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We introduce a new numerical approach to study magnetic induction in flows of an electrically
conducting fluid submitted to an external applied fiBl In our procedure the induction equation

is solved iteratively in successive orders of the magnetic Reynolds number Rm. All electrical
guantities such as potential, currents, and fields are computed explicitly with real boundary
conditions. We validate our approach on the well known case of the expulsion of magnetic field lines
from large scale eddies. We then apply our technique to the study of the induction mechanisms in
the von Kaman flows generated in the gap between coaxial rotating disks. We demonstrate how the
omega and alpha effects develop in this flow, and how they could cooperate to generate a dynamo
in this homogeneous geometry. We also discuss induction effects that specifically result from
boundary conditions. €2004 American Institute of Physic§DOI: 10.1063/1.17394Q1

I. INTRODUCTION strained flows that are capable of self-generation. In this
quest, several groups have focused on swirling flows gener-
When a magnetic field is applied to a flow of an electri- ated by the rotation of coaxial impellers in a closed volime.
cally conducting fluid, complex induction mechanisms occurThese flows possess differential rotation and helicity, two
and induced currents and magnetic field are generated. Fingredients that play a central role in dynamo
certain particular flows, this induction process may generateelf-generatiort’ Kinematic simulations have shown that dy-
an instability where the induced magnetic field adds up to théyamo action is a possibility in these flows'?but a dynamo
initial one such that a large-scale field can grow. This phetoop-back mechanism has been clearly identified, as it was
nomenon, known as the magnetohydrodynatMéiD) dy-  for instance for the Lowes and Wilkinson dynamo.
namo instability, is thought to be the source of cosmic bod-  The understanding of this mechanism is of crucial im-
ies’ magnetic fields, as originally suggested by Larmor inportance for experimentalists. Indeed, kinematic simulations
1919! show that for any experimental configuration, the critical
Experimentally, dynamo action has first been producedalue for the control parametémagnetic Reynolds number,
by the controlled motion of solid metal rotors. The setupRm, see next sectigris always very close to the maximum
designed by Lowes and Wilkinsboses two metal cylinders value achievable in the experiment. If one wants to increase
with their axis at an angle. The differential rotation generatedhe magnetic Reynolds number, a strong limiting factor is the
by each rotating cylinder inside a stationary conductor coneost in power consumptioR of the engines driving the flow
verts a poloidal field into an azimuthal one. A loop-backwhich scales like Rth!®!° The success of an experimental
instability mechanism is created because the azimuthal indynamo relies therefore on a proper identification of the
duced field produced by each cylinder plays the role of anoop-back mechanism and of the geometry of the magnetic
axial field for the other rotating conductor. Fluid dynamosfield and electrical currents in the experimental vessel to op-
have also been demonstrated experimentally by th@&mize the design of the experiment.
Karlsruhe and Riga experimerit These experiments have The purpose of this paper is to study in detail the induc-
been built so that the mean fluid flow mimics modkeimi-  tion mechanisms that occur in von Kaan (VK) swirling
nar configurations where dynamo action has been analytiflows, generated inside a cylinder by the rotation of one or
cally calculated® In each case, observations have shownwo coaxial disks. However, the method could be easily ex-
that the experimental dynamo onset is very close to that catended to other types of geometries, some of which more
culated from the laminar mean flow aloh&.In order to appropriate for geophysical applications.
study the backreaction and the time dynamics of fluid dyna-  We consider the induced magnetic and electrical re-
mos above threshold, it would be desirable to build less consponse of the flow when an external field is applied. Tradi-
tional techniques to solve the equation governing the behav-

aAuthor to whom correspondence should be addressed. Electronic mailOf Of the mf"‘gnEtiC ﬁeld.in a ﬂUi(_ﬂEQ- (1), Sec. Il1A] use a
pinton@ens-lyon. fr decomposition on special functions and express boundary
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conditions as nonlocal spectral conditions, therefore only al-  v.B=0, 2)
lowing the treatment of simple boundary geometries, such as ) ) S )
spherical or cylindrical vessels. We propose here a quastherel="1/uqo is the fluid magnetic diffusivityelectrical
static perturbative approach in which complex boundary conconductivity o). The flow velocity u(r) is assumed to be
ditions (close to experimental realican be conveniently —Stationary. MHD experiments being usually conducted in lig-
implemented. The net magnetic induction is expressed as tHd metals, we also assume that the flow is incompressible,
result of an iterative process where the flow subjected to & "U=0. We further assume that Lorentz forces remain small

given field of ordeiB, induces the next ordd, . ,. For each qompared to inertial and pressure forces, i.e., the magpetic
iterative step we compute all electromagnetic quantities infield never grows strong enough to perturb the prescribed

volved in the induction process: induced electromotive forcdydrodynamic velocn%/ field—the interaction parameter re-
(e.m.f), currents, and magnetic field. In this approach sucmains smallN=oLBg/pU wherep is the fluid's density,
cessive iterations correspond to the onset of new couplingd@"d U, L characteristic velocity and size of the flow. The
as Rm increases. An experimentalist can therefore identifproblem considered here is of the same nature as addressed
these couplings and understand how they cooperate to fav k!nematlc S|mul.at|ons in which the flow is fixed and one
or hinder the dynamo action and also understand the role ditudies its magnetic response. .

the boundary conditionésee Figs. 9, 10, and L3This pro- The induction Eq.(1) must be supplemented with
vides a useful guidance for the design and optimization oPoundary conditions. Their 9h0|ce depends on the 'def|.n|t|on
experiments. Actually, the work described in this paper waf the MHD “system.” One simple and elegant solution is to
originally motivated by the necessity for experimentalists toconsider the system as being the unbounded space, in which
better understand the path of electrical currents, withouf@S€ the condition is that of vanishing magnetic field at in-
which, for instance, the effects related to the boundary confinity (Dirichlet). In this case, the inhomogeneities of electri-

ditions (see Fig. 1B cannot be understood. cal conductivity are taken into account as an additional term
The paper is organized as follows: in Sec. II, we present? the induction equation
in detail our iterative approach, its links with more tradi- 9B=V[UX(B+Bg)]+\AB+(VXB)X VA. 3)

tional kinematic simulations, the implementation of bound-

ary conditions and numerical strategies. In Sec. lIl, we revisifThis formulation yields a well posed problem, although not
the process of expulsion of magnetic field lines by a |argd)raCtica| for numerical implementations. One thus reverts to
eddy as a test case for the iterative method. We then considérfinite homogeneous system with specific conditions at the
the induction due to differential rotatidSec. IV) and helical ~ flow walls: in the case of insulating outer walls, EG) is
motion (Sec. VJ in VK flows. In Sec. VI, we discuss the then supplemented by the condition of continuity of the mag-
possible generation of ar—w» dynamo in this geometry. netic field at the wallabsence of outgoing curreits

Section VIl is devoted to the study of an induction mecha-

nism in VK geometry that is mainly due to the boundary B. The iterative scheme

conditions at the lateral wall of the flow. In order to compute the induced magnetic field for a
given applied field, conventional techniques as used in kine-
IIl. A QUASISTATIC ITERATIVE APPROACH matic simulations would directly solves E(.). This would

yield a complete solution, including its time dependence.

