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Abstract

A synthetic fluid dynamo built in the spirit of the Bullard device [1] is investigated. It is a

two-step dynamo in which one process stems from the fluid turbulence, while the other part is

achieved by a linear amplification of currents in external coils [2]. Modifications in the forcing are

introduced in order to change the dynamics of the flow, and hence the dynamo behavior. Some

features, such as on-off intermittency at onset of dynamo action, are very robust. Large scales

fluctuations have a significant impact on the resulting dynamo, in particular in the observation of

magnetic field reversals.
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I. INTRODUCTION

α − ω dynamo models are extensively used in the description of natural dynamos [3]. In

these approaches, the ω- effect converts a poloidal field into a toroidal component, while the

α-effect is invoked for the conversion back from toroidal to poloidal. In planets, the electri-

cally conducting fluid is a molten metal (iron for the Earth), i.e. a fluid with a very low mag-

netic Prantl number. As a consequence, turbulence has to be fully developed for induction

effects to be able to overcome (Joule) dissipation, and hence induce a dynamo. Turbulent

dynamos have been extensively studied in the context of mean-field hydrodynamics [4, 5].

In this approach, the turbulent small scale induction processes contribute to the dynamics

of the large scale magnetic field through the mean electromotive force ǫi = αijBj + βijk∂jBk

(the reader is referred to [6] for generalised expressions). The α and β tensors depend

on the small scale turbulence, and expressions for them have been established in several

contexts. Measurements, however, have revealed that their contribution is small, at least

at low magnetic Prandtl numbers and moderate magnetic Reynolds numbers [7, 8]. An α

contribution can also originate from large scale motions through Parker’s stretch and twist

mechanism [9, 10]. Recently, the observation of a self-sustained axisymmetric magnetic field

in the VKS experiment [11] has been modeled as an α-ω dynamo [12–15]. This experiment

has also revealed a rich time-dynamics of the magnetic field [16–18], raising issues concerning

the contribution of flow fluctuations on the dynamo behavior. It has been shown indeed in

several studies that von Kármán flows display large fluctuations at very low frequency in

time [19–21] which have a leading role on magnetic induction characteristics [22].

In the present study we consider experimental synthetic dynamos [2] in which an α-effect

is modeled by means of an external wiring, while a second induction process originates

from the flow itself and takes into account the full turbulent fluctuations. This turbulent

induction effect is linked to the flow differential rotation and has been extensively studied in

previous experimental [22, 23] and numerical works [26] : for instance, if a magnetic field is

applied parallel to the cylinder axis by a set of coils, the fluid differential rotation induces a

toroidal magnetic field (the so-called ω-effect). Since the flow is fully turbulent (with integral

kinetic Reynolds exceeding 105), the induced toroidal magnetic field is highly fluctuating:

this ω-effect fully incorporates the flow turbulence. An effective α-effect is then achieved

when the intensity of the induced toroidal field is used to control a linear amplifier driving
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the current in the coils. This amplification effect actually replaces a fluid α-effect usually

invoked in dynamo theory. In order to avoid confusion, this effective α-effect (which is a

synthetic poloidal to toroidal conversion process) will be termed A-effect for Amplification-

effect. Such a feed-back loop thus generates a dynamo (for instance an A − ω dynamo for

the case described above).

The main goal of the present study is to characterize how the resulting dynamo bifurcation

and magnetic field dynamics are affected when large scale properties of the von Kármán flow

are modified by the insertion of various appendices inside the vessel [24, 25], or when rotating

the impellers at unequal rates – as a way to impose global rotation onto the flow [19].

The experimental set-up is described in details in section II. The dynamics of the syn-

thetic Bullard-von Kármán dynamos are described and analyzed in section III. Conclusions

are drawn in section IV.

