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We introduce a new numerical approach to study magnetic induction in flows of an electrically
conducting fluid submitted to an external applied fieldB0 . In our procedure the induction equation
is solved iteratively in successive orders of the magnetic Reynolds number Rm. All electrical
quantities such as potential, currents, and fields are computed explicitly with real boundary
conditions. We validate our approach on the well known case of the expulsion of magnetic field lines
from large scale eddies. We then apply our technique to the study of the induction mechanisms in
the von Kármán flows generated in the gap between coaxial rotating disks. We demonstrate how the
omega and alpha effects develop in this flow, and how they could cooperate to generate a dynamo
in this homogeneous geometry. We also discuss induction effects that specifically result from
boundary conditions. ©2004 American Institute of Physics.@DOI: 10.1063/1.1739401#

I. INTRODUCTION

When a magnetic field is applied to a flow of an electri-
cally conducting fluid, complex induction mechanisms occur
and induced currents and magnetic field are generated. For
certain particular flows, this induction process may generate
an instability where the induced magnetic field adds up to the
initial one such that a large-scale field can grow. This phe-
nomenon, known as the magnetohydrodynamic~MHD! dy-
namo instability, is thought to be the source of cosmic bod-
ies’ magnetic fields, as originally suggested by Larmor in
1919.1

Experimentally, dynamo action has first been produced
by the controlled motion of solid metal rotors. The setup
designed by Lowes and Wilkinson2 uses two metal cylinders
with their axis at an angle. The differential rotation generated
by each rotating cylinder inside a stationary conductor con-
verts a poloidal field into an azimuthal one. A loop-back
instability mechanism is created because the azimuthal in-
duced field produced by each cylinder plays the role of an
axial field for the other rotating conductor. Fluid dynamos
have also been demonstrated experimentally by the
Karlsruhe and Riga experiments.3,4 These experiments have
been built so that the mean fluid flow mimics model~lami-
nar! configurations where dynamo action has been analyti-
cally calculated.5,6 In each case, observations have shown
that the experimental dynamo onset is very close to that cal-
culated from the laminar mean flow alone.7,8 In order to
study the backreaction and the time dynamics of fluid dyna-
mos above threshold, it would be desirable to build less con-

strained flows that are capable of self-generation. In this
quest, several groups have focused on swirling flows gener-
ated by the rotation of coaxial impellers in a closed volume.9

These flows possess differential rotation and helicity, two
ingredients that play a central role in dynamo
self-generation.10 Kinematic simulations have shown that dy-
namo action is a possibility in these flows,11,12but a dynamo
loop-back mechanism has been clearly identified, as it was
for instance for the Lowes and Wilkinson dynamo.

The understanding of this mechanism is of crucial im-
portance for experimentalists. Indeed, kinematic simulations
show that for any experimental configuration, the critical
value for the control parameter~magnetic Reynolds number,
Rm, see next section! is always very close to the maximum
value achievable in the experiment. If one wants to increase
the magnetic Reynolds number, a strong limiting factor is the
cost in power consumptionP of the engines driving the flow
which scales like Rm3.15,19 The success of an experimental
dynamo relies therefore on a proper identification of the
loop-back mechanism and of the geometry of the magnetic
field and electrical currents in the experimental vessel to op-
timize the design of the experiment.

The purpose of this paper is to study in detail the induc-
tion mechanisms that occur in von Ka´rmán ~VK ! swirling
flows, generated inside a cylinder by the rotation of one or
two coaxial disks. However, the method could be easily ex-
tended to other types of geometries, some of which more
appropriate for geophysical applications.

We consider the induced magnetic and electrical re-
sponse of the flow when an external field is applied. Tradi-
tional techniques to solve the equation governing the behav-
ior of the magnetic field in a fluid@Eq. ~1!, Sec. II A# use a
decomposition on special functions and express boundary
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conditions as nonlocal spectral conditions, therefore only al-
lowing the treatment of simple boundary geometries, such as
spherical or cylindrical vessels. We propose here a quasi-
static perturbative approach in which complex boundary con-
ditions ~close to experimental reality! can be conveniently
implemented. The net magnetic induction is expressed as the
result of an iterative process where the flow subjected to a
given field of orderBk induces the next orderBk11 . For each
iterative step we compute all electromagnetic quantities in-
volved in the induction process: induced electromotive force
~e.m.f.!, currents, and magnetic field. In this approach suc-
cessive iterations correspond to the onset of new couplings
as Rm increases. An experimentalist can therefore identify
these couplings and understand how they cooperate to favor
or hinder the dynamo action and also understand the role of
the boundary conditions~see Figs. 9, 10, and 13!. This pro-
vides a useful guidance for the design and optimization of
experiments. Actually, the work described in this paper was
originally motivated by the necessity for experimentalists to
better understand the path of electrical currents, without
which, for instance, the effects related to the boundary con-
ditions ~see Fig. 13! cannot be understood.

The paper is organized as follows: in Sec. II, we present
in detail our iterative approach, its links with more tradi-
tional kinematic simulations, the implementation of bound-
ary conditions and numerical strategies. In Sec. III, we revisit
the process of expulsion of magnetic field lines by a large
eddy as a test case for the iterative method. We then consider
the induction due to differential rotation~Sec. IV! and helical
motion ~Sec. V! in VK flows. In Sec. VI, we discuss the
possible generation of ana–v dynamo in this geometry.
Section VII is devoted to the study of an induction mecha-
nism in VK geometry that is mainly due to the boundary
conditions at the lateral wall of the flow.

II. A QUASISTATIC ITERATIVE APPROACH

Our aim is to describe and understand the induction ef-
fects that take place in a stationary flow of an electrically
conducting fluid submitted to an external magnetic field,
when the magnetic Reynolds number is increased~Rm is
defined as the ratio of induction to Joule dissipation effects!.
The iterative procedure consists in solving step by step the
induction equation, and obtain the induced field as a series in
Rm. One computes to first order in Rm the magnetic fieldB1

induced from the applied fieldB0 ; the procedure is repeated
to compute the fieldB2 induced fromB1 at first order, and so
forth. Since the induction equation is linear, the net magnetic
field is the sum over all contributions. As we will see, this
approach converges strictly only at small Rm, but it can be
extended to larger values and the results are in remarkable
agreement with experimental data.

A. Induction equation and boundary conditions

In the MHD approximation,10 the magnetic response of a
flow with velocity u~r ! to an applied uniform fieldB0 is
governed by

] tB5¹Ã@uÃ~B1B0!#1lDB, ~1!

“"B50, ~2!

wherel51/m0s is the fluid magnetic diffusivity~electrical
conductivity s!. The flow velocity u~r ! is assumed to be
stationary. MHD experiments being usually conducted in liq-
uid metals, we also assume that the flow is incompressible,
“"u50. We further assume that Lorentz forces remain small
compared to inertial and pressure forces, i.e., the magnetic
field never grows strong enough to perturb the prescribed
hydrodynamic velocity field—the interaction parameter re-
mains small,N5sLB0

2/rU where r is the fluid’s density,
and U, L characteristic velocity and size of the flow. The
problem considered here is of the same nature as addressed
by kinematic simulations in which the flow is fixed and one
studies its magnetic response.