Our aim is to describe and understand the induction efHowever, we are interested in understanding how the system
fects that take place in a stationary flow of an electricallyreaches a steady-state equilibrium between diffusion and in-
conducting fluid submitted to an external magnetic field,duction, a process that we call an “induction mechanism.”
when the magnetic Reynolds number is increadeth is  We wish to analyze the role of the various components of the
defined as the ratio of induction to Joule dissipation effects velocity field and their gradients, and the role of the bound-
The iterative procedure consists in solving step by step thary conditions. We thus develop an approach in which suc-
induction equation, and obtain the induced field as a series ibessive contributions to the net inductidimear in Rm, then
Rm. One computes to first order in Rm the magnetic fidld  quadratic, cubic, etg.are individually identified and their
induced from the applied fielBy; the procedure is repeated relative importance estimated as Rm is varied.
to compute the field8, induced fromB; at first order, and so For a given velocity distributionu(r) and applied field
forth. Since the induction equation is linear, the net magneti®,, we search for steady solutions of the induction equation
field is the sum over all contributions. As we will see, this
approach converges strictly only at small Rm, but it can be
extended to larger values and the results are in remarkable
agreement with experimental data.

B=By+Bing, Bmd=k§l By, [BJ~ORm). (4

In the numerical computation the magnetic Reynolds number
A. Induction equation and boundary conditions Rm is defined as

In the MHD approximatiort® the magnetic response of a Rm=UL/A\, 5
flow with velocity u(r) to an applied uniform fieldB, is

governed by whereU =max(|u(r)|) andL are characteristic integral ve-

locity and length scales of the flogflor examplel can be the
B=VX[uX(B+By)]+\AB, (1) radiusR of the cylinder in VK flows. As we look for sta-
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tionary solutions, contributions at each order are obtained a&) The magnetic Reynolds number only enters in the final
solutions of a hierarchy of Poisson equations

ABk+l:_RmVX(UXBk), (6)

in which lengths, velocities, and magnetic fields have been
nondimensionalized, respectively, ly, U, andB,.

Each step described by E¢) can be interpreted as

usual in terms of distorsion and transport of the magnetic
field lines by the velocity gradients of the flow. Even without
resolving numerically this set of equations, one has here a
way, if the magnetic Reynolds number remains moderate, to
picture the mechanisms involved in the induction of mag-
netic field, in relation with the main velocity gradients of the
flow, as well as a good insight on the spatial structure of the
magnetic field.

C. Calculation at each order

Solving Eq.(6) by a simple Poisson solver is not trivial

as it would imply writing the boundary conditions for the
magnetic field at the surface of a cylinder. Instead we start
from electric potential and induced currents. The fields at
each order are thus considered successively, using the fol-
lowing sequence.

(1)

(4)

The electromotive forcée.m.f. in units ofUB;) induced
by the flow motion is computed as

&+1= UXBy. )

Since the electrical current, given by Ohm's law
j=o(—=V¢+e), is divergence free, the electric potential
is obtained as a solution the Poisson equation

Ady1=V-(UXBy). 8

In the case of an insulating boundary, the condition off
vanishing outgoing currents can then be writtemé8¢
=n+(uXB). The earlier Poisson equation can then easil :
be solved as a von Neuman problem, for any kind of
geometry. Note that in real flows the hydrodynamic
boundary layer is very small since the magnetic Prandt
number of liquid metals is less than 19 as a result the (1)
viscous sublayer is of negligible extend compared to
magnetic scales. A free slip rather than no-slip boundary
condition for the velocity is appropriate and the bound-
ary condition at the wallp-V ¢ is therefore nonzero.

The induced currentén units of cUB;) are then com-
puted as

2
Jkr1= = Vi1t 9

Finally, the magnetic field can be computed from Biot—
Savart formula

Rm Jra(r)X(r=r")
Bk+1(r):Efd3r : P

(10

step, where all contributions are collected and the fields
are obtained as integer series

@(Rm)=¢k<1>Rmk—l:>¢(Rm>=2k $ (1R,
(1)

jk<Rm>=jk(1>ank—1zj(Rm>=;jk(1>Rmk-1, (12)

B(Rm)=B,(1)Rm=B(Rm) = ; B (1)Rmk.

(13

This approach is valid when the series converges, that is
for a low enough value of RRm<Rm*). Numerically

we observe that Rin-5-30 in the cases considered in
our study. This range covers a significant fraction of
magnetic Reynolds numbers that have been explored in
experiments using liquid galliuth'® and liquid
sodium!®18190ne may also recall that the integral mag-
netic Reynolds numbefi.e., defined on large scale
physical parameterss an upper limit for the actual mag-
netic Reynolds number of the flogas a number which
actually measuresthe strength of induction effegtg®

For higher magnetic Reynolds number values, one needs
to extrapolate the series expansion outside its strict con-
vergence radius. We use Paagproximant$! which has
become traditional in these problerteee, for example,
Ref. 22. It yields strikingly good results when compared
to analytical solutions or measurements, as will be
shown in the next sections.

D. Numerical implementation

As explained, our study concentrates on the vomiéa

lows, although the approach could be easily applied to other
eometries. In experimental configurations, vonrran
lows are generated inside a cylinder by the rotation of one or
two discs whose axis of rotation coincides with the axis of
}he cylinder. Two regimes are of particular interest.

Single disk(SD): a single disk is rotated at frequenfy

the other being held at rest. In this case the time-
averaged flow is strongly helical: it has a toroidal com-
ponent, and a recirculation poloidal loop, created by the
pumping effect towards the center of the rotating disc. In
Duddley and James terminolodyit is a s;t;-like flow.
Double disk(DD): the disks are counter-rotated at equal
rates(). In this case, the mean flow is made of two cells
with opposite toroidal velocities and two recirculation
loops, with a strong shear zone in-between. Using again
Duddley and James terminolodyit is a s,t,-like flow.

