
instruction-level parallelism, and the gain due to structured coefficient is hidden by instruction-
level parallelism exposure.

Furthermore, using structured coefficients leads to a code size reduction of up to 16 bytes, that
is, a reduction of about 10.5 %, especially for the best generated program.

Therefore, the best evaluation scheme using structured polynomial has been kept for imple-
menting square root in FLIP. Its evaluation error is strictly less than the required bound η ≈ 2−26.89
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L (cycles) N IPC CS (bytes) ρ(P)

MPFI Gappa

Horner’s rule 34 19 0.56 136 2−28.0632 2−28.0633

2nd order Horner’s rule 21 21 1 148 2−27.842 2−27.842

Estrin’s method 17 21 1.24 128 2−28.0632 2−28.3578

2nd Estrin’s method 15 22 1.47 128 2−27.8386 2−28.0096

Best univariate 17 22 1.29 128 2−28.0632 2−28.3578

Best bivariate 13 23 1.77 136 2−27.9347 2−28.2016

Table 3.12: Performances on ST231, for square root implementation using structured polynomial
coefficients.

defined in (3.52). Listing 3.4 displays the corresponding C code. We observe the multiplication
by powers of two (A1, A2, and A8) are implemented as simple shifts. Finally, Table 3.13 below
displayed a feasible scheduling in 13 cycles of the program in Listing 3.4 below on ST231. Notice
again that three of the four available issues are enough.

Issue 1 Issue 2 Issue 3 Issue 4

Cycle 0 r0 r4 r14
Cycle 1 r1 r8
Cycle 2 r12
Cycle 3 r5 r15 r16
Cycle 4 r2 r17
Cycle 5 r13 r18
Cycle 6 r6 r9 r11
Cycle 7 r3
Cycle 8 r7 r19
Cycle 9 r10 r20
Cycle 10
Cycle 11
Cycle 12 r21

Table 3.13: Feasible scheduling on ST231, for square root implementation with structured coeffi-
cient polynomial.

In Table 3.12 above, we can observe that the bounds computed using Gappa are sometimes
tighter than the ones obtained using MPFI. This difference is due to the fact that MPFI is used for
computing these bounds by “naive” interval arithmetic, while Gappa uses some rewriting rules
and theorems in addition to “naive” interval arithmetic that may lead to tighter bounds (slightly
tighter in our case).

3.5.6 How to implement the rounding condition?

Once we have the evaluation program P that computes the value v, we may write the full code
for implementing the square root. However, it now remains to described how to implement the
rounding condition, andmore particularly the condition cond used in Section 2.2.4. Recall that the
objective is to compute ◦(ℓ) from the value v = P(ŝ∗, t) that approximates the exact value ℓ from
above such as −2−p ≤ ℓ− v < 0. Assume from now that the value v is encoded in a k-bit unsigned
integer V such as V = v · 2k−2. To implement the rounding procedure, recall that the value u
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1 uint32_t __best_bivariate_eval_structured__( uint32_t T, uint32_t S)
2 {
3 uint32_t r0 = T >> 2; // 1.31
4 uint32_t r1 = 0x80000000 + r0; // 1.31
5 uint32_t r2 = mul(S, r1); // 2.30
6 uint32_t r3 = 0x00000020 + r2; // 2.30
7 uint32_t r4 = mul(T, T); // 0.32
8 uint32_t r5 = mul(S, r4); // 1.31
9 uint32_t r6 = mul(T, 0x07fe93e4); // 1.31
10 uint32_t r7 = 0x10000000 - r6; // 1.31
11 uint32_t r8 = mul(r4, 0x04eef694); // 1.31
12 uint32_t r9 = r7 + r8; // 1.31
13 uint32_t r10 = mul(r5, r9); // 2.30
14 uint32_t r11 = r3 - r10; // 2.30
15 uint32_t r12 = mul(T, r4); // 0.32
16 uint32_t r13 = mul(r12, r5); // 1.31
17 uint32_t r14 = mul(T, 0x01c6cebd); // 1.31
18 uint32_t r15 = 0x032d6643 - r14; // 1.31
19 uint32_t r16 = T >> 11; // 1.31
20 uint32_t r17 = 0x00aebe7d - r16; // 1.31
21 uint32_t r18 = mul(r4, r17); // 1.31
22 uint32_t r19 = r15 + r18; // 1.31
23 uint32_t r20 = mul(r13, r19); // 2.30
24 uint32_t r21 = r11 + r20; // 2.30
25 return r21;
26 }

Listing 3.4: Evaluation program for binary32 square root implementation using structured
coefficients.

denotes the value v truncated after p fraction bits:

u = u−1u0.u1u2 · · · up and 0 ≤ v − u < 2−p,

and by definition
−2−p < ℓ− u < 2−p,

as in (2.15) with λr = 0 (since the result never denormalizes).
Since the result of the square root is positive, the RoundTowardNegative is equivalent to the

RoundTowardZero. Thus, we consider here that ◦ ∈ {RNp,RUp,RDp}. As we have seen in Sec-
tion 2.2.4, for the first two rounding-direction attributes (RNp and RUp), the rounding procedure
relies on the test u ≥ ℓ, while for ◦ = RDp the procedure is based on the test u > ℓ. Of course
the value ℓ is not known exactly, and the rounding tests u ≥ ℓ or u > ℓ cannot be implemented
directly. However, it turns out that these can be implemented exactly by considering u2 and ℓ2

instead of u and ℓ.
To do so, let U be the k-bit unsigned integer encoding of u such as U = u · 2k−2, whose bit

string is
U = 01v1v2 · · · vp 00 · · · 00

︸ ︷︷ ︸

k−p−2 bits

, (3.55)

and Q the k-bit unsigned integer encoding ℓ2. By definition, we have U = ⌊V/2k−p−2⌋ · 2k−p−2. It
follows that the integer U may be computed by removing the k − p − 2 last bits of the bit string
of V , by taking the bitwise AND between V and 2k − 2k−p−2. For (k, p, emax) = (32, 24, 127), the
following piece of C code shows how to compute U from V .

U = V & 0xFFFFFFC0;
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Then, let P be the k-bit unsigned integer defined as

P = mul (U,U).

By definition of U and mul , we have the following

u2 · 2k−4 − 1 < P ≤ u2 · 2k−4. (3.56)

From (3.11), recall that ℓ = 2c/2 · (m′
x)1/2, and thus ℓ2 = 2c ·m′

x. In fact, since m′
x = mx · 2λx with

λx ∈ {0, . . . , p − 1}, we know that the exact value m′
x is representable with at most p bits. Hence,

the value ℓ2 is defined as follows:

ℓ2 =

{

m′
x = 1.m′

1+λx
m′

2+λx
. . . m′

p−1+λx
if c = 0,

2m′
x = 1m′

1+λx
.m′

2+λx
. . .m′

p−1+λx
if c = 1,

and in both cases is representable with p bits. Here, we consider that Q is the k-bit unsigned
integer defined such as

Q = ℓ2 · 2k−4. (3.57)

Since Tx = tx · 2k andm′
x = 1 + tx, we finally have

Q = 2c−3 · (Tx/2 + 2k−1).

We can remark here that this form for Q is preferred to Q = 2c−4 · (Tx + 2k), since using k-
bit integer, we would not have been able to compute Tx + 2k. For (k, p, emax) = (32, 24, 127), the
implementation of the variable Q can be done as follows.

Q = ((Tx >> 1) + 0x80000000) >> (3 - c);

Finally it remains to explain how to implement exactly the rounding test u ≥ ℓ (for ◦ ∈
{RNp,RUp}) and u > ℓ (for ◦ = RDp) using the integers P , Q, and U defined above.

Implementation of u ≥ ℓ, for RoundTiesToEven and RoundTowardPositive

Property 3.9. The rounding test u ≥ ℓ is equivalent to P ≥ Q.

Proof. By definition, since u > 0 and ℓ > 0, we know that u ≥ ℓ is equivalent to u2 ≥ ℓ2. Since
2k−4 > 0, then u2 ≥ ℓ2 is equivalent to u2 · 2k−4 ≥ ℓ2 · 2k−4. And from (3.57) and the left inequality
in (3.56), we deduce that if u2 ≥ ℓ2 then P + 1 > Q and P ≥ Q since P and Q are integers.

On the other hand, if P ≥ Q then P · 24−k ≥ Q · 24−k. And from the right inequality in (3.56),
we conclude that u2 ≥ ℓ2 and thus u ≥ ℓ.

From Property 3.9, the condition u ≥ ℓ is true if and only if P ≥ Q, that is, if and only if
the C condition P >= Q is satisfied. For (k, p, emax) = (32, 24, 127), the rounding procedure for
RoundToNearestTies and RoundTowardPositive can be implemented using the following piece of
C code.

cond = (P >= Q);
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Implementation of u > ℓ, for RoundTowardNegative

In RoundTowardNegative, the rounding procedure is based on the test u > ℓ instead of u ≥ ℓ. But
this condition cannot be implemented as directly as the previous one. To handle the case u = ℓ, let
us defineQ′ ∈ {0, 1} such as:

Q′ =

{

1 if and only if u2 · 2k−4 = P ,
0 otherwise.

that is Q′ = 1 if and only if P = U2 · 2−k.

Property 3.10. The rounding test u > ℓ is equivalent to P ≥ Q+Q′.

Proof. By definition, since u > 0 and ℓ > 0, we know that u > ℓ is equivalent to u2 > ℓ2. Since
2k−4 > 0, then u2 > ℓ2 is equivalent to u2 · 2k−4 > ℓ2 · 2k−4. Assume first that Q′ = 1. From (3.57),
(3.56), and the definition of Q′, we deduce that the condition u2 > ℓ2 is equivalent to P > Q that
is P ≥ Q+ 1 = Q+Q′.

Assume now thatQ′ = 0. Here we have P 6= u2 ·2k−4, thus from (3.56) P < u2 ·2k−4 and P ≥ Q
implies u2 > Q · 24−k = ℓ2. On the other hand, if u2 > Q · 24−k then from (3.56), we conclude that
P + 1 > Q and thus P ≥ Q = Q+Q′.

By definition, 1 ≤ ℓ < 2 and 2k−4 ≤ Q < 2k−2. We can deduce that for Q + Q′ < 2k that is
Q +Q′ fits exactly in a k-bit integer. Hence from Property 3.10, the condition u > ℓ is true if and
only if P ≥ Q+Q′ is true, that is, if and only the C condition P >= Q + Qprime is satisfied.

It remains now to compute the value Q′. In fact Q′ = 1 if and only if P = U2 · 2−k, that is
U2 · 2−k = mul (U,U) and U2 · 2−k = U2. Assuming that k is even (which is the case for all the
binary floating-point format presented in the IEEE 754-2008 standard), thenQ′ = 1 if and only if U
is a multiple of 2−k/2. This can be deduced from the bit string of U in (3.55), and more particularly
from its k/2 last bits. It can be easily done by taking a bitwise AND between U and 2k/2 − 1, such
as:

Q′ =

{

1 if and only if
(
U ∧ (2k/2 − 1)

)
= 0,

0 otherwise.

Finally the implementation of this rounding procedure for (k, p, emax) = (32, 24, 127) can be
done as follows.

Qprime = ((U & 0x0000FFFF) == 0);

cond = (P >= Q + Qprime);

3.6 Second application example: reciprocal (n = −1)

In Section 3.5, we have presented some key elements for the efficient implementation of the square
root. The second example we have chosen to illustrate the advantage of our uniform approach is
the reciprocal (n = −1), since it corresponds to a special case when n < 0.

After some reminder on the range reduction for the reciprocal function, we will see how to
compute the sign and the exponent of the result. Then, we will explain how to handle efficiently
a given special input. Finally, we define the polynomial approximant and the methods used for
ensuring the correct rounding.
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3.6.1 Range reduction for the reciprocal

Recall here the range reduction described in Section 3.1.2 (for n < 0) for the particular case n = −1.
As we have seen above the reciprocal is a special case of the function x1/n. Assuming that x
is a nonzero (sub)normal floating-point number, the exact result r for reciprocal is defined as
r = (−1)sx × ℓ×2d, with ℓ = 2 · (m′

x)−1 and d = −e′x−1. And from Property 3.1, we know that the
exact result r and its correctly-rounded value ◦(r) may denormalize. Thus, in this case, we shall
return the correctly-rounded result ◦(r), defined as follows

◦(r) = (−1)sr · (ℓ · 2−λr ) · 2er ,

with
λr = max(0, emin − d) and er = max(emin, d).

From (3.7) and (3.8), we know that

λr ∈ {0, 1, 2} and d ∈ {emin − 2, · · · , emax − 2 + p}.

Using this form, we ensure that the result exponent er is at least emin.

3.6.2 Result sign and exponent computation

In this section, we describe how to implement the computation of the sign and the exponent of
the result from the input x, and more particularly from X the k-bit unsigned integer encoding
x. Recall that in (2.21), the returned k-bit unsigned integer R that encodes the correctly-rounded
result ◦(r) is defined as follows

R = Sr +D · 2p−1 +Mr.

From Section 3.3.1, we know that the computation of the sign sr of the result is trivial since
sr = sx, and Sr = sr · 2k−1 can be obtained by taking a bitwise AND betweenX and 2k−1.

Concerning the computation of the integerD, from Section 3.3.2, we know that when n = −1,
the integerD is defined as follows:

D = max(0,−(Ex − nx −MX + C)),

with C = 2emin +w+1. For (k, p, emax) = (32, 24, 127) and w = 8 (which correspond to the floating-
point parameters of the binary32 floating-point format), we deduce that C = −243. Recall that
MX can be computed using the instructions maxand nlz available on ST231 (see Section 2.3 and
Listing 2.1 for details).

For (k, p, emax) = (32, 24, 127), the computation of the result sign Sr and exponent D can be
implemented as in lines 1 and 9, respectively, of the following piece of C code.

1 absX = X & 0x7FFFFFFF; Sr = X & 0x80000000;
2
3 nx = (absX >= 0x00800000);
4
5 Ex = absX >> 23; MX = maxu(nlz(absX) , 8);
6
7 tmp = (nx + MX - Ex - 243);
8
9 D = max (0 , tmp); Lr = max(0 , 0-tmp);

Here, the unsigned integer Lr encoding the value λr is computed in the same way as for the
multplication in Section 2.4.3, and its computation is not detailed.
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3.6.3 Special input, underflow, and overflow

From Property 3.1, we know that the the correctly-rounded ◦(r) may denormalize, and in this
cases, a special output has to be returned. Here we present an efficient way to handle overflow
and special input in the same time.

Special input handling

First consider the special input handling. Let x be a floating-point datum. From Table 3.5, we
observe that x is a special input if it is a special datum (±0,±∞, NaN), and is these cases, the IEEE
754-2008 standard [IEE08] specifies that a special value to be returned. To handle such input, we
proceed as described in Section 3.4.2 for deciding if x ∈ {±0,±∞,NaN}. Let X and absX be the
k-bit unsigned integers encoding of the floating-point datum x, and its absolute value |x|: x is a
special input if and only if

absX − 1 ≥ 2k−1 − 2p−1 − 1. (3.58)

Overflow characterization

We know from Property 3.1 that the exact result r may denormalize, and in this case, a special
output has also to be returned. When the exact result overflows, that is, |r| > Ω then the following
output shall be returned

(−1)sr · Ω or (−1)sr · ∞,

according to the active rounding-direction, as described in Section 2.3.
Let us recall that x is a nonzero (sub)normal floating-point number. Assume now that the exact

result |r| = |1/x| is larger than Ω. From (3.7) and (3.8), and since in this case λr = 0 (the exact is not
in the range of subnormal floating-point numbers), it follows that |r| > Ω if and only if d > emax,
that is, using e′x = ex − λx

− ex + λx − 1 > emax. (3.59)

By definition of x in (1.3), it follows that ex ∈ {emin, , . . . , emax}. Hence, using emax = 1− emin, we get

emin − 2 + λx ≤ −ex + λx − 1 ≤ emax − 2 + λx,

and (3.59) holds if and only if

λx > 2 and |x| ≤ 2emin−3.

Recall that in this case Lx is defined in Section 2.1 as the number of leading zeros in the bit
string of absX (encoding |x|), as follows:

Lx = λx + w.

Hence we conclude that |r| > Ω if and only if Lx ≥ 3 +w, that is the bit string of absX has at least
3 + w leading zeros. Therefore, we deduce that |r| > Ω if and only if 0 < absX < 2k−w−3. And
since addition and subtraction are done modulo 2k, this condition can be rewrite as follows:

absX − 2k−w−3 > 2k − 2k−w−3. (3.60)

If this condition is satisfied, it remains to decide which output has to be returned.
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How detect special input and overflow together?

From (3.60), we know that x is a special value if and only if absX − 1 ≥ 2k−1 − 2p−1 − 1. Since
2k−w−3 < 2k−1 − 2p−1 − 1, then we deduce also that x is a special input if absX − 2k−w−3 ≥
2k−1 − 2p−1 − 2k−w−3. From this statement, we deduce that we can detect special input as well as
overflow in the same time. And finally, a special output shall be returned if

absX − 2k−w−3 ≥ 2k−1 − 2p−1 − 2k−w−3

as described in Table 3.14 below.

Input x ±0 x ≤ 2emin−3 x ≥ −2emin−3 ±∞ NaN

RNp(r) ±∞ ±0 qNaN

RUp(r) ±∞ +∞ −Ω ±0 qNaN

RDp(r) ±∞ +Ω −∞ ±0 qNaN

RZp(r) ±∞ +Ω −Ω ±0 qNaN

Table 3.14: Special output for x−1.

From Table 3.14 and for (k, p, emax) = (32, 24, 127), we obtain the following piece of C code for
each rounding-direction attribute.

RoundTiesEven.

if((absX - 0x00200000) >= 0x7F600000){
if(absX > 0x7F800000) return X | 0x00400000;
return Sx | ((absX & 0x7F800000) ^ 0x7F800000);

}

RoundTowardPositive.

if((absX - 0x00200000) >= 0x7F600000){
if(absX > 0x7F800000) return X | 0x00400000;
if(absX == 0x7F800000) return Sx;
return (Sx | 0x7F800000) - ((Sx >> 31) & (absX != 0x00000000));

}

RoundTowardNegative.

if((absX - 0x00200000) >= 0x7F600000){
if(absX > 0x7F800000) return X | 0x00400000;
if(absX == 0x7F800000) return Sx;
return (Sx | 0x7F7FFFFF) + ((Sx >> 31) & (absX == 0x00000000));

}

RoundTowardZero.

if((absX - 0x00200000) >= 0x7F600000){
if(absX > 0x7F800000) return X | 0x00400000;
if(absX == 0x7F800000) return Sx;
return (Sx | 0x7F800000) - (absX != 0x00000000);

}



102 Chapter 3. A uniform approach for correctly-rounded roots and their reciprocals

Special case implementation

The last case to be handled is the so-called special case implementation defined in Section 2.3.1.
Indeed this case may occur when ℓ = 2 and emax, and r = ±2emax . From Section 2.3.1, we know that
this case occurs:

• in RoundTowardPositive: when ℓ = 2, d = emax and sr = 1,

• in RoundTowardNegative: when ℓ = 2, d = emax and sr = 0,

• in RoundTowardZero: when ℓ = 2, d = emax,

and in all these situations, ±Ω shall be returned (see 2.3.1 for more details). Notice that these
special cases never occur in RoundTiesToEven mode. By definition of ℓ in (3.11), we observe that
ℓ = 2 if and only ifm′

x = 1, and since d = −e′x − 1, d = emax means that e′x = emin − 2. We conclude
that special implementation cases must be handled if

x = (−1)sx · 2emin−2 and X = Sx + 2p−3,

according to the sign of the result and the active rounding-direction attribute, as presented below.
For each rounding-direction attribute for which these cases may occur, this special input may

be handled separately has described for (k, p, emax) = (32, 24, 127) in the C codes below.

RoundTowardPositive: if X = 2k−1 + 2p−3 then return−Ω

if(X == 0x80200000) return 0xFF7FFFFF;

RoundTowardNegative: if X = 2p−3 then return +Ω

if(X == 0x00200000) return 0x7F7FFFFF;

RoundTowardZero: if absX = 2p−3 then return (−1)sx · Ω
if(absX == 0x00200000) return (Sx | 0x7F7FFFFF);

3.6.4 How to approximate the exact value ℓ ?

Until now we have seen how to compute the sign and the exponent of the result, and how to
handle overflow together with special input. It remains now to study how to approximate the
exact value ℓ in (3.11). This section presents now how to build the polynomial P defined in (3.24)
and how to write an evaluation program P so that the condition (3.29) holds.

Univariate polynomial approximation

This uniform approach consists in approximating the function to be evaluated by a single bivariate
polynomial P defined in (3.24), and evaluating it by an efficient evaluation program P, such as
the overall error stays strictly less than 2−p−1 and (3.29) holds. Recall that the function F (s, t) =
2−p−1 + s · 2−1/n · (1 + t)1/n has to be evaluated at the input (s∗, t∗) such that s∗ = 2c/n and
t∗ ∈ T = m′

x − 1. By definition when n = −1 we know that c = 0, and we deduce that s∗ = 1.
Remark from now that the input extraction is done in a simpler way than for square root. Actually,
the value s∗ will not be stored and the value t∗ will be computed as presented in Section 2.1 and



3.6 Second application example: reciprocal (n = −1) 103

Listing 2.1. And the approximation v of ℓ, and its integer encoding V = v · 2k−2, will be thus
computed as

v = P(t∗).

Therefore, the case when n = −1 can be reduced to the evaluation of the function

F (t) = 2−p−1 + 2/(1 + t).

As usual, the function 2/(1 + t) is approximated over T by a univariate polynomial a(t).
From (3.30) and since γ(s) = 0 when n = −1, for (k, p, emax) = (32, 24, 127) the approximation
error of the polynomial a(t) with respect to the function 2/(1 + t) over T has to be strictly less
than 2−25. Table 3.15 shows an estimation of α(a∗), with a∗ the minimax polynomial of degree δ
(defined in Definition 3.3), while δ varies from 6 to 11. From Table 3.15, we deduce that the imple-

δ 6 7 8 9 10 11

α(a∗) 2−16.25 2−18.80 2−21.34 2−23.88 2−26.43 2−28.97

Table 3.15: Numerical estimation of α(a∗), for 6 ≤ δ ≤ 11.

mentation of the reciprocal (using this approach) required a polynomial approximant of degree at
least 10. Since this polynomial is evaluated at runtime, we keep the polynomial with minimal de-
gree δ = 10. As for square root, we could also determine this minimal degree using guessdegree
function of Sollya, as described in Section 3.2.3 and Listing 3.1.

Once the polynomial degree is determined, the machine-representable polynomial approxi-
mant is computed using Remez’ algorithm and by truncating each coefficient a∗i in theQ2.30 format.
To gain one bit of accuracy on each polynomial coefficient, the coefficients ai of the polynomial
approximant a(t) are stored in k-bit unsigned integers in absolute value such as

Ai = |ai| · 230.

Table 3.16 shows for each truncated coefficient ai, the sign, the value, and the k-bit unsigned
integers Ai encoding |ai|. Remark that, as for the square root, here, we have constructed the

Coefficient Sign Value Encoding integer Format

a0 + 2.000000022351741790771484375 0x80000018 Q2.30

a1 - 2 0x80000000 Q2.30

a2 + 1.999930868856608867645263671875 0x7ffede0b Q2.30

a3 - 1.99830757081508636474609375 0x7fe44570 Q2.30

a4 + 1.982783096842467784881591796875 0x7ee5eb13 Q2.30

a5 - 1.903202910907566547393798828125 0x79ce1395 Q2.30

a6 + 1.65953471697866916656494140625 0x6a35d11a Q2.30

a7 - 1.192411945201456546783447265625 0x4c507a31 Q2.30

a8 + 0.626697026193141937255859375 0x281bcdd8 Q2.30

a9 - 0.20627332665026187896728515625 0x0d33950a Q2.30

a10 + 0.03125 0x02000000 Q30

Table 3.16: Coefficients of polynomial approximant for reciprocal implementation.

polynomial a(t) by forcing some coefficients to be powers of two.
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Once this machine-representable polynomial is obtained, we compute the certified approxi-
mation error bound θ using the supremum norm algorithm of Sollya (see [CL07] or[CJL09]). In
this case, the polynomial approximant a(t) approximates the function 2/(1 + t) over T with an
approximation error bounded by θ defined as follows

α(a) ≤ θ and θ = 505863026948314408568744590055053329 × 2−144 ≈ 2−25.39, (3.61)

which is strictly less than the required bound 2−25, and then the conditions in (3.31) are satisfied.
It remains now to evaluate the polynomial P defined as follows:

P (t) = 2−p−1 + a(t).

Instead of evaluating a(t) and then adding 2−p−1, we add first 2−p−1 to a0. Hence for (k, p, emax) =
(32, 24, 127), the degree-0 coefficient of the polynomial a(t) defined in Table 3.16 is defined as
follows

a0 = 2.000000052154064178466796875 and A0 = 0x80000038 .

Now, given the certified approximation error bound θ in (3.61), it follows that the polynomial
P (t) = a(t) has to be evaluated with an evaluation error ρ(P) < η, with

η = RoundDownward(2−25 − θ) (3.62)

= 158750970944143527883158940085118959 × 2−144 ≈ 2−27.06,

as defined in (3.37).

Efficient polynomial evaluation

As for square root, the polynomial is evaluated by a straight-line, division free evaluation program
(in fixed precision) automatically generated using CGPE (see Chapter 6 for details). In Listing 3.5
below, we present the evaluation program we have kept for implementing the reciprocal in FLIP.
This evaluation program has an evaluation latency of 13 cycles. For comparison, using Horner’s
rule, the evaluation would have been in 40 cycles. Hence, with the evaluation program presented
here, we observe a speed-up of 67.5 % (27 cycles). A feasible schedule on ST231 is shown in
Table 3.17 below. We observe also on this schedule that three of the four available issues are
enough. Notice that the multiplications by powers of two, coefficients A1 and A10, are simply
implemented using shift operations in lines 3 and 21, respectively.

This evaluation program has been validated using Gappa. In this case, we have checked that
the evaluation error ρ(P) is strictly less than the certified bound η ≈ 2−27.06 in 3.62. In fact the
strict inequality is checked with Gappa through an inequality

ρ(P) ≤ η − ǫ,

for a small enough, positive ǫ = 2−300.

3.6.5 Implementation of the rounding condition

Until now, we have seen how to compute the approximation v of the exact value ℓ. It remains now
to see how to get the correctly-rounded result from this approximation v.
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Issue 1 Issue 2 Issue 3 Issue 4

Cycle 0 r2 r10
Cycle 1 r0 r16
Cycle 2 r3 r8
Cycle 3 r7 r11 r18
Cycle 4 r12 r17
Cycle 5 r4 r19
Cycle 6 r9 r20
Cycle 7 r1 r5 r13
Cycle 8 r14
Cycle 9 r21
Cycle 10 r6
Cycle 11 r15
Cycle 12 r22

Table 3.17: Feasible scheduling on ST231, for reciprocal implementation.

1 uint32_t __reciprocal__( uint32_t T)
2 {
3 uint32_t r0 = T >> 1; // 2.30
4 uint32_t r1 = 0x80000038 - r0; // 2.30
5 uint32_t r2 = mul(T, T); // 0.32
6 uint32_t r3 = mul(T, 0x7fe44570); // 2.30
7 uint32_t r4 = 0x7ffede0b - r3; // 2.30
8 uint32_t r5 = mul(r2, r4); // 2.30
9 uint32_t r6 = r1 + r5; // 2.30
10 uint32_t r7 = mul(r2, r2); // 0.32
11 uint32_t r8 = mul(T, 0x79ce1395); // 2.30
12 uint32_t r9 = 0x7ee5eb13 - r8; // 2.30
13 uint32_t r10 = mul(T, 0x4c507a31); // 2.30
14 uint32_t r11 = 0x6a35d11a - r10; // 2.30
15 uint32_t r12 = mul(r2, r11); // 2.30
16 uint32_t r13 = r9 + r12; // 2.30
17 uint32_t r14 = mul(r7, r13); // 2.30
18 uint32_t r15 = r6 + r14; // 2.30
19 uint32_t r16 = mul(T, 0x0d33950a); // 2.30
20 uint32_t r17 = 0x281bcdd8 - r16; // 2.30
21 uint32_t r18 = r2 >> 7; // 2.30
22 uint32_t r19 = r17 + r18; // 2.30
23 uint32_t r20 = mul(r7, r19); // 2.30
24 uint32_t r21 = mul(r7, r20); // 2.30
25 uint32_t r22 = r15 + r21; // 2.30
26 return r22;
27 }

Listing 3.5: Evaluation program for binary32 reciprocal implementation.

Preliminary definition

We have seen in Section 3.1.2 (for n < 0) that the exact result of reciprocal may denormalize (see
Property 3.1), that is, the correctly-rounded significand to be computed is

mr = ◦(ℓ · 2−λr).
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Given that the value v = P(t) = (v−1v0.v1v2 · · · vk−2)2 has a finite binary expansion with k − 2
fraction bits and that approximates the exact value ℓ from above as in (3.21) such that −2−p <
ℓ− v ≤ 0, the correctly-rounded significand satisfies the following condition: −2−p−λr < ℓ · 2−λr −
v · 2−λr ≤ 0. Since λr ≥ 0, we have −2−p ≤ −2−p−λr and thus

−2−p < ℓ · 2−λr − v · 2−λr ≤ 0.

The approach is the same as for square root, and the one presented in Section 2.2.4. Let us consider
u be the value v · 2−λr truncated after p fraction bits: u = (u−1u0.u1u2 · · · up)2 as in (2.15), and

−2−p < ℓ · 2−λr − u < 2−p.

The idea is now to compute ◦(ℓ ·2−λr) from the approximation u. Unlike for square root, the recip-
rocal function must be studied for all the four rounding-direction attributes. From Property 3.6,
we know that ℓ cannot be halfway between two floating-point numbers. More particularly, in
Section 3.1.3, we have seen that the exact result r = 1/x cannot be exactly halfway between two
floating-point numbers. Hence, even for trivial input, the value ℓ · 2−λr can never be the middle
of two floating-point numbers.

In the rounding algorithm presented in Section 2.2.4 for RoundTiesToEven, to handle the case
where ℓ · 2−λr is exactly halfway between two floating-point numbers, we have introduced the
condition

(u = ℓ) ∧ (up−1 = 0) .

In this case, ℓ · 2−λr cannot be exactly halfway two floating-point numbers, and the rounding test
for RoundTiesToEven can be simplified, as follows, withmr = ◦(ℓ · 2−λr ):

if u ≥ ℓ · 2−λr then

mr = truncate (u)p−1,

else

mr = truncate (u+ 2−p)p−1.

(3.63)

It follows that the implementation of the rounding procedure relies on the implementation of the
following conditions:

u ≥ ℓ · 2−λr or u > ℓ · 2−λr .

The exact value ℓ is not known exactly, and the conditions above cannot be implemented di-
rectly. However it turns out that these conditions may be implemented exactly using u ·m′

x and
21−λr instead of u and ℓ · 2−λr , since ℓ = 2 · (m′

x)−1, and u,m′
x > 0.

To do so, as for square root, recall that V is the k-bit unsigned integer V encoding the computed
value v such as V = v · 2k−2, and U be the k-bit unsigned integer encoding u such as U = u · 2k−2.
Since k > p+ 2, by definition of u and v, we deduce that the bit string of U is as follows

U = 00 · · · 00
︸ ︷︷ ︸

λr zeros
01v1 · · · vp−λr 00 · · · 00

︸ ︷︷ ︸

k−p−2 zeros
. (3.64)

More particularly by definition of u and v, we deduce that U = ⌊(V · 2−λr )/2k−2⌋ · 2k−2. Using
integer arithmetic, the value U can be computed from V and Lr encoding λr by shift right V by
Lr bits, and removing the k − p− 2 last bits of the resulting integer.

U = (V >> Lr) & 0xFFFFFFC0;
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(The computation of Lr is given in Section 3.6.2.) Recall that Mpx and T are the k-bit unsigned
integers encodingm′

x and tx respectively, as explained in 2.1:

Mpx = m′
x · 2k−1 and Tx = tx · 2k.