The induction Eq. ~1! must be supplemented with
boundary conditions. Their choice depends on the definition
of the MHD ‘‘system.’’ One simple and elegant solution is to
consider the system as being the unbounded space, in which
case the condition is that of vanishing magnetic field at in-
finity ~Dirichlet!. In this case, the inhomogeneities of electri-
cal conductivity are taken into account as an additional term
in the induction equation

] tB5“@uÃ~B1B0!#1lDB1~“ÃB!3“l. ~3!

This formulation yields a well posed problem, although not
practical for numerical implementations. One thus reverts to
a finite homogeneous system with specific conditions at the
flow walls: in the case of insulating outer walls, Eq.~1! is
then supplemented by the condition of continuity of the mag-
netic field at the wall~absence of outgoing currents!.

B. The iterative scheme

In order to compute the induced magnetic field for a
given applied field, conventional techniques as used in kine-
matic simulations would directly solves Eq.~1!. This would
yield a complete solution, including its time dependence.
However, we are interested in understanding how the system
reaches a steady-state equilibrium between diffusion and in-
duction, a process that we call an ‘‘induction mechanism.’’
We wish to analyze the role of the various components of the
velocity field and their gradients, and the role of the bound-
ary conditions. We thus develop an approach in which suc-
cessive contributions to the net induction~linear in Rm, then
quadratic, cubic, etc.! are individually identified and their
relative importance estimated as Rm is varied.

For a given velocity distributionu~r ! and applied field
B0 , we search for steady solutions of the induction equation

B5B01Bind , Bind5 (
k51

`

Bk , uBku;O~Rmk!. ~4!

In the numerical computation the magnetic Reynolds number
Rm is defined as

Rm5UL/l, ~5!

whereU5maxr(uu(r )u) andL are characteristic integral ve-
locity and length scales of the flow~for exampleL can be the
radiusR of the cylinder in VK flows!. As we look for sta-

2530 Phys. Fluids, Vol. 16, No. 7, July 2004 Bourgoin et al.

Downloaded 28 Jun 2004 to 128.117.136.194. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



tionary solutions, contributions at each order are obtained as
solutions of a hierarchy of Poisson equations

DBk1152Rm“Ã~uÃBk!, ~6!

in which lengths, velocities, and magnetic fields have been
nondimensionalized, respectively, by,L, U, andB0 .

Each step described by Eq.~6! can be interpreted as
usual in terms of distorsion and transport of the magnetic
field lines by the velocity gradients of the flow. Even without
resolving numerically this set of equations, one has here a
way, if the magnetic Reynolds number remains moderate, to
picture the mechanisms involved in the induction of mag-
netic field, in relation with the main velocity gradients of the
flow, as well as a good insight on the spatial structure of the
magnetic field.

C. Calculation at each order

Solving Eq.~6! by a simple Poisson solver is not trivial
as it would imply writing the boundary conditions for the
magnetic field at the surface of a cylinder. Instead we start
from electric potential and induced currents. The fields at
each order are thus considered successively, using the fol-
lowing sequence.

~1! The electromotive force~e.m.f. in units ofUB0) induced
by the flow motion is computed as

ek115uÃBk . ~7!

~2! Since the electrical current, given by Ohm’s law
j5s~2“f1e!, is divergence free, the electric potential
is obtained as a solution the Poisson equation

Dfk115“"~uÃBk!. ~8!

In the case of an insulating boundary, the condition of
vanishing outgoing currents can then be written asn"“f
5n"~uÃB!. The earlier Poisson equation can then easily
be solved as a von Neuman problem, for any kind of
geometry. Note that in real flows the hydrodynamic
boundary layer is very small since the magnetic Prandtl
number of liquid metals is less than 1025; as a result the
viscous sublayer is of negligible extend compared to
magnetic scales. A free slip rather than no-slip boundary
condition for the velocity is appropriate and the bound-
ary condition at the wall,n"“f is therefore nonzero.

~3! The induced currents~in units of sUB0) are then com-
puted as

j k1152“fk111ek11 . ~9!

~4! Finally, the magnetic field can be computed from Biot–
Savart formula

Bk11~r !5
Rm

4p E d3r 8
j k11~r 8!Ã~r2r 8!

ur2r 8u3
. ~10!

In practice, the integral is only computed at the boundary
and used to provide boundary conditions to solve the
Dirichlet problemDBk115Rm“Ãj k11 .

~5! The magnetic Reynolds number only enters in the final
step, where all contributions are collected and the fields
are obtained as integer series

fk~Rm!5fk~1!Rmk21⇒f~Rm!5(
k

fk~1!Rmk21,

~11!

j k~Rm!5 j k~1!Rmk21⇒ j ~Rm!5(
k

j k~1!Rmk21, ~12!

Bk~Rm!5Bk~1!Rmk⇒B~Rm!5(
k

Bk~1!Rmk. ~13!

This approach is valid when the series converges, that is
for a low enough value of Rm~Rm,Rm* !. Numerically
we observe that Rm*;5–30 in the cases considered in
our study. This range covers a significant fraction of
magnetic Reynolds numbers that have been explored in
experiments using liquid gallium14,15 and liquid
sodium.16,18,19One may also recall that the integral mag-
netic Reynolds number~i.e., defined on large scale
physical parameters! is an upper limit for the actual mag-
netic Reynolds number of the flow~as a number which
actually measuresthe strength of induction effects!.20

For higher magnetic Reynolds number values, one needs
to extrapolate the series expansion outside its strict con-
vergence radius. We use Pade´ approximants,21 which has
become traditional in these problems~see, for example,
Ref. 22!. It yields strikingly good results when compared
to analytical solutions or measurements, as will be
shown in the next sections.

D. Numerical implementation

As explained, our study concentrates on the von Ka´rmán
flows, although the approach could be easily applied to other
geometries. In experimental configurations, von Ka´rmán
flows are generated inside a cylinder by the rotation of one or
two discs whose axis of rotation coincides with the axis of
the cylinder. Two regimes are of particular interest.

~1! Single disk~SD!: a single disk is rotated at frequencyV,
the other being held at rest. In this case the time-
averaged flow is strongly helical: it has a toroidal com-
ponent, and a recirculation poloidal loop, created by the
pumping effect towards the center of the rotating disc. In
Duddley and James terminology,11 it is a s1t1-like flow.

~2! Double disk~DD!: the disks are counter-rotated at equal
ratesV. In this case, the mean flow is made of two cells
with opposite toroidal velocities and two recirculation
loops, with a strong shear zone in-between. Using again
Duddley and James terminology,11 it is a s2t2-like flow.

In our numerical studies the flow is a synthetic velocity
field that mimics the main properties of the experimental
mean flows. The aspect ratio of the flow is one, i.e., the
height of the cylinder is equal to its diameter~and will re-
main so throughout our study!. We choose simple harmonic
functions for the radial and azimuthal velocitiesur and
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uu and deduce the vertical componentuz from the incom-
pressibility condition. For the~SD! case we use

ur~r ,z!52sinpr cos
p~z11!