In our numerical studies the flow is a synthetic velocity

field that mimics the main properties of the experimental
mean flows. The aspect ratio of the flow is one, i.e., the

In practice, the integral is only computed at the boundaryheight of the cylinder is equal to its diamet@nd will re-
and used to provide boundary conditions to solve themain so throughout our stuglyWwe choose simple harmonic

Dirichlet problemABy.;=RmV Xj, ..

functions for the radial and azimuthal velocities and
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u, and deduce the vertical componant from the incom- E. Iterative approach and dynamo action

pressibility condition. For th¢SD) case we use Induction computed with the iterative approach can be

m(z+1) linked to dynamo self-generation as follows. Let us rewrite
u,(r,z)=—sinazr cosT, the magnetic field induced at ordkr-1 from the field at
orderk as
Uy(r,z)=2(P/T) " *sinmr, (14) By, 1= —RMA Y VX(uXB)]=Rmg(B,), (16)
1 w(z+1) where we introduce the operat@r
U,(r,z)=—sin (7rr cosarr +sinarr),
mr 2 Ge=AT[VX(uXs)]. (17)
where {,6,2) are the cylindrical polar coordinates, aRdT Let us assume further that an induction loop back

the ratio of the amplitude of poloidal to toroidal speeds. Formechanism may be identified for a given velocity field and
the counter-rotatingDD) flow configuration the velocity geometry, i.e., that there exists a magnetic field distribution

field is at orderk, B,, such that aftem induction iterations, the
) resulting magnetic field is similar in geometry with the initial
u,(r,z)=—sinxr coswz, By :
7z By n(Rm)=RmM"(G)"(B,) = yRM"By, 18
ug(r,z)=2(P/T)*1sin7sinwr, (15) cen(RM) (@7 (B)=» K (18)

with y a constant factor that depends on the flow and on the
1 initial magnetic field geometry. At a given magnetic Rey-
U,(r,z)= —sinz( 7T cosmr +sinar). nolds number the net amplification factor is thyRm" [i.e.,

mr vRm" andB are eigen value and eigen vector of the opera-

/ " o
In sharp contrast with experimental worksthe flows stud- t|on_ (g) ]. Positive y values lead to a growth of th? mag-
netic field modeBy and thus may lead to a dynamo instabil-

ied here are smooth and laminar. The effect of turbulent fluc: i VR he critical . Id ber bei
tuations(always present in real liquid metal flows at finite 'Y T YRM'>1, the critical magnetic Reynolds number being
Rm) cannot be directly computed with this numerical Rmf=y"" (19
scheme, and other approaches are neé&tled. ) .

Figure Xa) shows the synthetic flow profile in tH&D) (nc_>te again that only stationary dynamos can be captured
case. One observes poloidal recirculation loG@sows as ~ USing this proceduje Negative values ofy correspond to
the fluid is drawn to the disk near the axis of the cylinder andProcesses where the induced magnetic field opposes the ap-
ejected towards the lateral wall at the disk outer rim. ThePlied one. Such situation occur for example in the expulsion

toroidal velocity is close to solid body rotation up to of magnetic field lines from eddi&&?’—this case will be
=0.5. The main motion of the flow is helical. TEBD) flow

discussed in detail in Sec. Il
is shown in Fig. 1b). Two poloidal recirculating loops are When a positive loop-back mechanism exists, the geom-

now created, since in each half of the cylinder the fluid neaftry of the marginal mode can also be identified, in much the
the axis is drawn to the closer disk. The toroidal motions aré@Me manner as in kinematic dynamo studies. Indeed, in
also of opposite directions, so that helicities add up in eacl{inématic approaches, the neutral mode satisfies

half (_)f the cylinder. In addition, the_re is a strong diﬁe_rential Nant(Bmargina) =0, (20)
rotation and a shear layer/stagnation point in the middle of

the cylinder. In both cases, the velocity boundary condition igvith Rm® the critical magnetic Reynolds number, and the
that of no outgoing flow, with free slip at the surface. This OperatorNgy defined as

latter condition is justified begau;e .the thickness of the hy- Nt =RMVX(U(r)Xo)+ Ae. 21)
drodynamic boundary layer in liquid metal flows is very
small. The ratioP/T of the intensity of the poloidal to toroi- Comparing the definition of the operatogsand Ny,

dal velocities is adjustable in the synthetic flows; it is set to[Egs. (17) and (21)], Eq. (20) can be interpreted as am
0.8 in the examples shown in Fig. 1, and in most studies=1 loop-back induction
here. _ o

Numerically, the crucial part of the scheme lies in the Brarginar R G(Bmargina) = R ¥ Bmargina (22
solution of the Poisson equations for the electric potentialvith again the condition Rfry=1. If the iteration procedure
and for the magnetic field inside the volume. They are therhas identified a positive loop-back mechanismnirsteps,
solved using standard programs in the Ovefilierary us-  (By,B1,...,B,), one can easily show that there exists a linear
ing the mixed Cartesian-cylindrical grid shown in Figcil ~ combination Bpagina= >k=0..n—1MBk such thatGBarginal

In order to reproduce induction effects that do occur in=yBaginal (iN fact Bragina iS @an eigenvector of the sub-
experiments, we have also used in Sec. VIl velocity fieldspace stable unde¥). The neutral mode is thus obtained
obtained by time averaging local velocity measurements irfrom the structure of the magnetic field induced at each step
laboratory flows. These fields have been provided by ouin a loop-back mechanism. The occurrence of such processes
colleagues at Commissariatl'&nergie Atomique(CEA) in and its applications to dynamo action in VK flows will be
Saclay, from measurements in a VK flow in water. discussed in Sec. VI.
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poloidal toroidal

-1 -0.5 0 0.5 1

-0.5 0 0.5 1
X X
toroidal

FIG. 1. Flow geometry(a) One rotat-
ing disk at the top end of the cylinder
(z=1): poloidal(left, arrows and to-
roidal (right, gray-scalgin the (SD)
case; (b) idem for counter-rotating
disks; (c) numerical grid used for the
finite-difference calculations. The co-
ordinate system shown is used
throughout the texiz is the axis of the
cylinder, (x,y) are transverse and the
origin O is set in the middle of the
cylinder. The height of the cylinder is
equal to its radiugaspect ratio one

Y s LA SR L LECANNNNNRN
srrraaas

-1 -0.5 0 05 1

X
Ill. COROTATING FLOW: EXPULSION BY LARGE the z direction, so the system is quasi-two-dimensional. An
SCALE EDDIES external magnetic fiel@,=ByX is applied perpendicular to

We first apply the iterative approach to a case that ha
been well studied analyticafland experimentally’ the ex-
pulsion of magnetic field lines by large eddies. To this en
the computational cylinder is divided into a region in solid
body rotation (,=u,=0, u,=Qr, up to radiusR=1) sur- B, /Bo=r"YR[f(r,p)cosd]—I[ f(r,p)sin 6]},
rounded by a region at re@ip toR=2); the medium within
the cylinder has uniform electrical conductivityand is sur-
rounded by insulating material. The cylinder is periodized in  B,/By=—4,Z[ f(r,p)], (23

gwe cylinder axis, along the axis. The solution to this prob-
em can be found analytical. In cylindrical polar coordi-
qhates, one has for the stationary state
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it (@ componeaty (a) (2 componeaty (b)

0984 0.136
2.00

FIG. 2. Expulsion by rotation(a) First order induction; currents are shown as a gray scale, while the lines give selected magnetic field paths; note that a
domain of radius R, twice the cylinder size, is representéd) Idem for second order inductiofc) iteration steps of order 20—24, left to right.