For implementing rounding conditions, let us first define

Q = 2k−2−λr .

And before presenting the implementation of these conditions, recall that by definition of mul , we
have:

u ·m′
x · 2k−3 − 1 < P ≤ u ·m′

x · 2k−3, (3.65)

with P = mul (U,Mpx).

Implementation of the condition u ≥ ℓ · 2−λr for RoundTiesToEven

In RoundTiesToEven, the condition does not depend on the sign of the result. Let us see now how
to implement this condition introduced in Section 2.2.4.

Property 3.11. The rounding test u ≥ ℓ · 2−λr is true if and only if P ≥ Q.

Proof. By definition, since m′
x > 0, the condition u ≥ ℓ · 2−λr is true, if and only if u ·m′

x ≥ 21−λr

is true. We know that 2k−3 > 0, then u ·m′
x ≥ 21−λr is equivalent to u ·m′

x · 2k−3. From the left
inequality of (3.65), we deduce that if u ·m′

x ≥ 21−λr then P + 1 > Q is true, and P ≥ Q since P
and Q are integers.

On the other hand, if P ≥ Q, then P · 23−k ≥ Q · 23−k . And using the right inequality of (3.65),
we conclude that u ·m′

x ≥ 21−λr and u ≥ ℓ · 2−λr .

From Property 3.11, the condition u ≥ ℓ·2−λr is true if and only if P ≥ Q, and that is if and only
if the C condition P >= Qholds. For (k, p, emax) = (32, 24, 127), the rounding condition u ≥ ℓ · 2−λr

may be implemented using the following piece of C code.

Q = 0x40000000 >> Lr;

cond = (P >= Q);

Implementation of the rounding conditions for RoundTowardPositive

As shown in Section 2.2.4, for RoundTowardPositive, the rounding condition to be implemented
is u ≥ ℓ · 2−λr if the result is positive (sr = 0), and u > ℓ · 2−λr if the result is negative (sr = 1). In
the same way as for square root, the idea is here to implement exactly the rounding test. To do so,
let us define the Q′ ∈ {0, 1}, as

Q′ =

{

1 if and only if (u ·m′
x · 2k−3 = P and sr = 1),

0 otherwise.

HenceQ′ = 1 if and only if U ·Mx · 2−k = P and sr = 1 (negative result).

Property 3.12. Assume that the result is positive (sr = 0). The rounding test u ≥ ℓ · 2−λr is true if
and only if P ≥ Q+Q′.
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Proof. Since the result is positive, by definition we know that Q′ = 0. Hence from Property 3.11,
we know that the condition u ≥ ℓ · 2−λr is true if and only if P ≥ Q = Q + Q′, that ends the
proof.

Property 3.13. Assume that the result is negative (sr = 1). The rounding test u > ℓ · 2−λr is true if
and only if P ≥ Q+Q′.

Proof. By definition, sincem′
x > 0, the condition u > ℓ · 2−λr is true, if and only if u ·m′

x > 21−λr is
true. We know that 2k−3 > 0, then u ·m′

x > 21−λr is equivalent to u ·m′
x · 2k−3 > 2k−2−λr . Assume

first that Q′ = 1. From (3.65), and the definition of Q and Q′, we deduce that the condition
u ·m′

x > 21−λr is equivalent to P > Q that is P ≥ Q+ 1 = Q+Q′.
Assume now that Q′ = 0. Here we know that P 6= u ·m′

x · 2k−3 (since sr = 1), thus from (3.65)
P < u · m′

x · 2k−3, and P ≥ Q implies u · m′
x · 2k−3 > Q · 23−k = 21−λr . On the other hand, if

u ·m′
x · 2k−3 > Q · 23−k then from (3.65) we conclude that P + 1 > Q that is P ≥ Q = Q+Q′.

It remains now to compute the value Q′. In fact, if U · Mx · 2−k = P , that means that the
computed value u is equal to the exact value ℓ · 2−λ. From Property 3.5 we know that the value ℓ
cannot be exactly a floating-point number except for trivial input, and from Property 3.6 ℓ cannot
be exactly between two floating-point numbers. Since by definition, λr ∈ {0, 1, 2}, we conclude
that U ·Mx · 2−k = P if and only if x is a trivial input: m′

x = 1.0 and tx = 0. Assuming that the
integers Sr and Tx encode the values sr and tx, respectively, such as

Sr = sr · 2k−1 and Tx = tx · 2k, (3.66)

the computation of Q′ may be implemented as follows.

Qprime = (Tx == 0x0) & (Sr >> 31);

As for square root, we may check that Q + Q′ fits exactly in k-bit integer since Q + Q′ < 2k.
Hence from Properties 3.12 and 3.13, the rounding condition is equivalent to P ≥ Q+Q′, that is,
is true if and only if the C condition P >= Q + Qprime holds. Finally, the rounding condition can
be implemented using the following piece of C code.

Q = 0x40000000 >> Lr;

Qprime = (Tx == 0x0) & (Sr >> 31);

cond = (P >= Q + Qprime);

Implementation of the rounding conditions for RoundTowardNegative

On the contrary of the RoundTowardPositive rounding-direction attribute, for the RoundToward-
Negative, the rounding condition to be implemented is u ≥ ℓ ·2−λr if the result is positive (sr = 1),
and u > ℓ · 2−λr if the result is negative (sr = 0). To do so, let us now define the Q′ ∈ {0, 1} as

Q′ =

{

1 if and only if (u ·m′
x · 2k−3 = P and sr = 0),

0 otherwise.

Thus, Q′ = 1 if and only if U ·Mx · 2−k = P and sr = 0 (positive result). From Properties 3.12
and 3.13, we deduce the following corollary.

Corollary 3.2. If the result is positive (sr = 0) then the rounding condition u > ℓ · 2−λr is true
if and only if P ≥ Q + Q′. Otherwise the result is negative (sr = 1) and the rounding condition
u ≥ ℓ · 2−λr then is true if and only if P ≥ Q+Q′.
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It remains now to compute the valueQ′. In fact, as presented above for RoundTowardPositive,
U ·Mx · 2−k = P if and only if x is a trivial input: m′

x = 1.0 and t = 0. Recalling that the integers
Sr and T encode the values sr and t as in (3.66), the computation of Q′ may be implemented as
follows.

Qprime = (Tx == 0x0) & ((~Sr) >> 31);

In this case, we may also check that Q+Q′ fits exactly in a k-bit integer since Q+Q′ < 2k. From
Corollary 3.2, the rounding condition is equivalent to P ≥ Q + Q′: thus this condition is true
if and only if the C condition P >= Q + Qprime holds. Finally, the rounding condition can be
implemented using the following piece of C code.

Q = 0x40000000 >> Lr;

Qprime = (Tx == 0x0) & ((~Sr) >> 31);

cond = (P >= Q + Qprime);

Implementation of the condition u > ℓ · 2−λr for RoundTowardZero

As for RoundTiesToEven, the rounding condition for RoundTowardZero does not depend on the
sign of the result, and is u > ℓ · 2−λr . To implement it, let us define Q′ ∈ {0, 1} as

Q′ =

{

1 if and only if u ·m′
x · 2k−3 = P ,

0 otherwise.

We haveQ′ = 1 if and only if U ·Mx ·2−k = P , and using the same approach as before for the other
rounding-direction attributes, we conclude that Q′ = 1 if and only if x is a trivial input: m′

x = 1.0
and tx = 0. Using (3.66), the computation of Q′ can thus be implemented as follows.

Qprime = (Tx == 0x0);

From Property 3.13, we can deduce the following corollary.

Corollary 3.3. For RoundTowardZero, the rounding condition u > ℓ · 2−λr is true if and only if
P ≥ Q+Q′.

We still may check that Q + Q′ fits exactly in a k-bit integer since Q + Q′ < 2k. And from
Corollary 3.3, the rounding condition is equivalent to P ≥ Q + Q′: finally this condition is true
if and only if the C condition P >= Q + Qprime holds. A C implementation of this last rounding
condition thus is as follows:

Q = 0x40000000 >> Lr;

Qprime = (Tx == 0x0);

cond = (P >= Q + Qprime);





CHAPTER 4
Extension to correctly-rounded division

This chapter extends to division the approach based on the evaluation of a
particular bivariate polynomial, introduced in Chapter 3 for the implemen-
tation of roots and their reciprocals. Here again, detailed algorithms are
given and illustrated with examples of C codes for the binary32 floating-
point format. Unlike roots and their reciprocals, the difficulties are the han-
dling of special inputs (since division is bivariate), the validation of the
evaluation program, which is less immediate and cannot be done directly
on the whole input interval, and the rounding condition implementations.
This implementation of division based on polynomial evaluation is actually
about 1.38 faster (1.74 without subnormal support) compared to the one of
FLIP 0.3. Notice that its is also more efficient than iterative method using
a specific ST231 instruction (divs) computing a nonrestoring-like iteration
in 1 cycle.

In this chapter, we propose an extension to division of the uniform approach presented in Chap-
ter 3 for roots and their reciprocals. Generally, floating-point division is less frequently used in
numerical applications than addition, subtraction, or multiplication. Indeed its design has often
been neglected by developers, that has yielded high latency implementations. In 1997, Oberman
and Flynn [OF97a] showed that addition was in 2 to 4 cycles and that multiplication was in 2 to 8
cycles, while division was in 6 to 61 cycles. From this statement, we can observe that low latency
implementation of division, in particular on ST231, may still be an issue.

As for nth roots, various methods have actually been used to implement correctly-rounded di-
vision, in hardware and software. Among the most classical ones, let us quote iterative methods :
(non)restoring [OF96], [OF97b], SRT, ..., andmultiplicative methods : Newton-Raphson and Gold-
schmidt [Rai06], [PB02]. The former produces one or a few bits of the result per iteration, while
the latter refines a first approximation of 1/y, obtained for example by look-up table [Obe99],
small degree polynomial evaluation [Rai06], or specific hardware instruction (frcpa in [Mar00],
[CHT02], for example). In [Rai06] and FLIP 0.3, the lowest measured latency is of 47 cycles, and
has been obtained by exposing instruction-level parallelism of the ST231 through a suitable combi-
nation of small degree univariate polynomial evaluation and Goldschmidt’s method. Among the
most classical methods, we can also quote polynomial-based ones. They are usually implemented
through the evaluation of a univariate polynomial of minimal degree [AGS99].

The ST231 processor has a specific instruction, called divs , that computes a nonrestoring-like
division iteration in one cycle. Therefore, we have implemented (non)restoring iterations. We will
show that, using nonrestoring iteration on ST231, with this specific divs instruction, leads to an
implementation without subnormal support in 39 cycles, that is, already 1.2 times faster than the



112 Chapter 4. Extension to correctly-rounded division

available division in FLIP 0.3.
Moreover, for division, the single bivariate polynomial-based methodology of Chapter 3, en-

ables to achieve an implementation in 34 cycles, hence a speedup by a factor of about 1.38 com-
pared to the implementation of FLIP 0.3. If we do not support subnormals numbers, which is
actually the case in FLIP 0.3, the implementation falls to 27 cycles, with a speedup by a factor of
about 1.74 [JKM+09]. However, unlike for the functions presented in Chapter 3, the difficulties for
division rely on the handling of special input, since division is bivariate, the automatic validation
of the generated evaluation program using sufficient evaluation error bound, which is less imme-
diate, and the implementation of the rounding condition, since the exact result of the division can
be exactly halfway between two floating-point numbers. Concerning the validation, the strategy
we have implemented is based on the splitting of the input domain into several subintervals, so
that the evaluation program can be validated on each subinterval.

This chapter is organized as follows. Section 4.1 presents the general algorithm, and more par-
ticularly explains how to reduce the computation of the division of two floating-point numbers
to the evaluation of a bivariate polynomial. Then Sections 4.2 and 4.3 present an efficient way of
computing the sign and the exponent of the result, as well as how to handle special inputs. This
is mainly optimized for the ST231 processor thanks to a clever use of the binary interchange en-
coding of input floating-point data. After a reminder of a classically used method in Section 4.4
and its specialization on ST231 using the divs instruction, some details on the bivariate polyno-
mial and its validation are given in Section 4.5. Finally Section 4.6 details how to implement the
rounding for each of the four rounding-direction attributes.

4.1 General properties of division

This section gives the range reduction of the division function (x, y) 7→ x/y as well as some useful
properties for implementing correct rounding.

Let x and y be two nonzero (sub)normal binary floating-point numbers and let r = x/y be the
exact result of division. As mentioned in Section 2.2.1, the goal consists in defining the exact result
as r = (−1)sr · ℓ · 2d, with ℓ ∈ R ∩ [1, 2] and d ∈ Z. Recalling that from Section 1.2.1

x = (−1)sx ·m′
x · 2e′x and y = (−1)sy ·m′

y · 2e′y ,

with sx, sy ∈ {0, 1}, m′
x,m

′
y ∈ [1, 2 − 21−p], and e′x, e

′
y ∈ {emin − p + 1, · · · , emax}, the exact result

r = x/y can be expressed as
r = (−1)sr ·m′

x/m
′
y · 2e′x−e′y , (4.1)

with sr = sx ⊕ sy andm′
x/m

′
y ∈ (1/2, 2). Remark that from Section 2.2.4, we have to ensure that ℓ

is a real value that belongs to [1, 2]. To do so, let us define the value c as

c =

{

1, if m′
x ≥ m′

y,

0, if m′
x < m′

y.
(4.2)

Therefore, using (4.2) together with (4.1), it follows that the exact result r = x/y is

r = (−1)sr · ℓ · 2d, with ℓ = 21−c ·m′
x/m

′
y and d = e′x − e′y − 1 + c. (4.3)

More particularly, it follows from (4.3) together with the definition of x and y that

ℓ = s ·m′
x/m

′
y with s = 21−c, and d ∈ {2emin − p− 1, . . . , 2emax + p− 2}. (4.4)

We have given an expression for rewriting the exact result r = x/y as r = (−1)sr · ℓ · 2d, and
given a range for d. Let us now determine a range for the exact value ℓ.
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Property 4.1. Ifm′
x ≥ m′

y then ℓ ∈ [1, 2 − 21−p], else ℓ ∈ (1, 2 − 21−p).

Proof. Ifm′
x ≥ m′

y then c = 1, and we deduce from 1 ≤ m′
x ≤ 2− 21−p and 0 < 1/m′

x ≤ 1/m′
y ≤ 1

that 1 ≤ ℓ ≤ 2− 21−p. Ifm′
x < m′

y then c = 0 andm′
x ≤ m′

y − 21−p : thus ℓ ≤ 2− 22−p/m′
y. Hence,

usingm′
x ≥ 1 and 1/m′

y > 1/2, we obtain 1 < ℓ < 2− 21−p as desired.

Using Property 4.1 above and the range for d in (4.4), we deduce that the exact r in (4.3) may
underflow or overflow, as shown in Example 4.1 below.

Example 4.1. Let x = 2emin−p+1 and y = 2emax . Since emax = 1− emin and emax ≥ 2, we have

x/y = 22emin−p+1 < 2emin and y/x = 22emax−2+p > Ω.

Hence we deduce that the correctly-rounded result ◦(r) may also denormalize whatever the
rounding-direction attribute is. Thus from Section 2.2.1, we have to distinguish three cases:

• if d > emax then the exact result r overflows;

• if d ∈ {emin, . . . , emax} then r lies in the range of normal floating-point numbers;

• else if d < emin then r lies in the range of subnormal numbers: r = (−1)sr · (ℓ · 2d−emin) · 2emin .

Here, we do not discuss the case where d > emax, since it is handled as presented in Section 2.3.2.
Assume now that d ≤ 2emax . As mentioned in Section 2.2.1, let us define

λr = max(0, emin − d) and er = max(emin, d), (4.5)

with, by definition of the exponent d,

λr ∈ {0, . . . ,−emin + p+ 1}. (4.6)

We shall return the correctly rounded result ◦(r) defined as

◦(r) = (−1)sr ·mr · 2er with mr = ◦(ℓ · 2−λr) and er ∈ {emin, . . . , emax}. (4.7)

We will see in Section 4.2 how to implement the computation of the sign sr and of the exponent
er, and in Section 4.6 how to implementmr. But, let us first give a remark on the overflow case.

Overflow when ℓ = 2 and d = emax cannot occur

Recall from Section 2.2.1 that we know that an overflow occurs when d > emax, or when d = emax

and ℓ = 2. However, it follows from Property 4.1 that ℓ · 2−λr ≤ 2− 21−p, and the case where ℓ = 2
and d = emax cannot occur, and no special implementation case has to be handled.

Hence, for the division operation, an overflow occurs if and only if d > emax, and this case can
be handled as presented in Section 2.3.2.

4.2 Result sign and exponent computation

This section presents how to compute the sign and the exponent of the result in (4.3) from the input
x and y encoded into k-bit unsigned integersX and Y , respectively, using the binary interchange
encoding described in Section 1.2.2. Recall from Property 2.1 that the k-bit unsigned integer R
in (2.21) that encodes the result r is

R = Sr +D · 2p−1 +Mr,

with Sr = sr · 2k−1 andD = Er − nr and nr denotes the “is normal bit” of the result r. Let us now
see how to compute the integers Sr andD.
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4.2.1 Result sign computation

The computation of the sign of the result sr is trivial. It is encoded by the integer Sr, obtained by
taking the XOR of the sign bits of X and Y :

Sr = (X ⊕ Y ) ∧ 2k−1.

For (k, p, emax) = (32, 24, 127), we get the following piece of C code for computing Sr:

Sr = (X ^ Y) & 0x80000000;

4.2.2 Result exponent computation

Let us now explain how to compute the exponent D defined as D = Er − nr. Recall that the
k-bit unsigned integers Ex and Ey encoding of the biased exponents of x and y, respectively, are
such that

Ex = e′x + λx − emin + nx and Ey = e′y + λy − emin + ny.

where nx and ny are the “is normal” bit of x and y, respectively, and

e′x = ex − λx and e′y = ey − λy,

and λx and λy defined as in (2.1), that is:

λx = MX −w and λy = MY − w.

Assume now that Er is the k-bit unsigned integer encoding of the biased value of er. Then

D = Er − nr

er − emin,

since Er = er − emin + nr (with nr the “normal bit” of the result). By definition of er in (4.5) as
er = max(emin, d), we finally have

D = max(0, d − emin), (4.8)

where, by definition of d in (4.1)

d− emin = e′x − e′y − 1 + c− emin

= (Ex − Ey)− (nx − ny)− (MX −MY )− 1 + c− emin.

For (k, p, emax) = (32, 24, 127), using the Listing 2.1 for unpacking input, we obtain the follow-
ing piece of C code, whereD in (4.8) is implemented at line 13. The parenthezisation chosen here
tends to expose as much instruction-level parallelism as possible.

1 absX = X & 0x7FFFFFFF; absY = Y & 0x7FFFFFFF;
2
3 MX = max(nlz(absX) , 8); MY = max(nlz(absY) , 8);
4
5 nx = absX >= 0x00800000; ny = absY >= 0x00800000;
6
7 Ex = absX >> 23; Ey = absY >> 23;
8
9 Mpx = (X << 8) | 0x80000000; Mpy = (Y << 8) | 0x80000000;
10
11 c = Mpx >= Mpy;
12
13 D = max(0 , ((Ex - Ey) - (nx - ny)) - ((MX - MY) + (c + 125)));
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4.3 Special input handling

This section presents how to filter out special inputs, and to determine which special output has
to be returned. In fact, we show here an efficient method used to detect special input for bivariate
functions, that can also be used for addition, subtraction, or multiplication (see Section 2.4, for
example, and especially Listing 2.2 where it is used for multiplication).

In SoftFloat [Hau], special input handling is done by extracting the biased exponent of inputs,
and considering all the cases of special input: biased exponent equals to 0 or 2w − 1. And then the
output is selected according to that exponent as well as the sign and the trailing significand fields
of the inputs. In [Rai06], the special input handling for bivariate functions like division is also done
by extracting the biased exponent. But a first improvement is proposed by detecting if any input
is special by using just one max instruction and one test. Here, we propose an efficient approach
based on the exploitation of the binary interchange format encoding, and more particularly the
order of floating-point datum encoding.

4.3.1 IEEE 754 specification of division

Let x and y be two floating-point data as defined in Section 1.2.1. The division operation x/y is
defined in Table 4.1. If x or y is a special input, that is, x or y belongs to {±0,±∞,NaN,}, the IEEE

x/y
y

±0 (sub)normal ±∞ NaN

x

±0 qNaN ±0 ±0 qNaN

(sub)normal ±∞ ◦(x/y) ±0 qNaN

±∞ ±∞ ±∞ qNaN qNaN

NaN qNaN qNaN qNaN qNaN

Table 4.1: Special values for x/y.

754-2008 standard requires that a special value be returned. Since x/y = (−1)sr · |x|/|y|, we just
have to determine the special output for |x|/|y|, and to adjoin the correct sign. Let us now see how
to detect if x or y is a special input, and then how to decide which result shall be returned.

4.3.2 Filtering out special inputs

Let X and Y be the k-bit unsigned integers encoding x and y (with the binary interchange en-
coding defined in (1.2.2)), and absX and absY those encodings of |x| and |y|, respectively. From
Tables 4.1 and 1.4, we can observe that (|x|, |y|) (and (x, y) as well) is a special input if and only if

absX or absY ∈ {0} ∪ {2k−1 − 2p−1, . . . , 2k−1}.

In our context, integer additions and subtractions are done modulo 2k, so that absX = 0 if and
only if absX − 1 = 2k − 1. Thus, (|x|, |y|) is a special input if and only if

absX − 1 ≥ 2k−1 − 2p−1 − 1 or absY − 1 ≥ 2k−1 − 2p−1 − 1,

that is,
max(absX − 1, absY − 1) ≥ 2k−1 − 2p−1 − 1. (4.9)

Remark that on the ST231 processor, this approach may be much faster than testing each kind of
special input, since a max instruction is available, which takes only 1 cycle.
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4.3.3 Deciding the result to be returned

Assume now that (x, y) is a special input. For each special case, the IEEE 754-2008 standard [IEE08]
specifies that a special value has to be returned, as defined in Table 4.1. We see that the IEEE 754-
2008 standard specifies the following output:

1. If |x| = |y|, or |x| or |y| is NaN then return a qNaN;

2. else if |x| < |y| then return ±∞;

3. else if |x| > |y| then return ±0.

From Table 1.4, in the test in item 1, |x| or |y| is NaN if and only if

max(absX, absY ) > 2k−1 − 2p−1. (4.10)

An example of implementation is given in the following code, for (k, p, emax) = (32, 24, 127). Here,
line 3 implements (4.9), while line 5 implements (4.10).

1 absXm1 = absX - 1; absYm1 = absY - 1;
2
3 if( maxu(absXm1 , absYm1 ) > 0x7F7FFFFF ){
4 Max = maxu(absX , absY);
5 if(absX == absY || Max > 0x7F800000) // item 1
6 return (Sr | 0x7FC00000) | Max;
7 if(absX < absY) return Sr | 0x7F800000; // item 2
8 return Sr; // item 3
9 }

In this piece of C code, when the returned result is a qNaN, we may check that its payload1 is
one of the input payloads, as recommended by the IEEE 754-2008 standard [IEE08, §6.2.3]. This
enables to propagate as much information of the input as possible on the result.

4.4 Correctly-rounded division by digit recurrence

Until now we have seen the method used to filter out special inputs, and to compute the pair
(exponent, sign) of the result. It remains now to see how to compute the correctly-rounded sig-
nificand. In this section, we give some key elements for computing this significand using two
classical digit recurrence algorithms, the restoring method and the nonrestoring method. Both
methods consist in computing one bit of the result per iteration: but the former updates at step j
the jth bit if this one is wrong, while the latter updates it at step j+1 by incorporating this restora-
tion into the computation of the (j+1)st bit. The interest of the nonrestoring method relies on the
fact that there is a specific instruction on ST231 that (almost) computes a nonrestoring iteration in
1 cycle [ST208b, p. 195].

4.4.1 General principle

The (non)restoring algorithm [EL94] is an iterative process that produces one bit of the result per
iteration, such that, after n iterations and a possible final correction step in the case of nonrestoring
method

0 ≤ ℓ− ℓ[n] < 2−n, (4.11)

1Recall that we call payload the “diagnostic information contained in a NaN, encoded in part of its trailing signifi-
cand field” [IEE08, p. 4].
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where ℓ[n] =
∑n

i=0 ℓi · 2−i denotes an approximation of the quotient ℓ = ℓ−1ℓ0.ℓ1ℓ2ℓ3 . . . defined
in (4.4) after n iterations. Remark from Property 4.1 that ℓ−1 = 0 and ℓ0 = 1.

At each step j, the goal is to select the bit ℓj so that the error ǫ[j] = ℓ− ℓ[j] remains strictly less
than 2−j in magnitude. The way ℓj is selected depends on the method (restoring or nonrestoring).
But in both cases, it relies on the notion of partial remainder w[j] at step j. Recalling that ℓ =
21−c ·m′

x/m
′
y , the value w[j] is defined as

w[j] = 2j · (21−cm′
x −m′

y · ℓ[j]). (4.12)

Since ℓ[j + 1] = ℓ[j] + ℓj+1 · 2−j−1, we have the following recurrence:

w[j + 1] = 2w[j] −m′
y · ℓj+1, with w[0] = 21−cm′

x −m′
y.

Finally, it follows from (4.12) that w[j] = m′
y · 2j · (ℓ− ℓ[j]). Let us now consider both methods and

more particularly that ℓ[j] is the result of the jth (non)restoring iteration. Then it follows that after
n iterations we have

−m′
y ≤ w[n] < m′

y and − 2−n ≤ ǫ[n] < 2−n,

and (4.11) holds after a possible correction step since ǫ[n] may be negative (and in this case, w[n] <
0). In fact, ℓ[n] represents the first n + 1 bits of the exact result ℓ. Consequently, to compute the
correctly-rounded value ◦(ℓ · 2−λr ), we observe that p iterations are enough.

Note that we will see in Property 4.3, in Section 4.6.2 below, that the exact value ℓ cannot be
exactly halfway between two consecutive floating-point numbers. Hence, at step p, it follows from
Property 4.3 (before the possible correction step in the case of nonrestoring method) that the error
ǫ[p] cannot equal 2−p in magnitude, and thus

|w[p]| < m′
y and |ǫ[p]| < 2−p. (4.13)

4.4.2 Restoring division

Iteration description

The restoring method uses the quotient-digit set {0, 1} to produce at each step j the bit ℓj . At
step j + 1, the principle consists in considering that ℓj+1 = 1 and computing a tentative partial
remainder

w̃[j + 1] = 2w[j] −m′
y.

All the quotient bits are nonnegative. Thus at each step j, the partial remainder w[j] must also be
nonnegative: we have to ensure that

0 ≤ w[j + 1] < m′
y.

Here, if w̃[j+1] ≥ 0 then we conclude thatw[j+1] = w̃[j+1] and ℓj = 1. Otherwise, if w̃[j+1] < 0,
then ℓj should have been set to 0 instead of 1: we restore the quotient-digit ℓj to 0 and compute the
new partial remainder: w[j + 1] = 2w[j] = w̃[j + 1] +m′

y. Indeed, at each step j, the quotient-digit
is selected according to the sign of the partial remainder w[j]. The restoring division algorithm is
presented in Algorithm 4.1.

Restoring iteration implementation

LetN andM be the k-bit unsigned integers encoding of 21−c ·m′
x andm′

y such that

N = 2p−c ·m′
x and M = 2p−1 ·m′

y.
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// Initialization
w[0]← 21−cm′

x −m′
y ;1

ℓ0 ← 1 ;2

// Restoring iteration
for j ← 0 to p− 1 do3

w̃[j + 1]← 2w[j] −m′
y ; // tentative partial remainder computation4

if w̃[j + 1] ≥ 0 then5

w[j + 1]← w̃[j + 1];6

ℓj+1 ← 1;7

else8

w[j + 1]← w̃[j + 1] +m′
y ; // restoration9

ℓj+1 ← 0;10

end11

ℓ[j + 1]← ℓ[j] + ℓj+1 · 2−j−1;12

end13

Algorithm 4.1: Restoring division for computing ℓ0.ℓ1ℓ2 . . . ℓp−1ℓp.

By definition, we know thatMpx = m′
x · 2k−1, and since m′

x has at most p − 1 fraction bits,Mpx is
a multiple of 2k−p. (The same relationship holds betweenm′

y andMpy .) Hence we obtain

N = Mpx · 2p−k+1−c and M = Mpy · 2p−k,

both of which can be computed exactly.
For (k, p, emax) = (32, 24, 127) and given the integers Mpx, Mpy, and Wj = w[j] · 2p−1, the

restoring iteration may be implemented using the piece of C code in Listing 4.1. Here at step j,

1 uint32_t N, M, L, Wj;
2 int32_t tj;
3
4 // Initialization
5 N = Mpx >> (7 + c); M = Mpy >> 8;
6
7 Wj = N - M; // j = 0
8 L = 1;
9
10 // ...
11
12 // Restoring iteration j
13 tj = (Wj << 1) - M; // tentative partial remainder computation
14
15 if(tj >= 0){
16 L = (L << 1) | 1;
17 Wj = tj;
18 } else{
19 L = L << 1; // restoration
20 Wj = tj + M;
21 }

Listing 4.1: Restoring division iteration.

the unsigned integer L encodes ℓ[j] so that L = ℓ[j] · 2j . This iteration may be simplified, using
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only logical operators, and lines 12 to 21 of Listing 4.1 can be replaced by those of Listing 4.2
below. Remark that this second iteration can be useful on architectures that do not have any

// Restoring iteration j
tj = (Wj << 1) - M; // tentative partial remainder computation

L = (L << 1) | (tj >= 0); // restoration, if tj < 0

Wj = tj + ((0x0 - (tj < 0)) & M);

Listing 4.2: Restoring division iteration using logical operations.

efficient mechanism of conditional branches reduction. However, on ST231, it leads to an increase
of latency, especially for the computation of Wj.

4.4.3 Nonrestoring division

From restoring to nonrestoring iterations

In the restoring division, we can observe that restoration at step j may be fused with the tentative
partial remainder computation at step j + 1. Indeed, consider w[0] = 21−c · m′

x − m′
y and let us

start by computing w[1] = 2w[0] −m′
y by assuming ℓ1 = 1. Then, at each iteration j, we have the

following:

• If w[j] ≥ 0, the tentative ℓj = 1 at the previous step was correct, and we just compute the
partial remainder for step j + 1 by assuming ℓj+1 = 1:

w[j + 1] = 2w[j] −m′
y (tentative partial remainder computation).

• If w[j] < 0, that means that ℓj should not have been set to 1: we fuse the restoration of ℓj to
0, and compute the new value w[j], with the computation of the tentative partial remainder
for step j + 1 by assuming ℓj+1 = 1:

w[j + 1] = 2w[j] −m′
y (tentative partial remainder computation)

with
w[j] = w[j] +m′

y (restoration),

that is,
w[j + 1] = 2w[j] +m′

y.

Compared to restoring division, nonrestoring division produces ℓp at step p + 1, since at step
p we just assume that ℓp = 1. Thus a final correction step is needed if w[n] < 0. The nonrestoring
division is presented in Algorithm 4.2.

Nonrestoring iteration implementation

Using the same definitions as those used for the implementation of restoring iteration, for (k, p, emax) =
(32, 24, 127), the nonrestoring iteration may be implemented using the piece of C code in List-
ing 4.3 below.
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// Initialization
w[0]← 21−cm′

x −m′
y ; ℓ0 ← 1 ;1

w[1] = 2w[0] −m′
y ; // tentative partial remainder computation at step 12

// Nonrestoring iteration
for j ← 1 to p− 1 do3

if w[j] ≥ 0 then4

/ * tentative partial remainder computation at step j + 1 * /
w[j + 1]← 2w[j] −m′

y;5

ℓj ← 1;6

else7

w[j + 1]← 2w[j] +m′
y ;8

ℓj ← 0 ;9

end10

ℓ[j]← ℓ[j − 1] + ℓj · 2−j ;11

end12

// Correction step
if w[p] ≥ 0 then13

ℓp ← 1;14

else15

w[p]← 2w[p] +m′
y ; // final correction step16

ℓp ← 0;17

end18

ℓ[p]← ℓ[p− 1] + ℓp · 2−p;19

Algorithm 4.2: Nonrestoring division for computing ℓ0.ℓ1ℓ2 . . . ℓp−1ℓp.
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uint32_t N, M, L, Wj;

// Initialization
N = Mpx >> (7 + c); M = Mpy >> 8;

Wj = N - M; // j = 0
L = 1;

Wj = (Wj << 1) - M; // tentative partial remainder at step 1

// ...