2
,

uu~r ,z!52~P/T!21 sinpr , ~14!

uz~r ,z!5
1

pr
sin

p~z11!

2
~pr cospr 1sinpr !,

where (r ,u,z) are the cylindrical polar coordinates, andP/T
the ratio of the amplitude of poloidal to toroidal speeds. For
the counter-rotating~DD! flow configuration the velocity
field is

ur~r ,z!52sinpr cospz,

uu~r ,z!52~P/T!21 sin
pz

2
sinpr , ~15!

uz~r ,z!5
1

pr
sinpz~pr cospr 1sinpr !.

In sharp contrast with experimental works,18 the flows stud-
ied here are smooth and laminar. The effect of turbulent fluc-
tuations~always present in real liquid metal flows at finite
Rm! cannot be directly computed with this numerical
scheme, and other approaches are needed.23

Figure 1~a! shows the synthetic flow profile in the~SD!
case. One observes poloidal recirculation loops~arrows! as
the fluid is drawn to the disk near the axis of the cylinder and
ejected towards the lateral wall at the disk outer rim. The
toroidal velocity is close to solid body rotation up tor
.0.5. The main motion of the flow is helical. The~DD! flow
is shown in Fig. 1~b!. Two poloidal recirculating loops are
now created, since in each half of the cylinder the fluid near
the axis is drawn to the closer disk. The toroidal motions are
also of opposite directions, so that helicities add up in each
half of the cylinder. In addition, there is a strong differential
rotation and a shear layer/stagnation point in the middle of
the cylinder. In both cases, the velocity boundary condition is
that of no outgoing flow, with free slip at the surface. This
latter condition is justified because the thickness of the hy-
drodynamic boundary layer in liquid metal flows is very
small. The ratioP/T of the intensity of the poloidal to toroi-
dal velocities is adjustable in the synthetic flows; it is set to
0.8 in the examples shown in Fig. 1, and in most studies
here.

Numerically, the crucial part of the scheme lies in the
solution of the Poisson equations for the electric potential
and for the magnetic field inside the volume. They are then
solved using standard programs in the Overture24 library us-
ing the mixed Cartesian-cylindrical grid shown in Fig. 1~c!.

In order to reproduce induction effects that do occur in
experiments, we have also used in Sec. VII velocity fields
obtained by time averaging local velocity measurements in
laboratory flows. These fields have been provided by our
colleagues at Commissariat a` l’Energie Atomique~CEA! in
Saclay, from measurements in a VK flow in water.25

E. Iterative approach and dynamo action

Induction computed with the iterative approach can be
linked to dynamo self-generation as follows. Let us rewrite
the magnetic field induced at orderk11 from the field at
orderk as

Bk1152RmD21@“Ã~uÃBk!#5Rm G~Bk!, ~16!

where we introduce the operatorG:

G•5D21@“Ã~uÃ• !#. ~17!

Let us assume further that an induction loop back
mechanism may be identified for a given velocity field and
geometry, i.e., that there exists a magnetic field distribution
at order k, Bk , such that aftern induction iterations, the
resulting magnetic field is similar in geometry with the initial
Bk :

Bk1n~Rm!5Rmn~G!n~Bk!5gRmnBk , ~18!

with g a constant factor that depends on the flow and on the
initial magnetic field geometry. At a given magnetic Rey-
nolds number the net amplification factor is thusgRmn @i.e.,
gRmn andB are eigen value and eigen vector of the opera-
tion (G)n]. Positive g values lead to a growth of the mag-
netic field modeBk and thus may lead to a dynamo instabil-
ity if gRmn.1, the critical magnetic Reynolds number being

Rmc5g2n ~19!

~note again that only stationary dynamos can be captured
using this procedure!. Negative values ofg correspond to
processes where the induced magnetic field opposes the ap-
plied one. Such situation occur for example in the expulsion
of magnetic field lines from eddies26,27—this case will be
discussed in detail in Sec. III.

When a positive loop-back mechanism exists, the geom-
etry of the marginal mode can also be identified, in much the
same manner as in kinematic dynamo studies. Indeed, in
kinematic approaches, the neutral mode satisfies

NRmc~Bmarginal!50, ~20!

with Rmc the critical magnetic Reynolds number, and the
operatorNRm defined as

NRm•5Rm“Ã~u~r !Ã• !1D•. ~21!

Comparing the definition of the operatorsG and NRm

@Eqs. ~17! and ~21!#, Eq. ~20! can be interpreted as ann
51 loop-back induction

Bmarginal5RmcG~Bmarginal!5RmcgBmarginal, ~22!

with again the condition Rmcg51. If the iteration procedure
has identified a positive loop-back mechanism inn steps,
(B0 ,B1 ,...,Bn), one can easily show that there exists a linear
combination Bmarginal5Sk50...n21lkBk such thatGBmarginal

5gBmarginal ~in fact Bmarginal is an eigenvector of the sub-
space stable underG!. The neutral mode is thus obtained
from the structure of the magnetic field induced at each step
in a loop-back mechanism. The occurrence of such processes
and its applications to dynamo action in VK flows will be
discussed in Sec. VI.
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III. COROTATING FLOW: EXPULSION BY LARGE
SCALE EDDIES

We first apply the iterative approach to a case that has
been well studied analytically28 and experimentally:27 the ex-
pulsion of magnetic field lines by large eddies. To this end,
the computational cylinder is divided into a region in solid
body rotation (ur5uz50, uu5Vr , up to radiusR51) sur-
rounded by a region at rest~up toR52); the medium within
the cylinder has uniform electrical conductivitys and is sur-
rounded by insulating material. The cylinder is periodized in

the z direction, so the system is quasi-two-dimensional. An
external magnetic fieldB05B0x̂ is applied perpendicular to
the cylinder axis, along thex axis. The solution to this prob-
lem can be found analytically.28 In cylindrical polar coordi-
nates, one has for the stationary state

Br /B05r 21$R@ f ~r ,p!cosu#2I@ f ~r ,p!sinu#%,

Bu /B052] rI@ f ~r ,p!#, ~23!

FIG. 1. Flow geometry.~a! One rotat-
ing disk at the top end of the cylinder
(z51): poloidal ~left, arrows! and to-
roidal ~right, gray-scale! in the ~SD!
case; ~b! idem for counter-rotating
disks; ~c! numerical grid used for the
finite-difference calculations. The co-
ordinate system shown is used
throughout the text:z is the axis of the
cylinder, (x,y) are transverse and the
origin O is set in the middle of the
cylinder. The height of the cylinder is
equal to its radius~aspect ratio one!.
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f ~p,r !5DJ1~pr !, r ,R, f ~r ,p!5r 1C/r , r .R,
~24!

p5
~ i 21!ARm

A2R
, D5

2

pJ0~pR!
,

C5
2RJ1~pr !2pR2J0~pr !

pJ0~pr !
~25!