f(p,r)=DJy(pr), r<R, f(r,p)=r+Clr, r>R, field, it is the essential mechanism of the expulsion of the
(24)  magnetic field from the core of the rotating motion—as an
illustration, the induction steps 20-24 are displayed in Fig.

p= (i—1)VvRm _ 2 2(c) showing the stability of the order-two cycle of induction
V2R PJo(PR)’ patterns. In fact the two modesx-axis dipole”b; and “y-
5 axis dipole”b,, form a stable subspace undgrsuch that
_ 2RI (pr)— PR Jo(pr) L
- 53:(pr) (25 Gby)=71bp, 71 =1.697x10°", (27)
[R and Z real and imaginary parts and,(x) are Bessel G(by)=72b;,  y,=—1.697<10°", (28)
functiond. Physically, the initially transverse field lines are gz(bM: Yb1s Y= y1ys= —2.879K 1073, (29)

advected and stretched by the solid body rotation, thus “be-

ing pushed away” to the sides of the cylinder while the inner ~ The negative value o leads to the expulsion process.
core field decreases under diffusion. From an equivalenfVe show in Figs. &) and 3b) the profile of magnetic field
point of view, the applied field is time periodic in the refer- lines obtains after the iteration of 40 steps. At low magnetic
ence frame of the rotating core and thus can penetrate only &&€ynolds numbeiRm=1 in (a)] the raw series is computed;

far as the skin deptié= R/ /Rm. in (b) the Reynolds number is equal to 10, larger than the
We now show how this behavior is described by theradius of convergence of the series and Peeiimmation
iterative approach. At first order the induced e.m.f. has been used to ensure convergence. The results are in very
. . good agreement with the original numerical calculations by
€ =UXBo=—Tr{)B, cos#z= —x(1Boz (26)  \Weiss?® To be more quantitative, we plot a comparison of

is purely axial and divergence-free. As a result the inducedhe numerical and analytical variations with Rm in Fig&)3
current densityj; has no potential contribution and is iden- and 3d). In (c) the raw series up to order 40 is used; the
tical to the e.m.f. distributiofsee Eq(9)]. It is thus made of ~ series diverges for RmRm"=5.5, but below the agreement
axial currents that flow in opposite directions on each side ofs excellent. If Padgesummation is applied, as i), one
theyOz plane, as shown in Fig.(@). The resulting induced gets an excellent agreement at least up to=Rid. Note that
magnetic field at first ordeB, has a dipole structure, aligned the observed radius of convergence of the series is very well
with they axis: the main effect of the rotation is to induce a approximated by Rif=1/\y,y,=5.89, as one could have
field component perpendicular to the applied one. The sednferred by starting the iteration process with one of the
ond order induction just repeats this sequenceBalies in  stables modesy; ,b,): the net induced field is obtained as a
the (x,y) plane, the second order electric potential is diver-Series in powers of/1 yoRNP.

gence free and the second order currents pree,
=uXB;. They flow axially in opposite direction on either
side of thexOz plane—Fig. 2b). The resulting induced
magnetic field is a dipole along theaxis and opposite to In this section we consider th@dD) case of the VK
By. This two-step process thus tends to reduce the applieffow, generated when counter-rotation at equal rates is

IV. OMEGA EFFECT AND FIELD EXPULSION
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(@) (b)
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FIG. 3. Expulsion by rotationa) and(b) Magnetic field lines computed using the iterative approach, respectively atlRind Rm=10. (c) and(d) Detailed
comparison of the magnetic profil&(r) andB,(r) obtained in the analytical solution and in the numerical, iterative schénes with symbols In (c),
terms in series up to order 40 have been computed: the divergence of the series is clearly visible-RmRrin (b) and(d) the Padeesummation is used.

imposed—TFig. (b). We consider in the section the responseaxis and near the outer rims of the ends of the cylinder.
of the fluid to an applied field, homogenous and aligned withindeed, on the axis the vorticity is aligned with the applied
the cylinder axis(z direction. At low Rm, the differential  field, with opposite signs at each end; this leads to the axial
rotation (velocity gradientsd,u,) generates an azimuthal potential difference. Near the outer rims of the cylinder, the
magnetic field, via thev effect. In the poloidal recirculation axial vorticity is reversed compared to that on the axis; it
loops, the velocity gradient&,u, andd,u, also induce axial generates in this region a radial potential difference. The in-
and radial magnetic fields. At high Rm, expulsion occurs andiuced currents result from the potential distribution and local
induction decreases. inductionj,=—V ¢, +e,; their geometry is quite complex,
but two limiting cases can be identified.
A. First order induction (i) One case is shown in Fig(a. The axial potential

In this geometry, experimerishave shown that the difference drives an axial currefactually all axial currents

magnetic induction varies linearly with Rm at low Rm, so are necessarily of potential origin sinBg is axia) from one
that first order calculations should give the main features€nd of the cylinder to the other. Then currents are transported

The first order e.m.f.g;=uXB,, gives rise to an electric
potential that solves

A¢1=Bp o, (30)
[from Eg. (8)] where w=VXu is the vorticity of the flow.

away from the axis by the induction e.muXB,—note that
this is done against the radial potential difference, explaining
why the current spirals radially outwar@espectively in-
ward) in this region. When at the outer wall, the current can
again flow axially under the action of the outer axial poten-

The advantage of this notation is to emphasize the roldial difference. The results is the formation of poloidal cur-
played by vorticity in the induction process. Note that VK rents on a torus, which generate a toroidal magnetic field.
flows have a vorticity field that has the same topologicalThis is thew effect, usually described in terms of torsion of
structure as the velocity; in this sense they are very similar t@xial magnetic field lines, interpreted here in terms of electric
Beltrami flows. Contrarily to the case considered in the prepotential and current paths.

vious section, the electric potential must be nonzero to en- (i) Another limiting case corresponds to purely azi-
sure that currents remain divergence free. Its topology isnuthal currents which can only be generated from the induc-
shown in Fig. 4: it has essential contributions on the cylindetion e.m.f.uXB, since the flow is axisymmetric. In the me-

Downloaded 28 Jun 2004 to 128.117.136.194. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



2536 Phys. Fluids, Vol. 16, No. 7, July 2004 Bourgoin et al.

B. Higher orders

(@)

At second order, one important effect is that the toroidal
field induced at first order is advected by the radial flow, due
to the —u,d,B, , induction term—see Refs. 10 and 15 for a
detailed discussion of théu-V)B and (B-V)u induction
terms that stem from E@1). SinceB, 4(r) in the bulk of the