II. EXPERIMENTAL SETUP

A. von Kármán gallium flow

The synthetic Bullard-von Kármán dynamo is built upon a von Kármán flow. This flow

is produced by the rotation of two impellers inside a stainless steel cylindrical vessel filled

with liquid gallium. The cylinder radius R is 97 mm and its length is 323 mm. The impellers

have a radius equal to 82.5 mm and are fitted to a set of 8 blades with height 10 mm. They

are separated by a distance H = 203 mm. The impellers are driven by two AC-motors

which provide a constant rotation rate in the interval (F1, F2) ∈ [0.5, 25] Hz. In most of

the cases, the flow is driven by symmetric forcing at F1 = F2 = F . The system is cooled

by a water circulation located behind the driving impellers; the experiments are run at a

temperature between 40◦C and 48◦C. Liquid gallium has density ρ = 6.09 × 103 kgm−3,

electrical conductivity σ = 3.68×106 Ohm−1m−1, hence a magnetic diffusivity λ = 1/µ0σ =

0.29 m2s−1. Its kinematic viscosity is ν = 3.1 × 10−7m2s−1. The integral kinematic and

magnetic Reynolds numbers are defined as Re = 2πR2F/ν and Rm = 2πR2F/λ. Values of

Rm up to 5 are achieved, with corresponding Re in excess of 106. The time-average structure

of the flow driven by impellers at exact counter-rotation consist of two cells rotating with

opposite toroidal velocities and two recirculation loops close to the impellers, separated by
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a large shear-layer in the mid plane (see figure 8(b) top for a skecth).

Magnetic induction measurements are performed using Hall sensor probes inserted into

the flow in the mid plane. Data are recorded using a National Instrument PXI-4472 digitizer

at a rate of 1000 Hz with a 23 bits resolution.

FIG. 1: Experimental setup : a von Kármán flow of liquid gallium is generated in a cylindrical

vessel between two counter rotating impellers driven by two AC-motors. (a) Synthetic A − ω

dynamo (axial dipole), the turbulent induced azimutal field is measured at 0.56 R in the mid-plane

between impellers. (b) Synthetic A−BC dynamo (equatorial dipole), the turbulent induced axial

field is measured at 0.87 R in the mid-plane between impellers. (c) Cylinder (C) configuration of

the vessel and coordinate axis. (d) Ring (R) configuration and (e) Baffles (B) configuration.

B. Dynamo loops

Axial dipole

A first dynamo configuration which generates an axial dipole is shown in figure 1 (a). As

the flow is forced by counter-rotating impellers, the differential rotation in the fluid motion

induces an azimutal magnetic field BI
θ when an applied axial magnetic field BA

z is imposed

4



by axial coils; this is the ω-effect [4]. This induced azimuthal field is measured from a

local probe in the mid plane at r = 0.56R ;the position of the probe was chosen such as to

maximize the measured azimuthal field [22].The measured value is then amplified to drive

the current source which feeds currents into the axial coils. This external amplification

replaces an α part of the dynamo cycle, since an axial field stems from an azimuthal one.

The feed-back amplification is linear (Icoils ∝ BI
θ up to a saturation value Isat

coils, which is the

maximum current that can be drawn from the current source). The main component of the

resulting dynamo is an axial dipole.

For all available values of the rotation rate of the driving impellers, the magnetic

Reynolds number is low enough to be in a quasi-static approximation. In this regime,

BI
θ ∼ (∆−1/λ)BA

z ∂zvθ, where vθ is the azimutal velocity [9]. The ω part of the dynamo

cycle is thus very much dependent on the statistical properties of the velocity gradients at

all scales.

Equatorial dipole

Another possibility is to arrange the external coils so that they generate a field perpendicular

to the rotation axis, say Bx (an equatorial dipole). In this case the induced magnetic field

components which drive the current source is the axial induction B
π/2
z measured in the mid

plane at 90◦ from the applied field.

This induction effect is linear in Rm and is mainly due to a boundary-condition effect

linked to the jump in electrical conductivity at the wall. This process is described in details

in [26] and only briefly discussed here. The flow rotation on the imposed field Bx induces a

By component in opposite direction in each flow cell. This induced field is associated with

a current field in the direction of the applied field in both cells, and opposite in the shear

layer. As the outside medium is electrically insulating, these currents have to loop back in

the flow volume and thus induce an axial component at the flow boundary, that diffuses

inside the flow. Numerical studies have shown that, in the quasi-static approximation,

the current density source term is linked to the deformation of the transverse magnetic

field by the flow ∆j = 1
µ0

(Bx.∇)ω, where ω is the flow vorticity . The jump in electrical

conductivity [λ]S at the wall S then induces a magnetic field ∆B = [λ]SδSµ0j × n, where

n is the outgoing direction and δS a Dirac distribution non-null on S. The induced field

is axial and maximum near the vessel wall and proportional to the radial vorticity in the
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shear-layer since the structure of j and ∆j are similar.