// Nonrestoring iteration j
if(Wj >= 0){

Wj = (Wj << 1) - M; // tentative partial remainder at step j+1
L = (L << 1) | 1;

} else{
Wj = (Wj << 1) + M;
L = L << 1;

}

// ...

// Correction step
if(Wj >= 0){

L = (L << 1) | 1;
} else{

Wj = (Wj << 1) + M; // final correction step
L = L << 1;

}

Listing 4.3: Nonrestoring division iteration.
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4.4.4 Nonrestoring division on the ST231 processor

On the ST231 processor core, a specific instruction divs is available [ST208b, p. 195]. This in-
struction has a latency of 1 cycle, and almost implements the above nonrestoring iteration. By
“almost”, we mean that, given w[j] andm′

y, divs returns w[j + 1] and qj = ¬ℓj instead of w[j + 1]
and ℓj , where ¬ℓj denotes the negation of the bit ℓj . Combined with addcg (see [ST208b, p. 139])
that adds in 1 cycle an integer with a carry (bit ℓj = ¬qj), the lines 3 to 12 of Algorithm 4.2 can
be reduced to those of Algorithm 4.3 below. The nonrestoring iteration of Listing 4.3 above can be

// Nonrestoring iteration based on divs instruction
for j ← 1 to p− 1 do1

(w[j + 1], qj)← divs (w[j],m′
y) ;2

ℓ[j]← addcg (ℓ[j − 1],¬qj) ;3

end4

Algorithm 4.3: Nonrestoring iteration using the divs and addcg instructions.

replaced by those of Listing 4.4 below.

1 uint32_t N, M, L, Wj, Q;
2
3 // Initialization
4 N = Mpx >> (7 + c); M = Mpy >> 8;
5
6 Wj = N - M; // j = 0
7 Q = 0xFFFFFFFE;
8
9 Wj = (Wj << 1) - M; // tentative partial remainder at step 1
10
11 // ...
12
13 // Nonrestoring iteration j
14 __DIVS(Wj,qj,Wj,M,0); __ADDCG(Q,qj,Q,Q,qj);
15
16 // ...
17
18 // Correction step
19 L = ~Q;
20
21 if(Wj >= 0){
22 L = (L << 1) | 1;
23 } else{
24 Wj = (Wj << 1) + M; // final correction step
25 L = L << 1;
26 }

Listing 4.4: Nonrestoring division iteration using the divs and addcg instructions.

In Listing 4.4, the instruction divs computes qj = ¬ℓj instead of ℓj (see line 14). Therefore,
instead of computing ℓj = ¬qj at each step, the implementation is done using an integerQ defined
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as follows at step j

Q = ∼ (ℓ[j] · 2j)

= 2 ·
(
∼ (ℓ[j − 1] · 2j−1)

)

︸ ︷︷ ︸

Q at step j − 1

+ ¬ℓj.

The bit string of Q corresponds to the negation of the one of L. And before the final correction
step, we need to reverse all the bits of Q to get L (see line 19).

As we can see in Figure 4.1 below, the execution of the divs instruction at step j can be
launched in the same time as the addcg instruction of step j − 1. Thus, assuming at least 2
parallel issues, the full execution of the nonrestoring algorithm is p − 1 iterations of 1 cycle each,
plus 1 cycle for the last addcg instruction, that is, p cycles.

divs

m′

y

divs

m′

y

m′

y

w[2]

w[3]

w[4]

divs
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w[p − 1]
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¬ℓ[2]

¬ℓ[1]

¬ℓ[0]

Figure 4.1: Flowchart for nonrestoring iteration using divs and addcg instructions.

Listing 4.5 below displays the ST200 assembly code corresponding the C code in Listing 4.4.
On this assembly code, we observe that once we have computedWj (cycle 10), one nonrestoring
iteration is computed every cycle.

4.4.5 How to achieve correct rounding?

Until now, we have seen how to compute an approximation ℓ[p] of ℓ with p fraction bits. Let us
now see how to achieve correct rounding.

With subnormal numbers support

Once we have computed ℓ[p], which corresponds to exact result ℓ truncated after p fraction bits, it
remains to compute the correctly-rounded value of ℓ · 2−λr .
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cmpgeu $r31 = $r29, $r27 ## (cycle 5)
shru $r34 = $r27, 8 ## (cycle 5) ## M = Mpy >> 8
and $r38 = $r38, 255 ## (cycle 5)
;; ## (bundle 5)

add $r36 = $r31, 7 ## (cycle 6) ## 7+c
sub $r30 = $r30, $r31 ## (cycle 6)
;; ## (bundle 6)

shru $r36 = $r29, $r36 ## (cycle 7) ## N = Mpx >> (7+c)
shru $r29 = $r29, $r31 ## (cycle 7)
;; ## (bundle 7)

sub $r36 = $r36, $r34 ## (cycle 8) ## Wj = N - M
shru $r29 = $r29, 1 ## (cycle 8)
;; ## (bundle 8)

shl $r36 = $r36, 1 ## (cycle 9) ## Wj << 1
;; ## (bundle 9)

sub $r36 = $r36, $r34 ## (cycle 10) ## Wj = (Wj << 1) - M
;; ## (bundle 10)

divs $r33, $b6 = $r36, $r34, $b5 ## (cycle 11) ## __DIVS(Wj,qj ,Wj,M,0)
;; ## (bundle 11)

addcg $r28, $b6 = $r35, $r35, $b6 ## (cycle 12) ## __ADDCG(Q,q j,Q,Q,qj)
divs $r32, $b4 = $r33, $r34, $b5 ## (cycle 12) ## __DIVS(Wj,qj ,Wj,M,0)
cmpgeu $r35 = $r25, 8388608 ## (cycle 12)

;; ## (bundle 12)
divs $r23, $b3 = $r32, $r34, $b5 ## (cycle 13) ## __DIVS(Wj,qj ,Wj,M,0)
addcg $r24, $b4 = $r28, $r28, $b4 ## (cycle 13) ## __ADDCG(Q,q j,Q,Q,qj)
shru $r32 = $r16, 23 ## (cycle 13)
sub $r35 = $r35, $r37 ## (cycle 13)
;; ## (bundle 13)

## ...

addcg $r31, $b6 = $r36, $r36, $b6 ## (cycle 33) ## __ADDCG(Q,q j,Q,Q,qj)
divs $r22, $b5 = $r33, $r34, $b5 ## (cycle 33) ## __DIVS(Wj,qj ,Wj,M,0)
;; ## (bundle 33)

cmpge $r22 = $r22, $r0 ## (cycle 34)
addcg $r21, $b5 = $r31, $r31, $b5 ## (cycle 34) ## __ADDCG(Q,q j,Q,Q,qj)
;; ## (bundle 34)

xor $r21 = $r21, -1 ## (cycle 35) ## L = ~Q
;; ## (bundle 35) ## = Q XOR 0xFFFFFFFF

Listing 4.5: Assembly code for nonrestoring division on ST231, using divs and addcg .
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Recall from (4.11) that 0 ≤ ℓ − ℓ[p] < 2−p. As required in Section 2.2 for correct rounding
computation, let us compute ℓ[p] · 2−λr such that

0 ≤ ℓ · 2−λr − ℓ[p] · 2−λr < 2−p−λr ≤ 2−p.

In this case the rounding algorithms are the same (according to rounding-direction attribute) as
those presented in Section 2.2.4 where the exact result may have an infinite binary expansion.

We remark here that for nonrestoring division, the correction step ensures that the error ǫ[p] is
non negative. Without correction step, we just know from (4.13) that |ǫ[p]| < 2−p. However, from
Section 2.2.4, we observe that this bound is enough to deduce correct rounding. That is, when
implementing division by the nonrestoring method with subnormal support, the correction step
is not needed and we just have to set ℓp = 1. Consequently, the lines 13 to 19 of Algorithm 4.2 can
be replaced by ℓ[p]← ℓ[p− 1] + 2−p.

Improvement when subnormal numbers are not supported

The computed value ℓ[p] represents the first p+ 1 bits of the exact result ℓ ∈ [1, 2):

ℓ[p] = 1.ℓ1ℓ2 . . . ℓp.

We will see in Property 4.3, in Section 4.6.2 below, that the exact result cannot be exactly halfway
between two floating-point numbers. Consequently, the case (guard bit g, sticky bit s) = (1,0)
cannot occur. We can thus reuse the rounding algorithms of Section 2.2.3 and even simplify them
to exploit the fact that (g,s) 6= (1,0).

4.4.6 Performances of the (non)restoring algorithms on the ST231 processor

We have implemented the three iterations above. Table 4.2 gives the performances of these algo-
rithms on the ST231 processor.

Latency (# cycles) Number of integer instructions IPC Code size (bytes)

Restoring 114 [101] 246 [221] 2.16 [2.18] 1004 [916]

Nonrestoring 96 [82] 241 [214] 2.51 [2.61] 1000 [888]

Nonrestoring with divs 52 [39] 128 [108] 2.46 [2.77] 548 [464]

Table 4.2: Performances of (non)restoring iterations with [without] subnormal numbers in
RoundTiesToEven, on the ST231.

From Table 4.2, we make the following remarks.

• Our implementation using nonrestoring iteration is already about 1.2 times faster than the
one using restoring iteration.

• Using the specific divs iteration leads to an implementation about twice faster than the one
using “naive” nonrestoring iteration, with twice fewer instructions. Therefore, in RoundTiesTo-
Even and without subnormal numbers, this new implementation with divs instruction is
already faster by a factor of 1.2 than the one of FLIP 0.3 based on Goldschmidt iteration,
which was in 47 cycles (see Table 1, Introduction).
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4.5 Bivariate polynomial evaluation and validation

Wehave seen in Section 4.4 how to compute the correctly-rounded significandmr = ◦(ℓ·2−λr )with
two digit-recurrence algorithms. Now let us study how to obtain it by extending the approach
based on bivariate polynomial evaluations that we have introduced in Section 3.2 for nth roots.
On ST231, this approach will prove to be much faster and makes the divs instruction not really
useful.

4.5.1 Division via bivariate polynomial evaluation

The goal is to compute a one-sided approximation v of ℓ = 21−c ·m′
x/m

′
y that approximates ℓ from

above, such that −2−p < ℓ− v ≤ 0, which is implied by

∣
∣ℓ+ 2−p−1 − v

∣
∣ < 2−p−1. (4.14)

The value vwill be the result of a bivariate polynomial evaluation, where the first variable depends
on 21−c ·m′

x (to handle range reduction), and the second variable depends on m′
y. Thus, by trun-

cating v, we can then deduce a value u approximating the real value ℓ such that |ℓ ·2−λr−u| < 2−p,
as required in Section 2.2.4 for ensuring correct rounding.

Bivariate polynomial approximation

To compute the value v, the first step consists in interpreting the exact value ℓ+ 2−p−1 as the exact
result F (s∗, t∗), where

F (s, t) = 2−p−1 + s/(1 + t) and (s∗, t∗) = (21−c ·m′
x,m

′
y − 1). (4.15)

We may check that

s∗ ∈ S = [1, 2− 21−p] ∪ [2, 4 − 23−p] and t∗ ∈ T = [0, 1− 21−p]. (4.16)

The upper bound of the second interval of S comes from the fact that c = 0 impliesm′
x ≤ 2−22−p.

Once we have defined the function F , since it cannot be evaluated directly on a computer,
the second step consists in approximating it over S × T by a single bivariate polynomial P . The
function F is linear with respect to s, and thus we can reduce to univariate approximation by
taking

P (s, t) = 2−p−1 + s · a(t), (4.17)

with a(t) a polynomial approximant of smallest degree of the function 1/(1 + t) over T . Note that
P (s, t) has the same special bivariate form as in Chapter 3. Now, the evaluation of the polynomial
P can be done using only additions, subtractions, and multiplications.

Finally this bivariate polynomial P is thus evaluated at (s∗, t∗) by an efficient finite precision
evaluation program P, to obtain the value v = P(s∗, t∗). As in Chapter 3, these steps entail an
approximation error α(a) and an evaluation error ρ(P) given by

α(a) = max
t∈T
|1/(1 + t)− a(t)| and ρ(P) = max

(s,t)∈S×T
|P (s, t)− P(s, t)| . (4.18)

Notice that, unlike for nth roots, the point (s∗, t∗) here is representable exactly on a finite (say, k)
number of bits. This is why the rounding error γ(s) of Chapter 3 does not appear here.
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Sufficient condition determination

As we have already seen, the main idea of this approach consists now in determining in an au-
tomatic way a polynomial approximant as well as an evaluation program, such that the errors
defined in (4.18) ensure that (4.14) holds. The following property gives some sufficient conditions
on α(a) and ρ(P) for (4.14) to hold.

Property 4.2. Given ℓ, v, a and α(a), P and ρ(P) defined above, if

(4− 23−p) · α(a) + ρ(P) < 2−p−1, (4.19)

then (4.14) holds.

Proof. For all (s∗, t∗), we have
∣
∣ℓ+ 2−p−1 − v

∣
∣ = |F (s∗, t∗)− P(s∗, t∗)|
≤ |F (s∗, t∗)− P (s∗, t∗)|+ |P (s∗, t∗)−P(s∗, t∗)| (triangular inequality)

= |s∗| · |1/(1 + t∗)− a(t∗)|+ |P (s∗, t∗)− P(s∗, t∗)| , using (4.15) and (4.17)

≤ (4− 23−p) · α(a) + ρ(P), using (4.16) and (4.18).

The conclusion follows immediately from the upper bound in (4.14).

Since by definition ρ(P) ≥ 0, it follows from (4.19) that the approximation error α(a) should
satisfy

α(a) < 2−p−1/(4 − 23−p). (4.20)

Let θ be a dyadic number such that θ < 2−p−1/(4 − 23−p). Once we have built a polynomial
approximant a such that α(a) ≤ θ, it remains to find an evaluation program P, such that

ρ(P) < 2−p−1 − (4 − 23−p) · θ.

Recall that we want to implement mathematical functions with certified C code. Unlike for
nth roots in Chapter 3, here, the bound 2−p−1 − (4 − 23−p) · θ is a rational number and can in
principle be computed exactly. Hence, it suffices that ρ(P) be such that

ρ(P) < η with η = 2−p−1 − (4− 23−p) · θ. (4.21)

Note that since θ is a dyadic number, η is also a dyadic number.

Automatic generation of polynomial coefficients and certified bounds

We can derive from the script in Listing 3.1, Chapter 3, a Sollya script that computes the poly-
nomial approximant a(t) together with a certified approximation error bound θ, and the certified
evaluation error η, so that (4.14) holds. Table 4.3 below shows the degree of the polynomial ap-
proximant and the certified error bounds computed with the script in Listing 4.6 below, for the
binary32 floating-point formats.

Degree δ Approximation error bound θ Evaluation error bound η

10 ≈ 2−27.41 ≈ 2−26.99

Table 4.3: Degree of polynomial approximant a(t), and certified error bounds θ and η, for our
binary32 division implementation.
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1 div = proc(k,p){
2 // Definition of the function f
3 f = 1/(1+x);
4
5 // Definition of the interval T
6 T = [0,1-2^(1-p)];
7
8 // Computation of the approximation error bound, defined in (4.20)
9 approx = 2^(-p-1)/(4 - 2^(3-p));
10
11 // Determination of the minimal degree δ=delta
12 dinterval = guessdegree(f,T,approx); // Sollya’s guessdegree function
13 delta = inf(dinterval);
14
15 minimal = 0; while( minimal == 0 ) do {
16 // Computation of the Remez’s polynomial approximant
17 astar = remez(f,delta,T,1,1e-7); // Sollya’s remez function
18
19 // Determination of the size of the integer part of the coefficient
20 Qf = k - GetIntegerPartSize(astar,p);
21
22 // Truncation of each coefficient on Qf fraction bits
23 a = TruncatePoly(astar,Qf); // returns the truncated Reme’z polynomial
24
25 // Computation of the certified error bound θ=theta
26 diam=1e-8!; thetainterval = infnorm(f-a,T); // Sollya’s infnorm function
27 theta = sup(thetainterval);
28
29 // Checking if theta satisfies the required bound θ < 2−p−1/(4− 23−p)
30 if( theta >= approx ) then {
31 delta = delta + 1;
32 } else {
33 minimal = 1;
34 };
35 };
36
37 // Computation of the certified evaluation error bound η=eta in (4.21)
38 eta = 2^(-p-1) - (4 - 2^(3-p) * theta);
39
40 return [|k,p,f,T,approx,delta,astar,a,Qf,theta,eta|];
41 };

Listing 4.6: Sollya script for automatic generation of polynomial coefficients for division
implementation.
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On this example, the conditions (4.20) and (4.21) are only sufficient conditions, and we may
find some cases for which they may be pessimistic. More particularly, given a polynomial approx-
imant a, we may build an evaluation program P for which the condition (4.21) on evaluation error
is not satisfied, whereas the evaluation is accurate enough to ensure correct rounding. We will see
further that in this case, we can determine an evaluation error bound by interval subdivision. That
means, instead of considering this bound on the whole input domain T , it consists in splitting up
this domain into several subintervals T (i), and checkingwhether this condition is satisfied on each
subinterval. This will be detailed in Section 4.5.3.

4.5.2 Example of implementation for the binary32 format

We consider here the special case of the implementation of the binary32 division, that is, for
(k, p, emax) = (32, 24, 127). As for nth roots in Chapter 3, the implementation of the evaluation
program to compute the value v approximating ℓ consists of three steps:

1. determination of a polynomial approximant a such that the approximation error bound (4.20)
is satisfied and computation of the certified approximation error bound θ;

2. generation of an efficient evaluation program P, that exposes as much instruction-level par-
allelism as possible and that reduces evaluation latency;

3. validation of this evaluation program to ensure that the evaluation error bound (4.21) holds.

As in Chapter 3, the first step is done using the software environment Sollya [Che09], [Lau08],
[CL], while the third is done using Gappa [Mel], [Mel06]. In this chapter, we do not discuss the
problem of generating the evaluation program P. We just consider that we have an evaluation
program in fixed-point arithmetic as in Listing 4.7 below, generated with CGPE [Rev] presented
in Chapter 6. In the following, we present the way used to build the polynomial approximant a,
while Section 4.5.3 shows how to validate the generated program.

Polynomial approximant computation

The polynomial P represents the main part of the full division code, and at least on the ST231 its
evaluation dominates the cost of the division implementation. The polynomial P defined as

P = 2−25 + s · a(t)

has thus to be of minimal degree, and the polynomial approximant a as well. Here, from (4.20)
the polynomial amust approximate the function 1/(1 + t) over T = [0, 1− 2−23] with an absolute
approximation error strictly less than 2−25/(4 − 2−21) ≈ 2−26.99.

Recall that the minimax polynomial of degree δ with respect to 1/(1 + t) over [0, 1 − 2−23] is
the unique a∗ ∈ R[t]δ, where R[t]δ denotes as in Chapter 3 the set of univariate real polynomials
of degree at most δ ∈ N, such that

α(a∗) ≤ α(a) and a ∈ R[t]δ.

Table 4.4 below shows the estimation of α(a∗), when δ ranges from 6 to 11. For each degree δ,
the polynomial has been computed using the Remez’ algorithm (remez ) and α(a∗) has been es-
timated with the certified supremum norm algorithm (infnorm ) of Sollya. From Table 4.4, we
deduce that the minimal required degree is δ = 10, which is the minimal degree for which the re-
quired bound (4.20) is satisfied. This lower bound can also be computed using the guessdegree
function of Sollya.
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δ 6 7 8 9 10 11

α(a∗) 2−17.25 2−19.80 2−22.34 2−24.88 2−27.42 2−29.94

Table 4.4: Numerical estimation of α(a∗), for 6 ≤ δ ≤ 11.

On the ST231 processor, the evaluation of the polynomial is done by a finite precision pro-
gram in fixed-point arithmetic. The polynomial coefficients are stored in absolute value in 32-bit
unsigned integers in the Q0.32 format. Table 4.5 below shows, for each coefficient ai, the sign, the
value, the 32-bit integer Ai = |ai| · 232 (in hexadecimal representation) that encodes |ai|, and its
format. Since the register size is limited to 32 bits, as for square root, storing the coefficients in

Coefficient Sign Value Encoding integer Format

a0 + 0.99999999441206455230712890625 0xffffffe8 Q0.32

a1 - 0.99999855994246900081634521484375 0xffffe7d7 Q0.32

a2 + 0.99993782653473317623138427734375 0xfffbece7 Q0.32

a3 - 0.99894478521309792995452880859375 0xffbad86f Q0.32

a4 + 0.9906803513877093791961669921875 0xfd9d3a3e Q0.32

a5 - 0.95079298713244497776031494140625 0xf3672b51 Q0.32

a6 + 0.83134166034869849681854248046875 0xd4d2ce9b Q0.32

a7 - 0.6024820543825626373291015625 0x9a3c4390 Q0.32

a8 + 0.32168737309984862804412841796875 0x525a1a8b Q0.32

a9 - 0.10831562872044742107391357421875 0x1bba92b3 Q0.32

a10 + 0.01688681519590318202972412109375 0x0452b1bf Q0.32

Table 4.5: Coefficients of the polynomial approximant used for binary32 division.

absolute value leads to a gain of one bit of accuracy on the coefficients. Most of the time, the trun-
cated coefficient polynomial is less accurate than the real one. In our case, the truncated Remez’
polynomial a approximates the function 1/(1 + t) over T with an approximation error less than θ
such that

α(a) ≤ θ = 3 · 2−29 ≈ 2−27.41,

which is actually less than the bound 2−25/(4 − 2−21) ≈ 2−26.99 in (4.20). Figure 4.2 shows the
approximation error of the polynomial a for t ∈ T .

If the coefficient polynomial approximant had been implemented in signed value in unsigned
integers in the signed format Q0.31 (we should have used one bit for the sign), the approximation
error θ would have been θ ≈ 2−27.39, that is, slightly larger than for the polynomial approximant
a, and the evaluation should have been slightly more accurate.

Extracting the evaluation point (s∗, t∗)

Before explaing how to evaluate the polynomial P , let us see how to extract the evaluation point
(s∗, t∗). Unlike for square root, for example, the evaluation point used for division can be encoded
exactly in k bits. Let S and T be the k-bit unsigned integer encodings of s∗ and t∗, respectively.
The unsigned integer T can be extracted as presented in Chapter 2 (see Listing 2.1). Here we thus
discuss only the computation of the integer S that encodes s∗ as

S = s∗ · 2k−2.
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Figure 4.2: Absolute approximation error of a(t) with respect to 1/(1 + t) over [0, 1− 2−23].

By definition s∗ = 21−c ·m′
x. Assuming that the unsigned integerMpx encodesm′

x such asMpx =
m′

x · 2k−1, we obtain the following:

S = Mpx · 2−c.

In integer arithmetic, the computation of S may be done by shifting right Mpx by c ∈ {0, 1} bits.
Since c < 32, the shift operation remains well defined in the sense of the C standard [Int99]. Hence,
for the computation of the unsigned integer S may be done using the following piece of C code.

c = Mpx >= Mpy;

S = Mpx >> c;

Efficient polynomial evaluation and validation

Once we have the polynomial approximant a(t), it remains to find an efficient evaluation pro-
gram to evaluate a(t) in fixed-point arithmetic and finite precision, so that the evaluation error
satisfies (4.21). This can be done using CGPE (more details are given in Part II). Remark that as for
square root, once the evaluation program is known (Listing 4.7 below), it remains finally to check:

• if no overflow occurs during the evaluation, that is, if each variable ri fits in 32 bits,

• and if the evaluation error of the program is strictly less than the evaluation error bound η
defined in (4.21).

Checking if no overflow occurs is done using Gappa, as presented in Section 5.1.1 (paragraph
“Evaluation program validation”). However, as we have already said, the validation cannot be
done directly since the sufficient condition on evaluation error cannot be satisfied on the whole
input interval. Therefore, we have implemented a validation using a splitting by dichotomy of
the input interval. This strategy is presented in the following section.
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1 uint32_t __division_eval__ ( uint32_t S, uint32_t T)
2 {
3 uint32_t r0 = mul(T, 0xffffe7d7); // 0.32
4 uint32_t r1 = 0xffffffe8 - r0; // 0.32
5 uint32_t r2 = mul(S, r1); // 2.30
6 uint32_t r3 = 0x00000020 + r2; // 2.30
7 uint32_t r4 = mul(T, T); // 0.32
8 uint32_t r5 = mul(S, r4); // 2.30
9 uint32_t r6 = mul(T, 0xffbad86f); // 0.32
10 uint32_t r7 = 0xfffbece7 - r6; // 0.32
11 uint32_t r8 = mul(r5, r7); // 2.30
12 uint32_t r9 = r3 + r8; // 2.30
13 uint32_t r10 = mul(r4, r5); // 2.30
14 uint32_t r11 = mul(T, 0xf3672b51); // 0.32
15 uint32_t r12 = 0xfd9d3a3e - r11; // 0.32
16 uint32_t r13 = mul(T, 0x9a3c4390); // 0.32
17 uint32_t r14 = 0xd4d2ce9b - r13; // 0.32
18 uint32_t r15 = mul(r4, r14); // 0.32
19 uint32_t r16 = r12 + r15; // 0.32
20 uint32_t r17 = mul(r10, r16); // 2.30
21 uint32_t r18 = r9 + r17; // 2.30
22 uint32_t r19 = mul(r4, r4); // 0.32
23 uint32_t r20 = mul(T, 0x1bba92b3); // 0.32
24 uint32_t r21 = 0x525a1a8b - r20; // 0.32
25 uint32_t r22 = mul(r4, 0x0452b1bf); // 0.32
26 uint32_t r23 = r21 + r22; // 0.32
27 uint32_t r24 = mul(r19, r23); // 0.32
28 uint32_t r25 = mul(r10, r24); // 2.30
29 uint32_t r26 = r18 + r25; // 2.30
30 }

Listing 4.7: Evaluation program used for our binary32 division.
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4.5.3 Validation using a dichotomy-based strategy

From now, we have the evaluation program P and we have checked that no overflow occurs
during the evaluation. Hence it remains to validate this program, that means to check if the
evaluation error entailed by the evaluation of the polynomial P by the program P satisfies the
bound in (4.21).

Subdomain-based error conditions

We have done this validation using Gappa. From (4.21) and the computed certified approximation
error bound θ = 3 · 2−29 ≈ 2−27.41, we deduce that the evaluation error has to be strictly less than

η = 2−25 − (4− 2−21) · θ (4.22)

≈ 2−26.9999.

When m′
x ≥ m′

y, we can check with Gappa that the condition (4.21) is satisfied. However, when
m′

x < m′
y, we can find some input (s∗, t∗) for which the condition (4.21) is not satisfied. For

example, using GMP [Gra], we have considered all input (s∗, t∗), and for each of them, we have
computed the result of the program of Listing 4.7 above in fixed-point arithmetic, and the exact
rational result using GMP. Hence, using this approach we have found the following input

s∗ = 3.935581684112548828125 and t∗ = 0.97490441799163818359375,

and that for this input the evaluation error is bounded by 1074596671 · 2−57 ≈ 2−26.9988, which is
slightly larger than the required bound (4.22).
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Figure 4.3: Absolute evaluation error ρ(P), for t ≥ 0.97490441799163818359375.

However, we know from Chebychev’s theorem that the approximation error of a degree-n
minimax polynomial a∗ oscillates, so that the largest approximation error is reached at least n+ 2
times and the sign of this error alternates [Mul06, Theorem 7,§ 3.2,p. 32]. In our case, the approxi-
mation error α(a) of the degree-10 polynomial awith respect to function 1/(1+t) over T oscillates
along the input interval, so that the maximum error is reached 12 times, as shown in Figure 4.2,
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Figure 4.4: Absolute approximation error of a(t) with respect to 1/(1 + t), around t =
0.97490441799163818359375.

and may be smaller on some points than on the whole interval. Indeed, in Figure 4.4, we observe
that if we consider a small interval around the point t∗ = 0.97490441799163818359375, the approx-
imation error of a(t) on this small interval with respect to 1/(1 + t) is slightly smaller than the one
on the whole interval.

More particularly, let θ′ be the approximation error of the polynomial approximant a with
respect to 1/(1 + t) at t∗ = 0.97490441799163818359375:

θ′ = 123256080210706428762854279532157659493459 · 2−164 ≈ 2−27.4992,

and thus, the evaluation error on this particular input has to be less than

η′ = 427554820082809494938604083452868552125485921363 · 2−185 ≈ 2−26.7732.

From (4.22), we know that the evaluation error has to be strictly less than 2−26.9999. Hence, we can
observe that for this particular input t∗, the evaluation error is slightly smaller than the required
bound, and the condition (4.21) holds. The problem is that we cannot find “by hand” all the points
for which the condition (4.21) is not satisfied and then checking the condition on these particular
points.

Therefore, the method we propose (and which has been presented in [JKM+09]) consists in
considering the input interval T as a union of n subintervals: T =

⋃n
i=1 T (i), and defining the

approximation and evaluation errors in (4.18) on each subinterval, such as

α(i)(a) = max
t∈T (i)

|1/(1 + t)− a(t)| and ρ(P)(i) = max
(s,t)∈S×T (i)

|P (s, t)− P(s, t)| , 1 ≤ i ≤ n.

(4.23)
Finally, if for 1 ≤ i ≤ n the approximation and evaluation errors satisfy

(4− 23−p) · α(i)(a) + ρ(i)(P) < 2−p−1, (4.24)

then (4.19) holds. It remains now to see how to find such a splitting into n subintervals.
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Splitting interval by dichotomy

To find a splitting of the input domain T into n subintervals T (i), so that the condition in (4.24)
is satisfied on each subintervals, we have implemented a dichotomy search. More particularly,
starting with n = 1 and T (i) = T , we proceed as follows. For each subinterval T (i):

1. first, we compute the approximation error bound θ(i) of the polynomial approximant a(t)
with respect to 1/(1 + t) over T (i), such that

α(i)(a) ≤ θ(i) and θ(i) < 2−25/(4− 2−21),

2. then, we check if the evaluation error ρ(P)(i) over T (i) satisfies

ρ(P)(i) < η(i) with η(i) = 2−25 − (4− 2−21) · θ(i),

and thus (4.24) holds.

3. and, if the condition in (4.24) is not satisfied, we split up the interval T (i) into two subinter-
vals, and launch this process on each subinterval.

Table 4.6 below illustrates this search by dichotomy. In the last column, “no” means that the
considered interval in the second column has to be split up. The bounds on α(·)(a) and ρ(·)(P)
(where the · stands for the index of the interval in the subdivision) that are found using Sollya and
Gappa are given in the third and fourth columns. (For the exact values of the θj’s and ηl’s we refer
to [JKM+08, Appendix B].) This process has been launched in a 64-processor grid, and has found

Depth Subintervals α(·)(a) ≤ ρ(·)(P) < Does (4.24) hold?

1 I1,1 = [2−23, 1 − 2−23] θ1 ≈ 2−27.41 η1 ≈ 2−26.99 no

2
I2,1 = [2−23, 0.5 − 2−23] θ2 ≈ 2−27.41 η2 ≈ 2−26.99 yes

I2,2 = [0.5, 1 − 2−23] θ1 ≈ 2−27.41 η1 ≈ 2−26.99 no

· · ·

j

Ij,1 = [2−23, 0.5 − 2−23] θ2 ≈ 2−27.41 η2 ≈ 2−26.99 yes

Ij,2 = [0.5, 0.75 − 2−23] θ1 ≈ 2−27.41 η1 ≈ 2−26.99 yes

Ij,19309 = [0.921875, 0.92578113079071044921875] θ3 ≈ 2−27.44 η3 ≈ 2−26.90 yes

Ij,19533 = [0.97490406036376953125, 0.97490441799163818359375] θ4 ≈ 2−27.49 η4 ≈ 2−26.77 yes

Table 4.6: Splitting steps.

a split up of the input domain T into n = 36127 subintervals, in about 5 hours.