. cylinder is maximum for =0.5, the second order azimuthal
> B-field . . secont
field locally opposes the first order induction except near the
axis of the cylinder—compare the toroidal fields in Figg)5
and 3b). The effect of the poloidal flow is thus to reduce the
initial o effect. (Another induction process yields the same
_ result: the differential rotation acting on the axial component
110 B,, generated at first order by the poloidal velogit@ane
thus expects that as the magnetic Reynolds number is in-
creased, the efficiency of the conversion of the applied axial
field into a toroidal component will decrease. This can also
been viewed as the result of the progressive expulsion of the
applied magnetic field by the poloidal flow: as Rm increases,
the axial magnetic field concentrates along the axis of the
cylinder, away from regions where the differential rotation
B-fi generates efficiently a toroidal component. This behavior is
-field . o ) .
indeed observed as iterations of the induction are summed
into the net magnetic field. Figurgd shows the evolution
with Rm of all components of the field measured in the mid-
plane atr=0.5. The induction of a toroidal componelim
i : the figure it corresponds te-B, at the location X=0, y
I o L5 =0.5,z=0)] increases up to Rm12, and then saturates and
even decreases as Rm is further increased. The same phe-
nomenon occurs for the axial component: as the applied field
is progressively expelled from the poloidal recirculation
loops, it can no longer be distorted by the axial velocity
gradients. This is further evidenced in Figdh where the
variations with Rm of the axial induced field are compared
for points at increasing radial distances: the axial stretching
remains only in the immediate vicinity of the axis. Indeed, as
r gets larger than about 0.2, the induction actually tends to
oppose the applied fieldB{,;— —1 as Rm-), so that the
net axial magnetic field inside the poloidal recirculation
loops tends to zero.
B At large orders, the dominant role of field expulsion is

potential

current

=110 a.

potential

current

B-field

a9 g 1 clearly evidenced by the fact that the iteration of the induc-

tion process yields a negative loop-back mechanisms. Steps
FIG. 4. Axial applied field(a) Effect of differential rotatior(toroidal flow): 31-34 are shown in Fig. 6. In three steps, a magnetic field

isopotential surface@heir signs are opposite at top and bottom locations on structure with a sign opposite to the starting one is obtained
the axis, and again between inner and outer radial rims—cf), texample ’

of induced current path and resulting induced field lii:effect of poloidal ~ Numerically, one find$Bz,~yBs;, with y=—3.87x 10°%;

flow; (c) intermediate current lines. the scalar product of the two fieldsd%r B;;-B,, is equal to
—0.99 whenB3; and B3, are normalized. One can thus con-
struct from the family Bs;,B3,,B33) a stable subspace and

dian plane, the radial velocity drives an azimuthal current—an eigenmode with a negative eigenvalue y¥3=-3.38

Fig. 4(b). It the creates a poloidal magnetic field, parallel to X 10" 2. This value correctly gives the radius of convergence

the applied field along the axis and with the opposite direcof the integer series Rfn= 1/y= 29.6 (observed numerically,

tion near the cylinder outer wall. This effect corresponds tdbut not shown in Fig. 5 where Pad@proximants have been

the stretching of the applied magnetic field lines by the poJplotted.

loidal recirculation loops of the flow. At a large magnetic Reynolds number, we thus observe

The general current distribution induced at first orderthat a mechanism as efficient as the differential rotation can

combines features of these limiting cases, see K. Zhis  ultimately be masked by the effect of expulsion by large

generates a first order magnetic field that has both toroidacale eddies. The expulsion of the axial field could be less-

and poloidal components. ened with a lower poloidal to toroidal ratio of characteristic
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B, poloidal B, toroidal

W
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Thidraaas

- 05 0 0.5 1 i -0.5 0 05 1
X X

B, toroidal FIG. 5. Axial applied field(a) Merid-
ian cross section of the first order in-
duced field. Poloidal component
shown in left figure(arrows and tor-
oidal component in right figure, on a
gray color scale(b) magnetic field in-
duced at second ordefg) variation
with the Rm of the induced field at
point (x=0, y=0.5, z=0) (Padeap-
proximation is used (d) evolution
with Rm of the induced axial field at
increasing radial distances/=0.2
(dashegl y=0.5(solid), y=0.8 (dash-
dotted from the axis.

velocities. However, in the search for a dynamo mechanisnserves that the induced current has a strong component in the
the poloidal velocity component is essential to give the flowdirection of the applied field; we thus call this effect an™

a strong helicity and to generate a large scalé éffect. effect, written with quotes to recall that although a result of
flow helicity, it is not thea effect introduced in the mean-
V. HELICITY AND “ALPHA” EFFECT field hydrodynamics approach to model small scale

. contributions®® As contributions at higher orders in Rm are

We consider now the SD case of a VK flow correspond- . . T :

. . L ) computed, one observes again that induction is ultimately

ing to the rotation of one disk in the experimental setup. We~ : . .
. ) . . dominated by field expulsion due to the flow global rotation.

study its response to an external field applied perpendicularly

to the cylinder axis(in this configuration axisymmetry is . -

broken. We show that the main induction mechanism corre-A' First and second order contributions

sponds to the stretching and twisting of the imposed field Let us begin with the first order contribution; it contains,

lines (respectively by the axial and azimuthal velocijiess  when iterated, all the ingredients that lead to the éffect.

originally described by Parké?. At second order, one ob- Figure 7a) shows the electric potentiah, in the flow vol-
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B3 ’ poloidal 831 toroidal (@)

potential

B32 poloidal B32 toroidal
Iw
(b) 2 e current j1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
333 toroidal y
190 magnetic field B1
X
-1.00
-1 -05 0 05 1 e
B,,, poloidal B, toroidal © z
" magnetic field BI
Y
1905 current j1
-1 -0.5 ] 0.5 "'1
X

FIG. 6. Axial applied field. Induction iterations 31—-34. Poloidal component
shown in left figure(arrows and toroidal component in right figure, on a

gray color scale. FIG. 7. Transverse applied fieldSD) geometry: first order respons)

Potential, (b) current and axial induced fieldc) current and transverse
induced field.

ume, for an applied field along theaxis. As it is generated

by the transverse part of the toroidal vorticity of the flow electromotive forces but stems from a delicate balance be-
(one still hasA ¢, =By-@ andBy, is now perpendicular to the tween the two effects. However, two essential current paths
cylinder axig, it tends to create in the midplane a potential can be identified.

difference that is transverse and perpendiculaBgo thus (i) Currents that flow in the transvergairection in the
aligned in they direction. However, its global structure is median plane, and with helical trajectories on either side of
helicoidal, as shown by the shape of iso-potential surfacét—see Fig. Tb). These currents generate an axial magnetic
(¢1=0) in the figure. The induction e.m.§, also has &y  field component in thexOz plane. Note that, whether of
component in the median plarfdue to the axial velocily  potential or electromotive origin, they are due to the poloidal
but its sign is such that it opposes the electric poterttal  part of the flow.

the boundary they exactly compensate to ensure that the cur- (ii) Currents that make a loop in theDz plane—Fig.
rents remain confined inside the cylinglein contrast with ~ 7(c)—and thus generate an induced magnetic field along the
the geometries described previously, the current distributioy axis. They are mainly generated by the toroidal part of the
does not simply result from clearly identified potential or flow. These observation may be easier to understand from the
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FIG. 8. Transverse applied fiel(5D) geometry: second order inductid@), (b) Projection of the second order induced field in #@z andy Oz planes;(c)
magnetic field stream lineg) induced current{e) net magnetic field up to second order; the stream line is selected to emphasizé-gféett mechanism.

point of view of advection/stretching of the imposed mag-g(a). This starts the expulsion of the transveBg by the

netic field lines. The poloidal flow deforms axially the ap- axial vorticity of the flow, in the same manner as described in
plied field lines and creates an axial induced field, via velocgge 1.

ity gradients such ag,u,. The toroidal flow tends to rotate (i) The action of the axial pumping oB;, and the
b%

the applied field ¢;u, gradients and thus to induce a mag- ., of the rotation orB,, both lead to the induction of

lr;ertl,;)ftlﬁ?t (;?Eréogsgfiérétfrileeléransverse direction perpendlcuf)oloidal magnetic field lined,, in the yOz plane [Figs.