In the following we will refer to this mechanism as BC-effect, for Boundary-Conditions

effect. The induced axial field is measured from a local probe in the mid plane at r = 0.87

R and its value is then amplified to drive the current source which feeds currents into the

transverse coils. The equatorial dipole dynamo is of A − BC type.

In von Kármán flows, the BC-effect is particularly intense because large scale radial

vortices develop in the mid plane as a result of a Kelvin-Helmholtz like instability in the

shear layer [20, 21]. These radial vortices are moreover known to have a highly fluctuating

dynamics which in turn generates strong fluctuations of the BC induced field.

Implementation

Effective magnetic Reynolds numbers defined from the turbulent induction processes (as a

ratio of induced field to applied field) are in the range [3.10−3Fi; 2.10−2Fi] and well below

the required values for dynamo threshold (32 for the VKS experiment [11]). This limitation

is bypassed in our Bullard-von Kármán setup by using a linear amplifier of gain G. For each

configuration G is kept constant - the control parameter thus being the rotation frequency

of the impellers Fi- but G is adjusted from one configuration to the other by the following

procedure.

One first proceeds to induction measurements (or ’open-loop’ measurements): a large

scale, time independent magnetic field, BA is applied by the external coils. A turbulent

induced magnetic field BI is generated by the turbulent flow. From measurements of the

induced field, a effective conversion factor Aeff of the induction process is defined as 〈BI〉t =

AeffF 〈BA〉t, where 〈.〉t is the time-averaging operator.

The amplifier provides the other conversion process of the dynamo, BA = GBI . One

sets the gain G of amplifier such that a dynamo threshold estimated from time-averaged

measurements Fc = 1/GAeff is constant and equal to 8.3 Hz for all configurations . In

other words, the gain is adjusted such that, for a given flow forcing parameter F , the

time-averaged value of the amplified induced field G〈BI〉t is constant whatever the flow

configuration and dynamo type. We emphasize here that the actual feed-back process does

not involve any averaging procedure and that the actual threshold may be shifted from 8.3

Hz by the turbulent fluctuations as was already observed in other physical situtations [27].

Saturation is set by the maximum current available from the source; the saturated mag-
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netic field value is of the order of a few tens of Gauss. As a result, the Lorentz force is too

weak to react back onto the flow field (the interaction parameter is less than 10−2). The

synthetic Bullard-von Kármán is thus similar to a kinematic dynamo.

C. Flow configurations

The scope of the present study is to investigate the influence of the flow dynamics on the

behavior of the self-sustained magnetic field. Modifications are achieved by changing the

flow, either by inserting appendices to the inner wall of the cylinder or by driving the flow

assymetrically (i.e. rotating the impellers at different speeds).

Three geometric configurations have been tested. They are shown in figure 1(c,d,e).

In the base configuration (hereafter called C for Cylinder) there is no attachement. In

configuration B, four longitudinal baffles are attached; they are rectangular pieces 150 mm

long, 10 mm tall and 10 mm thick, mounted parallel to the cylinder axis. In configuration R,

a ring is attached in the mid-plane; it is 15 mm tall and 4 mm thick. The respective influence

of these attachments have been studied in water experiments [24, 25] where it was found

that they modify significantly the dynamics of the differential shear layer in the mid-plane

(although these studies were achieved with curved blades, these observations should remain

similar at leading order in our device). The presence of ring or baffles tends to stabilize the

central shear layer. Appendices also modify the number and time evolution of the radial

vortices in the shear layer. In the C configuration, three large radial vortices fluctuating in

size and position are present. In the B configuration, four vortices are positioned in-between

baffles. The R configuration the three vortices are splitting in pairs; in our configuration

their mobility and fluctuations remain unresolved (see [25] for a detailed analysis).