4.6 Rounding condition implementation

This section explains how to implement, for each rounding-direction attribute, the rounding con-
dition introduced in Section 2.2.4 in integer arithmetic. But before detailing the implementation of
these conditions, let us give some general definitions, and some properties useful for rounding.

4.6.1 General definitions

Let v = (01.v1v2 . . . vk−2)2 be a value having a finite binary expansion in k − 2 fraction bits that
approximates the exact value ℓ from above, and obtained by polynomial evaluation (as described
in Section 4.5), such that

v = P(s∗, t∗) and − 2−p < ℓ− v ≤ 0.
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Given this value v and given λr as in (4.5), to achieve correct rounding as detailed in Section 2.2.4,
we need to deduce from the value v a value u such that

u = (u0.u1u1 . . . up)2 and |ℓ · 2−λr − u| < 2−p. (4.25)

Hence, to obtain u as defined in (4.25), it suffices to truncate the value v · 2−λr after p fraction
bits. More particularly, by definition of the truncation function, we have 0 ≤ v · 2−λr − u < 2−p.
Also, we know from (4.6) that λr ≥ 0. Then it follows that −2−p < ℓ · 2−λr − v · 2−λr ≤ 0, since
−2−p ≤ −2−p−λr , and finally |ℓ · 2−λr − u| < 2−p.

Let V and U be the k-bit unsigned integers encoding of the computed value v and u, respec-
tively, such as

V = v · 2k−2 and U = u · 2k−2.

By definition of truncation in (2.7), we know that

U = ⌊(v · 22−k)/2p−λr⌋ · 2−p · 2k−2

= ⌊V/2k−p−2+λr⌋ · 2k−p−2. (4.26)

LetK = k−p−2. For a given format, the valueK is a constant. ThusU = ⌊V/2K+λr⌋·2K can be
obtained by shifting V right by λr bits and then by removing theK rightmost bits of the resulting
integer (by taking the bitwise AND with 2k − 2K ). For example, for the binary32 floating-point
format, if follows from (k, p) = (32, 24) that K = 6, so that

U = ⌊V/26+λr⌋ · 26

= (V ≫ λr) ∧ (2k − 26). (4.27)

Recall from (4.6) that λr belongs to {0, . . . , emin − p+ 1}. Therefore, λr can be larger than k − 1,
a case where the behavior of the shift operator≫may be not specified (for example in C) [Int99].
To handle this case, notice first that λr > p implies v ·2p−λr ≤ v ·2−1 < 1 since v < 2. Consequently
u is zero and its encoding U is zero as well. Therefore, since k > p+ 2, one way of constructing U
from V when λr > p is to shift V right by min (λr, p+ 1) instead of λr. And from (4.26), we get:

U =
(

V ≫ min (λr, p+ 1)
)

∧ (2k − 2k−p−2),

more particularly on our binary32 example, (4.27) thus becomes:

U =
(

V ≫ min (λr, 25)
)

∧ (232 − 26).

Its implementation in C is straighforward:

U = (V >> minu(Lr , 25)) & 0xFFFFFFC0;

4.6.2 Properties useful for correct rounding

In this section, we give some properties useful for implementing the correct rounding from the
value u in 4.25. More particularly, we will determine if the exact result r = x/y can be exactly a
floating-point number, or halfway between two floating-point numbers.

The exact result of division can be a floating-point number

For division, Example 4.2 below shows that the exact value ℓ can be exactly a floating-point num-
ber.
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Example 4.2. Assume (k, p, emax) = (32, 24, 127). Let x and y be two binary floating-point num-
bers such that

m′
x = 1.011100011111111000010102 and m′

y = 1.000101011100010000000002 .

Sincem′
x ≥ m′

y, we have ℓ = m′
x/m

′
x and

ℓ = 1.010101010000000000000002 ,

that is, a significand having exactly p− 1 fraction bits.

Hence, we conclude that the exact result r = x/y defined in (4.3) can also be exactly a floating-
point number.

The exact result of division can be a midpoint only if underflow occurs

Concerningmidpoints, Property 4.3 below shows that the exact value ℓ cannot be halfway between
two floating-point numbers.

Property 4.3. For x and y two nonzero positive (sub)normal floating-point numbers defined in (1.5)
in Section 1.2.1, the real value ℓ cannot be exactly halfway between two floating-point numbers.

Proof. Assume first that m′
x ≥ m′

y and that ℓ is exactly halfway between two floating-point num-
bers. Then c = 1 andm′

x = m′
y · ℓwith ℓ = ℓ0.ℓ1 . . . ℓp−11. By multiplying by 22p−1, we obtain

m′
x · 22p−1 = m′

y · 2p−1 · ℓ0ℓ1 . . . ℓp−11
︸ ︷︷ ︸

odd integer

.

Now let q ∈ N be such thatmy · 2p−1−q is an odd integer. It follows that

m′
x · 22p−1−q = m′

y · 2p−1−q

︸ ︷︷ ︸

odd integer

· ℓ0ℓ1 . . . ℓp−11
︸ ︷︷ ︸

odd integer

.

Since the fraction ofm′
y has at most p− 1 nonzero bits, we have 0 ≤ q ≤ p− 1 and 2 ≤ 2p−q. Thus

m′
x · 22p−1−q is an even integer and cannot be the product of two odd integers. Hence ℓ cannot be

of the form ℓ = ℓ0.ℓ1 . . . ℓp−11. We can proceed similarly whenmx < my , which ends the proof.

Thus, if no underflow occurs, that means that λr = 0, then the exact result r = ℓ · 2d, as in (4.3),
cannot be exactly halfway between two floating-point numbers. But, when an underflow occurs
(λr ≥ 1), since ℓ can be exactly a floating-point number, ℓ · 2−λr , and the exact result as well, can
be halfway between two floating-point numbers, as shown in Example 4.3.

Example 4.3. Assume (k, p, emax) = (32, 24, 127). Let x and y be two binary floating-point num-
bers defined in Example 4.2. We have

m′
x = 1.01110001111111100001012 , m′

y = 1.000101011100010000000002 ,

and thus
ℓ = 1.010101010000000000000002 .

If λr = 16, we conclude that

ℓ · 2−λr = 0.0000000000000001010101012 ,

that is, exactly halfway between two floating-point numbers.
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This property makes the rounding algorithm simpler when subnormal numbers are not sup-
ported (as in [JKM+09]), since we do not have to detect when ℓ is exactly halfway between two
floating-point numbers. However, in our case (support of subnormal numbers), the exact result
can be halfway between two floating-point numbers (when it lies in the range of subnormal num-
bers), which makes the rounding procedure more complicated, as we will see in Section 4.6.3
below.

4.6.3 How to implement the rounding condition?

In Section 4.6.1, we have seen how to compute the value u in (4.25) as the truncation of the ap-
proximation v. To be able to compute the correctly-rounded result, it remains now to implement
the rounding condition cond introduced in Section 2.2.4. This condition depends on the rounding-
direction attribute, but in all cases, it essentially relies on the ability to compare u to ℓ · 2−λr . Let
us give some elements on how to implement this rounding condition. Recall that ℓ = s/m′

y with
s = 21−cm′

x. Also let U , Mpy, and S be the k-bit unsigned integer encodings of u, m′
y, and s,

respectively:
U = u · 2k−2, Mpy = m′

y · 2k−1, S = s · 2k−2.

Note that the bit string of U is

U =







0 · · · 0 if λr > p,
00 · · · 00
︸ ︷︷ ︸

λr+1

1v1 · · · vp−λr 00 · · · 00
︸ ︷︷ ︸

k−p−2

if λr ≤ p.

Now the goal consists in implementing in integer arithmetic the exact comparison between u
and ℓ · 2−λr . However, as for square root or reciprocal (see Chapter 3), the problem is that the
value ℓ is not known exactly, and this comparison cannot be implemented directly. It turns out
that the comparisons between ℓ · 2−λr and u may be implemented exactly by comparing u · m′

y

and s · 2−λr , which have both a finite number of bits, instead of u and ℓ · 2−λr . Since we want an
implementation involving k-bit integers only, we aim further at reducing the comparison between
ℓ · 2−λr and u to a comparison between k-bit integers. This is what the property below shows (for
≥, but the same holds for >).

Property 4.4. Let N = U · 2−λr and Q = S/2. Then N , Q are k-bit unsigned integers, that is,
integers in [0, 2k − 1]. Furthermore,

u ≥ ℓ · 2−λr if and only if N ·Mpy ≥ Q · 2k. (4.28)

Proof. First, it follows from k > p and c ∈ {0, 1} that Q is a k-bit unsigned integer in [0, 2k − 1].
Now, for N , recall that |ℓ · 2−λr − u| < 2−p. Thus it follows that u · 2λr < ℓ + 2λr−p, and by

multiplying by 2k−2, we get
N < ℓ · 2k−2 + 2λr+k−p−2. (4.29)

If λr > p then U = 0 = N . Otherwise if λr ≤ p then it follows from (4.29) and ℓ ∈ [1, 2) (see
Property 4.1 above) that N < 2k−1 + 2k−2. And in both cases, N is an integer in [0, 2k − 1]. The
equivalence in (4.28) is an immediate consequence of the definition of U ,Mpy, S, N , and Q.

It follows from Property 4.4 that we could thus compare u and ℓ · 2−λr by computing the 2k-bit
product N ·Mpy exactly and compare it to the integer Q · 2k.

However, we will see that, in the same way as for square root and reciprocal in Chapter 3, for
each rounding-direction attribute, it suffices to work with the higher “half” of N ·Mpy. To do so,
let defined the k-bit unsigned integer P as

P = ⌊N ·Mpy · 2−k⌋, (4.30)



4.6 Rounding condition implementation 139

which satisfies
N ·Mpy · 2−k − 1 < P ≤ N ·Mpy · 2−k (4.31)

by definition of the floor function.
Let us now see how to implement the computation of P . The integer N may be computed by

shifting U right by min(λr, p + 1) bits. Moreover, by definition of the function mul as the floor
function, the computation of P can be done as follows:

P = mul (N,Mpy) with N = U ≪ min(λr, p+ 1).

For (k, p, emax) = (32, 24, 127), the computation of N , P , and Q may be done using the following
piece of C code.

N = U << minu(Lr , 25);

P = mul(N , Mpy);

Q = S >> 1;

From this statement and the definition above, we will see now for each rounding-direction
attribute how to implement the rounding condition cond introduced in Section 2.2.4.

Implementation of the rounding condition for RoundTiesToEven

Recall that for RoundTiesToEven, the rounding condition is

cond = c1 ∨ c2,

where
c1 = u > ℓ · 2−λr and c2 =

(
u = ℓ · 2−λr and up−1 = 0

)
.

Moreover, in [JKMR08] for square root or [JKM+09] for division without subnormal numbers
support, the implementation of RoundTiesToEven is quite simple since the exact result cannot
be the middle of two floating-point numbers. On the contrary, here we do support subnormal
numbers and thus we have to detect whether ℓ is the middle of two floating-point numbers or not.
(This situation is handled by condition c2 above.)

To do so and to implement the rounding condition, let us define the integer Q′ ∈ {0, 1} as
follows

Q′ =

{

1 if “2k divides N ·Mpy“ and up−1 = 1,

0 otherwise.

By definition of U = u · 2k−2, we know that extracting the bits up−1 may be done by taking the
bitwise AND betweenU and 2k−1−p. Then checking if this bit equals 1 may be done by comparing
the resulting integer to 2k−1−p. In our context and using the available ST231 instructions, for
(k, p, emax) = (32, 24, 127), the computation of Q′ can thus be done as follows.

Qprime = ((N * Mpy) == 0x0) & ((U & 0x80) == 0x80);

Here recall that * returns the 32 least significant bits of the 32 × 32-bit product.

Theorem 4.1. The rounding condition c1 ∨ c2 is equivalent to P ≥ Q+Q′.

Proof. Consider first Q′ = 1 or
(
Q′ = 0 and up−1 = 1

)
. In this case the condition c2 is false and

thus the rounding condition is equivalent to u > ℓ · 2−λr . Assume first Q′ = 1. From Property 4.4,
the inequality u > ℓ · 2−λr is equivalent to N ·My > Q · 2k. Since in this case 2k divides N ·My,
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then u > ℓ · 2−λr is also equivalent to ⌊N ·Mpy · 2−k⌋ > Q, that is, by definition of P in (4.30),
to P ≥ Q + 1 = Q + Q′. Assume now Q′ = 0. On the one hand, by Property 4.4 the inequality
u > ℓ ·2−λr impliesN ·Mpy > Q ·2k and since in this second case 2k does not divideN ·Mpy , it also
implies P + 1 > Q, that is, P ≥ Q = Q+Q′. On the other hand, using the right inequality of (4.31)
together with the fact that 2k does not divide N ·Mpy, by definition the inequality P ≥ Q + Q′

implies N ·My > Q · 2k and also u > ℓ · 2−λr .
Second, consider the case where

(
Q′ = 0 and up = 0

)
. In this case the rounding condition is

u ≥ ℓ · 2−λr . On the one hand, by Property 4.4 the condition u ≥ ℓ · 2−λr implies N ·My ≥ Q · 2k.
Using the left inequality of (4.31), it follows that u ≥ ℓ · 2−λr implies also P + 1 > Q and thus
P ≥ Q+Q′. On the other hand, if P ≥ Q+Q′ thenN ·Mpy · 2−k ≥ Q and thus u ≥ ℓ · 2−λr , which
ends the proof.

From Theorem 4.1, the condition c1 ∨ c2 is equivalent to P ≥ Q+Q′, that is, is true if and only
if the C condition P >= (Q + Qprime) holds. For (k, p, emax) = (32, 24, 127), the implementation
of the rounding condition can be done as follows.

Qprime = ((N * Mpy) == 0x0) & ((U & 0x80) == 0x80);

cond = (P >= Q + Qprime);

We know that S is a k-bit unsigned integer encoding of s, thus S < 2k . Hence, since Q = S/2, the
integer Q+Q′ is less than 2k−1 + 1 and fits exactly in a k-bit unsigned integer.

Implementation of the rounding condition for RoundTowardPositive

As we have seen in Section 2.2.4, the difficulties for implementing the RoundTowardPositive al-
gorithm come from the fact that these conditions depend on the sign of the result. Recall that the
rounding tests are:

u ≥ ℓ · 2−λr if the result is positive, and u > ℓ · 2−λr if the result is negative.

In order to implement them, let Q′ ∈ {0, 1} be defined as

Q′ =

{

1 if “2k divides N ·Mpy“ and sr = 1,

0 otherwise.

For (k, p, emax) = (32, 24, 127), the computation of the integer Q′ can be done using the following
piece of C code.

Qprime = ((N * Mpy) == 0x0) & (Sr >> 31);

Theorem 4.2. Assume that the result is positive (sr = 0). The rounding condition u ≥ ℓ · 2−λr is
true if and only if P ≥ Q+Q′.

Proof. Here, Q′ = 0 by assumption. Using (4.28), the inequality u ≥ ℓ · 2−λr is equivalent to
N · Mpy ≥ Q · 2k. Then using the left inequality of (4.31), it follows that P + 1 > Q, that is,
P ≥ Q = Q+Q′. Conversely, using the right inequality of (4.31), we have P ≤ N ·My · 2−k. Thus,
if P ≥ Q then it follows that N ·My · 2−k ≥ Q, that is, u ≥ ℓ · 2−λr , which ends the proof.

Theorem 4.3. Assume that the result is negative (sr = 1). The rounding condition u > ℓ · 2−λr is
true if and only if P ≥ Q+Q′.
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Proof. Assume firstQ′ = 1. Then using (4.28), the inequality u > ℓ ·2−λr is equivalent toN ·Mpy >
Q · 2k. Since by definition of Q′, 2k divides N ·Mpy, it follows that u > ℓ · 2−λr is equivalent to
P > Q, that is, P ≥ Q+ 1 = Q+Q′. Consider nowQ′ = 0 and that 2k does not divideN ·Mpy. On
the one hand, by definition, using (4.28), the inequality u > ℓ·2−λr is equivalent toN ·Mpy > Q·2k.
Using the left inequality of (4.31), we have P + 1 > N ·Mpy · 2−k. It follows that, if u > ℓ · 2−λr

then P + 1 > Q, that is, P ≥ Q = Q + Q′. On the other hand, since 2k does not divide N ·Mpy,
then the right inequality of (4.31) gives P < N ·Mpy · 2−k. Thus, if P ≥ Q then N ·Mpy · 2−k > Q,
which is equivalent to u > ℓ · 2−λr , that ends the proof.

From Theorems 4.2 and 4.3, the rounding condition is equivalent to P ≥ Q+Q′, that is, is true
if and only if the C condition P >= Q + Qprime holds. We conclude that the implementation of
rounding condition, for (k, p, emax) = (32, 24, 127), may be done as follows.

Qprime = ((N * Mpy ) == 0x0) & (Sr >> 31);

cond = (P >= Q + Qprime);

Here again, wemay check that the resulting integerQ+Q′ < 2k, and fits exactly in a k-bit unsigned
integer.

Implementation of the rounding conditions for RoundTowardNegative

As we have seen in Section 2.2, the RoundTowardNegative algorithm depends also on the sign of
the result, such that RUp(−r) = −RDp(r). Thus, the implementation of this rounding algorithm
can be easily deduced from the implementation of the RoundTowardPositive algorithm, and the
proofs as well. To do so, let us first define the value Q′ ∈ {0, 1} as follows

Q′ =

{

1 if “2k divides N ·Mpy“ and sr = 0,

0 otherwise.

Using the same approach as what is done for RoundTowardPositive, the computation of Q′ may
be done with the following piece of C code.

Qprime = ((N * Mpy) == 0x0) & ((~Sr) >> 31);

From Theorems 4.2 and 4.3, we get the following corollary.

Corollary 4.1. If the result is positive (sr = 0) then the rounding condition u ≥ ℓ · 2−λr is true if
and only if P ≥ Q+Q′. If the result is negative (sr = 1) then the rounding condition u > ℓ · 2−λr

is true if and only if P ≥ Q+Q′.

From Corollary 4.1, we deduce that the rounding condition is equivalent to P ≥ Q + Q′: this
condition is true if and only if the C condition P >= Q + Qprime holds. And the implementation
of rounding condition, for (k, p, emax) = (32, 24, 127), may be done as follows.

Qprime = ((N * Mpy) == 0x0) & ((~Sr) >> 31);

cond = (P >= Q + Qprime);

Implementation of the rounding condition u > ℓ · 2−λr for RoundTowardZero

The RoundTowardZero rounding-direction attribute can be seen as the simplest to be imple-
mented, since it does not depend on the sign of the result and we do not have to detect if ℓ is
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exactly the middle of two floating-point numbers: the rounding condition simply is u > ℓ · 2−λr .
To do so, let us defineQ′ ∈ {0, 1} as

Q′ =

{

1 if “2k divides N ·Mpy“,

0 otherwise.

whose computation can be done as follows.

Qprime = ((N * Mpy) == 0x0);

From Theorem 4.3, we can derive the following corollary.

Corollary 4.2. For RoundTowardZero, the rounding condition is true if and only if P ≥ Q+Q′.

We still may check that Q + Q′ fits exactly in k-bit integer since Q + Q′ < 2k . And from
Corollary 4.2, the rounding condition is equivalent to P ≥ Q+Q′: finally this condition is true if
and only if the C condition P >= Q + Qprime holds. The rounding condition can be implemented
as follows.

Qprime = ((N * Mpy) == 0x0);

cond = (P >= Q + Qprime);
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CHAPTER 5
Polynomial evaluation in fixed-point
arithmetic on the ST231 processor

This chapter gives an overview of classical methods for evaluating a degree-
n polynomial, and gives some examples of the evaluation of polynomials in
fixed-point arithmetic on the ST231 processor. These methods are Horner’s
rule, “second-order Horner’s rule”, Estrin’s method, and a method derived
from Estrin’s method and particularly well-adapted for evaluating our par-
ticular bivariate polynomial (Part I). This chapter points out the fact that
these classical methods are accurate enough for implementing some op-
erators in FLIP. However in term of evaluation latency, they remain less
efficient than the best schemes found by using CGPE (Part II). Finally,
through two examples, Knuth and Eve’s algorithm and Paterson and Stock-
meyer’s algorithm, it explains why methods based on coefficient adapta-
tion (which involve fewer multiplications than with Horner’s rule) are not
well-adapted for integer processors, like the ST231.

The implementation of mathematical functions may rely on the evaluation of an accurate enough
polynomial approximant of the function on a reduced interval (see [DLDdD+], [Lau08], or [Ylö06]
for examples). Indeed, we have shown in Part I that the implementation of several mathematical
functions like roots and their reciprocals (square root, reciprocal square root, reciprocal, ...) and
division may be reduced to the evaluation of a particular bivariate polynomial. And since these
polynomials have to be evaluated at runtime, we have chosen to implement them using polyno-
mials of smallest degree. But even if the degree is the smallest, the evaluation of this polynomial
approximant remains the most expensive part of the whole codes of such functions. Hence we
have to find ways to evaluate this polynomial that are as efficient as possible. The most naive
method for evaluating a degree-n polynomial a(x) defined in the monomial basis

a(x) = a0 + a1 · x+ a2 · x2 + · · · + an · xn with an 6= 0,

consists in evaluating each monomial ai · xi and summing them together using n additions. This
approach remains inefficient, since the evaluation involves a lot of calculations, especially a lot of
multiplications (exactly 2n − 1, see [Knu98, §4.6.4]).

Other methods evaluate this polynomial a(x) in a more efficient way. Horner’s rule evaluates
the polynomial a(x) in n additions and nmultiplications, that is, 2n operations, in a fully sequen-
tial way. Assuming an addition in 1 cycle and a multiplication in 3 cycles (as on the ST231 pro-
cessor), the evaluation latency is of 4n cycles. On the contrary, Estrin’s method tends to expose
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instruction-level parallelism, but at the price of an increase of the total number of operations (n
additions and about n+ log(n+ 1) multiplications).

In the 60’s, multiplication was much slower than addition.1 This statement has motivated the
implementation of evaluation schemes that reduce the number of multiplications. These schemes
are based on a preliminary transformation of the polynomial, called adaptation or precondition-
ing. Actually this transformation may be costly, but is done once for all the evaluations. Among
thesemethods based on coefficient adaptations, let usmention Knuth and Eve’s algorithm [Knu98,
§4.6.4, Theorem E], [Eve64] and Paterson and Stockmeyer’s algorithm [PS73]. The former enables
to evaluate a degree-n polynomial in n additions and about n/2 multiplications, while the latter
uses 3n/2 additions and about n/2 + log2(n) multiplications. That is, for large values of n, both
divide by roughly two the number of multiplications used.

More and more, the cost of multiplication is reduced, and tends to be equivalent to the one
of the addition. In particular, since the fma is now required by the IEEE 754-2008 standard, the
constructors may tend to implement multiplication and addition as special cases of the fma op-
eration, and both these operations will have the same cost. This is actually already done on the
Itanium R© [CHT02, p. 69], for example. Hence, improving the evaluation of a polynomial will
not rely on the reduction of the number of multiplications any more, especially if it involves an
increase of the number of additions. And thus, we will prefer methods that expose as much
instruction-level parallelism as possible.

Recall that in Part I, we have seen that the implementation of several mathematical functions,
in binary floating-point arithmetic, can be made very efficient on ST231 thanks to the fast evalua-
tion of particular bivariate polynomials of the form

P (s, t) = 2−p−1 + s · (a0 + a1 · t+ · · ·+ aδ · tδ), (5.1)

This chapter studies the evaluation of P (s, t) in fixed-point arithmetic. It is organized as follows.
Section 5.1 presents some classical methods usually used for evaluating univariate polynomials,
especially for implementing mathematical functions, and explains how they can be extended for
evaluating the polynomial in (5.1) above. Then Section 5.2 shows why methods based on coeffi-
cient adaptation are not well-suited to our context of fixed-point polynomial evaluation, especially
on the ST231.

5.1 Classical polynomial evaluation schemes

This section presents some classical polynomial evaluation schemes, and explains how they can
be used for evaluating efficiently the polynomial P in (5.1) in fixed-point arithmetic, on integer
VLIW processor cores and in particular on the ST231. Most of these evaluation schemes are well-
adapted for evaluating univariate polynomials. But they may also be extended for evaluating
bivariate polynomials, and more particularly the polynomial P in (5.1).

More precisely, this section presents three classical evaluation schemes: Horner’s rule, an ex-
tension called “second order” Horner’s rule, and Estrin’s method.

5.1.1 Horner’s rule

Originally introduced in the seventeenth century byNewton, Horner’s rule is themost-commonly
used evaluation scheme for evaluating a univariate polynomial in floating-point arithmetic. For
example, the evaluation of polynomials for implementing some mathematical functions in CR-
Libm [DLDdD+] is done using this method (see also [Lau08]). In 1966 [Pan66], Pan showed that

1“Using floating-point hardware, a multiplication will take perhaps 5 times as long as an addition. In fixed-point
arithmetic [...], a multiplication will often take up to 20 or more times as long as an addition.” [Knu62].
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Horner’s rule for evaluating a degree-n polynomial with coefficients given in the monomial basis,
as

a(x) = a0 + a1 · x+ a2 · x2 + · · · + an · xn with an 6= 0,

minimizes the numbers of multiplications and additions [Knu98, p. 519, Exercise 38]. It evaluates
the polynomial a(x) using n additions and nmultiplications as follows:

a(x) = a0 + x ·
(

a1 + x ·
(
a2 + · · ·+ x · (an−1 + x · an) . . .

))

.

This evaluation scheme is fully sequential. More particularly, on the ST231 processor, with an
addition in 1 cycle and a multiplication in 3 cycles, this evaluation is done in theoretically n steps
of 1 multiplication and 1 addition, that is, in 4n cycles.

In [Bol04], Boldo recalls that usually Horner’s evaluation scheme has good numerical proper-
ties, especially when the intermediate x is not too close to a zero of the polynomial to be evalu-
ated. This is actually the case for the polynomials we have used for implementing the functions of
FLIP (see also [BD04] or [Hig02], for example). But since the evaluation is done in a fully sequen-
tial way, it may be ill-suited for 4-issue processors, like the ST231 processor.

Note also that some methods have been proposed to extend Horner’s rule to the evaluation
of multivariate polynomials [CK04], [PS00]. However, in our case, for evaluating our particular
bivariate polynomial P in (5.1), we can simply evaluate the polynomial a(x) with Horner, and
then compute a last step (multiplication by s and addition of 2−p−1), as follows:

P (s, t) = 2−p−1 + s ·
[

a0 + t ·
(

a1 + t ·
(
a2 + · · ·+ t · (an−1 + t · an) . . .

))]

.

Let us now see how to implement this evaluation scheme on an integer architecture, through an
example taken from our code for square root.

First example of evaluation via Horner’s rule

Assume that (k, p, emax) = (32, 24, 127) and let us consider the polynomial P defined in Chapter 3
for the implementation of square root. This polynomial has the form given in (5.1), with δ = 8:

P (s, t) = 2−25 + s ·
8∑

i=0

ai · ti.

The values of the coefficients ai are recalled in Table 5.1 below. The points (ŝ, t) at which we have
to evaluate P are as follows:

ŝ ∈ {1, 1.01101010000010011110011001101002} and t ∈ [0, 1 − 2−23],

with t having 23 fraction bits. The evaluation of the polynomial P (s, t) with Horner’s rule is done
as follows:

P (s, t) = 2−25 + s ·
[

a0 + t ·
[

a1 + t ·
(

a2 + t ·
(

a3 + t ·
(
a4 +

t ·
(
a5 + t · (a6 + t · (a7 + t · a8))

))))]]

.

Recall that from Section 3.5.4, we know that the polynomial a(t) has to approximate the func-
tion (1 + t)1/2 with an approximation error α(a) ≤ θ, where θ < (2−25 − 2−31.5)/21/2 ≈ 2−25.51. In
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Coefficient Sign Value Encoding integer Format

a0 + 1.0000000032596290111541748046875 0x80000007 Q31

a1 + 0.49999940209090709686279296875 0x3ffffafc Q31

a2 - 0.1249827560968697071075439453125 0x0fff6f59 Q31

a3 + 0.062306254170835018157958984375 0x07f9a6be Q31

a4 - 0.037947035394608974456787109375 0x04db72ce Q31

a5 + 0.02358471788465976715087890625 0x0304d2f4 Q31

a6 - 0.0124784442596137523651123046875 0x0198e4c7 Q31

a7 + 0.0045159035362303256988525390625 0x0093fa25 Q31

a8 - 0.0007844865322113037109375 0x0019b4c0 Q31

Table 5.1: Coefficients of the polynomial a(t) used for our square root implementation.

our case, the polynomial a(t) defined in Table 5.1 has an approximation error θ with respect to the
function (1 + t)1/2 given by:

θ = 166306437400395567390185987137844671 × 2−145 (5.2)

≈ 2−27.99,

which is actually strictly less than (2−25−2−31.5)/21/2 ≈ 2−25.51, as required. Using (5.2), it follows
from (3.37) in Section 3.2.2, Chapter 3, that we have to evaluate the polynomial P (s, t), with an
evaluation error ρ(P) ≤ η, with:

η = 269837285807227497773782362822784117 × 2−143 (5.3)

≈ 2−25.30.

When (k, p, emax) = (32, 24, 127), the implementation of this scheme in fixed-point arithmetic
may be done using the C code presented in Listing 5.1 below. Here, we can observe that since
each intermediate variable ri is signed, we use signed multiplication, emulated with the function
mul64h presented in Appendix B, Section B.3. More particularly, each integer variable encodes a
real value in signed fixed-point arithmetic presented in Section 1.2.3, with one bit for handling the
sign, as explained in Remark 1.1.

However, from Remark 1.2, we know that multiplying two fixed-point numbers with one bit
handling the sign each leads to a result with “two sign bits”. Hence, on this small example, we
observe that after each multiplication, we have to shift left the resulting integer to keep only one
sign bit. Otherwise, the “sign part” would get larger after each multiplication, to the detriment
of the fraction part, and we would lose accuracy. Indeed, the intermediate integers would then
encode real values in formats having smaller and smaller fraction parts. Recalling that on the
ST231 processor, additions, subtractions, and shifts all have a latency of 1 cycle, while multiplica-
tions have a latency of 3 cycles. Hence, using Horner’s rule presented in Listing 5.1, and assuming
only addition, subtraction, shift, and multiplication, the degree-9 polynomial P can be evaluated
in 45 cycles on an integer architecture, instead of the 9× (3 + 1) = 36 cycles expected for Horner’s
rule in degree 9.