These processes are repeated at second order. 8(b) and &c)]. They are generated by the induction curignt
(i) The flow rotation acting oB, , induces a component which has a strong component in the direction of the applied
B, parallel but opposite to the applied field as shown in Figfield By, as shown in Fig. &). One thus hag,<By in the
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~ (x=0, y =0.25, 2=0) (x=0.25,y =0, 2=0)

(d)

(@)

0.5

-1}

(x=0, y =0.5, z=0) (x=0.5,y =0, z=0)

(C) . ) (X=O, y= 0.75, Z=0) ) ) (f) ] (X=0.75 , Y= O, Z=O)

-1} | =
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15,

FIG. 9. Transverse applied fielSD) geometry: local induction vs Rm. Points on thexis in the right figures, af=0.25, 0.5, 0.75; and on theaxis in
the left figures, ak=0.25, 0.5, 0.75.

midplane of the flow—note that the currents are confined, s@s actually possible to identify field lines that have the very
that near the walls of the cylinder they curl to loop inside thetopology proposed by Park&—Fig. 8e).

flow volume.j, is thus parallel t@, only in the center of the

cell. The proportionality constant is quadratic in Rm andB. Evolution with Rm

results from helicity of the flow: both the axial and rotational

flow components have been needed to produce this second We first discuss the behavior at low to moderate mag-
order mechanism. We call this effect aa™effect, in anal-  netic Reynolds numbers, i.e., before field expulsion becomes
ogy with the name introduced in the development of meandominant(Rm=5). As the applied field has broken the axi-
field hydrodynamics by Riler and Krausé® However, here  symmetry, we treat induction separately for th€®z and

it is not a result of small scale contributions, but a macro-yOz planes. We report the variations with Rm of the mag-
scopic effect associated with the stretching and twisting ohetic field computed at three different points in the flow vol-
the applied field as originally proposed by ParkeAdding  ume. In theyOz plane, Figs. @), 9(b), and 9c), the induc-
the first and second order induced fields to the applied one, tton is dominated at low Rm by thea” mechanism. Thex
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B. Il

-

FIG. 10. “Alpha”’-omega dynamo mechanism in tlBD) geometry: the applied transverse figldft) gives rise to the axial field displayed the middle
figure—the “a” step; via the() effect, a third order induced fielB; is induced, parallel t@,.

and z components vary quadratically witR,,, while they  parallel to the initial applied field is generated, in a three-step
component is mostly linear in Rm. The details of the(cubic mechanism. This sequence—detailed in Fig. 10—
Binq(Rm) curves depend on the point of measurement.d’he constitutes a positive induction loop, inducive of dynamo
effect decreases with compare thex andz components in  action.

Figs. 9a), 9(b), and 9c) where measurements are taken at

distances 0.25, 0.50, and 0.75 from the rotation axis. In thé. The alpha—omega induction process

xOz plane[cf. Figs. 9d), 9(e), and 9f)] the x component of

the induced field displays a mostly quadratic variation W'thapplied to the numericaDD) flow. Induced fields are com-

Rm (the_ expulsion effe()twhere_as _the other two have a puted iteratively at R 1, and shown in Fig. 11. The second

strong linear dependence. Qualitatively, these results are in . ) . A

; . order induced fieldB,—displayed in Fig. 1(a—has an

very good agreement with the measurements made in flows . . . ) .

. 31 axial component in the/Oz plane. It is maximum in the
having the same geometfy

As the magnetic Reynolds number is further increasedr,eglons of high helicity ¢=*0.5), in the neighborhood of

the expulsion of the applied field from the core of the flow” *+0.5 and has opposite direction on either side obtoe

X . L s‘plane—as expected from the “alpha” mechanism described
operates. Both the axial and toroidal vorticity component : . .
In the previous section. Note that, except for some magnetic

contribute to this expulsion. As a result the’™induction e ) . . . . .9
rocess is progressively cutoff from its source and its effi-d'ﬁUS'on’ Fig. 11a) is equivalent to twice the induction in
P Fig. 8@. The third order induced field is shown in Fig.

ciency decreases. This evolution is also in good quantitativ 1(b): one observes in the median plane th neration of
agreement with the measurements made in liquid sodium - On€ Observes € median plane the generation of a
trong component oB; along thex axis xOz plane. It

Reynolds numbers up to 40: compare for example Fig. 5 it . .
Re? 31 anduFig ej)uhpere P xample g Icorresponds to the torsion of the axial componenBgtby

The predominance of expulsion at large Rm correspondghe differgntial rotation, via.the) effept. One thu_s ot_)tain§ an
to a two-step negative loop-back mechanism at high order@duc{ad field (_:omponent ahg_ned with th? a_pphed fiBld n
of iteration. For example, we have observed that at laxge agrgement with the &"— o picture qualitatively described
Bhio=7B, with y=-3.63x10"2. The value Rm earlier.

—1/[y|=5.25 gives very accurately the radius of conver- _ >uch @ third order induction process can only be ob-
gence of the integer serigthe curves in Fig. 9 have been served if the magnetic Reynolds number of the flow becomes

: : : large enough. Figure 12 shows the development of the in-
computed using Packpproximants duced magnetic field as Rm increases, for a point in the
median plane. The direct series summation diverges for
Rm>Rm* =8.5 but was extrapolated by Padpproximants.

We consider again th@dD) flow geometry, i.e., the von In Fig. 12a) one observes that at low Rm, tkecomponent
Karman flow generated by the counter-rotation of the driving of B4 iS negative and linear: it is due to the compression of
disks. In each half of the cylinder the mean flow geometry ishe applied field by the radial flowdirected towards the
very similar to the(SD) geometry where it is known that the rotation axis in the midplane The tendency is reversed at
“ a" effect generates an induced axial field from the appliedhigher Rm, and th& component oB;,4 becomes positive for
transverse one. As the sign of the helicity is identical in bothRm>17.
half cells, their contributions should add up. We thus expect A similar variation of the induced field in the case of an
in the (DD) case that when a transverse figigtrpendicular  applied transverse field has been observed experimentally in
to the cylinder axigsis applied, an axial field is induced in a the von Kaman sodium(VKS) experiment; in fact the evo-
two-step(quadrati¢ “ «” mechanism. This induced field is lution of Bj,q in Fig. 12a) is quite similar to that in Fig. 5
distorted by thew effect; in this process, a field component of Ref. 19.