Similarly, when the flow is driven by counter-rotating the impellers at different speeds,

the flow bifurcates between 2-cells and 1-cell configurations [19, 21, 25], hence leading to

substantial modifications of the flow turbulence and large scale topology. The unbalance in

the driving of the flow is measured by the ratio Θ = (F1−F2)/(F1+F2), Θ = 0 corresponding

to exact counter-rotation and Θ = 1 to the fluid being set into motion by the rotation of

one impeller only. The transition occurs at a critical value of Θ above which the shear layer

abruptly moves from the mid-plane to the vicinity of the slower impeller (the flow transits

then from a two counter-rotating cells geometry to a single cell geometry). It is associated
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with an abrupt change in the mechanical power required to keep the impellers rotating at

fixed rates, and a sharp increase in the kinetic energy fluctuations.

Altogether, by inserting appendices in the flow or driving it asymmetrically, one has the

possibility to vary the mean profiles and fluctuation characteristics of the von Kármán flow.

The impact of these changes on the synthetic A − ω and A − BC dynamos is studied in

detail below. Note that though both ω and BC effects are primarily generated by the same

differential rotation, they are sensitive to different topological properties, with also different

dynamical behavior of the mid-plane shear layer: the BC-effect is sensitive to the radial

vorticity (ωr) in the vicinity of the vessel wall while the ω-effect is sensitive to the axial

change of the toroidal velocity in the bulk of the flow. The natural fluctuations of these flow

gradients are known to be of different kinds : radial vorticity fluctuations are closely linked

to the dynamic of strong intermittent Kelvin-Helmhotz vortices in the shear layer, while the

axial gradient of toroidal velocity fluctuates according to local and global displacements of

the shear layer. Exploring both the axial and equatorial dipoles configuration give us then

a way to probe selectively the impact of these velocity gradients on the dynamo.

III. DYNAMO AND FLOW DYNAMICS

A. Axial dipole, A − ω dynamo

In this section, the flow is driven symmetrically: impellers counter rotate at the same rate

F = F1 = F2. The external coils are set to generate an axial dipole field. The turbulent ω-

effect (the source of the fluctuations for the dynamo) is first analyzed as an induction process

on its own. Dynamical features of the A − ω dynamos are then described and analyzed.

1. Turbulent ω induction

We first consider induction measurements obtained when a constant axial magnetic field

is applied. We show the temporal dynamics of the induced field in figure 2(b), and display

the probability density functions (PDFs) and time spectra of Bθ/〈Bθ〉 in figure 2(c-d). Note

that in order to compare the fluctuations for the different configurations, we have normalized

the induced field by its mean amplitude in figure 2(c,d). Indeed, in the dynamo loop, the
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FIG. 2: Axial applied field, azimutal induction features at r = 0.56 R. (a) Experimental setup,

(b) Temporal dynamics for the three flow configurations. (c) Probability density functions and (d)

Power spectrum density of the azimutal induced field (log-lin representation in the inset). Note

that, for the last two graphs, the induced fields are normalized by their time-averaged values.

value of the gain G is adjusted so that the time-averaged amplified induced field for a fixed

rotation rate is the same whatever the flow configuration.

• C configuration. The shear layer is fully developed in this less constrained state. As

a result, its motion explores a large portion of the flow volume. These motions result

in large variations of the amplitude of the induced field, with a quasi-Gaussian statis-

tics. The power spectrum of fluctuations in time reveals an important low frequencies

dynamics. These features have been discussed in detail in previous studies [22].

• R configuration. When a ring is installed in the mid-plane, the shear layer is pinned [24,

25]. The axial gradient of the time-averaged azimutal velocity is peaked at the ring

position [24] and higher than in the C configuration. The time-averaged azimutal

induced field is nevertheless of the same order of magnitude in both configurations

(cf. figure 2(b). This is because the magnetic field ‘filters’ the velocity gradients at a

length scale of the order of the magnetic diffusion length ηB ∼
√

λ/F 5 cm at Rm = 2.

The magnetic field is more sensitive to the difference of velocity on either side of the

shear layer rather than in the actual slope of the velocity profile.
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Another effect is that fluctuations in the azimuthal induction are reduced due to the

shear pinning. The time spectra for the two configurations are similar in the inertial

range, but the presence of the ring reduces low frequency fluctuations. The ring acts

a high-pass filter for low frequency velocity fluctuations emerging from the shear layer

and associated radial vortices dynamics [25]. The slight peak at very low frequency

is attributed to a ‘depinning’ occuring at irregular time intervals, also observed as a

bimodality in the probability density function in figure 2(c).