However, on the ST231 processor core there is a specific instruction, named shBadd , with B ∈
{1, 2, 3, 4}, which computes (X << B)+ Y (with X and Y being two integers) in 1 cycle [ST208b,
pp. 277-284]. For example, the lines 7 and 8 in Listing 5.1 yield the following piece of ST231
assembly code.
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1 uint32_t __sqrt_eval__signed_horner__( uint32_t T, uint32_t S)
2 {
3 uint32_t Tsigned = T >> 1; // 0.32 -> s0.31
4
5 int32_t r0 = mul64h(Tsigned , 0x0019b4c0) << 1; // s0.31
6 int32_t r1 = 0x0093fa25 - r0; // s0.31
7 int32_t r2 = mul64h(Tsigned , r1) << 1; // s0.31
8 int32_t r3 = r2 - 0x0198e4c7; // s0.31
9 int32_t r4 = mul64h(Tsigned , r3) << 1; // s0.31
10 int32_t r5 = r4 + 0x0304d2f4; // s0.31
11 int32_t r6 = mul64h(Tsigned , r5) << 1; // s0.31
12 int32_t r7 = r6 - 0x04db72ce; // s0.31
13 int32_t r8 = mul64h(Tsigned , r7) << 1; // s0.31
14 int32_t r9 = r8 + 0x07f9a6be; // s0.31
15 int32_t r10 = mul64h(Tsigned , r9) << 1; // s0.31
16 int32_t r11 = r10 - 0x0fff6f59; // s0.31
17 int32_t r12 = mul64h(Tsigned , r11) << 1; // s0.31
18 int32_t r13 = r12 + 0x3ffffafc; // s0.31
19 int32_t r14 = mul64h(Tsigned , r13) << 1; // s0.31 -> 1.31
20 int32_t r15 = r14 + 0x80000007; // 1.31
21 int32_t r16 = mul(r15 , S); // 2.30
22 int32_t r17 = r16 + 0x20; // 2.30
23 }

Listing 5.1: Polynomial evaluation with Horner’s rule in signed fixed-point arithmetic.

mul64hu $r18 = $r16, $r18 ## (cycle 6)
nop ## (cycle 6)
;; ## (bundle 4)

sh1add $r18 = $r18, -26797255 ## (cycle 9)
;; ## (bundle 5)

(Remark that, for example, the shift and addition instructions in lines 7 and 8 in Listing 5.1, re-
spectively, are caught by the ST231 compiler, and the above ST231 assembly code is automatically
generated.) Hence, using this specific instruction sh1add leads to an evaluation in 38 cycles on
ST231 of the evaluation program in Listing 5.1. This is already more than 15 % faster than the pre-
vious code (45 cycles), but still almost 3 times slower than the 13-cycle evaluation codewe are able
to automatically generate and validate in this case (see Section 3.5.5 and paragraph ”Evaluation
program validation” below).

We may check with Gappa [Mel], [Mel06] that the evaluation error ρ(P) of the program in
Listing 5.1 is bounded as follows:

ρ(P) ≤ 479676712772028613 × 2−86

. 2−27.2652,

and thus is actually strictly less than the required bound η ≈ 2−25.30 in (5.3). (The way used for
validating an evaluation program with Gappa is detailed in paragraph ”Evaluation program vali-
dation” later in this section). That means that using Horner’s rule in signed fixed-point arithmetic
enables to ensure correct rounding of square root. However, we have observed that this scheme
does not allow to get good performances in terms of latency, even if a specific instruction like
shBadd is available.
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Unsigned fixed-point evaluation and arithmetic operator choice

It follows from the previous paragraph that using signed fixed-point arithmetic may lead to a
degradation of performances, more particularly an increase of the evaluation latency. Therefore,
we will see now how to implement this evaluation scheme using only unsigned fixed-point arith-
metic.

More precisely, we will see now how to implement this evaluation scheme, so that each com-
puted intermediate variable ri remains of constant sign, either always + or always -. To do so, let
us consider an intermediate variable ri. Three cases may occur, when the inputs s, t vary:

• If ri > 0 then the variable is always positive: this is the simplest case, and no special handling
has to be done;

• If ri < 0 then the variable is always negative: in this case, the variable is stored in absolute
value, and the handling of its sign is propagated further in the evaluation;

• Otherwise, the evaluation scheme cannot be implemented using only unsigned fixed-point
arithmetic: either it is implemented using signed fixed-point arithmetic as presented above,
or it is rejected and another one has to be chosen.

Using this approach, we may check with MPFI [CLN+] (see also [RR05]) or Gappa that each vari-
able ri lies in a positive or negative interval, and does not change of sign while the inputs vary.
Finally the polynomial defined in Table 5.1 can be implemented using exclusively unsigned fixed-
point arithmetic, that is, unsigned 32-bit integers, as presented in Listing 5.2 below. Therefore the

1 uint32_t __sqrt_eval__horner__( uint32_t T, uint32_t S)
2 {
3 uint32_t r0 = mul(T, 0x0019b4c0); // 1.31
4 uint32_t r1 = 0x0093fa25 - r0; // 1.31
5 uint32_t r2 = mul(T, r1); // 1.31
6 uint32_t r3 = 0x0198e4c7 - r2; // 1.31
7 uint32_t r4 = mul(T, r3); // 1.31
8 uint32_t r5 = 0x0304d2f4 - r4; // 1.31
9 uint32_t r6 = mul(T, r5); // 1.31
10 uint32_t r7 = 0x04db72ce - r6; // 1.31
11 uint32_t r8 = mul(T, r7); // 1.31
12 uint32_t r9 = 0x07f9a6be - r8; // 1.31
13 uint32_t r10 = mul(T, r9); // 1.31
14 uint32_t r11 = 0x0fff6f59 - r10; // 1.31
15 uint32_t r12 = mul(T, r11); // 1.31
16 uint32_t r13 = 0x3ffffafc - r12; // 1.31
17 uint32_t r14 = mul(T, r13); // 1.31
18 uint32_t r15 = 0x80000007 + r14; // 1.31
19 uint32_t r16 = mul(S, r15); // 2.30
20 uint32_t r17 = 0x00000020 + r16; // 2.30
21 return r17;
22 }

Listing 5.2: Polynomial evaluation with Horner’s rule in unsigned fixed-point arithmetic.

evaluation of the program in Listing 5.2 may be done without any increase of latency, that is, in
exactly 36 cycles, as expected for Horner’s rule in degree 9 and with latencies of 1 and 3 cycles
for, respectively, addition and multiplication. In addition to that statement, we can check with
Gappa that the evaluation program P implemented in Listing 5.2 has an evaluation error ρ(P)
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bounded as follows:

ρ(P) ≤ 1103468601438365355 × 2−88

. 2−28.0633,

which, again, is strictly less than the required bound η ≈ 2−25.30 in (5.3). A possible explanation of
the improvement compared to the evaluation error of Listing 5.1 (≈ 2−27.2652) may be due to the
fact that, in Listing 5.1, all the results of signed multiplications are in the format Q30 and then ad-
justed in the formatQ31 by shifting 1 bit left. On the contrary, in Listing 5.2, the results of unsigned
multiplications are already in the format Q31, and thus we gain one bit, and it could explain why
we have an evaluation error almost twice more accurate. That means that this evaluation program
could be also used for implementing correctly-rounded square root in the binary32 floating-point
format.

Evaluation program validation

Once we have written the evaluation program as a piece of C code, we have seen that it remains
to validate it, that is, to check if the error entailed by the evaluation of this program satisfies the
evaluation error bound η in (5.3). Until nowwe have seen that the evaluation error using Horner’s
rule is less than the required bound, but we do not have seen how to determine, in practice, a
bound on this evaluation error.

This can be done either using certified interval arithmetic with MPFI, or using Gappa. Here,
we will briefly explain how to write a Gappa script for validating the evaluation program of List-
ing 5.2 above. With our Gappa script, we want to check:

• if no overflow occurs during polynomial evaluation, that is, if all the variables are no larger
than 232 − 1, so that they fit exactly in 32-bit unsigned integers;

• if the program is accurate enough, that is, if its evaluation error ρ(P) is no larger than the
required bound η in (5.3).

Checking with Gappa that during the evaluation all the variables fit in 32-bit unsigned inte-
gers, that is, that no overflow occurs, is done as follows. Given an intermediate variable ri in
the Qf format, we check with Gappa that the variable ri lies in the range [0, (232 − 1)/2f ], with f
the number of fraction bits of ri. By definition of the function mul , this overflow case may occur
only for additions. For example, assuming that the variables r0 and r1 are both in the Q31 format
(Listing 5.2), this property can be checked using lines 33 and 34 of the piece of Gappa code in
Listing 5.3 below.

Let us now see how to check if the evaluation error ρ(P) is upper bounded by η in (5.3).
In the Gappa script in Listing 5.3 below, the variable Mri represents the “ideal mathematical”
value approximated by ri. Assuming that the result of the evaluation is stored in r17, checking if
|r17 −Mr17| ≤ η is done as follows:

|r17 −Mr17| − η ≤ 0.

Hence the evaluation error can be checked as shown in line 36, while a bound on this evaluation
error can be computed using line 37 (Listing 5.3).

5.1.2 Extension to second-order Horner’s rule

In this section, we will see how to extend Horner’s rule in order to expose more instruction-level
parallelism. Indeed, the main drawback of the Horner’s rule relies on the fact that the evaluation
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1 # Definition
2 cst = fixed<-30,dn>(cst0); # cst = 2−25 in the format Q2.30

3 a0 = fixed<-31,dn>(coef0); # each coefficient ai is in the
4 # format Q31

5 # ...
6
7 T = fixed<-32,dn>(fixed<-23,dn>(var0)); # T is in the forma t Q32

8 # with at most 23 fraction bits
9
10 S = fixed<-31,dn>(var1); # S is in the format Q1.31

11
12 CertifiedBoundEta = 269837285807227497773782362822784 117b-143;
13
14 ## Evaluation scheme
15 r0 fixed<-31,dn>= T * a8; Mr0 = T * a8; # r0 = T * a8 truncated
16 # after 31 fraction bits
17 r1 fixed<-31,dn>= a7 - r0; Mr1 = a7 - Mr0;
18 # ...
19 r15 fixed<-31,dn>= a0 + r14; Mr15 = a0 + Mr14;
20 r16 fixed<-30,dn>= S * r15; Mr16 = S * Mr15;
21 r17 fixed<-30,dn>= cst + r16; Mr17 = cst + Mr16;
22
23 ## Results
24 {
25 (
26 var0 in [0x00000000p-32,0xfffffe00p-32]
27 /\ var1 in [0x80000000p-31,0xb504f334p-31]
28 /\ cst0 in [0x00000020p-30,0x00000020p-30]
29 /\ coef0 in [0x80000007p-31,0x80000007p-31]
30 /\ coef1 in [0x3ffffafcp-31,0x3ffffafcp-31]
31 #...
32 ->
33 r0 in [0,0xffffffffp-31] # does r0 lie in [0, (232 − 1)/231]?
34 /\ r1 in [0,0xffffffffp-31]
35 #...
36 /\ |r17 - Mr17| - CertifiedBoundEta <= 0
37 /\ |r17 - Mr17| in ?
38 )
39 }

Listing 5.3: Piece of Gappa code to validate polynomial evaluation.
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is done in a fully sequential way, and is extremely ill-suited to be used on the ST231 processor,
since it uses only one of the four issues available. A first improvement consists in “splitting up”
the polynomial a(x) into its odd and even parts, and in evaluating both separately using Horner’s
rule. On our example, this gives the following parenthesization:

P (s, t) =
[

2−25 + (s · t) ·
(

a1 + t2 ·
(
a3 + t2 · (a5 + t2 · a7)

))]

+

s ·
[

a0 + t2 ·
(

a2 + t2 ·
(
a4 + t2 · (a6 + t2 · a8)

))]

.

Roughly, this scheme, called second-order Horner’s rule [Knu98, §4.6.4], allows to evaluate two
polynomials of degree half the initial degree in parallel, and to combine them together using
one step of Horner’s rule. Assuming an addition in 1 cycle, a multiplication in 3 cycles, and
unbounded parallelism, the critical path of evaluation consists of:

• the computation of t2 (3 cycles),

• the evaluation of the two polynomials of degree 4 via Horner’s rule (16 cycles),

• and one step of Horner’s rule for combining both subpolynomials (4 cycles).

Hence a total expected latency of 23 cycles. We may observe that, not surprisingly, the implemen-
tation of this evaluation scheme on the ST231 processor indeed uses two issues as illustrated on
Figure 5.1.

1 uint32_t __sqrt_eval__2nd_horner__( uint32_t T, uint32_t S)
2 {
3 uint32_t r0 = mul(S, T); // 1.31
4 uint32_t r1 = mul(T, T); // 0.32
5 uint32_t r2 = mul(r1, 0x0093fa25); // 1.31
6 uint32_t r3 = 0x0304d2f4 + r2; // 1.31
7 uint32_t r4 = mul(r1, r3); // 1.31
8 uint32_t r5 = 0x07f9a6be + r4; // 1.31
9 uint32_t r6 = mul(r1, r5); // 1.31
10 uint32_t r7 = 0x3ffffafc + r6; // 1.31
11 uint32_t r8 = mul(r0, r7); // 2.30
12 uint32_t r9 = 0x00000020 + r8; // 2.30
13 uint32_t r10 = mul(r1, 0x0019b4c0); // 1.31
14 uint32_t r11 = 0x0198e4c7 + r10; // 1.31
15 uint32_t r12 = mul(r1, r11); // 1.31
16 uint32_t r13 = 0x04db72ce + r12; // 1.31
17 uint32_t r14 = mul(r1, r13); // 1.31
18 uint32_t r15 = 0x0fff6f59 + r14; // 1.31
19 uint32_t r16 = mul(r1, r15); // 1.31
20 uint32_t r17 = 0x80000007 - r16; // 1.31
21 uint32_t r18 = mul(S, r17); // 2.30
22 uint32_t r19 = r9 + r18; // 2.30
23 return r19;
24 }

Listing 5.4: Polynomial evaluation by means of second-order Horner’s rule in unsigned fixed-
point arithmetic.

In terms of latency of evaluation using second-order Horner’s rule, we observe a gain of 13
cycles, that is, a speedup of about 35 % compared to Horner’s rule. Moreover, the evaluation of
the polynomial P in (5.1) is done in 23 cycles, with an evaluation error no larger than η in (5.3).
More precisely, we may check with Gappa that the evaluation error satisfies

ρ(P ≤ 321377975215324845 × 2−86

. 2−27.843,
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and conclude that this evaluation program could have also been used for implementing binary32
correctly-rounded square root.

5.1.3 Estrin’s method

The last classical evaluation scheme we present here is Estrin’s method. This evaluation scheme
is based on the “divide and conquer” strategy and consists in splitting the polynomial to be eval-
uated in its high and low parts, evaluating them using Estrin’s method, and combining them
together using a last step involving one multiplication by a power of x, and one addition [Knu98,
§4.6.4]. In fact, Estrin’s method is called recursively on the high and low parts of the polynomial
to be evaluated, until having degree-1 polynomials.

The main advantage of this evaluation approach relies on the fact that it is highly parallel,
and it tends to expose lots of instruction-level parallelism. For example, let p(x) be a degree-7
polynomial with coefficients pi given in the monomial basis. Table 5.2 below shows a feasible
scheduling for evaluating that polynomial on the ST231 processor.2 However the speedup in

Cycle Issue 1 Issue 2 Issue 3 Issue 4

0 r1 = p7 · x r2 = x · x
1 r3 = p5 · x r4 = p3 · x
2 r5 = p1 · x
3 r6 = r2 · r2 r7 = r1 + p6

4 r8 = r7 · r2 r9 = r3 + p4 r10 = r4 + p2

5 r11 = r5 + p0 r12 = r10 · r2

6

7 r13 = r8 + r9

8 r14 = r13 · r6 r15 = r12 + r11

9

10

11 a(x) = r14 + r15

Table 5.2: Degree-7 polynomial evaluation using Estrin’s rule on ST231.

terms of evaluation latency on unbounded parallelism is possible only to the detriment of an
increase of the total number of operations. Indeed, for n + 1 a power of 2, it evaluates a degree-
n polynomial in n additions and n + log(n + 1) − 1 multiplications [Rev06]. For example, for
evaluating a degree-7 polynomial as described in Table 5.2 above, we need 7 additions and 9
multiplications, instead of 7 additions and 7 multiplications with Horner’s rule.

Let us return to the bivariate polynomial P (s, t) = 2−p−1 + s · a(t) defined in (5.1). The first
idea consists in evaluating the polynomial a(t) using the Estrin’s method, and then applying one
step of Horner’s rule, as shown below:

P (s, t) = 2−25 + s ·
[(

(a0 + t · a1) + t2 · (a2 + t · a3)
)

+ (5.4)

(t2 · t2) ·
((

(a4 + t · a5) + t2 · (a6 + t · a7)
)

+ (t2 · t2) · a8

)]

.

An implementation of this evaluation scheme is shown in Listing 5.5 below.
Figure 5.2 displays the evaluation tree corresponding to (5.4). We can observe that the critical

path of the evaluation is composed by the computation of r2 = t2, and then the computation of r7
2On the ST231, additions and subtractions have a latency of 1 cycle, multiplications have a latency of 3 cycles, and 2

pipelined multiplications can be launched every cycle.
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1 uint32_t __sqrt_eval__estrin__( uint32_t T, uint32_t S)
2 {
3 uint32_t r0 = mul(T, 0x3ffffafc); // 1.31
4 uint32_t r1 = 0x80000007 + r0; // 1.31
5 uint32_t r2 = mul(T, T); // 0.32
6 uint32_t r3 = mul(T, 0x07f9a6be); // 1.31
7 uint32_t r4 = 0x0fff6f59 - r3; // 1.31
8 uint32_t r5 = mul(r2, r4); // 1.31
9 uint32_t r6 = r1 - r5; // 1.31
10 uint32_t r7 = mul(r2, r2); // 0.32
11 uint32_t r8 = mul(T, 0x0304d2f4); // 1.31
12 uint32_t r9 = 0x04db72ce - r8; // 1.31
13 uint32_t r10 = mul(T, 0x0093fa25); // 1.31
14 uint32_t r11 = 0x0198e4c7 - r10; // 1.31
15 uint32_t r12 = mul(r2, r11); // 1.31
16 uint32_t r13 = r9 + r12; // 1.31
17 uint32_t r14 = mul(r7, 0x0019b4c0); // 1.31
18 uint32_t r15 = r13 + r14; // 1.31
19 uint32_t r16 = mul(r7, r15); // 1.31
20 uint32_t r17 = r6 - r16; // 1.31
21 uint32_t r18 = mul(S, r17); // 2.30
22 uint32_t r19 = 0x00000020 + r18; // 2.30
23 return r19;
24 }

Listing 5.5: Polynomial evaluation with Estrin’s method in unsigned fixed-point arithmetic.

to r19: it has a length of 18 cycles (assuming as before addition in 1 cycle and multiplication in 3
cycles). Using this parenthesization enables to use more than 2 issues on the ST231, especially at
the beginning of the evaluation, since several parts of the polynomial can be evaluated in parallel.
Remark that, in terms of accuracy, this parenthezisation entails an evaluation error no larger than
the required bound η in (5.3), and more particulary:

ρ(P) ≤ 1103468431366337355 × 2−88 (5.5)

. 2−28.0633.

However, we observe in (5.4) and on Figure 5.2 that the last multiplication by s is a bottleneck
in the evaluation of P , andwe can distribute it over the evaluation of a(t). This gives the following
parenthesization, which we shall call “second Estrin’s method”:

P (s, t) = 2−25 +
[

s ·
(
(a0 + t · a1) + t2 · (a2 + t · a3)

)
+ (5.6)

(
s · (t2 · t2)

)
·
((

(a4 + t · a5) + t2 · (a6 + t · a7)
)

+ (t2 · t2) · a8

)]

.

This parenthesization leads to an implementation in 15 cycles, that is, 3 cycles less than the one
with Estrin’s method, and with an evaluation error ρ(P) satifying:

ρ(P) ≤ 1103468431252881531 × 2−88 (5.7)

. 2−28.0633,

which is less than the required bound η ≈ 2−25.30 in (5.3). Figure 5.2 displays the evaluation tree
corresponding to (5.6).

We conclude that Estrin’s methods, as well as Horner’s rules presented above in the section,
could have been used for implementing the binary32 correctly-rounded square root in FLIP. How-
ever, even if we use the second Estrin’s method, which is the fastest of all these 4 evaluation
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schemes, we have an implementation in 15 cycles, that is, more than 15 % slower than the fastest
one found with CGPE (which has a latency of 13 cycles and is displayed in Listing 3.3), and effec-
tively used for implementing the square root function in FLIP.

Let us now have a look at the interest of using these classical evaluation methods for imple-
menting functions other than square root.

5.1.4 Numerical results on fixed-point polynomial evaluation on ST231 processor

In the three previous subsections, we have detailed how to write efficient implementation using
classical evaluation schemes, and given examples of code for the binary32 implementation of
the correctly-rounded square root function. We have concluded that these evaluation programs
could have been used for implementing this function in FLIP. Let us now see if these evaluation
schemes can also be used for implementing the others functions of FLIP. To do so, let us consider
the function x1/n for n ∈ {−4,−3,−2,−1, 2, 3, 4} as well as division.

We have generated with the script in Listing 3.1, Chapter 3, the polynomial approximants to-
gether with the certified evaluation bounds η sufficient to ensure correct-rounding for such func-
tions, and used the approach presented in this chapter (in the paragraphs “Unsigned fixed-point
evaluation and arithmetic operator choice” and “Evaluation program validation”) to write the
evaluation codes. Therefore, Table 5.3 below displays, for each function, the degree of the polyno-
mial approximant a(t) in (5.1), as well as the bound η. And for each evaluation scheme, it gives
the evaluation error bound computed with Gappa. In Table 5.3, “-” means that the arithmetic
operator choice cannot be done automatically using naive interval arithmetic (that is, we cannot
ensure that the evaluation can be done in unsigned fixed-point arithmetic), and the error bounds
that are underlined are those which are not sufficient to ensure correct rounding.

x1/2 x−1/2 x1/3 x−1/3 x1/4 x−1/4 x−1 x/y

Degree 8 9 8 9 8 8 10 10

Required approx. error 2−25.51 2−25.52 2−25.68 2−25.68 2−25.76 2−25.77 2−25 2−26.99

Bound on θ 2−27.99 2−26.60 2−27.76 2−27.76 2−27.74 2−25.95 2−26.39 2−27.41

Bound on η 2−25.30 2−25.94 2−25.40 2−25.41 2−25.43 2−28.09 2−25.69 2−26.99

Horner’s rule 2−28.06 2−28.06 2−27.93 2−27.93 2−27.87 2−27.87 2−27.67 2−27.41

2nd-order Horner’s rule 2−27.84 - 2−27.78 - 2−27.75 - - -

Estrin’s rule 2−28.06 2−28.65 2−27.93 2−27.76 2−27.87 2−27.77 2−27.03 2−26.57

2nd Estrin’s rule 2−28.06 2−27.55 2−27.93 2−27.65 2−27.87 2−27.70 2−27.03 2−26.48

Table 5.3: Evaluation error bounds for various functions and various fixed-point evaluation
schemes.

We observe from Table 5.3 above, that the classical methods presented in this chapter can be
effectively used for implementing the first nth roots for n ∈ {2, 3, 4}. Also, some of them, but not
all, can be used for implementing their reciprocals, and inversion and division. More precisely,
from these results, we can make the following remarks:

• Horner’s rule can be used for the implementation of all these functions, but the reciprocal
fourth root. For n = −4, the polynomial a(t) approximates the function 21/4 · (1 + x)−1/4

with an approximation error less than θ ≈ 2−25.95, which is slightly smaller than required
bound ≈ 2−25.77. In this case, the polynomial has to be evaluated very accurately, with an
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evaluation error . 2−28.09. Unfortunately this bound cannot be satisfied using one of the
classical methods presented in this chapter. It turns out that for implementing the reciprocal
fourth root, we should take a polynomial approximant a(t) of higher degree, or find another
evaluation program, using CGPE for example, whose evaluation error satisfies the bound.

• In our context, we cannot write code automatically to evaluate polynomials whose coef-
ficients alternate completely, and more particularly we cannot ensure using interval arith-
metic that all intermediate variables are always + or always -. To understand this, let us
consider the case where |n| = 2. Table 5.4 below shows the sign changing of the polynomial
coefficients for n = 2 and n = −2. (Recall that a(t) has degree 8 when n = 2 and degree
9 when n = −2.) When n = −2, “second-order” Horner’s rule will evaluate the even and

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

n = 2 + + - + - + - + -

n = −2 + - + - + - + - + -

Table 5.4: Signs of the coefficients of polynomial approximant a(t), when |n| = 2.

odd parts separately, whose results, respectively, are positive and negative. Hence, using
interval arithmetic will lead to a result, whose sign changes when the input varies. On the
contrary, when n = 2, since a0 < a1 < · · · < a8, we may check that the even and odd parts
are both positive, and, in interval arithmetic, the result does not change of sign when input
varies. Actually, we can observe this phenomenum for all the cases where “second-order”
Horner’s rule cannot be used in Table 5.3.

• Remark also that our division algorithm of Chapter 4 could have been implemented using
Horner’s rule. But on the ST231 the evaluation would have been in 44 cycles, instead of 14
cycles for the current implementation of division, that is, more than more 3 times slower.
Remark also that Estrin-based rules could not have been used directly for implementing our
binary32 division, since the evaluation error cannot be checked with Gappa.

5.2 Polynomial evaluation via coefficient adaptation

Until now we have presented some classical methods for evaluating a degree-n polynomial and
how they can be used for evaluating polynomials (univariate or bivariate) on integer architectures,
and especially on the ST231, through various examples. These methods are more or less efficient,
in terms of evaluation latency and accuracy, and we have also explained why they can or cannot
be used in our context for implementing mathematical functions. The efficiency of these schemes
in terms of latency is always due to a higher instruction-level parallelism exposure.

However, recall that in the 60’s, multiplication was much slower than addition. This statement
has motivated the implementation of evaluation schemes that reduce the number of multiplica-
tions, to the detriment of possible extra (but much cheaper) additions. Hence, depending on the
context, these new evaluation schemes can be expected to be faster to be evaluated. Since multi-
plication is slower on the ST231 processor than addition, what about using these methods on this
architecture?

This section presents some examples of polynomial evaluation schemes based on the adapta-
tion of the polynomial coefficients to be evaluated, and explains why we have not used them for
implementing mathematical functions.
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5.2.1 What is coefficient adaptation?

From the coefficients of the polynomial in the monomial basis, coefficient adaptation consists in
computing new coefficients, a new expression for the polynomial that involves fewer operations
(in particular fewer multiplications). This phase may be costly, but is done once for all the evalu-
ations. (See [Knu62], [Fik67], or [Knu98] for examples of adaptations.)

The first method based on coefficient adaptation is due to Motzkin [Knu98, p. 490]. It enables
to evaluate a degree-4 polynomial a(x) = a0 + a1 · x+ a2 · x2 + a3 · x3 + a4 · x4 as follows:

a(x) =
(
(y + x+ α2) · y + α3

)
· α4 with y = (x+ α0) · x+ α1, (5.8)

with 





α0 = 1
2 · (a3/a4 − 1), β = a2/a4 − α0 · (α0 + 1),

α1 = a1/a4 − α0 · β, α2 = β − 2 · α1,

α3 = a0/a4 − α1 · (α1 + α2), α4 = a4.

Once we have computed the α′
is, the evaluation of the polynomial a(x) in (5.8) can be done using

5 additions, but only 3 multiplications, instead of 4 additions and 4 multiplications with Horner’s
rule. On unbounded parallelism, the critical path consists in computing y in 2 additions and 1
multiplication, and a(x) in 2 additions and 2 multiplications (since x + α2 may be computed in
parallel of y), that is, the critical path has a length of 4 additions and 3 multiplications. This is less
than than the critical path of Horner’s rule, which consists of 4 additions and 4 multiplications.

5.2.2 Knuth and Eve’s algorithm

The first algorithm based on coefficient adaptations presented in this section is Knuth and Eve’s al-
gorithm. Introduced in the 60’s by Knuth [Knu98, §4.6.4, Theorem E], it has been completed by
Eve [Eve64] in 1964 (see also [Mul06, §3.8] or [Rev06, §2] for details). When n ≥ 3, it enables to
evaluates a univariate degree-n polynomial in at most n additions and ⌊n/2⌋ + 2 multiplications,
that is, roughly twice fewer multiplications than Horner’s rule.

Coefficient adaptation using Knuth and Eve’s algorithm

Let a(x) be a univariate degree-n polynomial to be adapted, n ≥ 3, and let p(x) be a univariate
degree-n polynomial defined as p(x) = a(x− c), with c ∈ R. Before seing the interest of the value
c and explain how to choose it, let us first show how to adapt the polynomial a(x), and more
particularly, the corresponding polynomial p(x). The idea of this algorithm consists in splitting
the polynomial p(x) into its even and odd parts, g and h, respectively, so that:

p(x) = g(y) + x · h(y), with y = x2. (5.9)

Assume that h(y) hasm real roots αi’s, that is,

h(x) = p2m+1 · (y − αm−1) · · · (y − α0), with m = ⌊(n− 1)/2⌋,

with p2m+1 the leading coefficient of p(x). The evaluation of p(x) using Knuth and Eve’s algo-
rithm is done as follows:

p(x) =
(

. . .
(
(g(m)(y) + p2m+1 · x)(y − αm−1) + βm−1

)
· · ·
)

(y − α0) + β0,

with the coefficients βi’s defined as the successive remainders of the division of g(i)(y) by y − αi,
where

g(i)(y) = g(i+1)(y) · (y − αi) + βi and g(0)(y) = g(y),
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and

g(m)(y) =

{

g
(m)
0 , if n is odd,

g
(m)
1 y + g

(m)
0 , if n is even,

(5.10)

with g(m)
1 and g(m)

0 being rational coefficients. Finally, evaluating a(x) using this approach is done
by evaluating p(x+ c).

Let us now detail the role played by the value c. In fact this shift is here chosen so that the
polynomial h(y) in (5.9) has exactly m real roots. In [Eve64], Eve has shown that if a degree-n
polynomial has at least n − 1 roots whose real parts are all nonnegative or nonpositive, then its
odd part has only real roots. Hence in this case, we have to choose c so that p(x) satisfies this
condition. Knuth proposed in [Knu98, §4.6.4, Theorem E] his own value c, so that the coefficient
β0 equals 0 (which saves one addition).

Remark here that this adaptation is not rational, since in general the computation of the real
roots αi’s cannot be done exactly. Combining this remark with the fact that several values cmay be
chosen, and that theαi’s may be handled inm!ways, we conclude that many different adaptations
with different numerical accuracies may be chosen (see [Rev06] for examples).

Why we have not chosen Knuth and Eve’s algorithm for FLIP?

Recall that the polynomial P (s, t) defined in Chapter 3 for the implementation of the square root
is defined as follows

P (s, t) = 2−25 + s · a(t),

with a(t) a degree-8 univariate polynomial. The evaluation of this bivariate polynomial P using
Knuth and Eve’s algorithm can be done by adapting the polynomial a(t) and then by applying
one step of Horner’s rule, as follows:

PKE(s, t) = 2−25 + s ·
[(((

(g(3)(y) + p7 · (x+ c))(y − α2) + β2

)
(y − α1) + β1

))

(y − α0) + β0

]

,

with g(3)(y) = g
(3)
1 y + g

(3)
0 , y = (x + c)2 and c ∈ R, and the αi’s and the βi’s being the new

coefficients computed as presented above.
Let us now see the length of the critical path on unbounded parallelism. It consists of:

• the computation of y = (x+ c)2 (1 addition, 1 multiplication),

• the evaluation of g(3) (1 addition, 1 multiplication),

• the addition to p7 · (x+ c) (1 addition),

• and 4 steps of 1 multiplication and 1 addition.

That is, assuming an addition in 1 cycle and a multiplication in 3 cycles, the critical path is of
25 cycles, which is almost twice the latency of the best evaluation program we have found for
evaluating the polynomial P in FLIP.

Concerning the numerical accuracy of this scheme, we have adapted the polynomial a(t) use-
ful for the implementation of the square root in Chapter 3 with Sollya [Che09], [Lau08], [CL], in
larger precision. With a shift c ≈ −2.5, as prescribed by Eve, and for all the 3! = 6 permutations of
αi’s, the certified approximation error computing using supremum norm algorithm is of the order
of 2−19.57, which is not enough compared to the required bound (2−25 − 2−31.5)/21/2 ≈ 2−25.51.
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5.2.3 Paterson and Stockmeyer’s algorithm

This section presents another algorithm based on coefficient adaptation, due to Paterson and
Stockmeyer [PS73] (see also [Rev06, §3]). It enables to evaluate a degree-n polynomial in at most
3n/2 additions and n/2 + log2(n) multiplications, that is, it indeed reduces the number of multi-
plications, but to the detriment of an increase of the number of additions. Let us now see how to
adapt a given polynomial for this algorithm.