A transverse external field, parallel to thex axis is

VI. AN ALPHA-OMEGA COOPERATIVE MECHANISM
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B. An alpha—omega dynamo?

Starting from a initial transverse field, we have thus
identified a three-step positive loop-back mechanism. It is
tempting to associate this finding with the kinematic dyna-
mos observed in von Kman flows!*? It would provide a
concrete mechanism for dynamo action—kinematic simula-
tions address only the eventual existence of dynamo instabil-
ity for a given flow, but do not explain how self generation is
achieved. The knowledge of a dynamo mechanism is essen-
tial from the experimental point of view because it yields the
possibility to optimize the dynamo cycle and thus lower the
critical magnetic Reynolds number. However, the identifica-
tion of von Kaman dynamos with the &"— w process de-
scribed here should be made with some care.

Indeed, we have observed in our numerical study that
when the iteration is carried to large orders, the dominant
contribution comes from the expulsion of the magnetic field
from the eddies in the flow. A two-step negative loop-back
mechanism sets in. For example, at largB,,, , is parallel
and opposite tdB,,, with y=—1.39x10 2. This gives a
critical value Rnf =1/\/[y|=8.5, in agreement with the ob-
served critical value for the convergence of the numerical
series.

It does not mean that thed"— w mechanism should be
ruled out, but rather that it is not efficient enough in the flow
geometry considered here to overcome the expulsion effect.
To wit, let us return to Fig. 1&): one may observe there that
the generation oB3, occurs predominantly in the center of
the flow, where differential rotation is strongest. However,
B3y tends to vanish near=*0.5, in the regions of large
vorticity where the ‘@” effect is strongest. The coupling be-
tween the two effects is thus far from being optimal and it
may explain why it does not survive at the large Rm.

The earlier considerations are consistent with the obser-
vations that dynamo action in von Kaan flows is ex-
tremely sensitive to the fine details of the flow geometry. For
example, the ratio of the intensities of poloidal to toroidal

order and third order magnetic field lines are shown; the contour plot disVE€lOCity componentsR/T ratio) is known to play a funda-

playsBs, .
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FIG. 12. “Alpha’-omega induced fields in th@D) geometry; evolution of the induced fieRj,4 with the magnetic Reynolds number, computed using Pade
approximants(a) At (x=0,y=0.5,z=0); (b) comparison of the inducedcomponent for various values of the poloidal to toroidal speeds ratio; dashed line:
P/T=0.2; dotted-dashed lind>/T=0.4; solid line:P/T=0.8; dotted line:P/T=1.6.

Downloaded 28 Jun 2004 to 128.117.136.194. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 16, No. 7, July 2004 An iterative study of induction effects 2543
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FIG. 13. Schematics of the BC effect for a transverse applied Hgldlong thex axis; (a) initial field and disks rotation(b) the radial differential rotation
generates a perpendicular compongay,; (c) corresponding induced current shéey; (d) axial B, gc, generated at the wallyE =R), due to the
discontinuity in the magnetic diffusivity.

tions in a spherical geometry have observed that selfit has been shown that a conductive layer at rest surrounding
generation occurs whel/T=0.14, but not whe?/T=0.1  the flow lowers the dynamo threshold in experimental con-
or P/T=0.2. If the toroidal velocity becomes too large, ex- figurations as tested in Riga and Karlsrifién this section,
pulsion will surely dominate, but when it is too small the we first show that sizeable induction effects can result from
helicity and differential rotation are insufficient for an the electrical boundary conditiofC effecd, giving rise to

“ a"— w mechanism to develop. The results shown so far innduced magnetic field contributions which must be added to
our numerical study have been obtained RIT=0.8, the the bulk effects.

optimal value as suggested by kinematic dynamo

simulations'? This value also corresponds to the optimal ef-A. BC effect for a transverse applied field

ficiency of the “a"— w mechanism, as pointed out in Fig.

12(b) Let us consider the case of the counter-rotating von

Karman geometry(DD flow), when an external fiel®, is
applied perpendicular to the rotation axis, in thdirection.
VIl INFLUENCE OF BOUNDARY CONDITIONS We start with the case of insulating boundary conditions at

One advantage of our iterative procedure is that varioughe flow wall and we will discuss later the generalization to
electrical boundary conditions can be considered. This is opther electrical conditiongnote that it is the discontinuity of
importance because in real situatidnstural or laboratory ~ magnetic diffusivity that matteys
the flow of conducting liquid is confined within walls whose Let us first describe the BC effect in a qualitative man-
electrical conductivity, magnetic permeability, thickness,ner. Because of the differential rotation, tBgfield lines are
etc., are important parameters in the induction process. Thigvisted to generate an induced component inytltrection
reason is that the magnetic diffusive length of liquid metalsin the median plane—see Figs.(&Band 13b). Actually, this
is often comparable to the integral length scale. For examplas the first step in the generation of the*effect described
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(b)  magnetic field B1
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FIG. 14. BC effect(DD) geometry: simulationgexperimental flow field (a) First order induced currert, in the xOy at heightz=0; (b) corresponding
magnetic field in theyOz plane;(c) profile of the BC-induced field; gc,(y) in median planefd) evolution with the magnetic Reynolds number at (
=0,y=0.5,z=0): first order contributiorB; gc, (dashed lingand net fieldBgc , (solid line).