@R and I real and imaginary parts andJn(x) are Bessel
functions#. Physically, the initially transverse field lines are
advected and stretched by the solid body rotation, thus ‘‘be-
ing pushed away’’ to the sides of the cylinder while the inner
core field decreases under diffusion. From an equivalent
point of view, the applied field is time periodic in the refer-
ence frame of the rotating core and thus can penetrate only as
far as the skin depthd5R/ARm.

We now show how this behavior is described by the
iterative approach. At first order the induced e.m.f.

e15uÃB052rVB0 cosu ẑ52xVB0ẑ ~26!

is purely axial and divergence-free. As a result the induced
current densityj1 has no potential contribution and is iden-
tical to the e.m.f. distribution@see Eq.~9!#. It is thus made of
axial currents that flow in opposite directions on each side of
the yOz plane, as shown in Fig. 2~a!. The resulting induced
magnetic field at first orderB1 has a dipole structure, aligned
with the y axis: the main effect of the rotation is to induce a
field component perpendicular to the applied one. The sec-
ond order induction just repeats this sequence: asB1 lies in
the (x,y) plane, the second order electric potential is diver-
gence free and the second order currents arej25e2

5uÃB1 . They flow axially in opposite direction on either
side of the xOz plane—Fig. 2~b!. The resulting induced
magnetic field is a dipole along thex axis and opposite to
B0 . This two-step process thus tends to reduce the applied

field, it is the essential mechanism of the expulsion of the
magnetic field from the core of the rotating motion—as an
illustration, the induction steps 20–24 are displayed in Fig.
2~c! showing the stability of the order-two cycle of induction
patterns. In fact the two modes, ‘‘x-axis dipole’’ b1 and ‘‘y-
axis dipole’’ b2 , form a stable subspace underG, such that

G~b1!5g1b2 , g151.69731021, ~27!

G~b2!5g2b1 , g2521.69731021, ~28!

G2~b1,2!5gb1,2, g5g1g2522.87931023. ~29!

The negative value ofg leads to the expulsion process.
We show in Figs. 3~a! and 3~b! the profile of magnetic field
lines obtains after the iteration of 40 steps. At low magnetic
Reynolds number@Rm51 in ~a!# the raw series is computed;
in ~b! the Reynolds number is equal to 10, larger than the
radius of convergence of the series and Pade´ resummation
has been used to ensure convergence. The results are in very
good agreement with the original numerical calculations by
Weiss.26 To be more quantitative, we plot a comparison of
the numerical and analytical variations with Rm in Figs. 3~c!
and 3~d!. In ~c! the raw series up to order 40 is used; the
series diverges for Rm.Rm*.5.5, but below the agreement
is excellent. If Pade´ resummation is applied, as in~d!, one
gets an excellent agreement at least up to Rm.40. Note that
the observed radius of convergence of the series is very well
approximated by Rm* 51/Ag1g255.89, as one could have
inferred by starting the iteration process with one of the
stables modes (b1 ,b2): the net induced field is obtained as a
series in powers ofg1g2Rm2.

IV. OMEGA EFFECT AND FIELD EXPULSION

In this section we consider the~DD! case of the VK
flow, generated when counter-rotation at equal rates is

FIG. 2. Expulsion by rotation.~a! First order induction; currents are shown as a gray scale, while the lines give selected magnetic field paths; note that a
domain of radius 2R, twice the cylinder size, is represented.~b! Idem for second order induction;~c! iteration steps of order 20–24, left to right.
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imposed—Fig. 1~b!. We consider in the section the response
of the fluid to an applied field, homogenous and aligned with
the cylinder axis~z direction!. At low Rm, the differential
rotation ~velocity gradients]zuu) generates an azimuthal
magnetic field, via thev effect. In the poloidal recirculation
loops, the velocity gradients]zur and]zuz also induce axial
and radial magnetic fields. At high Rm, expulsion occurs and
induction decreases.

A. First order induction

In this geometry, experiments14 have shown that the
magnetic induction varies linearly with Rm at low Rm, so
that first order calculations should give the main features.
The first order e.m.f.,e15uÃB0 , gives rise to an electric
potential that solves

Df15B0"v, ~30!

@from Eq. ~8!# wherev5“Ãu is the vorticity of the flow.
The advantage of this notation is to emphasize the role
played by vorticity in the induction process. Note that VK
flows have a vorticity field that has the same topological
structure as the velocity; in this sense they are very similar to
Beltrami flows. Contrarily to the case considered in the pre-
vious section, the electric potential must be nonzero to en-
sure that currents remain divergence free. Its topology is
shown in Fig. 4: it has essential contributions on the cylinder

axis and near the outer rims of the ends of the cylinder.
Indeed, on the axis the vorticity is aligned with the applied
field, with opposite signs at each end; this leads to the axial
potential difference. Near the outer rims of the cylinder, the
axial vorticity is reversed compared to that on the axis; it
generates in this region a radial potential difference. The in-
duced currents result from the potential distribution and local
induction j152“f11e1 ; their geometry is quite complex,
but two limiting cases can be identified.

~i! One case is shown in Fig. 4~a!. The axial potential
difference drives an axial current~actually all axial currents
are necessarily of potential origin sinceB0 is axial! from one
end of the cylinder to the other. Then currents are transported
away from the axis by the induction e.m.f.uÃB0—note that
this is done against the radial potential difference, explaining
why the current spirals radially outward~respectively in-
ward! in this region. When at the outer wall, the current can
again flow axially under the action of the outer axial poten-
tial difference. The results is the formation of poloidal cur-
rents on a torus, which generate a toroidal magnetic field.
This is thev effect, usually described in terms of torsion of
axial magnetic field lines, interpreted here in terms of electric
potential and current paths.

~ii ! Another limiting case corresponds to purely azi-
muthal currents which can only be generated from the induc-
tion e.m.f.uÃB0 since the flow is axisymmetric. In the me-

FIG. 3. Expulsion by rotation.~a! and~b! Magnetic field lines computed using the iterative approach, respectively at Rm51 and Rm510. ~c! and~d! Detailed
comparison of the magnetic profilesBu(r ) andBr(r ) obtained in the analytical solution and in the numerical, iterative scheme~lines with symbols!. In ~c!,
terms in series up to order 40 have been computed: the divergence of the series is clearly visible for Rm.Rm*. In ~b! and~d! the Pade´ resummation is used.
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dian plane, the radial velocity drives an azimuthal current—
Fig. 4~b!. It the creates a poloidal magnetic field, parallel to
the applied field along the axis and with the opposite direc-
tion near the cylinder outer wall. This effect corresponds to
the stretching of the applied magnetic field lines by the po-
loidal recirculation loops of the flow.

The general current distribution induced at first order
combines features of these limiting cases, see Fig. 4~c!. This
generates a first order magnetic field that has both toroidal
and poloidal components.