Coefficients adaptation using Paterson and Stockmeyer’s algorithm

To be adapted with Paterson and Stockmeyer’s method, the polynomial has to be monic, that is,
the leading coefficient has to be equal to 1. If this is not the case, we first compute the correspond-
ing monic polynomial (simply by dividing by the leading coefficient), and an extra multiplication
will be needed during evaluation in order to get back to the initial polynomial. This algorithm
is also based on the “divide and conquer” strategy, like Estrin’s method. However, at a given
level, when we will split up the polynomial to be evaluated, we will adapt its low part so that
both subpolynomials (high and low parts) remain monic. Moreover, in the same way as Estrin’s
method, if the polynomial to be adapted is of degree n 6= 2p−1, then it is split up into polynomials
of degree 2i − 1 according to the binary expansion of n, which will adapted using Paterson and
Stockmeyer’s algorithm. Then log2(n) extra multiplications will be needed to determine the final
result [PS73]. Consequently, in the sequel we assume with no loss of generality that n + 1 is a
power of 2.

Let a be a univariate degree-n polynomial, with n of the form n = 2p−1 (p ∈ N\{0}). Paterson
and Stockmeyer’s algorithm evaluates a as follows

a(x) = (xm + α) ·
(

xm−1 +

m−2∑

i=0

ai+mx
i

)

+

(

xm−1 +

m−2∑

i=0

βix
i

)

, with m = (n+ 1)/2, (5.11)

and α = am−1−1 and βi = ai−α ·am−i. Then, each subpolynomial is evaluated recursively using
the same splitting.

Why we have not chosen Paterson and Stockmeyer’s algorithm for FLIP?

Again, let us consider the polynomial P (s, t) defined in Chapter 3 for the implementation of the
square root: P (s, t) = 2−p−1 + s · a(t), with a(t) a univariate degree-8 polynomial. The evaluation
of P via Paterson and Stockmeyer’s method gives the following parenthesization:

PPS(s, t) = 2−25 + s ·
[

a7 ·
(

(x4 + α0) ·
(
(x2 + α1) · (x− β0) + (x+ β1)

)

+
(
(x2 + α2) · (x+ β2) + (x− β3)

))

+ (a8 · x8)
]

,

Assuming unbounded parallelism, it follows that the critical path is given by

• the computation of x2 + α1 (1 addition, 1 multiplication),

• the multiplication by x+ β0,

• the addition to x+ β1,

• 1 multiplication and 1 addition to compute the inner part of the parenthezisation,

• the multiplication by a7 and the addition of a8 · x8,



164 Chapter 5. Polynomial evaluation in fixed-point arithmetic on the ST231 processor

Coefficient Sign Value Encoding integer Format

a8 - 0.00078448676504194736480712890625 0x00336981 Q0.32

a7 + 0.00451590376906096935272216796875 0x0127f44b Q0.32

α0 + 1.2797072611749172210693359375 0xccc0cf36 Q4.28

α1 + 4.22259075008332729339599609375 0x871f76a3 Q3.29

β0 - 2.76322183944284915924072265625 0xb0d8a06a Q2.30

β1 + 3.26497823186218738555908203125 0xd0f56742 Q2.30

α2 + 4.2885798990726470947265625 0xab8b0ee4 Q6.26

β2 + 7.68501790426671504974365234375 0xf5ebaaab Q3.29

β3 - 0.60501976870000362396240234375 0x9ae29358 Q0.32

Table 5.5: New coefficients for evaluating P (s, t) using Paterson and Stockmeyer’s algorithm, for
our binary32 square root implementation.

• and finally one step of Horner’s rule (1 multiplication and 1 addition).

Hence, assuming an addition in 1 cycle and a multiplication in 3 cycles, the length of the criti-
cal path of the evaluation of PPS(s, t) is 20 cycles, that is 7 cycles more than the best evaluation
programs found with CGPE. We conclude first that in terms of evaluation latency, Paterson and
Stockmeyer’s method is not the most efficient one in the context of the ST231 processor.

Finally, let us see if Paterson and Stockmeyer’s algorithm leads to a polynomial which, after
adaptation, is accurate enough, that is, with an approximation error less that the required bound
(2−25 − 2−31.5)/21/2 ≈ 2−25.51. This adaptation, on the contrary to the Knuth and Eve’s algorithm,
is rational, and have been implemented exactly using Sollya. Then the absolute value of each
coefficient has been truncated after 32 bits. We obtained a new polynomial that approximates the
function (1 + x)1/2 with an approximation error ≈ 2−24.15. That means that it is also not sufficient
to ensure correct rounding for square root. Moreover, Table 5.5 above displays the new coefficients
computed for evaluating P (s, t) using Paterson and Stockmeyer’s algorithm. We remark that the
coefficients αi’s and βi’s have different orders of magnitude. And as we have seen in Chapter 1,
the computation in fixed-point arithmetic with numbers of different orders of magnitude leads to
a much higher loss of accuracy.

Conclusion

We have presented in the section two evaluation methods that enable to evaluate a polynomial by
preliminarily adapting its coefficients. The objective was to reduce the number of multiplications
(sometimes at the expense of the number of additions). However, we have seen on the example of
the implementation of the square root, that both methods are ill-suited in our context. First, even
if they involve fewer multiplications, the critical path of the evaluation is longer than the one of
the evaluation program chosen for the square root in Chapter 3. Secondly, once the polynomial is
adapted, its approximation error is larger than the error required for ensuring correct rounding.

This is why, to implement the mathematical functions of FLIP (based on polynomial evalua-
tion), we have chosen to use evaluation methodswithout adaptation of coefficients.



CHAPTER 6
Computing efficient polynomial
evaluation programs

This chapter presents the methodology that we have implemented for gen-
erating efficient and certified evaluation programs. More particularly, it
is based on algorithms that compute all the evaluation schemes (parenthe-
sizations) for evaluating a given bivariate polynomial, the determination of
a lower bound of the minimal evaluation latency, and a heuristic for find-
ing best parenthesizations of the polynomial. Since the number of such
schemes may be extremely large (at least for degrees ≥ 5), these heuris-
tics enable to converge quickly towards efficient schemes (on unbounded
parallelism). This methodology have been integrated into the software en-
vironment CGPE (Code Generation for Polynomial Evaluation), which has
already been used for generating the evaluation schemes used by several
functions of the FLIP library, like roots and division (Chapters 3 and 4, re-
spectively). For some of them, we can conclude that the program generated
is optimal in term of evaluation latency.

This chapter presents the algorithmswe have implemented to generate all the evaluation schemes,
or converge toward the most efficient ones, for the evaluation of univariate and bivariate polyno-
mials, using only additions and multiplications, and without any preliminary adaptation of coef-
ficients. Such evaluation schemes thus correspond to various parenthesizations of the arithmetic
expression represented by a given polynomial. Also, by efficient we mean evaluation schemes
that reduce the latency when assuming unbounded parallelism, that is, the length of the critical
path of the evaluation. In this chapter, we focus on the generation of evaluation schemes, and we
do not discuss their accuracy. For example, given a degree-n univariate polynomial a(x) defined
as follows

a(x) = a0 + a1 · x+ · · ·+ an · xn with an 6= 0,

what are all the possible schemes to evaluate a(x), by using only additions and multiplications,
and without any coefficient adaptations? In this first example, we assume that a0 6= 0. This
implies that a(0) 6= 0 and, consequently, we know that the last operation of the evaluation must
be an addition of, let us say, two subexpressions a′(x) and a′′(x), as shown in Figure 6.1. Hence
in this case, it turns out that the goal consists in determining all the possible schemes to evaluate
a′(x) and a′′(x) such as

a(x) = a′(x) + a′′(x).



166 Chapter 6. Computing efficient polynomial evaluation programs

a′′(x)a′(x)

a(x)

Figure 6.1: Evaluation tree of polynomial a(x).

Horner’s rule, presented in Section 5.1.1, gives in particular

a′(x) = a0 and a′′(x) = x ·
(

a1 + x ·
(
a2 + · · ·+ x · (an−1 + x · an) . . .

))

.

At this time we consider unbounded parallelism and thus we know also from Chapter 5 that the
above splitting given by Horner’s rule does not give the lowest evaluation latency for a(x). If we
want to reduce the evaluation latency of a(x), we have to choose another splitting that reduces
the maximum of the evaluation latencies of a′(x) and a′′(x). But how to determine such a best
splitting?

Before presenting the algorithms, recall that in Part I, we have shown that the implementation
of a mathematical function may be done via the evaluation of a particular bivariate polynomial P
of the form P (s, t) = 2−p−1 + s · a(t), with a(t) a univariate polynomial of smallest degree n:

P (s, t) = 2−p−1 + s · (a0 + a1 · t+ · · ·+ an · tn).

Since P has to be evaluated at runtime, the evaluation program has to be as fast as possible. To
do that, we may first evaluate the polynomial a(t) and then end by a last step (multiplication by
s and addition of 2−p−1). In [HKST99], a methodology is proposed for building optimal evalua-
tion schemes for the evaluation of univariate polynomials on the Itanium R© processor using only
fma operations (see also [CHT02] for numerical results). This methodology has inspired the brute
force searching presented in [Gre02] for generating polynomial evaluation parenthesizations us-
ing at best SIMD instructions, for the implementation of faster mathematical functions for the
PlayStation R© 2 (Sony). Of course, we do not have efficient fma operators on the ST231, but fol-
lowing this method, we may derive an approach adapted to our context. Moreover we know that
distributing the multiplication by s over the evaluation of the polynomial a(t) may lead to lower
evaluation latencies (see Section 5.1 for examples). The problem is now to find all the possible
evaluation schemes to evaluate polynomials of the form P (s, t) = 2−p−1 + s · a(t) (and thus not
only univariate polynomials). Since the problem of evaluating this kind of polynomials is clearly
a special case of the one of evaluating general bivariate polynomials, we have in fact generalized
our algorithm to any bivariate polynomial.

This chapter is organized as follows. Section 6.1 describes the framework used for implement-
ing the algorithms of evaluation scheme generation, presents and details the implementation of
the building rules used for constructing such evaluation schemes, and then gives some numerical
results. Section 6.2 explains how to compute parenthezisations of low latency only, by determin-
ing first a target latency. Section 6.3 presents a heuristic that enables to find quickly an efficient
splitting of the polynomial, and then to converge toward an efficient evaluation scheme. Finally,
Section 6.4 presents briefly the frameworkwe have implemented to generate efficient and certified
C codes for the implementation of mathematical functions. Parts of this framework have already
been integrated into CGPE (Code Generation for Polynomial Evaluation).
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6.1 Computing all the parenthesizations

This section defines the framework used for the generation of the evaluation schemes, and details
the building rules used for generating all the parenthesizations. Finally, it gives an example of
execution of the algorithm for the generation of all the 51 possible parenthesizations of general
degree-2 bivariate polynomials.

6.1.1 Preliminary definitions

Let a(x, y) be a bivariate degree-n polynomial defined as follows:

a(x, y) =

nx∑

i=0

ny∑

j=0

ai,j · xi · yj with n = nx + ny, and anx ,ny
6= 0, (6.1)

with n the total degree of the polynomial. Recall that the goal is to build all the possible division
free evaluation schemes that evaluate the polynomial a(x, y), by using only additions, multipli-
cations, and without any preliminary adaptation of the coefficients. More precisely, we want to
build all the expressions, where only the coefficients ai,j of a(x, y) in the monomials basis, the in-
determinates x and y, and the operators addition of (+) and multiplication (× or ·) appear, so that
these expressions represent the polynomial a(x, y) in (6.1). Here, addition and multiplication are
commutative and associative; also multiplication is distributive over addition. Such expressions
are also called parenthesizations. From now, we do not take into account neither the cost of the
operators, nor the nature of the coefficients ai,j (integers, fixed-point numbers, or floating-point
numbers).

Example 6.1. Let a(x) be a degree-2 univariate polynomial defined as

a(x) = a0,0 + a1,0 · x+ a2,0 · x2.

We can check that a(x) admits the following seven parenthesizations:

a(x) =







(
a0,0 + (a1,0 · x)

)
+
(
(a2,0 · x) · x

)

(
a0,0 + (a1,0 · x)

)
+
(
a2,0 · (x · x)

)

a0,0 +
(
x · (a1,0 + a2,0 · x)

)

a0,0 +
(
(a1,0 · x) +

(
(a2,0 · x) · x

))

a0,0 +
(
(a1,0 · x) +

(
a2,0 · (x · x)

))

(a1,0 · x) +
(
a0,0 +

(
(a2,0 · x) · x

))

(a1,0 · x) +
(
a0,0 +

(
a2,0 · (x · x)

))

Remark that all these parenthesizations have been found using the algorithm presented in the
remainder of this section.

For building such expressions, that is, such parenthesizations, we have implemented an itera-
tive process that builds, at each step i (i ≥ 1), all the expressions of total degree i that can be used
for evaluating the polynomial a(x, y) in (6.1). Such expressions are called valid. Definition 6.1
below defines precisely what we call a valid expression.

Definition 6.1. (valid expression) Let e be an arithmetic expression. We consider that e is valid if
and only if it exists a subexpression p of a(x, y), such that

a(x, y) = e · xiyj + p, with i, j ≥ 0. (6.2)
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Hence, it follows that at step n (with n the total degree of the polynomial to be evaluated), we
will have generated all the parenthesizations for evaluating a(x, y).

Example 6.2. Let a(x) be the degree-2 univariate polynomial defined in Example 6.1. At step 1,
the algorithm builds all the expressions of degree 1 that can be used for evaluating a(x), that is:

a1,0 · x, a2,0 · x, a0,0 + (a1,0 · x), and a1,0 + (a2,0 · x),

so that all the expressions in Example 6.1 can be generated at step 2.

To do so, let us first define two sets.

• E(k) is the set of valid expressions of total degree exactly k, that is, that enable to evaluate
the polynomial a(x, y) and where at least one coefficient ai,j of the polynomial appears;

• P(k) is the set of expressions of the form xiyj , with i + j = k, such that 0 ≤ i ≤ nx and
0 ≤ j ≤ ny, where nx and ny are as in (6.1).

For a given k, all the expressions of E(k) and P(k) differ from each other. It follows that E(0) contains
all the cofficients ai,j of the polynomial, and that P(1) contains the indeterminates x and y. In the
Example 6.2, we have:

E(0) = {a0,0, a1,0, a2,0}, P(1) =
{
x
}
, and E(1) =

{
a1,0 · x, a2,0 · x, a0,0 + (a1,0 · x), a1,0 + (a2,0 · x)

}
.

In the remainder of this chapter, we will denote by expressions the elements of E(k) and by powers
the elements of P(k). It remains now to explain how to build, at step k, all the expressions of E(k)

and powers of P(k+1) by combining the expressions of E(j) and P(j+1), with j < k.

6.1.2 Building rules

This section introduces the building rules used for generating all the expressions and the powers
of degree k (that is, the expressions of E(k) and the elements of P(k)). To do that, we assume that
we have already computed the expressions of E(j) and P(j), for all 0 ≤ j < k.

Using (6.2), it follows that a power is obtained by multiplying two powers (Figure 6.2(a)),
while a valid expression e can be built by multiplying an expression with a power (Figure 6.2(b)),
or by adding two expressions (Figure 6.2(c)). The remainder of this section details the rule used
for building powers, and the rules used for building expressions.

Rule R1 for building the powers. Let p be a power of the form xiyi, with k = i + j, that belongs
to P(k). It is obtained by multiplying two powers p1 and p2 of, respectively, P(k′) and P(k−k′)

with k′ ≤ ⌊k/2⌋, of the form p1 = xixyiy and p2 = xjxyjy , such as

i = ix + jx and j = iy + jy,

and, when k′ = k/2,

p1 · p2 ∈ P(k) if and only if p2 · p1 /∈ P(k). (6.3)

Since multiplication is commutative, we can restrict to k′ ≤ ⌊k/2⌋, and the third condition
in (6.3) enables no to generate doubles of powers when k′ = k/2. Of course, this case does
not occur when k is odd.
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p1 p2

p

deg(p) = deg(p1) + deg(p2)

deg(p1) ≤ ⌊k/2⌋ k − ⌊k/2⌋ ≤ deg(p2) < k

(a)

e′ p

deg(p) ≤ kdeg(e′) < k

deg(e) = deg(e′) + deg(p)

e

(b)

e2e1

deg(e1) = k deg(e2) ≤ k

deg(e) = max ( deg(e1), deg(e2))

e

(c)

Figure 6.2: Building of a valid expression e or a power of degree k.

Rule R2 for building the expressions by multiplication. Let e be an expression of total degree k,
that belongs to E(k). It may be obtained by multiplying an expression e′ of degree strictly
less than k and a power of the form xiyj of total degree no larger than k, with:

i ≥ 0, j ≥ 0, and i+ j 6= 0,

and such that

• for each monomial am,n · xi′yj′ of the expression e′, the expression
(
am,n · xi′yj′

)
· xiyj is

valid, that is,
m ≥ i+ i′ and n ≥ j + j′. (6.4)

• at least one monomial am,n · xi′yj′ of this valid expression e satisfies:

i+ i′ + j + j′ = k. (6.5)

Considering the polynomial a(x, y) in Example 6.1, the condition in (6.4) enables to avoid
expressions with monomials of the form (a1,0 · x) · x, for example.

Rule R3 for building the expressions by addition. Let e be an expression of total degree k, that
belongs to E(k). It may be obtained by adding two expressions e1 and e2 of degrees k1 = k
and k2 ≤ k, respectively, such that:

• each coefficient of the polynomial a(x, y) appears at most once in e,
• the expression e does not contain two coefficients having exactly the same degrees in x

and y,
• and for all powers xiyj , with i, j < k,

e1 · xiyj is valid if and only if e2 · xiyj is valid. (6.6)

The third condition in (6.6) enables to avoid expressionswhere the coefficients have not to be
multiplied by the same power to be involved in the evaluation of the polynomial a(x, y). To
illustrate this, consider the polynomial a(x, y) in Example 6.1: the condition in (6.6) enables
not to generate the expression a0,0 + a2,0 · x.

Let us now see in the remainder of the section the general algorithm, and those used for im-
plementing each of these building rules.
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6.1.3 Description of the algorithm and implementation of the building rules

From the definition of the building rules in Section 6.1.2 above, and since at step 0 (initialization)
we have:

E(0) =

nx⋃

i=0

ny⋃

j=0

{ai,j} and P(1) = {x, y}, (6.7)

it follows that the computation of all the parenthesizations of a(x, y) can be done iteratively. More
precisely, for k ≥ 1, step k consists in:

1. applying the rule R1 for computing P(k+1), the powers of degree k + 1;

2. applying the rules R2 and then R3 for computing E(k).

From that statement, we can derive the general algorithm presented in Algorithm 6.1 below. We
observe that the algorithm iterates n − 1 times, and to show that the algorithm terminates, it
suffices to show that each building rule implementation terminates.

Input: degrees nx, ny of the polynomial a(x, y) in (6.1)
Output: E(n), with n = nx + ny

/ * Initialization of P (1) and E(0)
* /

P(1) ← {x, y};1

E(0) ← ⋃nx
i=0

⋃ny

j=0{ai,j};2

for k ← 1 to n− 1 do / * for each degree 1 to n− 1 * /3

P(k+1) ← BuildingRuleR1( k+ 1,P(1), . . . ,P(k)) ; / * Rule1 * /4

E(k) ← BuildingRuleR2( k,P(1), . . . ,P(k),E(0), . . . ,E(k−1)) ; / * Rule2 * /5

E(k) ← BuildingRuleR3( k,P(1), . . . ,P(k),E(0), . . . ,E(k)) ; / * Rule3 * /6

end7

/ * Last step: computation of E (n)
* /

E(n) ← BuildingRuleR2( n,P(1), . . . ,P(n),E(0), . . . ,E(n−1)) ; / * Rule2 * /8

E(n) ← BuildingRuleR3( n,P(1), . . . ,P(n),E(0), . . . ,E(n)) ; / * Rule3 * /9

return E(n);10

Algorithm 6.1: Bivariate(nx, ny).

Remark that at the last step n, we do not need to execute the rule R1, since it creates the powers
of degree n+ 1, and no such expressions are needed for evaluating the polynomial a(x, y) of total
degree n.

Let us now detail the implementation of each of the three building rules described in Sec-
tion 6.1.2 above. For each implementation, the function isvalid check if the conditions required
by the building rules in Section 6.1.2 are satisfied. However, their implementation is not given
here.

Rules R1 and R2 for building powers and expressions by multiplications. From the definition of
the building rules in Section 6.1.2, Algorithms 6.2 and 6.3 below immediately follow. Remark
that both algorithms iterate a finite number of times, and at each iteration combine once a
finite number of elements. So, we conclude that both algorithms terminate.
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Input: step k and power sets P(1), . . . ,P(k−1)

Output: P(k), that contains the powers of total degree k

// Initialization of P (k)

P(k) ← {};1

/ * Consider each pair of P (k′) × P(k−k′), with k′ ∈ {1, . . . , ⌊k/2⌋} * /
for k′ ← 1 to ⌊k/2⌋ do2

for i← 1 to length( P(k′)) do / * for each power p1 of P (k′)
* /3

j ← 1;4

if k′ = k/2 then j ← i;5

while j ≤length( P(k−k′)) do / * for each power p2 of P (k−k′), p2 6= p1 * /6

e← P(k′)[i]× P(k−k′)[j];7

if isvalid( e) then / * if e = p1 · p2 is valid * /8

P(k) ← P(k) ∪ {e};9

end10

j ← j + 1;11

end12

end13

end14

return P(k);15

Algorithm 6.2: BuildingRuleR1(k,P(1), . . . ,P(k−1)).

Rule R3 for building expressions by additions. Using the building rule R3, we can write Algo-
rithm 6.4, which computes the expressions of degree k by adding expressions of degrees at
most k together. The correctness of this algorithm is less immediate than the two previous
ones. So, let us give some key elements about it. To do so, let us consider step k, and the ith
application of rule R3.

• First, from line 5 to line 17, the algorithm consists in adding the expressions of degree
k created by the (i− 1)st application of R3 (or by the application of R2, if i = 1) with all
the expressions of degree k′ ≤ k. This yields a set tmp[i] of expressions of degree k.

• Then, from line 18 to line 29, the algorithm consists in adding the expressions of degree
k of tmp[i− 1] (created by the (i− 1)st application of R3) to the expressions of degree k
of tmp[2], . . . , tmp[i− 2].

Let MinNbrAddk,i be the minimum number of additions involved in the expressions of de-
gree k after the ith application of rule R3. It follows thatMinNbrAddk,i+1 = 1 +MinNbrAddk,i.
Now, the number of additions for evaluating a given polynomial of degree n remains con-
stant whatever the parenthesization is. Hence at a given step k, the number of applications
of rule R3 is finite and it follows that Algorithm 6.4 terminates.

At step n, the set E(n) contains all the valid expressions of total degree n that can be used for
evaluating the polynomial a(x, y) in (6.1). It remains finally to extract from that set the expressions
that represent exactly the polynomial a(x, y) to be evaluated.

Remark 6.1. Note that a proof of that no parenthesization has been missed by our approach still
remains to be done.
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Input: step k, power sets P(1), . . . ,P(k), and expression sets E(0), . . . ,E(k−1)

Output: E(k)

// Initialization of E (k)

E(k) ← {};1

/ * Consider each pair of E (k′) × P(k−k′), with k′ ∈ {0, . . . , k − 1} * /
for k′ ← 0 to k − 1 do2

for i← 1 to length( E(k′)) do / * for each expression e′ of E (k′)
* /3

for j ← 1 to length( P(k−k′)) do / * for each power p of P (k−k′)
* /4

e← E(k)[i]× P(k−k′)[j];5

if isvalid( e) then / * if e = e′ · p is valid * /6

E(k) ← E(k) ∪ {e};7

end8

end9

end10

end11

return E(k);12

Algorithm 6.3: BuildingRuleR2(k,P(1), . . . ,P(k),E(0), . . . ,E(k−1)).

Let us now see an example of execution.

6.1.4 Example: evaluation of general bivariate degree-2 polynomials

This section is devoted to give an example of execution of Algorithm 6.1. Let us consider the
general degree-2 bivariate polynomial a(x, y) defined as follows:

a(x, y) = a0,0 + a1,0 · x+ a0,1 · y + a1,1 · x · y. (6.8)

Here, we will explain how to determine the result of each step. Assume first that the algorithm is
initialized with the following sets, as in (6.7):

E(0) =
{
a0,0, a1,0, a0,1, a1,1

}
and P(1) =

{
x, y
}
. (6.9)

Execution of step 1

Recall that step 1 consists in applying all the building rules, presented in Section 6.1.2, on the
elements built in the previous steps, here E(0) and P(1) in (6.9), and computing all the expressions
of total degree 1.

• Using P(1) in (6.9), it follows that applying rule R1 gives the set P(2) of powers of degree 2,
defined as:

P(2) =
{
x · y

}
. (6.10)

Remark that these expressionswill not be used in step 1, but in step 2. Hence, we could have
applied this rule at the end of the step 1.
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Input: step k, power sets P(1), . . . ,P(k), expression sets E(0), . . . ,E(k−1), and a subset of E(k−1)

Output: expression set E(k)

// Initialization
idx← 1;1

tmp[idx]← E(k);2

repeat3

idx← idx + 1;4

/ * Consider each pair of E (k) × E(k′), with k′ ∈ {0, . . . , k} * /
for k′ ← 0 to k do5

for i← 1 to length( E(k′)) do / * for each expression e2 of E (k′)
* /6

j ← 1;7

if (idx = 2) ∧ (k′ = k) then j ← i+ 1;8

while j ≤length( tmp[idx− 1]) do / * for each expression e1 of E (k),9

with e1 6= e2 * /

e← E(k′)[i] + tmp[idx− 1][j];10

if isvalid( e) then / * if e = e1 + e2 is valid * /11

tmp[idx]← tmp[idx] ∪ {e};12

end13

j ← j + 1;14

end15

end16

end17

for k′ ← 2 to idx− 1 do18

for i← 1 to length( tmp[k′]) do / * for each expression of degree k19

previously created by R3 * /
j ← 1;20

if k = idx− 1 then j ← i+ 1;21

while j ≤length( tmp[idx− 1]) do / * for each expression of degree22

k just created by R3 * /
e← tmp[k′][i] + tmp[idx− 1][j];23

if isvalid( e) then24

tmp[idx]← tmp[idx] ∪ {e};25

end26

end27

end28

end29

until length( tmp[idx]) 6 = 0 ;30

for i← 2 to idx− 1 do / * concatenation of the expressions created. * /31

E(k) ← E(k) ∪ tmp[i];32

end33

return E(k);34

Algorithm 6.4: BuildingRuleR3(k,P(1), . . . ,P(k),E(0), . . . ,E(k)).
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• Then, applying rule R2 consists in considering each pair of expressions (e, p) ∈ E(0) × P(1),
and deducing all the valid resulting expressions, which are:

{
a1,0 · x, a0,1 · y, a1,1 · x, a1,1 · y

}
. (6.11)

Remark here, that the expressions a0,0 · x, a0,0 · y, a1,0 · y and a0,1 · x are not valid, since they
cannot be used for evaluating the polynomial a(x, y) in (6.8).

• Finally, it remains to apply the rule R3, that consists in condering each pair of expressions
(e1, e2) with e1 an expression of degree 1 in (6.11) and e2 a coefficient in (6.9) or an expression
in (6.11), and computing all the valid expressions. It follows that the resulting expressions
are:
{
a0,0 + a1,0 · x, a0,0 + a0,1 · y, a0,1 + a1,1 · x, a1,0 + a1,1 · y

}
and

{
a1,0 · x+ a0,1 · y

}
. (6.12)

Remark that the rule R3 takes expressions of degree at most 1 for creating expressions of
degree 1. Hence, we have to apply this rule R3 to the new expressions in (6.12). Thus, let us
consider each pair of expressions (e1, e2) with e1 an expression in (6.12), and e2 a coefficient
in (6.9), an expression in (6.11), or in (6.12). By iterating the process until no more expression
is created, we obtained the set E(1) defined as follows

E(1) =
{
a1,0 · x, a0,1 · y, a1,1 · x, a1,1 · y,

a0,0 + a1,0 · x, a0,0 + a0,1 · y, a0,1 + a1,1 · x, a1,0 + a1,1 · y, (6.13)

a1,0 · x+ a0,1 · y, a0,0 + (a1,0 · x+ a0,1 · y)
}
.

Let us now see how to build from these expressions the ones of degree 2, that evaluate the poly-
nomial a(x, y) in (6.8).

Execution of step 2

At step 2, rule R1 is not used. Indeed its application on the elements of P(1) and P(2) would have
produced the empty set, since no powers of degree 3 can be used for evaluating the degree-2
polynomial in (6.8).

Hence, let us first see the result of the application of rule R2. To do so, we consider each pair
(e, p) where e belongs to E(0) in (6.9) and p to P(2) in (6.10), or where e belongs to E(1) in (6.13) and
p to P(1) in (6.9). Then multiplying e by p leads to an expression of degree 2. After eliminating the
non-valid expressions thus produced, we finally obtain:

{
a1,1 · (x · y)

}
and

{
(a1,1 · y) · x, (a1,0 + a1,1 · y) · x, (a1,1 · x) · y, (a0,1 + a1,1 · x) · y

}
. (6.14)

Finally, it remains to apply the rule R3 to the expressions in (6.14) together with those built in the
previous steps. To illustrate that, let us see how to obtain the following parenthesization:

a0,0 +
[

(a0,1 · y) +
(

(a1,0 · x) +
(
a1,1 · (x · y)

))]

. (6.15)

A first application of rule R3 to the elements of (6.14) together with those of E(1) in (6.13) leads to
the following expression:

(a1,0 · x) +
(
a1,1 · (x · y)

)

Applying a second time rule R3 to these same elements gives:
[

(a0,1 · y) +
(

(a1,0 · x) +
(
a1,1 · (x · y)

))]

. (6.16)
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A last application of rule R3 to (6.16) and the elements of E(0) yields the parenthesizations in (6.15).
Actually by iterating until no more evaluation scheme is computed, we get 51 evaluation paren-
thesizations, shown in Listing 6.1 below. (Remark that in Listing 6.1, the coefficients are presented
under the syntax of CGPE: they are numbered from 0 to 3, so that the polynomial to be evaluated
is a0 + a1 · x+ a2 · y + a3 · xy.)

We observe that since anx ,ny
6= 0 in (6.1), the application of rule R3 cannot build expression by

adding two expressions having the same total degree. Hence during the last step, lines 18 to 29 of
Algorithm 6.4 cannot create any valid expressions and thus, can be skipped.

6.1.5 Improvement for some “special” polynomials

Until now, we have detailed the algorithm used for generating all the parenthesizations for eval-
uating general bivariate polynomials. Let us now consider polynomials that contain only one
coefficient of each degree, that is, whose all monomials ai,jx

iyj satisfy the following property:

if ai,jx
iyj 6= ai′ ,j′x

i′yj′ then i+ j 6= i′ + j′.

This is in particular the case for univariate polynomials or for the particular bivariate polynomials
used in Part I for the implementation of roots and division, for example. Let us now detail two
improvements that can be done for generating all the parenthesizations of such polynomials.

First improvement. In this case, we may remark that in Algorithm 6.4, we cannot build any ex-
pressions by adding two expressions of the same degree. Hence, a first improvement con-
sists in simplifying Algorithm 6.4 by considering only pairs of expressions (e1, e2) of distinct
degrees. This can mainly be done by considering k′ 6= k between lines 5 and17 and by
removing the lines 18 to 29. (This new version will be called UnivariateLike, later in this
section.)

Second improvement To illustrate the second improvement, let us consider degree-3 univariate
polynomials:

a(x) = a0,0 + a1,0 · x+ a2,0 · x2 + a3,0 · x3.

Consider step 3 of Algorithm 6.1, and that we have already applied rules R1 and R2. Hence,
we have E(k), for k ∈ {0, . . . , 3}, where E(3) contains a subset of all the parenthesizations for
evaluating degree-3 expressions. By denoting ei an expression of degree i or equal to 0, that
is, ei ∈ E(i) ∪ {0}, we observe that

a(x) = e0 + e1 + e2 + e3.