• B configuration. When baffles are inserted in the vessel, vortices of the shear layer

are confined to inter-baffles position and fluctuations of the shear layer are also

damped [24]. Like in the R configuration, the time-averaged induced field is weakly

modified, but fluctuations are highly reduced as compared to the C configuration.

For these three configurations, the mean induced field and normalized fluctuations for

Rm = 2 are the following: 〈BI
θ/B

A
z 〉 = 0.08; 0.12; 0.07 and (BI

θ )rms/〈B
I
θ 〉 = 0.32; 0.11; 0.1

for the C, B and R configurations respectively. Comparison of the spectra 2(d) show that

modifications of the flow strongly modify the low-frequency, large scale dynamics of the

turbulent induction, while keeping small-scale (inertial range) dynamics almost unchanged.

2. Dynamo: axial dipole

We then analyse the behavior of the synthetic A − ω dynamo (i.e. when the measured

azimuthal field actually drives the current in the induction coils). Time signals of the

axial magnetic field (normalized to the maximum field) are shown in figure 3 for the three

configurations and an increasing forcing parameter F (from top to bottom). For the three

configurations and whatever the value of the forcing parameter, the axial dipole dynamo

is always observed homopolar: when growing in either polarity, the field remained of same

polarity. However both polarities were observed for different realizations (i.e. when stopping

the motors and increasing the rotation rate above the critical value), as is expected from

the B → −B symmetry of the MHD equations.

Let us first analyze the C configuration, for which last section showed that fluctuations

of the ω-effect are the highest. At very low rotation rates F ≪ Fc, the magnetic field is null.
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FIG. 3: Axial dipole dynamo temporal features: temporal evolution of the dipole amplitude as a

function of driving frequency for the three configurations.

When the rotation rate increases and approaches the threshold (F . Fc), the magnetic field

remains null most of the time, but exhibits intermittent bursts. The density and duration

of the dynamo state increase rapidly with the impellers rotation rate: as F > 1.3Fc, the

magnetic field in mostly non-zero, with intermittent extinctions for short time intervals. The

system thus bifurcates from a non dynamo to a dynamo state via an on-off intermittency

scenario, also previously observed in numerical models of the dynamo [28, 29]. This kind of

bifurcation is characterized by specific features of the signal: its probability density function

is peaked at zero near onset and then decays algebraically; the PDFs of ‘off’ times scales as

T
−3/2

off [30].

Evolution of the measured PDFs of magnetic field as a function of the forcing parameter

is shown in figure 4(a). The PDF is peaked at zero for rotation frequencies up to 1.2Fc, and

extends to large values, even at low rotation frequencies. A log-log representation is shown

in inset of figure 4(a) and shows a typical negative power-law for the PDF (with an exponent

proportional to the control parameter). This feature was observed in numerical simulation

of on-off models [31, 32] and simulations of MHD equations [28]. On-off intermittent signals

also display an universal behavior of inter-burst time intervals, or time interval between

dynamo activity, named Toff - for ’off’ phases or laminar phases. This time interval is defined

in the inset of figure 4(b): one sets a threshold and computes the time Toff for which the

dynamo field is below this threshold. The probability density functions of Toff are displayed

in figure 4(b) for four values of the forcing parameter. These probability density functions

have a power law dependence with a cut-off at large values (the distribution of the ‘off’
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phases has been checked to be independent of the value of the threshold). A T
−3/2

off scaling

is shown for comparison with the experimental data, showing that the data statistics is in

agreement with the -3/2 power law scaling behavior predicted for on-off intermittency[30],

observed in numerical simulations [28, 31, 32] or in experimental investigations in electronic

circuits [33], gas-discharge plasmas [34] or convection in liquid crystals [35]. Corrections

to the power-law scaling are not obvious, so that more complex scenarii (such as ‘ in-out’

intermittency [36]) may not apply here.

The variation of the cut-off time in the PDF of Toff with the control parameter is steep.

We observe a power law with a −5 exponent in a small range F ∈ [0.97Fc, 1.69Fc]. This

is in contrast with numerical models with multiplicative noise for which a decay as F−2 is

quoted [31].