B. Higher orders

At second order, one important effect is that the toroidal
field induced at first order is advected by the radial flow, due
to the2ur] rB1,u induction term—see Refs. 10 and 15 for a
detailed discussion of the~u"“!B and ~B"“!u induction
terms that stem from Eq.~1!. SinceB1,u(r ) in the bulk of the
cylinder is maximum forr .0.5, the second order azimuthal
field locally opposes the first order induction except near the
axis of the cylinder—compare the toroidal fields in Figs. 5~a!
and 5~b!. The effect of the poloidal flow is thus to reduce the
initial v effect. ~Another induction process yields the same
result: the differential rotation acting on the axial component
B1,z generated at first order by the poloidal velocity.! One
thus expects that as the magnetic Reynolds number is in-
creased, the efficiency of the conversion of the applied axial
field into a toroidal component will decrease. This can also
been viewed as the result of the progressive expulsion of the
applied magnetic field by the poloidal flow: as Rm increases,
the axial magnetic field concentrates along the axis of the
cylinder, away from regions where the differential rotation
generates efficiently a toroidal component. This behavior is
indeed observed as iterations of the induction are summed
into the net magnetic field. Figure 5~c! shows the evolution
with Rm of all components of the field measured in the mid-
plane atr 50.5. The induction of a toroidal component@in
the figure it corresponds to2Bx at the location (x50, y
50.5,z50)] increases up to Rm.12, and then saturates and
even decreases as Rm is further increased. The same phe-
nomenon occurs for the axial component: as the applied field
is progressively expelled from the poloidal recirculation
loops, it can no longer be distorted by the axial velocity
gradients. This is further evidenced in Fig. 5~d!, where the
variations with Rm of the axial induced field are compared
for points at increasing radial distances: the axial stretching
remains only in the immediate vicinity of the axis. Indeed, as
r gets larger than about 0.2, the induction actually tends to
oppose the applied field (Bind→21 as Rm→`!, so that the
net axial magnetic field inside the poloidal recirculation
loops tends to zero.

At large orders, the dominant role of field expulsion is
clearly evidenced by the fact that the iteration of the induc-
tion process yields a negative loop-back mechanisms. Steps
31–34 are shown in Fig. 6. In three steps, a magnetic field
structure with a sign opposite to the starting one is obtained.
Numerically, one findsB34.gB31, with g523.8731025;
the scalar product of the two fields,* d3rB31"B34, is equal to
20.99 whenB31 andB34 are normalized. One can thus con-
struct from the family (B31,B32,B33) a stable subspace and
an eigenmode with a negative eigenvalueg̃5g1/3523.38
31022. This value correctly gives the radius of convergence
of the integer series Rm* 51/g̃529.6~observed numerically,
but not shown in Fig. 5 where Pade´ approximants have been
plotted!.

At a large magnetic Reynolds number, we thus observe
that a mechanism as efficient as the differential rotation can
ultimately be masked by the effect of expulsion by large
scale eddies. The expulsion of the axial field could be less-
ened with a lower poloidal to toroidal ratio of characteristic

FIG. 4. Axial applied field.~a! Effect of differential rotation~toroidal flow!:
isopotential surfaces~their signs are opposite at top and bottom locations on
the axis, and again between inner and outer radial rims—cf. text!, example
of induced current path and resulting induced field line;~b! effect of poloidal
flow; ~c! intermediate current lines.
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velocities. However, in the search for a dynamo mechanism,
the poloidal velocity component is essential to give the flow
a strong helicity and to generate a large scale ‘‘a’’ effect.

V. HELICITY AND ‘‘ALPHA’’ EFFECT

We consider now the SD case of a VK flow correspond-
ing to the rotation of one disk in the experimental setup. We
study its response to an external field applied perpendicularly
to the cylinder axis~in this configuration axisymmetry is
broken!. We show that the main induction mechanism corre-
sponds to the stretching and twisting of the imposed field
lines ~respectively by the axial and azimuthal velocities!, as
originally described by Parker.29 At second order, one ob-

serves that the induced current has a strong component in the
direction of the applied field; we thus call this effect an ‘‘a’’
effect, written with quotes to recall that although a result of
flow helicity, it is not thea effect introduced in the mean-
field hydrodynamics approach to model small scale
contributions.30 As contributions at higher orders in Rm are
computed, one observes again that induction is ultimately
dominated by field expulsion due to the flow global rotation.

A. First and second order contributions

Let us begin with the first order contribution; it contains,
when iterated, all the ingredients that lead to the ‘‘a’’ effect.
Figure 7~a! shows the electric potentialf1 in the flow vol-

FIG. 5. Axial applied field.~a! Merid-
ian cross section of the first order in-
duced field. Poloidal component
shown in left figure~arrows! and tor-
oidal component in right figure, on a
gray color scale;~b! magnetic field in-
duced at second order;~c! variation
with the Rm of the induced field at
point (x50, y50.5, z50) ~Padéap-
proximation is used!; ~d! evolution
with Rm of the induced axial field at
increasing radial distancesy50.2
~dashed!, y50.5 ~solid!, y50.8 ~dash-
dotted! from the axis.
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ume, for an applied field along thex axis. As it is generated
by the transverse part of the toroidal vorticity of the flow
~one still hasDf15B0"v andB0 is now perpendicular to the
cylinder axis!, it tends to create in the midplane a potential
difference that is transverse and perpendicular toB0 , thus
aligned in they direction. However, its global structure is
helicoidal, as shown by the shape of iso-potential surface
(f150) in the figure. The induction e.m.f.e1 also has ay
component in the median plane~due to the axial velocity!,
but its sign is such that it opposes the electric potential~on
the boundary they exactly compensate to ensure that the cur-
rents remain confined inside the cylinder!. In contrast with
the geometries described previously, the current distribution
does not simply result from clearly identified potential or

electromotive forces but stems from a delicate balance be-
tween the two effects. However, two essential current paths
can be identified.

~i! Currents that flow in the transversey direction in the
median plane, and with helical trajectories on either side of
it—see Fig. 7~b!. These currents generate an axial magnetic
field component in thexOz plane. Note that, whether of
potential or electromotive origin, they are due to the poloidal
part of the flow.

~ii ! Currents that make a loop in thexOz plane—Fig.
7~c!—and thus generate an induced magnetic field along the
y axis. They are mainly generated by the toroidal part of the
flow. These observation may be easier to understand from the

FIG. 6. Axial applied field. Induction iterations 31–34. Poloidal component
shown in left figure~arrows! and toroidal component in right figure, on a
gray color scale. FIG. 7. Transverse applied field,~SD! geometry: first order response.~a!

Potential, ~b! current and axial induced field,~c! current and transverse
induced field.
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point of view of advection/stretching of the imposed mag-
netic field lines. The poloidal flow deforms axially the ap-
plied field lines and creates an axial induced field, via veloc-
ity gradients such as] ruz . The toroidal flow tends to rotate
the applied field (] ruu gradients! and thus to induce a mag-
netic field component in the transverse direction perpendicu-
lar to that of the applied field.

These processes are repeated at second order.
~i! The flow rotation acting onB1,y induces a component

B2,x parallel but opposite to the applied field as shown in Fig.

8~a!. This starts the expulsion of the transverseB0 by the
axial vorticity of the flow, in the same manner as described in
Sec. III.