For example, we could have:

a(x) = (a0,0 + a1,0 · x) + (x · x) · (a2,0 + a3,·x),

and
e0 = 0, e1 = a0,0 + a1,0 · x, e2 = 0, and e3 = (x · x) · (a2,0 + a3,·x).

It remains now to find all the parenthesizations. Since addition is commutative, we observe
that the polynomial a(x) can be defined by considering each permutation of the elements
{e0, e1, e2}, as follows:

a(x) =







[
(e3 + e2) + e1

]
+ e0

[
(e3 + e1) + e2

]
+ e0

[
(e3 + e2) + e0

]
+ e1

[
(e3 + e0) + e2

]
+ e1

[
(e3 + e1) + e0

]
+ e2

[
(e3 + e0) + e1

]
+ e2
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1 a(x,y) = ((a0+((x * a1)+(y * a2)))+(x * (y * a3)))
2 a(x,y) = ((a0+((x * a1)+(y * a2)))+(y * (x * a3)))
3 a(x,y) = ((a0+((x * a1)+(y * a2)))+((x * y) * a3))
4 a(x,y) = (((x * a1)+(a0+(y * a2)))+(x * (y * a3)))
5 a(x,y) = (((x * a1)+(a0+(y * a2)))+(y * (x * a3)))
6 a(x,y) = (((x * a1)+(a0+(y * a2)))+((x * y) * a3))
7 a(x,y) = (((y * a2)+(a0+(x * a1)))+(x * (y * a3)))
8 a(x,y) = (((y * a2)+(a0+(x * a1)))+(y * (x * a3)))
9 a(x,y) = (((y * a2)+(a0+(x * a1)))+((x * y) * a3))
10 a(x,y) = ((a0+(x * a1))+(y * (a2+(x * a3))))
11 a(x,y) = ((a0+(y * a2))+(x * (a1+(y * a3))))
12 a(x,y) = (a0+(((x * a1)+(y * a2))+(x * (y * a3))))
13 a(x,y) = (a0+(((x * a1)+(y * a2))+(y * (x * a3))))
14 a(x,y) = (a0+(((x * a1)+(y * a2))+((x * y) * a3)))
15 a(x,y) = ((x * a1)+((a0+(y * a2))+(x * (y * a3))))
16 a(x,y) = ((x * a1)+((a0+(y * a2))+(y * (x * a3))))
17 a(x,y) = ((x * a1)+((a0+(y * a2))+((x * y) * a3)))
18 a(x,y) = ((y * a2)+((a0+(x * a1))+(x * (y * a3))))
19 a(x,y) = ((y * a2)+((a0+(x * a1))+(y * (x * a3))))
20 a(x,y) = ((y * a2)+((a0+(x * a1))+((x * y) * a3)))
21 a(x,y) = ((a0+(x * a1))+((y * a2)+(x * (y * a3))))
22 a(x,y) = ((a0+(x * a1))+((y * a2)+(y * (x * a3))))
23 a(x,y) = ((a0+(x * a1))+((y * a2)+((x * y) * a3)))
24 a(x,y) = ((a0+(y * a2))+((x * a1)+(x * (y * a3))))
25 a(x,y) = ((a0+(y * a2))+((x * a1)+(y * (x * a3))))
26 a(x,y) = ((a0+(y * a2))+((x * a1)+((x * y) * a3)))
27 a(x,y) = (((x * a1)+(y * a2))+(a0+(x * (y * a3))))
28 a(x,y) = (((x * a1)+(y * a2))+(a0+(y * (x * a3))))
29 a(x,y) = (((x * a1)+(y * a2))+(a0+((x * y) * a3)))
30 a(x,y) = (a0+((x * a1)+(y * (a2+(x * a3)))))
31 a(x,y) = (a0+((y * a2)+(x * (a1+(y * a3)))))
32 a(x,y) = ((x * a1)+(a0+(y * (a2+(x * a3)))))
33 a(x,y) = ((y * a2)+(a0+(x * (a1+(y * a3)))))
34 a(x,y) = (a0+((x * a1)+((y * a2)+(x * (y * a3)))))
35 a(x,y) = (a0+((x * a1)+((y * a2)+(y * (x * a3)))))
36 a(x,y) = (a0+((x * a1)+((y * a2)+((x * y) * a3))))
37 a(x,y) = (a0+((y * a2)+((x * a1)+(x * (y * a3)))))
38 a(x,y) = (a0+((y * a2)+((x * a1)+(y * (x * a3)))))
39 a(x,y) = (a0+((y * a2)+((x * a1)+((x * y) * a3))))
40 a(x,y) = ((x * a1)+(a0+((y * a2)+(x * (y * a3)))))
41 a(x,y) = ((x * a1)+(a0+((y * a2)+(y * (x * a3)))))
42 a(x,y) = ((x * a1)+(a0+((y * a2)+((x * y) * a3))))
43 a(x,y) = ((x * a1)+((y * a2)+(a0+(x * (y * a3)))))
44 a(x,y) = ((x * a1)+((y * a2)+(a0+(y * (x * a3)))))
45 a(x,y) = ((x * a1)+((y * a2)+(a0+((x * y) * a3))))
46 a(x,y) = ((y * a2)+(a0+((x * a1)+(x * (y * a3)))))
47 a(x,y) = ((y * a2)+(a0+((x * a1)+(y * (x * a3)))))
48 a(x,y) = ((y * a2)+(a0+((x * a1)+((x * y) * a3))))
49 a(x,y) = ((y * a2)+((x * a1)+(a0+(x * (y * a3)))))
50 a(x,y) = ((y * a2)+((x * a1)+(a0+(y * (x * a3)))))
51 a(x,y) = ((y * a2)+((x * a1)+(a0+((x * y) * a3))))

Listing 6.1: All the evaluation parenthesizations for evaluating a degree-2 bivariate polynomial.
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This second improvement is called UnivariateLike-Optim. Its interest relies on the fact that,
at step 3, once we have applied rule R2, each permutation of {e0, e1, e2} can be considered
separately. This improvement has been implemented in CGPE, where, each permutation of
{e0, e1, e2} is considered iteratively one after the other.

Moreover, the computation of all the parenthesizations for evaluating the degree-3 univari-
ate polynomial a(x) can be done in parallel, as shown in Figure 6.3.
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Figure 6.3: Strategy for parallel generation of parenthesizations for evaluating univariate degree-3
polynomials.

Remark, in Figure 6.3, that each node of the tree could be launched on a particular processor,
which would lead to a parallel version of the algorithm. Unfortunately, this version has still
not been implemented.

6.1.6 Numerical results

This algorithm has been integrated into the software environment CGPE [Rev]. This section
presents some numerical results, obtained using this tool, for evaluating various kinds of poly-
nomials.

Bivariate and univariate polynomials

Let a(x, y) be a bivariate polynomial, defined as in (6.1), with nx and ny its degrees in x and y, re-
spectively. Table 6.1 below gives the numbers of all possible parenthesizations for evaluating the
polynomial a(x, y), for some degrees (nx, ny). The underlined numbers indicate that these paren-

nx = 1 nx = 2 nx = 3 nx = 4 nx = 5 nx = 6

ny = 0 1 7 163 11602 2334244 1304066578

ny = 1 51 67467 1133220387 207905478247998 -

ny = 2 67467 106191222651 10139277122276921118 - -

Table 6.1: Number of generated parenthesizations for evaluating a bivariate polynomial.

thesizations have not been currently generated but only counted, using what is done in [Mou09].
We can observe that even for small degree, the numbers of possible parenthesizations may be
extremely large, and consequently, the timings for generating all these parenthesizations as well.
For example, generating the 2334244 parenthesizations for the evaluation of degree-5 univariate
polynomials takes about 1 hour 15m on a 2,4 Ghz core, using UnivariateLike algorithm, while
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generating the 67467 parenthesizations for the evaluation of degree-(2, 1) bivariate polynomial
takes about 30 seconds.

Impact of theUnivariateLike-Optim algorithm. Remark, from now, that by using theUnivariateLike-
Optim algorithm, the timings for generating all the 2334244 parenthesizations of a degree-5 uni-
variate polynomial falls to about 4 minutes, that is, in this case we obtain a speed up by a factor
larger than 18 compared to the UnivariateLike algorithm. Hereafter, we will always use this ver-
sion of the algorithm for our “special” polynomials, since it is much faster.

Some particular bivariate polynomials

In our context, the polynomials to be evaluated are of the form P (s, t) = 2−p−1 + s · a(t), with a(t)
a univariate polynomial. They can be seen as general bivariate polynomial as in (6.1) with a(t) a
univariate degree-ntx polynomial, ns = 1, and some coefficients equal to 0. Hence Algorithm 6.1
can be used by simply removing all the zero coefficients from the initial set E(0).

nt = 1 nt = 2 nt = 3 nt = 4 nt = 5 nt = 6

P (s, t) = 2−p−1 + s · a(t) 10 481 88384 - - -

Table 6.2: Number of generated parenthesizations for evaluating particular bivariate polynomials.

Table 6.2 gives the number of generated parenthesizations for the evaluation of the particular
bivariate polynomial P (s, t) = 2−p−1 + s · a(t), with a(t) a degree-nt univariate polynomial. The
generation of the 88384 parenthesizations for nt = 3 is done within a few seconds. But those for
nt = 4 could not have been generated in a reasonable amount of time.

Anyway, in our context, we do not want to generate all the parenthesizations, but just those
having the lowest latency, as will be detailed in Section 6.2.

What about the latency of evaluation?

Assuming that we want to integrate these algorithms into an automatic process for generating
efficient parenthesizations, the problem is that we cannot generate all the parenthesizations in a
faster way, especially for higher degrees, to choose the best one. So, let us see now the number
of evaluation trees having the minimal latency. Here, we present some numerical results in terms
of numbers of parenthesizations. The way used for generating them, especially to determine this
latency, or at least a lower bound, is described in the next section. Tables 6.3 and 6.4 give for
some degrees, the numbers of parenthesizations having minimal latency. (This minimal latency
indicated between brackets). Here and hereafter, all the latencies are given for the ST231 processor,
with an addition in 1 cycle and a pipelined multiplication in 3 cycles.

nx = 1 nx = 2 nx = 3 nx = 4 nx = 5 nx = 6 nx = 7

ny = 0 [minimal latency] 1 [4] 2 [7] 12 [8] 187 [10] 36 [10] 9854 [11] 612 [11]

ny = 1 [minimal latency] 9 [7] 129 [8] 135974 [10] - - - -

Table 6.3: Number of parenthesizations of minimal latency (between brackets) for evaluating a
bivariate polynomials.

All these parenthesizations have been generated using CGPE as well. Let us make the follow-
ing remarks:
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nt = 1 nt = 2 nt = 3 nt = 4 nt = 5 nt = 6

P (s, t) = 2−p−1 + s · a(t) [min. lat.] 3 [7] 33 [8] 1208 [10] 99 [10] 447803 [11] 10494 [11]

Table 6.4: Number of parenthesizations of minimal latency (between brackets) for evaluating
some special bivariate polynomials.

• The generation of the 612 parenthesizations for evaluating degree-7 univariate polynomials
in 11 cycles have been done in about 1s.

• The 447803 parenthesizations of latency 11 cycles for degree-(5,1) particular bivariate poly-
nomials P (s, t) = 2−p−1 + s · a(t) have been generated in about 25s.

• Finally, the generation of the 10494 parenthesizations of latency 11 for evaluating particular
degree-(6,1) bivariate polynomials P (s, t) = 2−p−1+s·a(t) has been done in approximatively
2m30s.

These results point out the interest of finding aminimal latency, and generating only the paren-
thesizations that have a latency as close as possible to it. Section 6.2 below details the way used to
determine such a minimal target latency.

6.2 Computing parenthesizations of low evaluation latency

We have seen in the previous section that clearly the number of parenthesizations for evaluating
a given polynomial is extremely large, even for univariate polynomials of small degree (≤ 5).
However, we observe in Table 6.3 above that, for example, among the 2334244 parenthesizations
evaluating a degree-5 univariate polynomial, only 36 are of minimal latency of 10 cycles.

Basically in most cases, we want to keep the parenthesizations that reduce the evaluation la-
tency on unbounded parallelism, and more particularly we do not want to compute the other
ones. Hence if we manage to determine in a faster way the minimal latency for the evaluation of
a(x, y), at each step of the computation of the parenthesizations in Algorithm 6.1, we will be able
to keep only the ones having a latency no larger than this bound, and thus to converge quickly
towards some parenthesizations having minimal latency. Determining such a minimal latency
may be costly, and we prefer here to determine a lower bound on this latency. This approach is
heuristic, and if no evaluation scheme satisfying this target latency has been computed at the end
of the process, we increment it by one and restart the computation.

Therefore this section presents the method used for determining a priori a target latency, for
evaluating the bivariate polynomial a(x, y) defined in (6.1).

6.2.1 Definition of the target latency

Assume now that the last operation of the evaluation of the polynomial a(x, y) is an addition
(a0,0 6= 0). Since this evaluation consists at least in evaluating

a0,0 + anx ,ny
xnxyny ,

this target latency can be obtained as the latency of the evaluation of the leading monomial plus
the latency of the last addition. In the following of this section, we will denote by A and M the
latencies of addition and multiplication, respectively. For example, on the ST231 processor, we
have A = 1 andM = 3.
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Example 6.3. Let a(x, y) be a degree-2 polynomial defined as follows

a(x, y) = a0,0 + a1,0 · x+ a0,1 · y + a1,1 · x · y.

Any program that evaluates a(x, y) is also able to evaluate a0,0 + a1,1 · x · y. We know that there
exists three parenthesizations for evaluating a1,1 · x · y, which are

a1,1 · (x · y), (a1,1 · x) · y, and (a1,1 · y) · x.

All these parenthesizations have a latency of 2×M = 6 cycles. We deduce the following target
latency τ = 2M +A, which on ST231, is:

τ = 2× 3 + 1 = 7 cycles.

For the sake of clarity, we denote by a′ the leading coefficient of the polynomial a(x, y), that is,

a′ = anx ,ny
.

It remains now to determine a lower bound on the evaluation of the leading monomial.
A first approach consists in assuming that evaluating a′xnxyny in unbounded parallelism is at

least as general as evaluating xnx+ny+1. Since evaluating xnx+ny+1 requires at least ⌈log2(nx +ny +
1)⌉ successive multiplications [Knu98, §4.6.3], we deduce the following static target latency:

τstatic = ⌈log2(nx + ny + 1)⌉ ×M +A. (6.17)

This first lower bound is static, and does not take into account the inner structure of the problem.
Let us now have a look at the determination of a dynamic target latency.

6.2.2 Determination of a dynamic target latency

This section presents the method we have implemented to determine a dynamic target latency,
that takes into account the specification of the problem. Indeed, we have seen in Part I that during
the implementation of a mathematical function, one of the following cases may occur:

• One of the indeterminates may be obtained a few cycles later than the other one (in the case
of bivariate polynomial evaluation, only): this is what we called the delay on one of the
indeterminates;

• Some polynomial coefficients may be forced to be a power of 2 so that multiplications by
these coefficients may be replaced by simple shifts on the targeted integer architecture.

Let us now see how to determine this latency. To do so, we denote byAB(i, j) the minimal latency
for evaluating a monomial a′xiyj . Hence, it follows that

τdynamic = AB(nx, ny) +A. (6.18)

In the remainder of this section, we denote by Dx (respectively Dy) the cost for obtaining the
indeterminate x (respectively y). The delay of y with respect to x thus is equal to Dy − Dx. We
also writeM ′ for the latency of the multiplication by the leading coefficient a′. Let us now see first
how to compute the latency for evaluating the expressions of the form xnx and a′xnx , then those
to compute xnxyny and a′xnxyny .
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Minimal latency for the evaluation of xnx and a′xnx

Following what is done in [Knu98, §4.6.3], we want first to compute the minimal latency for the
evaluation of xnx (with nx ∈ N). Let k ∈ N and 0 ≤ k ≤ nx, such as

xnx = xk × xnx−k.

Since obviously xk×xnx−k = xnx−k×xk, we can restrict k to be in {1, 2, . . . , ⌊nx/2⌋}. The objective
is to determine the value k for which the evaluation latency of xnx is minimal. To do so, let Ux(nx)
be the minimal latency for the evaluation of xnx assuming that x is obtained afterDx cycles. Given
nx, one of the following cases may occur.

• If nx = 0, then we have Ux(nx) = 0.

• If nx = 1, then we have Ux(nx) = Dx, since it corresponds to the latency for obtaining the
indeterminate x and no multiplication is required to compute xnx = x.

• Otherwise, given a value k, the lowest latency for evaluating xnx = xk × xnx−k is defined as
follows:

M + max
(
Ux(k), Ux(nx − k)

)
.

as illustrated in Figure 6.4 below.

xnx

xk

xnx−k

Ux(k) Ux(nx − k)

Ux(nx)

Figure 6.4: Latency for the evaluation of xnx = xk × xnx−k.

It follows that the minimal latency for evaluating xnx is defined as:

Ux(nx) =







0 if nx = 0,
Dx if nx = 1,

mink=1,2,...,⌊nx/2⌋

{

M + max
(
Ux(k), Ux(n− k)

)}

otherwise.
(6.19)

Using the same approach, we immmediately obtain a definition for AUx(nx), the minimal
latency for evaluating a′xnx :

AUx(nx) =







0 if nx = 0,
M ′ +Dx if nx = 1,

mink=0,...,nx−1

{

M + max
(
AUx(k), Ux(n− k)

)}

otherwise.

(6.20)

Remark that Uy(ny) and AUy(ny) can be defined in the same way.

Minimal latency for the evaluation of xnxyny and a′xnxyny

In the same way as for the computation of the minimal latency for the evaluation of xnx in the
previous paragraph, this goal is here to find a pair (kx, ky) such that

xnxyny = xkxyky × xnx−kxyny−ky ,
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and so that the latency of the evaluation of xnxyny remains minimal. To do so, let us define
B(nx, ny) the minimal latency for the evaluation of xnxyny assuming that x and y are available
after Dx andDy cycles, respectively. Then, one of the following cases occurs.

• If nx = 0 then B(nx, ny) = Uy(ny), since it amounts to evaluate yny .

• If ny = 0 then B(nx, ny) = Ux(nx), since it amounts to evaluate xnx .

• Otherwise, given the values kx and ky , the lowest latency for evaluating the powers xnxyny

is defined as follows:

M + max
(
B(kx, ky), B(nx − kx, ny − ky)

)
,

with kx + ky 6= 0 and kx + ky 6= nx + ny.

Assume here that kx ∈ {0, . . . , nx} and ky ∈ {0, . . . , ny}, with kx + ky 6= 0 and kx + ky 6= nx + ny.
It follows that the minimal latency for evaluating the powers xnxyny is defined as:

B(nx, ny) =







Uy(ny) nx = 0,

Ux(nx) ny = 0,

minkx,ky

{

M + max
(
B(kx, ky), B(nx − kx, ny − ky)

)}

otherwise.
(6.21)

Finally, using (6.19), (6.20) and (6.21), we can deduce It follows finally Algorithm 6.5 for
computing AB(i, j) (the minimal latency for evaluating a monomial a′xiyj) and then deducing
τdynamic in (6.18). For sake of efficiency, this algorithm is implemented using dynamic program-
ming [CLR92].

6.2.3 Numerical results

We have seen in Section 6.1.6 the impact of the target latency on the number of generated paren-
thesizations and more particularly on the timing of the generation. Let us now have a look at the
quality of the evaluation program generated using CGPE for evaluating polynomial of the form

P (s, t) = 2−p−1 + s · a(t),

with a(t) a degree-nx polynomial. To fit the notation presented in the previous section, we assume
here that ny = 1. Table 6.5 below shows for various functions the degree of the polynomial ap-
proximant a(t), the delay on the indeterminate s with respect to the indeterminate t (called Ds,
assuming Dt = 0), and the latency on unbounded parallelism as well as the one on a simplified
model of the ST231 processor (some details about this model are given in Section 6.4.2 below).

Impact of the delay of one of the indeterminates on the target latency

Table 6.6 below shows for various degrees nx and various delays on the indeterminate s, the static
target latency in (6.17) and the dynamic one computed as in (6.18). The interest of this table lies
in the fact that it enables to decide if an improvement of the computation of the indeterminate s
would lead to a possible improvement of the evaluation latency of the polynomial.

Consider for example the square root function presented in Chaper 3. As shown in Table 6.5
below, we have implemented this function with a degree-8 polynomial a(t) and we know that the
indeterminate s is obtained 3 cycles after t. Hence, we can see in Table 6.6 that even if we had a
smaller delay on s, we could not have had a faster implementation. More particulalry, we could
have a delay up to 6 cycles without any increase of the target latency. However, using the heuristic
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Input: degrees nx, ny of the polynomial a(x, y) in 6.1

Output: axy[nx][ny] = AB(nx, ny), the minimal latency for evaluating a monomial a′xiyj

if axy[dx][dy] == -1 then / * axy[ nxx][ ny] have not been computed yet * /1

if dx == 0 then axy[nx][ny] = AUy(ny);2

else if dy == 0 then axy[nx][ny] = AUx(nx);3

else4

/ * Special case: kx = 0 and ky = 0 * /
minlatency←M ′ +B(nx, ny);5

for kx ← 0 to nx do6

for ky ← 0 to ny do7

if kx + ky 6= 0 and kx + ky 6= nx + ny then8

minlatency9

← min
(

minlatency,M + max
(
AB(kx, ky), B(nx − kx, ny − ky)

))

;

end10

end11

end12

axy[nx][ny]←minlatency;13

end14

return axy[dx][dy];15

Algorithm 6.5: AB(nx, ny), minimal latency for evaluating a′xnxyny .

x1/2 x−1/2 x1/3 x−1/3 x1/4 x−1/4 x1/5 x−1/5 x−1 x/y

Degree (nx,ny) (8,1) (9,1) (8,1) (9,1) (8,1) (9∗,1) (8,1) (8,1) (10,0) (10,1)

DelayDs on the operand s (# cy-
cles)

3 3 9 9 3 3 9 9 0 3

Latency on unbounded paral-
lelism (# cycles)

13 13 16 16 13 13 16 16 13 14

Latency on ST231 (# cycles) 13 14 16 16 13 14 16 16 13 15

Table 6.5: Latency on unbounded parallelism and on ST231, for various functions of FLIP.
(∗ Note that here we consider a degree-9 polynomial approximant for the reciprocal fourth root, so that the validation

can be done automatically.)
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nx τstatic τdynamic with Ds = . . .

0 1 2 3 4 5 6 7 8 9 10

1 7 7 7 7 7 8 9 10 11 12 13 14

2 7 7 8 9 10 10 10 10 11 12 13 14

3 10 10 10 10 10 10 10 10 11 12 13 14

4 10 10 10 10 10 11 12 13 13 13 13 14

5 10 10 10 10 10 11 12 13 13 13 13 14

6 10 10 11 12 13 13 13 13 13 13 13 14

7 13 13 13 13 13 13 13 13 13 13 13 14

8 13 13 13 13 13 13 13 13 14 15 16 16

9 13 13 13 13 13 13 13 13 14 15 16 16

10 13 13 13 13 13 13 13 13 14 15 16 16

11 13 13 13 13 13 13 13 13 14 15 16 16

12 13 13 13 13 13 14 15 16 16 16 16 16

13 13 13 13 13 13 14 15 16 16 16 16 16

14 13 13 14 15 16 16 16 16 16 16 16 16

15 16 16 16 16 16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16 16 16 16 16 17

17 16 16 16 16 16 16 16 16 16 16 16 17

18 16 16 16 16 16 16 16 16 16 16 16 17

19 16 16 16 16 16 16 16 16 16 16 16 17

20 16 16 16 16 16 16 16 16 16 16 16 17

Table 6.6: Target latency for various degrees nx and various delaysDs.

of CGPE presented in Section 6.3, we cannot find any evaluation program in 13 cycles with a delay
larger than 3.

As a second example, let us consider the cube root, implemented using a degree-9 polynomial
approximant a(t) and a delay on s of 9 cycles. From Table 6.6, we can observe that if we had s in
8 cycles instead of 9, we would have a target latency of 15 cycles. Furthermore, using CGPE, we
have indeed found an evaluation program whose latency is of 15 cycles.

These examples point out the impact of the delay on the indeterminate s on the whole latency,
and the interest of not neglecting its computation in the implementations presented in Part I.

Comparison of static and dynamic target latencies

Let us now observe if the evaluation program generated with CGPE for implementing the func-
tions in Table 6.5 above are optimal in terms of latency of evaluation. We have computed the
target latency for the implementation of the functions of Table 6.5 based on bivariate polynomial
evaluation, which are displayed in Figure 6.5 below.

Let us first consider the square root function x1/2 for which the degree in t of the approximant
is 8. Using Figure 6.5(a), since for this function, s is obtained 3 cycles after the indeterminate t,
we deduce that the polynomial approximant cannot be evaluated in fewer than 13 cycles. Hence,
we conclude that, for the square root, the evaluation of the polynomial approximant is optimal on
ST231.

In fact, the same conclusion follows for all the functions of Table 6.5 based on the evaluation
of a bivariate polynomial, except for x−1/2, x−1/4, and x/y. Moreover, for the reciprocal function
we can compute using AUx(10) in (6.20) a target latency of 13 cycles, that enables to conclude also
for this function that the polynomial evaluation program is optimal.
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Figure 6.5: Target latency for the evaluation of particular bivariate polynomials of the form
P (s, t) = 2−p−1 + s · a(t).

Impact of the cost of the last multiplication

Until now,we have studied the impact on the target latency of the delay on s. In this third example,
we will show the impact on this bound of the cost of the multiplication by the leading coefficient.
Indeed, in Chapters 1 and 3, we have seen that forcing the leading coefficient to be a power of 2
may lead to a decrease of the size of the generated assembly code. But what about the evaluation
latency? From the results of Figure 6.6, we can make the following remarks:
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Figure 6.6: Impact of forcing the leading coefficient to be a power of 2.

• From Figure 6.6(a), we can conclude that even if we force the leading coefficient of the
degree-8 polynomial approximant for square root to be a power of 2, that is,M ′ = 1 (since it
is equivalent to a simple shift), we cannot expect any improvement of the evaluation latency.

• On Figure 6.6(b), we remark that if we force the leading coefficient of the cube root polyno-
mial approximant (which has degree 8) to be a power of 2 (M ′ = 1), the target latency falls to
14 cycles (instead of 16 cycles). However, so far, CGPE has only found programs in 15 cycles,
and this new lower bound of 14 cycles has not been reached. In such a case, we do not know
yet if the lower bound is to optimistic, or if the heuristics used in CGPE have indeed failed
to achieve it.

Not only does the target latency speed up the whole generation process, but it also allows to
conclude on the optimality of some evaluation programs. The following of this chapter presents a
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heuristic we have implemented to converge quickly towards parenthesizations of low evaluation
latency.

6.3 Optimized search of best parenthesizations

We have seen in the previous two sections how to build all the parenthesizations for evaluating
a given bivariate polynomial (Section 6.1), and how to converge toward those having the mini-
mal latency by restricting Algorithm 6.1 to schemes achieving a given target latency (Section 6.2).
However, we know from numercial results of Section 6.1.6 that generating all the parenthesiza-
tions of minimal latency, even for “small” degrees, may be costly. For example, recall from Ta-
ble 6.4 that getting the 10494 schemes ofminimal latency in the degree-(6,1) case took about 2m30s.
Hence, it turns out to be useful to implement heuristics, that reduce the combinatorics during the
generation, and thus reduce at the same time the whole generation timing to, say, 1 second or less
for the previous example.

This section presents an approach that is fully heuristic, in order to generate in a faster way
efficient parenthesizations that reduce the latency of evaluation. A second constraint that we in-
troduce here is the number of multiplications involved in each parenthesization generated. Hence
at the end of the process, the generated parenthesizations are sorted according to (1) the latency
of evaluation, and (2) the number of multiplications.

Let us first describe the heuristic, and then give some numerical results to illustrate its interest.

6.3.1 Recursive search of best splittings of polynomials

This approach is based on a recursive search of the best splitting of the polynomial to be evalu-
ated. To understand the process, let us consider the following univariate polynomial a(x), that
we want to evaluate with a latency at most τ (computed either statically or dynamically using the
techniques of Section 6.2):

a(x) = a0,0 +1 a1,0 · x +2 · · · +n an,0 · xn with an,0 6= 0, (6.22)

The heuristic we have implemented consists in finding a splitting of the polynomial a(x) in (6.22),
by proceeding at step i as follows.

• We consider that the addition +i in (6.22) is the last operation of the parenthesization:

a(x) =
(

a0,0 +1 a1,0 · x +2 · · · ai − 1,0x
i−1
)

+i

(

ai,0 +i · · · +n an · xn
)

.

• And then, we search recursively efficient parenthesizations for both subpolynomials, on the
left and on the right of this addition.

Since for evaluating this polynomial with a latency at most τ , both subpolynomials have to be
evaluated with a latency at most τ ′ = τ −A (withA the cost of the addition), at each level of recur-
sion we reduce by A the target latency for both subpolynomials. Finally at each level of recursion
6= 1, the first step consists in computing the dynamic target latency for evaluating the considered
subpolynomial, and if it is larger than the latency τ ′, that means that the subpolynomial cannot
be evaluated in at most τ ′ cycles; and thus that splitting is discarded. For example, let us consider
the degree-(8,1) bivariate polynomial P (s, t) = 2−p−1 + s ·∑8

i=0 ait
i used to implement the square

root of FLIP, for example. Using the methods presented in Section 6.2, we determine that this
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polynomial cannot be evaluated in less than 13 cycles on the ST231 processor. Consider now the
first splitting:

(

2−p−1 + s ·
7∑

i=0

ait
i

︸ ︷︷ ︸

P ′(s,t)

)

+ a8t
8

︸︷︷︸

a′(t)

.

Using this heuristic, we will try to evaluate both subpolynomials P ′(s, t) and a′(t) in 13-1=12
cycles. However, we know from Table 6.6 that evaluating P ′(s, t) still requires 13 cycles, even
without delay in the indeterminate s. Hence, we can conclude that this splitting cannot succeed.
This heuristic is finally illustrated in Figure 6.7 below.

a′′(x)
a0

a(x)

a′(x)

a(x) a(x)

anx
n

a′′(x)a′(x)

a′(x)

a′2(x)
a′1(x)

a′(x)

a′1(x) a′2(x)

if support > max

if support ≤max

exhaustive search

Level 2

Level 1

τ ′ = τ − A

keep

Figure 6.7: Optimized search of best parenthesizations of univariate polynomial.

To reduce the combinatorics, all along the process, we have introduced two other parameters.

• At a given step, if a subpolynomial has a support (number of coefficients) no larger than
a “max” value, we launch the exhaustive algorithm on it, instead of the recursive-based
method. In practice, when the support of the subpolynomial is no larger than 5, we are able
to generate in a fast way all the parenthesizations of low latency.

• Since the number of schemes may still be extremely large, at each step of the process, we
can keep only the best ones (in the sense of, first, latency of evaluation and, then, number of
multiplications) among all those generated. In the remainder of the section, this parameter
will be called “keep”.

6.3.2 Numerical results

The questions that we can ask now are the following: (1) Using this heuristic, do we find any
parenthesizations of lowest evaluation latency? (2) What is the impact of this heuristic on the
timing of the whole generation process?
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Let us first have a look at the generation of lower latency parenthesizations for evaluating our
particular bivariate polynomials

P (s, t) = 2−p−1 + s

nx∑

i=0

ait
i,

without any delay on the indeterminate s, that is,Ds = 0.

Degree nx 5 6 7 8 9 10

Timing ≤ 1s ≤ 1s 1m56s 2m50s 2m26s 1s

Nb. of generated parenthesizations 155284 1221 10171239 14823887 16834164 43956

Latency 11 11 13 13 13 13

Nb. of multiplications 9 11 11 13 15 17

Table 6.7: First timings for the generation of parenthesizations for particular bivariate polynomials
using our recursive search of best splittings.