FIG. 4: Axial dipole dynamo for the C configuration: (a) evolution of the probability density

function of the axial magnetic field as a function of the driving parameter - inset: log-log plot

for F = 0.84Fc- and (b) - inset: definition of inter-burst time interval - main: evolution of the

probability density function of the inter-burst intervals as a function o the driving parameter.

Modifications of the ω-effect with the other two configurations drastically change the

dynamo features. As can be seen in figure 3, for the B and R configurations, no dynamo

bursts are observed for impellers rotation rates well below threshold and ’off’ phases are

no longer present well above threshold. The associated bifurcation curves are displayed

in figure 5(a). The bifurcation is steeper for the B and R configurations as compared to

the C configuration, i.e. the width of the intermittent domain decreases when inserting

appendices in the vessel. The on-off intermittent regime is nevertheless always observed in
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a very narrow range near onset. Figure 5(b) shows the probability density functions of the

‘off’ phases for the three configurations near the critical rotation rate (F = 1.08Fc). The

-3/2 power law scaling is independent of the configuration, while the exponential cut off

increases when the low frequency component of fluctuations decreases. The mean length of

‘on’ phases also significantly increases when low frequency of the noise decreases, as can be

observed in figure 3.

FIG. 5: Features of the axial dipole dynamo: (a) evolution of the time-averaged axial magnetic

field as a function of the rotation frequency for the three configurations; (b) probability density

function of the inter-burst time interval for the three configurations at F = 1.08Fc.

As a partial conclusion, we observe that several features (such as the on-off scenario and

waiting times statistics) of the axial dynamo at onset are robust with respect to large scale

modifications of the von Kármán flow. Other features (such as the width of the transition

and the frequency of incursions to or from dynamo states) are on the contrary strongly

dependent on the large scale dynamics of the flow.

B. Equatorial dipole, A − BC dynamo

We now consider the A − BC dynamo configuration, generating an equatorial dipole

field, perpendicular to the axis of rotation of the impellers. As for the axial case, we
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study the dynamo bifurcation in the C, B and R configurations, the flow being driven

symmetrically with the impellers counter rotating at the same rate F = F1 = F2. As for the

previous section, the gain of the feedback loop is adjusted for each configuration in order to

keep constant the dynamo threshold estimated from time-averaged induction measurements

(Fc = 8.3 Hz).

1. Turbulent BC induction

Induction measurements are performed with a constant field, applied perpendicularly to

the cylinder axis. The induced field in the axial direction is measured in the mid plane at

90◦ from the applied field, at distance 0.87R from the axis.

• C configuration. The induced field (figure 6(b)) shows a highly fluctuating dynamics.

As seen in figure 6(c), the induced field distribution is bimodal, with a peak near

zero induction and one at about twice the time-averaged value. The induction follows

the dynamics of the radial vortices formed in the shear layer. A significant induced

field is measured only when radial vortices sweep the probe. In between these events,

the induced field is weak with large fluctuations – the sign of the induced field is not

prescribed.

• B configuration. As compared to the above situation, the induced field is always non

zero, a feature consistent with the observation [24] that the radial vortices are now

confined between the baffles. A concurrent feature is that the fluctuations of induction

are much reduced (a factor of 5 lower than the C configuration). The spectra displayed

in figure 6 show that this reduction occurs at all scales.

• R configuration. The induction signal is again stationary and lot less fluctuating. This

is consistent with observations [24, 25] that the radial vortices within the shear layer

are attached to the central ring and their strengths and low frequency fluctuations

drastically reduced. The fluctuations are reduced again by a factor of 5, as also seen

in figure 6(c), this reduction lies essentially in the low frequency motions (figure 6(d)),

as measured in water for the velocity fluctuations.

For the three configurations, mean induced field and normalized fluctuations at Rm = 2

are the following: 〈BI
z/B

A
x 〉 = 0.029; 0.029; 0.058 and (BI

z )rms/〈B
I
z〉 = 0.90; 0.17; 0.03 for the
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C, B and R configurations respectively.