~ii ! The action of the axial pumping onB1,y and the
action of the rotation onB1,z both lead to the induction of
poloidal magnetic field linesB2,z in the yOz plane @Figs.
8~b! and 8~c!#. They are generated by the induction currentj2

which has a strong component in the direction of the applied
field B0 , as shown in Fig. 8~d!. One thus hasj2}B0 in the

FIG. 8. Transverse applied field,~SD! geometry: second order induction.~a!, ~b! Projection of the second order induced field in thexOz andyOz planes;~c!
magnetic field stream lines;~d! induced current;~e! net magnetic field up to second order; the stream line is selected to emphasize the ‘‘a’’-effect mechanism.
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midplane of the flow—note that the currents are confined, so
that near the walls of the cylinder they curl to loop inside the
flow volume.j2 is thus parallel toB0 only in the center of the
cell. The proportionality constant is quadratic in Rm and
results from helicity of the flow: both the axial and rotational
flow components have been needed to produce this second
order mechanism. We call this effect an ‘‘a’’ effect, in anal-
ogy with the name introduced in the development of mean-
field hydrodynamics by Ra¨dler and Krause.30 However, here
it is not a result of small scale contributions, but a macro-
scopic effect associated with the stretching and twisting of
the applied field as originally proposed by Parker.29 Adding
the first and second order induced fields to the applied one, it

is actually possible to identify field lines that have the very
topology proposed by Parker29—Fig. 8~e!.

B. Evolution with Rm

We first discuss the behavior at low to moderate mag-
netic Reynolds numbers, i.e., before field expulsion becomes
dominant~Rm<5!. As the applied field has broken the axi-
symmetry, we treat induction separately for thexOz and
yOz planes. We report the variations with Rm of the mag-
netic field computed at three different points in the flow vol-
ume. In theyOz plane, Figs. 9~a!, 9~b!, and 9~c!, the induc-
tion is dominated at low Rm by the ‘‘a’’ mechanism. Thex

FIG. 9. Transverse applied field,~SD! geometry: local induction vs Rm. Points on they axis in the right figures, aty50.25, 0.5, 0.75; and on thex axis in
the left figures, atx50.25, 0.5, 0.75.
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and z components vary quadratically withRm , while the y
component is mostly linear in Rm. The details of the
Bind~Rm) curves depend on the point of measurement. Thea
effect decreases withr: compare thex andz components in
Figs. 9~a!, 9~b!, and 9~c! where measurements are taken at
distances 0.25, 0.50, and 0.75 from the rotation axis. In the
xOz plane@cf. Figs. 9~d!, 9~e!, and 9~f!# thex component of
the induced field displays a mostly quadratic variation with
Rm ~the expulsion effect! whereas the other two have a
strong linear dependence. Qualitatively, these results are in
very good agreement with the measurements made in flows
having the same geometry.15,31

As the magnetic Reynolds number is further increased,
the expulsion of the applied field from the core of the flow
operates. Both the axial and toroidal vorticity components
contribute to this expulsion. As a result the ‘‘a’’-induction
process is progressively cutoff from its source and its effi-
ciency decreases. This evolution is also in good quantitative
agreement with the measurements made in liquid sodium at
Reynolds numbers up to 40: compare for example Fig. 5 in
Ref. 31 and Fig. 9~b! here.

The predominance of expulsion at large Rm corresponds
to a two-step negative loop-back mechanism at high orders
of iteration. For example, we have observed that at largen,
Bn12.gBn with g523.6331022. The value Rm*
51/Augu55.25 gives very accurately the radius of conver-
gence of the integer series~the curves in Fig. 9 have been
computed using Pade´ approximants!.

VI. AN ALPHA–OMEGA COOPERATIVE MECHANISM

We consider again the~DD! flow geometry, i.e., the von
Kármán flow generated by the counter-rotation of the driving
disks. In each half of the cylinder the mean flow geometry is
very similar to the~SD! geometry where it is known that the
‘‘ a’’ effect generates an induced axial field from the applied
transverse one. As the sign of the helicity is identical in both
half cells, their contributions should add up. We thus expect
in the ~DD! case that when a transverse field~perpendicular
to the cylinder axis! is applied, an axial field is induced in a
two-step~quadratic! ‘‘ a’’ mechanism. This induced field is
distorted by thev effect; in this process, a field component

parallel to the initial applied field is generated, in a three-step
~cubic! mechanism. This sequence—detailed in Fig. 10—
constitutes a positive induction loop, inducive of dynamo
action.

A. The alpha–omega induction process

A transverse external field,B0 parallel to thex axis is
applied to the numerical~DD! flow. Induced fields are com-
puted iteratively at Rm51, and shown in Fig. 11. The second
order induced fieldB2—displayed in Fig. 11~a!—has an
axial component in theyOz plane. It is maximum in the
regions of high helicity (z560.5), in the neighborhood of
y560.5 and has opposite direction on either side of thexOz
plane—as expected from the ‘‘alpha’’ mechanism described
in the previous section. Note that, except for some magnetic
diffusion, Fig. 11~a! is equivalent to twice the induction in
Fig. 8~a!. The third order induced field is shown in Fig.
11~b!: one observes in the median plane the generation of a
strong component ofB3 along thex axis (xOz plane!. It
corresponds to the torsion of the axial component ofB2 by
the differential rotation, via thev effect. One thus obtains an
induced field component aligned with the applied fieldB0 , in
agreement with the ‘‘a’’– v picture qualitatively described
earlier.

Such a third order induction process can only be ob-
served if the magnetic Reynolds number of the flow becomes
large enough. Figure 12 shows the development of the in-
duced magnetic field as Rm increases, for a point in the
median plane. The direct series summation diverges for
Rm.Rm*58.5 but was extrapolated by Pade´ approximants.
In Fig. 12~a! one observes that at low Rm, thex component
of Bind is negative and linear: it is due to the compression of
the applied field by the radial flow~directed towards the
rotation axis in the midplane!. The tendency is reversed at
higher Rm, and thex component ofBind becomes positive for
Rm.17.

A similar variation of the induced field in the case of an
applied transverse field has been observed experimentally in
the von Kármán sodium~VKS! experiment; in fact the evo-
lution of Bind,x in Fig. 12~a! is quite similar to that in Fig. 5
of Ref. 19.

FIG. 10. ‘‘Alpha’’–omega dynamo mechanism in the~DD! geometry: the applied transverse field~left! gives rise to the axial field displayed the middle
figure—the ‘‘a’’ step; via theV effect, a third order induced fieldB3 is induced, parallel toB0 .
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B. An alpha–omega dynamo?

Starting from a initial transverse field, we have thus
identified a three-step positive loop-back mechanism. It is
tempting to associate this finding with the kinematic dyna-
mos observed in von Ka´rmán flows.11,12 It would provide a
concrete mechanism for dynamo action—kinematic simula-
tions address only the eventual existence of dynamo instabil-
ity for a given flow, but do not explain how self generation is
achieved. The knowledge of a dynamo mechanism is essen-
tial from the experimental point of view because it yields the
possibility to optimize the dynamo cycle and thus lower the
critical magnetic Reynolds number. However, the identifica-
tion of von Kármán dynamos with the ‘‘a’’– v process de-
scribed here should be made with some care.