From Table 6.7 we can observe that using this heuristic enables to converge in a very fast
way towards parenthesizations of lower latency. For example, we have seen in Section 6.1.6, that
generating the 447803 parenthesizations of minimal latency 11 for evaluating a degree-6 particular
bivariate polynomial 2−1−p + s

∑5
i=0 ait

i is done about 25s. Here, we generate 155284 schemes
having this minimal latency, that is, about 34 %, in about one second, that is, 25 times faster.

What about the optimality of these parenthesizations? Using Tables 6.4 (for nx = 5 and nx = 6)
and 6.6 (for nx = 7, nx = 8 and nx = 9), we can conclude that the generated parenthesizations
using this heuristic are optimal in terms of latency on unbounded parallelism.

Impact of the number of kept

Let us now consider the degrees nx = 7, nx = 8, and nx = 9 in Table 6.7, which are the most
costly to handle, and let us observe the impact of the number of parenthesizations kept at each
step on the timing and the quality of the generated parenthesizations. Table 6.8 below displays
the timing generation, the latency, and the number of multiplications of the generated schemes,
for various values of “keep” parameter. (In Table 6.8 below, [13,13] indicates “of latency 13 cycles”
and “involving 13 multiplications”.) We observe on Table 6.8 below that, not suprisingly, if we

Parameter “keep”

1 10 100 1000 10000 100000

nx = 7 3s 3s 4s 5s 9s 45s

[13,13] [13,11] [13,11] [13,11] [13,11] [13,11]

nx = 8 ≤1s ≤1s ≤ 1s 2s 7s 58s

[13,13] [13,13] [13,13] [13,13] [13,13] [13,13]

nx = 9 ≤1s ≤1s ≤1s 2s 6s 1m03s

[13,16] [13,15] [13,15] [13,15] [13,15] [13,15]

Table 6.8: Impact of the value of the “keep” parameter on the timing of the generation and the
“quality” ([latency, number of multiplications]) of the generated parenthesizations.

reduce the number of parenthesizations at each step, we reduce also the generation timing.
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However, an interesting remark is the following: If we keep just one parenthesization at each
step of the process, we may get a parenthesization with a few more multiplication(s) than the one
we could have found otherwise. In Table 6.8, it is the case for nx = 7 and nx = 9.

From the results of Table 6.8, since most of the polynomials of FLIP are of degree nx =
{8, 9, 10}, for generating the efficient evaluation programs in a faster way, wewill use this heuristic
by keeping at each step only between 10 to 100 parenthesizations.

Interest of considering the delay during the generation

Let us now consider a real case of FLIP function implementation, and more particularly, the cube
root x1/3. The polynomial to be evaluated is P (s, t) = 2−p−1 + s ·∑9

i=0 ait
i, with a delay on the

indeterminate s of 9 cycles. Using this methodology, we have computed the timing for generating
efficient schemes for this polynomial, whose results are displayed in Table 6.9 below.

Parameter “keep”

1 10 100 1000

nx = 9 34s 35s 34s 54s

[16,15] [16,14] [16,14] [16,14]

Table 6.9: Timing of the generation and quality ([latency, number of multiplications]) of the gen-
erated parenthesizations, for evaluating a degree-10 particular bivariate polynomial, (nx, ny) =
(9, 1).

In this case, we observe that as before that keeping just one parenthesization at each step may
lead to an increase of the number of involved multiplications. But also, the timing is extremely
more important than the one without delay on one indeterminate.

Actually, in this case, due to the delay of 9 cycles, the target latency (16 cycles) does not allow
to reduce the combinatorics of our approach as much as expected, and the generation timing thus
is significantly larger than when the delay is of 3 cycles (and the target latency of 13 cycles).

We could have chosen to generate schemes without taking the delay on s into account, and
simply considered it after the generation. Therefore, we would have obtained in ≤ 1 second (see
Table 6.8 for nx = 9 and “keep= 1”) a scheme with an evaluation latency of 13 cycles, as for
example the following one:

((((c+(s * (a0+(t * a1))))+((s * (t * t)) * (a2+(t * a3))))
+((s * (t * t)) * ((t * t) * (a4+(t * a5))))

)+(((s * (t * t)) * ((t * t) * (t * t))) * ((a6+(t * a7))+((t * t) * (a8+(t * a9))))))

The problem is that since s is known 9 cycles after t, the latency on unbounded paralelism as well
as on a simplified model of the ST231 would have been in 19 cycles. (This latency of 19 cycles has
been computed using CGPE and the scheduler presented in 6.4.2.)

That statement confirms the interest of taking the delay on the indeterminates into account
during the generation, and not only after, in order to ensure the quality (in terms of latency of
evaluation) of the generated programs.

6.4 Generating efficient and certified polynomial evaluation programs

This last section presents the general framework that we have implemented for generating ef-
ficient and certified polynomial evaluation programs for the implementation of mathematical
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function. Recall that by efficient, we mean polynomial evaluation programs that reduce the eval-
uation latency (and the number of multiplications), and by certified we mean that we compute a
bound on the evaluation error that is no larger than a target accuracy bound called η, as in Part I.

In [Mar08], a method is presented that transforms a given arithmetic expression in an equiv-
alent one, so that the result expression is more accurate than the original one. This is in contrast
with our approach here, where we want to be “accurate enough”, but also as efficient as possible.
In [CLM05] and [LV09], a methodology is proposed for implementing automatically mathematical
functions in a given precision, and optimized for embedded processors. However this method is
based on the evaluation of small degree polynomials, which are evaluated using Horner’s rule.

CGPE (Code Generation for Polynomial Evaluation) has been developed during this thesis,
and is actually the main part of this framework. It writes automatically efficient and certified
codes, optimized for integer processors, for evaluating bivariate polynomialsin fixed-point arith-
metic.

6.4.1 Presentation of the general framework

Here, the framework we propose aims at implementing automatically a given mathematical func-
tion F , defined as in Part I by

F (s, t) = 2−p−1 + s · f(t), with s ∈ S and t ∈ T , (6.23)

in a given precision p, and with a C program P entailing a final total error bounded by ǫ. Hence,
from the description of the architecture and the description of the problem, we do the following:

• We determine the maximal error entailed by rounding the input s, called γ(s), in order to
make s representable on the considered architecture. Here, we assume that the input t is
exactly representable, as in Chapters 3 and 4.

• We compute a polynomial approximant a(t) with respect to the function f(t) in (6.23) over
T and a certified approximation error θ, such that the approximation error of a(t) satisfies:

α(a) ≤ θ with θ <
(
ǫ− γ(s)

)
/max (S) ,

where max(S) denotes max
{
|x| : x ∈ S

}
.

• Then, we determine an evaluation error bound η, as follows:

η = RoundDownward(2−p−1 −max(S) · θ − γ(s)).

• Finally, we generate in an automatic way a C program P for evaluating P (s, t) = 2−p−1 + s ·
a(t) and whose evaluation error is strictly less than η.

This process is illustrated in Figure 6.8. The first two steps are done using Sollya [Che09], [Lau08],
[CL], in a way similar to what is presented in Listings 3.1 and 4.6 for square root and division, in
Chapters 3 and 4, respectively. By an iterative process, we can also generate a polynomial approx-
imant having most of its coefficients forced to be powers of 2. Indeed, we start by considering
each coefficient of the polynomial. Once we have tried to structure all the coefficients, we try to
structure each pair of coefficients amoung those that can be structured. (Here, we say that a coef-
ficient can be structured if once the new polynomial approximant is computed, its approximation
error is still small enough. In particular, if a given ai,j cannot be structured, then no pair of coeffi-
cients containing ai,j can be structured neither.) We iterate like this until no n-uples of structured
coefficients can be created.
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Once the polynomial and the certified evaluation error bound are known, we compute using
CGPE a set of efficient parenthesizations for evaluating this particular polynomial. It remains
now to see how to select one efficient evaluation parenthesization or a set of efficient evaluation
parenthesizations, so that we write the C code and the Gappa certificate.

Problem

and with s ∈ S and t ∈ T
- precision p

evaluation programs

Generation of efficient

Architecture features
- number of issues
- latencies of integer operations

Generation of polynomial

approximant a(t)

Selection of efficient

C code / Gappa script

(mul ,+,>>)

- register size k
- constraints on operators

Generation of evaluation

- F (s, t) = c+ s · f(t) for some constant c

- global error bound ǫ

2. Minimization of the number of multiplications

3. Arithmetic operator choice

4. Expected latency after scheduling

5. Certification using Gappa

1. Minimization of the latency assuming unbounded parallelism

CGPE

evaluation parenthesizations

parenthesizations for the polynomial a

Gappa

Sollya

XML files

Figure 6.8: General framework for the automatic generation of efficient and certified polynomial
evaluation programs.

6.4.2 Efficient parenthesization selection and certified code generation

At this stage, we have a set of efficient evaluation parenthesizations. We want now to check if one
of them can be used effectively for the implementation of a function on a given target, typically
the ST231. For a given parenthesization, our selection is done in three steps, called also filters
since they enable to reduce at the end the number of efficient parenthesizations.

Arithmetic Operator Choice. We check if the given polynomial can be evaluated with this paren-
thesization using only unsigned integer arithmetic. This is done using certified interval
arithmetic (MPFI [CLN+], see also [RR05]) as presented in Section 5.1.1, Chapter 5.

Scheduling on a simplified model of the ST231. If this parenthesization has passed the first fil-
ter, we check if it can be scheduled on the ST231 processor without any increase of latency.
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Following for example what is done in [Ren08, p. 97,§4.4] we have implemented a scheduler
based on classical list-scheduling, and which takes into account the constraints related to the
bundling of the instructions on that architecture.

We could have scheduled this parenthesization directly on the target architecture (after hav-
ing generated the corresponding C code). But our scheduler allows to take the structure of
the problem into account, and more particularly the delay between the two indeterminates
of our special bivariate polynomial.

C code and Gappa certificate generation. If the considered parenthesization passes also the sec-
ond filter, it remains to check if the entailed evaluation error is strictly less than the required
bound η. Hence, we finally generate the C code and the Gappa script corresponding to the
considered parenthesization, and we check with Gappa [Mel], [Mel06] if the error entailed
by the evaluation of the program is less than η. If it is not the case, the scheme is rejected
and another one has to be considered.

This framework is heuristic and still at an experimental stage, and if no program is eventually
found, we have to restart the process with other parameters. However, it has worked so far very
well for all the functions we have implemented in FLIP and which have been detailed in Chap-
ters 3 and 4.

6.4.3 Last examples of generated programs

First numerical results: generation of code for roots and their reciprocals

Our framework has been used for generating evaluation program for the function x1/n for n ∈
{−5,−4,−3,−2,−1, 2, 3, 4, 5}. Table 6.10 shows the timings for each step of the generation and
filtering process. (The number between brackets indicates the numbers of parenthesizations.)

x1/2 x−1/2 x1/3 x−1/3 x1/4 x−1/4 x1/5 x−1/5 x−1

Parenthesization generation 172ms 152ms 53s 56s 169ms 149ms 53s 53s 168ms

[50] [50] [50] [50] [50] [50] [50] [50] [50]

Arithmetic Operator Choice 6ms 6ms 7ms 11ms 5ms 6ms 7ms 6ms 4ms

[31] [28] [32] [20] [31] [28] [32] [32] [8]

Scheduling 29s 4m21s 32ms 132ms 29s 4m21s 31ms 32ms 7s

[2] [1] [32] [17] [2] [1] [32] [32] [5]

Certification (Gappa) 6s 4s 1m 38s 1m07s 6s 4s 1m38s 1m37s 11s

[2] [1] [32] [17] [2] [1] [32] [32] [5]

Total time (≈) 35s 4m25s 2m31s 2m03s 35s 4m25s 2m31s 2m03s 18s

Table 6.10: Timings for certified code generation for roots and their reciprocals, using this general
framework.

We can remark from Table 6.10 that the twomost expensive steps are the scheduling on the sim-
plified model of the ST231 architecture and the certification using Gappa. The impact of Gappa is
discussed later. Here we focus on the impact of the scheduling. For example, for n ∈ {−2,−4}, we
observe from Table 6.5 that these cases are the only oneswhere the latency on the simplifiedmodel
of the ST231 (14 cycles) is 1 cycle more than the one on unbounded parallelism (13 cycles). That
means that our scheduler tries to schedule in 13 cycles all the parenthesizations having passed
the first filter. Since no parenthesization passes this first filter, it tries then to schedule all the



6.4 Generating efficient and certified polynomial evaluation programs 193

parenthesizations in 14 cycles. Hence, it does roughly two steps of scheduling. Consequently, the
computation times are higher than in the cases where some parenthesizations can be scheduled
with a latency equal to the target latency.

However, in Table 6.10 we observe the impact and the interest of the filters on the whole gener-
ation and filtering process. Hence, it shows the efficiency of the generation algorithms and heuris-
tics, that we have presented in this thesis. Let us have a look at some others kinds of examples,
before discussing some possible improvements.

Examples of functions not currently implemented in FLIP

Until nowwe have illustrated our methodologies and algorithms with functions which are imple-
mented in the FLIP library, mainly nth roots and their reciprocals, as well as division and recipro-
cal. Let us finally consider two functions that are not currently implemented in the FLIP library:

f1(t) = log2(1+t) with t ∈ [0.5, 1−2−23] and f2(t) = 1/
√

1 + t2 with t ∈ [0, 0.5−2−23].

Using the framework presented in this section, we have generated some fast and certified C code
for evaluating these functions on small intervals. Table 6.11 below summarizes the results of these
generation steps.

f1(t) = log2(1 + x) f2(t) = 1/
√

1 + t2

Polynomial approximant degree (6,0) (7,0)

Required approximation error ≈ 2−24.99 ≈ 2−23.99

Approximation error bound θ ≈ 2−27.72 ≈ 2−26.47

Evaluation error bound η ≈ 2−25.23 ≈ 2−25.64

Parenthesization generation 15ms 11ms

[50] [50]

Arithmetic Operator Choice 2ms 4ms

[2] [12]

Scheduling 5ms 154ms

[1] [5]

Certification (Gappa) 921ms 5s

[1] [5]

Computed evaluation error (Gappa) ≈ 2−28.84 ≈ 2−28.19

Total time ≈ 1s ≈ 5s

Table 6.11: Timings for the generation of log2(1 + t) and 1/
√

1 + t2.

Finally, we can remark, not surprisingly, that the method succeeds for other functions than the
ones presented all along this document. The interesting remark that we can do is that, on these last
two examples, the most costly part of the generation is the certification with Gappa. Currently, we
are implementing a certification phase using certified interval arithmetic with MPFI. This is still a
preliminary study, but we already observe in practive that when the bound can be satisfied using
MPFI, this certification is faster than the one using Gappa. Possible explanations may be due to
the following reasons.

• Certifying with Gappa consists in an external call from CGPE to Gappa, while MPFI is com-
piled inside CGPE.
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• MPFI computes a certified bound of the evaluation error, while Gappa checks if this eval-
uation error satisfies a given bound, which could be more expensive, especially when the
evaluation error is close to this bound.

• Gappa uses interval arithmetic, but also rewriting rules and theorems, and consequently the
certification with Gappa involves more calculations than the one with MPFI and thus may
be slightly more costly.

Of course, notice that generally the results with Gappa are more accurate than the ones withMPFI.
However, in our context, MPFI seems to be a good alternative for the certification of C codes.

Finally, from these results, improving the whole generation process would also rely on the
improvement of the scheduling phase. We could use the scheduler of the ST231 compiler, which
provides assembly code very close to the optimal (see Section 1.1), by compiling the corresponding
C code. However this external call to the compiler has a cost, and we must be careful on the fact
that this call has not to be more costly than a call to the list-scheduling algorithm.
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The work presented in this document addresses the design and the implementation of an effi-
cient software support for IEEE 754 floating-point arithmetic on integer processors, through a
set of correctly-rounded mathematical operators, handling subnormal floating-point numbers,
and handling special inputs. Currently, the most important challenge is the implementation of
methodologies and tools dedicated to the automation of the implementation of mathematical op-
erators, and not the implementation of these operators themselves. This thesis is dedicated to that
purpose. More particularly, we have proposed a parametrized description for the implementa-
tion of some mathematical operators and a tool that generates efficient parenthesizations for the
evaluation of bivariate polynomials. These two complementary study directions led to the two
software developments, FLIP 1.0 and CGPE, and the two parts of this thesis.

Part I discusses the design and the implementation of efficient and certified software support
for binary32 floating-point arithmetic on embedded integer processors, especially optimized for
the ST231 processor, which is a 4-issue VLIW integer processor of the ST200 processor family of
STMicroelectronics. More particularly, one of the objectives of this part is to bring out various ba-
sic blocks from the implementation of correctly-rounded floating-point operators, and to present
each of these basic blocks with a parametrized description and analysis. Hence, the implementa-
tion of an efficient and certified operator simply relies on the systematic use of these basic blocks.
Moreover, this first part proposes a uniform approach for implementing roots and their recipro-
cals, and the division, which is based on the evaluation of a single particular bivariate polynomial.
This general methodology has already been used for the implementation of several operators of
the FLIP library, like addition and subtraction, multiplication, roots and their reciprocals, and di-
vision. This approach turns out to be very efficient, since it enables to achieve implementations
up to about 1.95 faster than the ones of the previous version FLIP 0.3. This efficiency relies on the
efficiency of the basic blocks and their systematic uses, on a better exploitation of the binary inter-
change format encoding, on proved rounding procedures, as well as on the optimized evaluation
of the bivariate polynomial via a parenthesization automatically generated using CGPE. Notice
first that each implementation leads to a certified C code for the binary32 floating-point format.
The interest of the certification is that we can thus control the errors (entailed by polynomial eval-
uation, for example) and then ensure correct rounding of the operator implementation. We have
observed that the certification phase may be more or less difficult according to the function: for
example, the certification of the polynomial evaluation code for the division is not as direct as for
the other operators, and we had thus to implement a piecewise certification strategy. Notice also
that here, for each operator, the implementation of the rounding procedure relies on a rounding
condition, whose implementation is presented in this document according to the operator and
consists in the inversion of the function to be implemented. It turns out that, for roots and their
reciprocals, this inversion remains the last implementation part to be automated. This is a current
work, which has already been started and illustrated for reciprocal square root [JR09a].

Fromnow, we can remark that this inversion (for the implementation of roots and their recipro-
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cals) may be costly. Hence let us consider faithful implementations (instead of correctly-rounded),
which means that each implementation returns one of the two floating-point numbers closest to
the exact result (and the exact result if it is a floating-point number). As shown in Table 6.12 for
various functions, it enables to achieve implementations with a latency between 19 and 27 cycles,

Function x1/2 x−1/2 x1/3 x−1/3 x−1/4 x−1 x/y

Timing (# cycles) 19 21 25 27 26 20 26

Table 6.12: Performances on ST231 processor, of faithful implementations.

that is, up to 1.6 faster than the corresponding correctly-rounded implementations. Such imple-
mentations may be a good alternative in audio and video domains, since these applications may
not always require correct rounding.

Part II is then focused on the evaluation of polynomials in fixed-point arithmetic on integer
processors like the ST231 processor. Indeed the efficiency of the implementations presented in
Part I particularly relies on the optimized evaluation of the particular bivariate polynomial ap-
proximant. The difficulty of this part is due to the fact that, for a given polynomial, the number
of parenthesizations may be extremely large, even for a “small” degree, and it remains long and
tedious to find “by hand” an efficient parenthesization for this polynomial. By efficient, we mean
a parenthesization that reduces the evaluation latency. Although we have shown that classical
methods (Horner’s rule, “second-order” Horner’s rule, and Estrin-based methods) are accurate-
enough for implementing various operators, they remain not really efficient, that is, not really
well-adapted in terms of latency of evaluation for being used on integer processors, like the ST231.
Moreover we have observed that the approaches based on coefficient adaptation (Knuth and
Eve’s algorithm and Paterson and Stockmeyer’s algorithm, for example) seem to be ill-suited for
this kind of architecture as well. That statement has motivated the implementation of algorithms
and heuristics that automate the generation of efficient and certified C codes for the evaluation of
polynomials. They have been integrated into CGPE, which has already enabled to generate the
polynomial evaluation code used for several operator implementations of the FLIP library. Con-
cerning this tool, we have observed that some improvements may be done through the speedup
of the most costly parts, which are the scheduler on a simplified model of the ST231 processor and
the certification using Gappa. Regarding the certification, we are currently studying the feasibility
of certifying our C codes using certified interval arithmetic and MPFI, which seems to be faster
and thus to be a good alternative to Gappa (but in this case, we lose the possibility of generating
a Coq proof, as provided by Gappa).

About the certification of the implementations, let us emphasize that in this document, the
certification is done at the C code level. Indeed the efficiency and the optimizations of the current
compilers (like the ST231 compiler) may bring back the certification of the operators implemented.
For example, let us consider the degree-3 polynomial a(x) =

∑3
i=0 ai · xi and the following paren-

thesization:
a0 +

(

(a1 · x) +
((

(x · x) · a2

)
+
(
x · (x · (a3 · x))

)))

.

When compiling the corresponding C code on the ST231 processor, the generated assembly code
implements the following parenthesization instead:

(
a0 + (a1 · x)

)
+
((

(x · x) · a2

)
+
(
x · (x · (a3 · x))

))
,

which is slightly different. In fact, in practice, the second parenthesization is 1 cycle faster than
the first one, and is favored by the compiler. However, the error entailed at runtime may differ
from the one initially implemented in C and certified with Gappa. In this particular case, we can
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then certify the assembly code in addition to the C code. However, the second certification phase
may be costly and not well-adapted for being used in an automatic generation process, since each
time we have first to compile the C code and then reread the generated assembly code to certify
it. But also, the certification of the assembly code is architecture dependent and requires a good
knowledge of the instruction set of each target for which we want to implement the operator.

To conclude on this work, the interest of CGPE comes from the fact that combined with the
general method presented in Part I, it enables to generate in a fast way efficient and certified C
codes for correctly-rounded (or at least faithful) implementations of mathematical operators.

A first extension to this work aims at study the efficiency of the approach presented in Part I for
other standard formats. Throughout this document, we have presented parametrized algorithms
for implementing mathematical operators, and we have illustrated these approaches with C codes
for the binary32 floating-point format. The interest of such an approach is that it enables to write
quickly efficient code for various formats. Hence let us now consider the binary64 floating-point
format and, for example, the square root function. The implementation of this function relies on
the evaluation of a degree-18 polynomial. Here the difficulties are due to the fact that the im-
plementation is based on 64-bit arithmetic, which is simply emulated on the ST231 (for example,
64× 64→ 64 multiplications are implemented in software using several 32-bit operations). How-
ever, from now, we can already observe that this method enables to achieve a correctly-rounded
square root in 171 cycles in RoundTiesToEven and for the binary64 floating-point format, that
is, with a speedup of 56.8 % compared to the binary64 square root of STlib currently used by
STMicroelectronics.

Finally, we have extended the techniques presented in Part I for the computation of sufficient
error bounds and the implementation of correct rounding to the implementation of the square
root function on FPGA’s [dDJPR09], and compared to other methods usually used: iterative (SRT)
andmultiplicative (Newton-Raphson)methods. The implementation is done via the evaluation of
several degree-2 univariate polynomials. On that context and for the binary32 floating-point for-
mat, this approach seems to be an interesting alternative to multiplicative methods, since we gain
in latency and slices to the detriment of an increase of the number of multipliers and blocks RAM
used. More generally, a second extension of this work consists in studying the interest of all the
techniques presented in this document for the implementation of correctly-roundedmathematical
operators on other kinds of architectures like FPGA’s.
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APPENDIX A
Notation

k format width, such that k = w + p

p precision, such that p ≥ 2

emin, emax extremal exponents, such that emin = 1−emax, and emax = 2w−1−1

w exponent width

b exponent bias, such that b = −emin +mx,0

α smallest positive subnormal number, such that α = 2emin−p+1

Ω largest finite positive floating-point number, such that Ω = (2−
21−p) · 2emax

x finite binary floating-point number, such that x = (−1)sx ·mx ·
2ex

mx = mx,0.mx,1 . . .mx,p−1 significand of floating-point number x, and its binary expan-
sion: for i ∈ {0, . . . , p− 1}, mx,i ∈ {0, 1}

λx number of leading zeros in the binary expansion ofmx

ex exponent of floating-number x, such that emin ≤ ex ≤ emax

sx sign of floating-point number x

nx = mx,0 “is normal” bit of x (that is. nx = 1 if x is normal, and nx = 0 if
x is subnormal)

e′x scaled exponent of floating-number x, such that e′x = ex − λx

m′
x = 1.mx,λx+1 . . .mx,p−1 normalized significand of floating-point number x, withmx,i ∈

{0, 1} for iλx + 1 ≤ i < p

X k-bit unsigned integer giving the standard binary interchange
encoding of x

Mx k-bit unsigned integer encoding ofmx, such thatMx = mx ·2k−1

Ex w-bit unsigned integer encoding of the biased value of ex, such
that Ex = ex − emin + nx

Mpx k-bit unsigned integer encoding of m′
x, such that Mpx = m′

x ·
2k−1

Dx w-bit unsigned integer, such thatDx = Ex − nx
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Sx k-bit unsigned integer, such that Sx = sx · 2k−1

◦ rounding-direction attributes in precision p, ◦ ∈
{RNp,RUp,RDp,RZp}

N set of natural integers

N
∗ set of positive integers N \ {0}

Z set of integers

Z
∗
− set of negative integers Z \ N

R set of real numbers

R+ set of non negative real numbers

R̄ set of extended real numbers, R̄ = R ∪ {−∞,+∞}
[a, b] set of real numbers x such that a ≤ x ≤ b
{a, . . . , b} set of integers i such that a ≤ i ≤ b
α(a) approximation error of the polynomial awith respect to a func-

tion f over an interval T
ρ(P) evaluation error of the evalution program P
θ certified approximation error bound

η certified evaluation error bound

E(k) set of valid expressions of total degree exactly k

P(k) set of expressions of the form xiyj , with i, j ∈ N and i+ j = k



APPENDIX B
C code for implementing various basic
integer operators

B.1 Implementation of max operators

static inline
int32_t max ( int32_t a , int32_t b)
{ return (a > b) ? a : b; }

static inline
uint32_t maxu ( uint32_t a , uint32_t b)
{ return (a > b) ? a : b; }

B.2 Implementation of min operators

static inline
int32_t min ( int32_t a , int32_t b)
{ return (a < b) ? a : b; }

static inline
uint32_t minu ( uint32_t a , uint32_t b)
{ return (a < b) ? a : b; }

B.3 Implementation of 32× 32→ 32 multiplications

static inline
uint32_t mul ( uint32_t a , uint32_t b)
{

uint64_t t0 = a;
uint64_t t1 = b;
uint64_t t2 = (t0 * t1) >> 32;
return t2;

}
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static inline
int32_t mul64h ( int32_t a , int32_t b)
{

int64_t t0 = a;
int64_t t1 = b;
int64_t t2 = (t0 * t1) >> 32;
return t2;

}

B.4 Implementation of count leading zeros operator

static inline
uint32_t nlz( uint32_t x)
{

uint32_t z = 0;
if (x == 0) return(32);
if (x <= 0x0000FFFF) {z = z + 16; x = x << 16;}
if (x <= 0x00FFFFFF) {z = z + 8; x = x << 8;}
if (x <= 0x0FFFFFFF) {z = z + 4; x = x << 4;}
if (x <= 0x3FFFFFFF) {z = z + 2; x = x << 2;}
if (x <= 0x7FFFFFFF) {z = z + 1;}
return z;

}
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Abstract

Today some embedded systems still do not integrate their own floating-point unit, for area, cost, or energy consumption
constraints. However, this kind of architectures is widely used in application domains highly demanding on floating-
point calculations (multimedia, audio and video, or telecommunications). To compensate this lack of floating-point
hardware, floating-point arithmetic has to be emulated efficiently through a software implementation.

This thesis addresses the design and implementation of an efficient software support for IEEE 754 floating-point
arithmetic on embedded integer processors. More specifically, it proposes new algorithms and tools for the efficient
generation of fast and certified programs, allowing in particular to obtain C codes of very low latency for polynomial
evaluation in fixed-point arithmetic. Compared to fully hand-written implementations, these tools allow to signifi-
cantly reduce the development time of floating-point operators.

The first part of the thesis deals with the design of optimized algorithms for some binary floating-point operators,
and gives details on their software implementation for the binary32 floating-point format and for some embedded
VLIW integer processors like those of the STMicroelectronics ST200 family. In particular, we propose here a uniform
approach for correctly-rounded roots and their reciprocals, and an extension to division. Our approach, which relies
on the evaluation of a single bivariate polynomial, allows higher ILP-exposure than previous methods and turns out to
be particularly efficient in practice. This work allowed us to produce a fully revised version of the FLIP library, leading
to significant gains compared to the previous version.

The second part of the thesis presents a methodology for automatically and efficiently generating fast and certified
C codes for the evaluation of bivariate polynomials in fixed-point arithmetic. In particular, it consists of some heuristics
for computing highly parallel, low-latency evaluation schemes, as well as some techniques to check if those schemes
remain efficient on a real target, and accurate enough to ensure correct rounding of the underlying operator implemen-
tations. This approach has been implemented in the software tool CGPE (Code Generation for Polynomial Evaluation).
We have used our tool to quickly generate and certify significant parts of the codes of FLIP.

Keywords: floating-point arithmetic, fixed-point arithmetic, polynomial evaluation, code generation and certification,
embedded integer processor.

Résumé

Aujourd’hui encore, certains systèmes embarqués n’intègrent pas leur propre unité flottante, pour des contraintes
de surface, de coût et de consommation d’énergie. Cependant, ce type d’architecture est largement utilisé dans des
domaines d’application extrêmement exigeants en calculs flottants (le multimédia, l’audio et la vidéo ou les télécom-
munications). Pour compenser le fait que l’arithmétique flottante ne soit pas implantée enmatériel, elle doit être émulée
efficacement à travers une implantation logicielle.

Cette thèse traite de la conception et de l’implantation d’un support logiciel efficace pour l’arithmétique virgule
flottante IEEE 754 aux processeurs entiers embarqués. Plus spécialement, elle propose de nouveaux algorithmes et
outils pour la génération efficace de programmes à la fois rapides et certifiés, permettant notamment d’obtenir des codes
C de très faibles latences pour l’évaluation polynomiale en arithmétique virgule fixe. Comparés aux implantations
complètement écrites à la main, ces outils permettent de réduire de manière significative le temps de développement
d’opérateurs flottants.

La première partie de la thèse traite de la conception d’algorithmes optimisés pour certains opérateurs flottants en
base 2, et donne des détails sur leur implantation logicielle pour le format virgule flottante binary32 et pour certains
processeurs VLIW entiers embarqués comme ceux de la famille ST200 de STMicroelectronics. En particulier, nous pro-
posons ici une approche uniforme pour l’implantation correctement arrondie des racines et de leur inverse, ainsi qu’une
extension à la division. Notre approche, qui repose sur l’évaluation d’un seul polynôme bivarié, permet d’exprimer un
plus haut degré de parallélisme d’instruction (ILP) que les méthodes précédentes, et s’avère particulièrement efficace
en pratique. Ces travaux nous ont permis de fournir une version complètement remaniée de la bibliothèque FLIP,
entraînant des gains significatifs par rapport à la version précédente.

La deuxième partie de la thèse présente une méthodologie pour générer automatiquement et efficacement des
codes C rapides et certifiés pour l’évaluation de polynômes bivariés en arithmétique virgule fixe. En particulier, elle
consiste en un ensemble d’heuristiques pour calculer des schémas d’évaluation très parallèles et de faible latence,
ainsi qu’un ensemble de techniques pour vérifier si ces schémas restent efficaces sur une architecture cible réelle et
suffisamment précis pour garantir l’arrondi correct de l’implantation des opérateurs sous-jacente. Cette approche a été
implantée dans l’environnement logiciel CGPE (Code Generation for Polynomial Evaluation). Nous avons ainsi utilisé
notre outil pour générer et certifier rapidement des parties significatives des codes de la bibliothèque FLIP.

Mots-clés : arithmétique virgule flottante, arithmétique virgule fixe, évaluation polynomiale, génération et certifica-
tion de code, processeur entier embarqué.
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