FIG. 6: Transverse induction. (a) experimental set-up, (b) temporal evolution of axial induction

BI
z (t) for a constant transverse applied field BA

x , (note the difference in y-axis scales) (c) probability

density function and (d) time spectra of normalized induced fields - log-lin representation in the

inset.

2. Dynamo: equatorial dipole

Time recordings of the equatorial dipole dynamo field are shown in figure 7(a). In each

configuration, time signals are shown for three values of the rotation rates of the impeller,

from below the critical frequency to above.

When compared to the previous axial dynamo cases, several features emerge. First in

the absence of appendices in the vessel (configuration C), a dynamo field grows with either

polarity and reverses spontaneously. Below threshold, bursts with both polarities ±Beq are

observed. For higher values of the rotation rate, the fraction of time spent in a dynamo state

increases. This is in sharp contrast with the B and R configurations for which homopolar

dynamos are always generated after a rather abrupt bifurcation. In these configurations,

bursts of dynamo action are observed near threshold but a steady state with a definite

polarity is rapidly reached above threshold.

Let us describe and analyze in details the C configuration for which the magnetic field

exhibits reversals. The bifurcation curve, displayed in figure 7(b)-black shows a smooth
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transition from the null field regime to the dynamo regime. This transition occurs through

bursts of both polarities below and around threshold. The time spent in the dynamo regime

increases with the forcing parameter. As compared to all other Bullard-von Kármán dy-

namos obtained so far, a striking feature is that the reversing dynamo displays significant

‘off’ phases even well above threshold. The probability density functions of the ‘off’ phases

for three values of the forcing parameter are shown in figure 7(c). The observed statistic is

consistent with a Poisson distribution having a characteristic time scaling as (F/Fc)
−1. On

the other hand, the distributions of the duration of the saturated (’on’; plus or minus) states

(not shown) are consistent with a sum of two Poisson distributions with characteristic times

in a ratio of 7 and scaling as F/Fc. Note that in this configuration, statistics are converged

only when working with very large time recordings. Regimes at large F/Fc have thus been

obtained by increasing the gain G in order to keep F in the optimal range for operation

with the liquid gallium kept at constant temperature (around 40◦ C).

For the B and R configurations, the dynamics of the homopolar dynamo is very similar to

the previous axial case. The on-off intermittent behavior is controlled by the low frequency

content of the induction process: it is here restricted to a very narrow range of F around

Fc.

As a partial conclusion here, the equatorial dynamo also develops via an on-off intermit-

tent regime, but some features have been significantly changed, such as the ability of the

dynamo to undergo reversals of polarity. These reversals are only observed when strong

fluctuations are present. This is a common feature of reversals dynamics when caused by

stochastic transitions between the symmetric B and −B states [37].

C. Global rotation

In this section, we adress the case where the flow is driven with impellers counter-rotating

at different rotations rates in the presence of a ring. This is an asymmetric R configuration,

as for the dynamical regimes of the VKS dynamo reported in [15–17]. In order to emphasize

the influence of the dynamics of the mid-plane shear layer, and its links with reversals, we

focus on the equatorial dynamo loop.
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FIG. 7: Equatorial dipole dynamo behavior: (a)time signals for increasing values of the rotation

rate of the impellers, from below to above threshold, (b) bifurcation curves and (c) probability

density function of the ’off’ phases for the C configuration, i.e. the reversing dynamo.

1. BC induction with asymmetric forcing

As Θ = (F1 − F2)/(F1 + F2) is varied, one observes a clear transition in the torques

Γi driving the two impellers. Figure 8(b) shows the dimensionless differences between the

torques of the two impellers (these torques are deduced from the currents measured by the

electrical drives that feed the motors). The bifurcation between a 2-cell flow and a 1-cell

flow occurs at a critical value Θc ∼ 0.16, in agreement with measurements made in water

flows [19, 25, 38]. For |Θ| < Θc the time-averaged flow consists of two main cells on either

side of the mid plane, in which the toroidal and poloidal flows have opposite directions.

Note that the regimes previously described correspond to a symmetric forcing, i.e. Θ = 0.

For |Θ| > Θc the flow volume is dominated by one cell driven by the fast impeller, as is

schematically drawn in figure 8(b). It was shown in previous studies in water flows [25]

that fluctuations of the flow kinetic energy diverge at the transition between the two flow

regimes.