Indeed, we have observed in our numerical study that
when the iteration is carried to large orders, the dominant
contribution comes from the expulsion of the magnetic field
from the eddies in the flow. A two-step negative loop-back
mechanism sets in. For example, at largen Bn12 is parallel
and opposite toBn , with g521.3931022. This gives a
critical value Rm* 51/Augu58.5, in agreement with the ob-
served critical value for the convergence of the numerical
series.

It does not mean that the ‘‘a’’– v mechanism should be
ruled out, but rather that it is not efficient enough in the flow
geometry considered here to overcome the expulsion effect.
To wit, let us return to Fig. 11~c!: one may observe there that
the generation ofB3,x occurs predominantly in the center of
the flow, where differential rotation is strongest. However,
B3,x tends to vanish nearz560.5, in the regions of large
vorticity where the ‘‘a’’ effect is strongest. The coupling be-
tween the two effects is thus far from being optimal and it
may explain why it does not survive at the large Rm.

The earlier considerations are consistent with the obser-
vations that dynamo action in von Ka´rmán flows is ex-
tremely sensitive to the fine details of the flow geometry. For
example, the ratio of the intensities of poloidal to toroidal
velocity components (P/T ratio! is known to play a funda-
mental role. Duddley and James11 in their kinematic simula-

FIG. 11. ‘‘a’’– v induced fields in the~DD! geometry;B0 is applied along
the x axis. ~a! Second order fieldB2 ; ~b! third order fieldB3 ~the gray
arrows serve as an eye-guide!; ~c! three-dimensional view; selected second
order and third order magnetic field lines are shown; the contour plot dis-
playsB3,x .

FIG. 12. ‘‘Alpha’’–omega induced fields in the~DD! geometry; evolution of the induced fieldBind with the magnetic Reynolds number, computed using Pade´
approximants.~a! At (x50, y50.5,z50); ~b! comparison of the inducedx component for various values of the poloidal to toroidal speeds ratio; dashed line:
P/T50.2; dotted-dashed line:P/T50.4; solid line:P/T50.8; dotted line:P/T51.6.
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tions in a spherical geometry have observed that self-
generation occurs whenP/T.0.14, but not whenP/T50.1
or P/T50.2. If the toroidal velocity becomes too large, ex-
pulsion will surely dominate, but when it is too small the
helicity and differential rotation are insufficient for an
‘‘ a’’– v mechanism to develop. The results shown so far in
our numerical study have been obtained forP/T50.8, the
optimal value as suggested by kinematic dynamo
simulations.12 This value also corresponds to the optimal ef-
ficiency of the ‘‘a’’– v mechanism, as pointed out in Fig.
12~b!.

VII. INFLUENCE OF BOUNDARY CONDITIONS

One advantage of our iterative procedure is that various
electrical boundary conditions can be considered. This is of
importance because in real situations~natural or laboratory!,
the flow of conducting liquid is confined within walls whose
electrical conductivity, magnetic permeability, thickness,
etc., are important parameters in the induction process. The
reason is that the magnetic diffusive length of liquid metals
is often comparable to the integral length scale. For example,

it has been shown that a conductive layer at rest surrounding
the flow lowers the dynamo threshold in experimental con-
figurations as tested in Riga and Karlsruhe.13 In this section,
we first show that sizeable induction effects can result from
the electrical boundary condition~BC effect!, giving rise to
induced magnetic field contributions which must be added to
the bulk effects.

A. BC effect for a transverse applied field

Let us consider the case of the counter-rotating von
Kármán geometry~DD flow!, when an external fieldB0 is
applied perpendicular to the rotation axis, in thex direction.
We start with the case of insulating boundary conditions at
the flow wall and we will discuss later the generalization to
other electrical conditions~note that it is the discontinuity of
magnetic diffusivity that matters!.

Let us first describe the BC effect in a qualitative man-
ner. Because of the differential rotation, theB0 field lines are
twisted to generate an induced component in they direction
in the median plane—see Figs. 13~a! and 13~b!. Actually, this
is the first step in the generation of the ‘‘a’’ effect described

FIG. 13. Schematics of the BC effect for a transverse applied fieldB0 along thex axis; ~a! initial field and disks rotation;~b! the radial differential rotation
generates a perpendicular componentB1,y ; ~c! corresponding induced current sheetj 1,x ; ~d! axial B1,BC,z generated at the wall (y56R), due to the
discontinuity in the magnetic diffusivity.
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in Sec. V. This field componentB1,y is associated with a
current layerj 1,x that flows parallel to the applied field, and
in opposite direction in the median plane. As the outside
medium is electrically insulating, this current remains within
the flow volume and is therefore tangent to the cylindrical
vessel on they axis—see Fig. 13~c!. At the wall, the discon-
tinuity in j 1,x creates an axial magnetic fieldB1,BC,z outside
of the flow volume, cf. Fig. 13~d!. This field penetrates inside
the flow because the diffusion length (R/ARm) is never
small compared to the cylinder radiusR. As a result, an axial
magnetic field is created in the bulk of the flow, with its
source in the boundary condition at the external wall. Its
variation with the magnetic Reynolds number is essentially
linear because the ‘‘source’’B1,y is essentially produced from
B0 by a first order induction mechanism. The magnetic field
componentB1,BC,z can also be viewed as a necessity for the
reconnection of the magnetic field lines ofB1 at the lateral
walls. We thus observe that this effect cannot exist indepen-
dently of bulk induction effects; discontinuities of electrical
conductivity alone do not generate an induced field!

The schematic picture described above is supported by
the numerical simulation. Figure 14~a! shows the induced
current in thexOy plane, which lies parallel to the applied
field in the middle of the cell. It is therefore tangent to the
cylinder walls neary56R. At these points the current dis-
continuity generates the induced fieldB1,BC,z as shown in
Fig. 14~b!. The evolution of this component inside the flow

volume is shown in Fig. 14~c!: as expected it is maximum at
the wall and decreases slowly away from it~its value is only
halved aty50.7). The BC effect is essentially linear as can
be observed in Fig. 14~d! where the evolution of the induced
magnetic field with the Reynolds number at point (x50, y
50.5,z50) is reported: the dashed line shows the contribu-
tion of the first order induction alone, while the solid line has
been computed summing all orders.