Figure 8(a) shows that fluctuations of magnetic induction strongly depend on the asym-

metry of the forcing. Energy distribution across scales of the turbulent induced field also
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FIG. 8: Influence of global rotation on BC induction features: (a) time signals for three values

of the global rotation, (b) dimensionless torque difference as the function of the flow asymmetry

- insets show sketchs of the mean von Kármán flows, (c) time evolution of the induced field, and

(d), corresponding power spectra.

strongly depend on the asymmetry of the forcing as can be seen in figure 8(c). Near Θ ∼ 0.16

(shear layer instability) the low frequency part of the spectrum is enhanced. At higher Θ

values the spectrum is enhanced around and above the forcing frequency. One thus estimates

that the flow has slow large scales fluctuations only near Θc, while it has larger small scale

fluctuations for Θ ≫ Θc.

Evolutions mean induced field and normalized fluctuations at Rm = 2 as a function

of global rotation are the following: 〈BI
z/B

A
x 〉 = 0.058; 0.040; 0.013 and (BI

z )rms/〈B
I
z〉 =

0.03; 0.16; 0.22 for the Θ = 0; 0.16; 0.6, respectively.

2. Asymmetric equatorial dynamo

Time evolution of the equatorial dynamo field Bx is shown in figure 9 for three values of

Θ (refer to figure 7 for the Θ = 0 case) and increasing values of the rotation rate F .

The Θ = 0 case, described in last section, showed an homopolar dynamo with an on-

off intermittent regime at onset and a steep transition from the null-field regime to the
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FIG. 9: Transverse dynamo with global rotation: time recordings of the transverse magnetic field,

for increasing values of Θ (left to right) and for increasing value of the mean rotation rate F .

dynamo regime. When increasing Θ, a first observation is that both polarities occur, with

chaotic reversals for Θ ∼ Θc. This feature disappear for higher values of Θ, i.e. when

the flow has bifurcated toward the one-cell configuration, and one recovers an homopolar

dynamo. The analysis of the Θ ∼ Θc regimes is of great interest since, for these regimes,

the VKS dynamo displayed most of its dynamical regimes (chaotic reversals, symmetric

and asymmetric bursts, oscillations...) [15–17]. At the critical value Θ ∼ Θc, the equatorial

dynamo is bipolar, bifurcates through an on-off scenario and reverses chaotically. Close to

the threshold value (the Θ = 0.2 regime is displayed in figure 9), the dynamo also bifurcates

via an on-off scenario and exhibits bursts of both polarities for a rotation rate close to Fc.

At higher rotation rates, reversals occurences are less frequent and the dynamo eventually

reaches an homopolar regime for F/Fc > 1.5.

When the fow has bifurcated to the one-cell configuration, the equatorial dynamo is

homopolar. On/off intermitency is observed in a very narrow range of driving frequencies.

IV. CONCLUDING REMARKS

In the present study, influence of the flow fluctuations on synthetic Bullard-von Kármán

dynamos has been investigated. Two types of dynamo loops were studied: an A − ω and

a A − BC dynamo, where the ω and BC-effects incorporate turbulent fluctuations. Flow

fluctuations modifications have been achieved by inserting appendices in the vessel, or by

driving the flow asymmetrically (for A − BC dynamo). Several robust features have been
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observed:

• The bifurcation occurs via an on-off intermittent regime at onset of dynamo action.

• The on-off intermittent regime is controlled by the low frequency part of the fluctuating

induction process considered in the dynamo loop: the higher the low frequencies of

the fluctuations, the wider is the occurence of on-off intermittency among the control

parameter.

• For all studied configurations, the system spends half ot its time in the dynamo regime

when driven at the critical forcing parameter defined on time-averaged induction pro-

cesses.

However, some features strongly depend on the exact configuration. Reversing dynamos

have been observed only for strong fluctuations of the turbulent induction process. The low

frequency part of the spectrum seems to play also a dominant role on the ability of the

dynamo to reverse.

Hence, for this synthetic dynamo, salient features such as bursts of magnetic field activity

or reversals are controlled by the underlying hydrodynamics. A detailed comparison with

the dynamics of stochastic differential equations in the presence of noise is underway and

will be reported elsewhere.
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