Finally, we should comment upon the symmetries of the
field induced by this boundary effect: even symmetry with
respect to thexOy plane and odd symmetry with respect to
the xOz plane. No linear bulk induction mechanism has the
same symmetries. Indeed, in the bulk, the axial field at first
order is generated by the radial gradient of the axial flow~a
B0 cosu]ruz term in the induction equation!, a term which is
odd with respect to thexOy plane. Thus there is no linear
bulk effect that can produce a field which is even in symme-
try with respect to thexOy plane. However, the quadratic
‘‘ a’’ effect has the same symmetries as the BC effect. In
actual experimental situations, both effects will occur simul-
taneously; but if the induction is observed to vary mainly
linearly with the magnetic Reynolds number one may con-
clude that the effect of boundary conditions are dominant
over the ‘‘a’’ effect—as in the VKS measurements.17

We now discuss further some of the properties of this
induction effect due to boundary conditions. As noted in Sec.
II A, inhomogeneities in the magnetic diffusivity can be in-

FIG. 14. BC effect,~DD! geometry: simulations~experimental flow field!. ~a! First order induced currentj 1 in the xOy at heightz50; ~b! corresponding
magnetic field in theyOz plane; ~c! profile of the BC-induced fieldB1,BC,z(y) in median plane;~d! evolution with the magnetic Reynolds number at (x
50, y50.5, z50): first order contributionB1,BC,z ~dashed line! and net fieldBBC,z ~solid line!.
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cluded in the induction equation@Eq. ~1!#. To lowest order,
as we have seen that the BC effect is mostly linear, it can be
written as

lDB152“Ã~uÃB0!2@l#~S!d~S!~“ÃB1!3n, ~31!

whereS is the surface over which the magnetic diffusivity
discontinuity occurs,n the outgoing normal,@l# (S) is the
jump in magnetic diffusivity andd (S) a Dirac distribution
null everywhere except onS. This is a closed form in which
B1 results both from the bulk and boundary effects. It is
possible to separate these contributions because the boundary
effects stem from the bulk induction. First, we isolate the
specific induction source term that generates the BC effect
and express it in terms of the induced currentj1 :

I1,BC52@l#~S!d~S!j1Ãn. ~32!

This current is mainly generated by the bulk induction, so
that to lowest order it verifies the Poisson equation

D j152
1

m0l
~B0"“ !v, ~33!

wherev5“Ãu is the flow vorticity and we have assumed
that the applied fieldB0 is homogeneous. Using this formu-
lation one expects the BC effect to be quite sensitive to the
precise structure~vorticity distribution! of the flow. It is in-
deed the case: the BC effect is weak in the numerical model
field used in our study, but very strong in actual
experiments.15,18 The reason is that experimental flows have
a stronger radial vorticity gradient in the vicinity of the cyl-
inder lateral walls25 and thus promote a stronger induction

according to Eqs.~31!–~33!. This is why in order to enhance
the BC effect, the curves in Fig. 14 have been computed
using experimental flow profiles.

B. When the external walls are a thin conducting
shell

As discussed earlier the source term of the BC effect
@Eq. ~31!# is proportional to the jump in magnetic diffusivity
at the wall. It has opposite effects depending on whether the
outside medium has a higher or lower electrical conductivity
than the fluid. An interesting situation occurs when the flow
walls are made of a shell of material with a higher conduc-
tivity, surrounded by an insulating medium. For example,
this would be the case for a sodium flow enclosed in a cop-
per vessel, surrounded by air.

We consider the case of a von Ka´rmán flow enclosed in
a cylindrical vessel with thicknessep and conductivitysp

5zs—cf. Fig. 15~a!. Note that in such a geometry, the equa-
tion for the electric potential~8! must take into account the
inhomogeneity of the magnetic diffusivity and thus be re-
placed by

Dfk112“l"“fk115“Ã~uÃBk!2“l"~uÃBk!, ~34!

with the condition (“f)n50 at the outer insulating wall.
We concentrate onz51 ~the walls have an electrical con-

ductivity equal to that of the fluid! and z54.5 ~the ratio of
electrical conductivities of copper and liquid sodium!. In
each case the variation of the axial field induced by the BC
effect with the thickness of the vessel is shown in Fig. 15~b!
@at point (x50, y50.5, z50)].

FIG. 15. BC effect,~DD! geometry~experimental flow field!: influence of the vessel thickness and electrical conductivity.~a! Sketch of the vessel geometry;
~b! evolution of the first order BC axial induced field, with the thickness of the vessel~the dashed and solid lines are only meant as guide to the eye!; ~c! and
~d! magnetic field topology in the case of a change of the sign of the discontinuity of the electrical conductivity at the wall~left: j,1; right j.1!.
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~1! Whenz51, the boundary effect tends first to decrease as
the thickness of the vessel is increased, up to a thickness
ep equal to approximately 5% of the radius of the cylin-
der. Then forep.0.05R, the magnitude of the BC-
induced field is roughly constant at a value equal to 60%
of its amplitude atep50 ~perfectly insulating outside
medium!.

~2! Whenz54.5, the BC-induced field remains at a constant
level for ep<0.05R, but then decreases and changes its
sign for ep.0.13R. For higher values ofep the induced
field remains negative, as expected from a direct calcu-
lation with a full external medium with electrical con-
ductivity larger than that of the fluid.

We have already mentioned that the BC effect is associ-
ated with the reconnection of the bulk magnetic fieldB1 on
either side of the median plane. We note here that the change
of sign of the induced field corresponds to different recon-
nection patterns, as shown in Figs. 15~c! and 15~d! and also
observed in laboratory plasma experiments.32

VIII. CONCLUDING REMARKS

In this paper we have presented a new approach of in-
duction in flows of conducting liquids, in which the contri-
butions are computed iteratively. Its numerical implementa-
tion is simple and gives access to the complete set of
electromagnetic variables involved in the induction: electric
potential, currents, and magnetic field. Realistic boundary
conditions can be considered. This scheme proves to be very
convenient to identify how induction mechanisms develop as
the magnetic Reynolds number of the flow increases, and
how they are related to the topology of the flow field. Inves-
tigations of geometries that are relevant to geophysical situ-
ations are currently underway. In addition, the method which
is at present restricted to stationary flows, could be readily
extended for simple time-periodic flows.

From a practical point of view our approach has enabled
us a clear identification of important induction mechanisms
in von Kármán flows. When compared to experimental mea-
surements, our approach has lead to a very good quantitative
agreement, without any adjustable parameter.33 The origin
and development of the ‘‘a’’ and v effects have been de-
scribed in detail, as well as their interaction with expulsion
which seems to dominate when the magnetic Reynolds num-
ber becomes large. We have also pointed out that boundary
conditions may be essential in the induction process, particu-
larly when the magnetic dissipation length is not small com-
pared to the flow integral scale~as is the case of most
natural/experimental situations!. As an example, we have
shown that an external layer of conducting material behaves
very differently than an external infinite conducting medium.

In regards to the dynamo generation, it is viewed here as
a positive loop-back mechanism in the iteration of the induc-
tion process. A dynamo is identified if the operatorG ~Rm
independent! has a positive eigenvalue. The neutral mode
then has the geometry of the associated eigenvector. As ex-
plained, this approach has a firm link with the usual kine-
matic dynamo framework. In the case of von Ka´rmán flows,

we have identified a possiblea–v mechanism, responsible
for the self generation observed in kinematic simulations.11,12

However, we have also observed that at the highest orders of
iteration, a negative feedback loops sets in, associated with
the expulsion of the applied field by the large scale eddies of
the flow. It shows that expulsion is the most efficient induc-
tion mechanism at large Rm, and that it may mask other
processes. In fact, the study of the evolution of the mean
induced field in the presence of an externally applied mag-
netic field may not allow a direct identification of the dy-
namo threshold.
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