in Sec. V. This field componer,, is associated with a volume is shown in Fig. 14): as expected it is maximum at
current layerj,  that flows parallel to the applied field, and the wall and decreases slowly away froniis value is only
in opposite direction in the median plane. As the outsidehalved aty=0.7). The BC effect is essentially linear as can
medium is electrically insulating, this current remains within be observed in Fig. 1d) where the evolution of the induced
the flow volume and is therefore tangent to the cylindricalmagnetic field with the Reynolds number at poirt<0, y
vessel on theg axis—see Fig. 1&). At the wall, the discon- =0.5,z=0) is reported: the dashed line shows the contribu-
tinuity in j,, creates an axial magnetic fieB} g, outside  tion of the first order induction alone, while the solid line has
of the flow volume, cf. Fig. 1@l). This field penetrates inside been computed summing all orders.
the flow because the diffusion lengtiR/(yRm) is never Finally, we should comment upon the symmetries of the
small compared to the cylinder radiRsAs a result, an axial field induced by this boundary effect: even symmetry with
magnetic field is created in the bulk of the flow, with its respect to thecOy plane and odd symmetry with respect to
source in the boundary condition at the external wall. Itsthe xOz plane. No linear bulk induction mechanism has the
variation with the magnetic Reynolds number is essentialllsame symmetries. Indeed, in the bulk, the axial field at first
linear because the “source, ,, is essentially produced from order is generated by the radial gradient of the axial flaw
B, by a first order induction mechanism. The magnetic fieldB, cosés,u, term in the induction equationa term which is
componenB; g, can also be viewed as a necessity for theodd with respect to th&Oy plane. Thus there is no linear
reconnection of the magnetic field lines Bf at the lateral bulk effect that can produce a field which is even in symme-
walls. We thus observe that this effect cannot exist indepentry with respect to thexOy plane. However, the quadratic
dently of bulk induction effects; discontinuities of electrical “ «” effect has the same symmetries as the BC effect. In
conductivity alone do not generate an induced field! actual experimental situations, both effects will occur simul-
The schematic picture described above is supported btaneously; but if the induction is observed to vary mainly
the numerical simulation. Figure (@ shows the induced linearly with the magnetic Reynolds number one may con-
current in thexQOy plane, which lies parallel to the applied clude that the effect of boundary conditions are dominant
field in the middle of the cell. It is therefore tangent to the over the “a” effect—as in the VKS measurements.
cylinder walls nealy= = R. At these points the current dis- We now discuss further some of the properties of this
continuity generates the induced fielt} gc, as shown in induction effect due to boundary conditions. As noted in Sec.
Fig. 14b). The evolution of this component inside the flow Il A, inhomogeneities in the magnetic diffusivity can be in-
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FIG. 15. BC effect(DD) geometry(experimental flow fielt influence of the vessel thickness and electrical conductitaiySketch of the vessel geometry;
(b) evolution of the first order BC axial induced field, with the thickness of the végseldashed and solid lines are only meant as guide to the @yand
(d) magnetic field topology in the case of a change of the sign of the discontinuity of the electrical conductivity at thefvah 1; right £>1).

cluded in the induction equatidrEq. (1)]. To lowest order, according to Eqs(31)—(33). This is why in order to enhance
as we have seen that the BC effect is mostly linear, it can béhe BC effect, the curves in Fig. 14 have been computed
written as using experimental flow profiles.

NAB;=—VX(uXBg) —[N](50(5(VXB1)Xn, (31  B. When the external walls are a thin conducting

where S is the surface over which the magnetic diffusivity she _ _

discontinuity occursn the outgoing normal[A] is the As discussed earlier the source term of the BC effect
jump in magnetic diffusivity andss, a Dirac distribution  [Ed. (31)]is proportional to the jump in magnetic diffusivity
null everywhere except o8 This is a closed form in which ~ at the wall. It has opposite effects depending on whether the
B, results both from the bulk and boundary effects. It isoutside medium has a higher or lower electrical conductivity
possible to separate these contributions because the bound&h@n the fluid. An interesting situation occurs when the flow
effects stem from the bulk induction. First, we isolate thewalls are made of a shell of material with a higher conduc-
specific induction source term that generates the BC effedivity, surrounded by an insulating medium. For example,

and express it in terms of the induced currgnt this would be the case for a sodium flow enclosed in a cop-
per vessel, surrounded by air.
l18c=—[N](58(gi1XnN. (32 We consider the case of a von taen flow enclosed in

) ) ) _ _ a cylindrical vessel with thickness, and conductivityo,
This current is mainly generated by the bulk induction, so= /s—cf. Fig. 15a). Note that in such a geometry, the equa-

that to lowest order it verifies the Poisson equation tion for the electric potential8) must take into account the
1 inhomogeneity of the magnetic diffusivity and thus be re-
i=—— (Bne placed by
Ajq (Bo'V) w, (33
Mol

where w=VXu is the flow vorticity and we have assumed A ®k+1~ VAV 1= VX(UXB) — VA-(UXBy), (34)
that the applied field, is homogeneous. Using this formu-

lation one expects the BC effect to be quite sensitive to thavith the condition ¥ ¢),=0 at the outer insulating wall.
precise structurévorticity distribution of the flow. It is in- We concentrate oti=1 (the walls have an electrical con-
deed the case: the BC effect is weak in the numerical modeductivity equal to that of the fluldand /=4.5 (the ratio of
field used in our study, but very strong in actual electrical conductivities of copper and liquid sodiunin
experiments>® The reason is that experimental flows haveeach case the variation of the axial field induced by the BC
a stronger radial vorticity gradient in the vicinity of the cyl- effect with the thickness of the vessel is shown in Fighl5
inder lateral wall®® and thus promote a stronger induction [at point x=0, y=0.5,z=0)].
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(1) When¢=1, the boundary effect tends first to decrease asve have identified a possible—» mechanism, responsible
the thickness of the vessel is increased, up to a thicknedsr the self generation observed in kinematic simulatitrig.
e, equal to approximately 5% of the radius of the cylin- However, we have also observed that at the highest orders of
der. Then fore,>0.0%R, the magnitude of the BC- iteration, a negative feedback loops sets in, associated with
induced field is roughly constant at a value equal to 60%he expulsion of the applied field by the large scale eddies of
of its amplitude ate,=0 (perfectly insulating outside the flow. It shows that expulsion is the most efficient induc-
mediun). tion mechanism at large Rm, and that it may mask other
(2) When{=4.5, the BC-induced field remains at a constantprocesses. In fact, the study of the evolution of the mean
level for e,<0.0%R, but then decreases and changes itsnduced field in the presence of an externally applied mag-
sign fore,>0.1R. For higher values o¢, the induced netic field may not allow a direct identification of the dy-
field remains negative, as expected from a direct calcunamo threshold.
lation with a full external medium with electrical con-

ductivity larger than that of the fluid. ACKNOWLEDGMENTS

We have already mentioned that the BC effect is associ- The authors thank all members of the VKS teaf
ated with the reconnection of the bulk magnetic fisidon ~ Chiffaudel, F. Daviaud, S. Fauve, L. Mayi€. Perelis, F.
either side of the median plane. We note here that the chandgavelet, R. Volk with whom we have had numerous fruitful
of Sign of the induced field Corresponds to different recon.diSCUSSiOﬂS. They are particularly indebted to F. Ravelet for
nection patternsy as shown in F|gs(d)5and 15d) and also making his experimental flow fields available. They also ac-
observed in |aboratory p|asma experimé%ts_ knowledge stimulating discussions with P. Frick.

1J. Larmor, “How could a rotating body such as the sun become a magnet,”
VIil. CONCLUDING REMARKS Report of the 87th Meeting of the British Association for the Advancement
. . of SciencgJohn Murray, London, 1929pp. 159-160.
In this paper we have presented a new approach of in2r. 3 |owes and I. Wilkinson, “Geomagnetic dynamo: A laboratory

duction in flows of conducting liquids, in which the contri- model,” Nature(London) 198 1158(1963.
butions are computed iteratively. Its numerical implementa-"R- Steglitz and U. Mer, “Experimental demonstration of a homoge-

. . . . neous two-scale dynamo,” Phys. Fluid8, 561 (200J).
tion is S|mple and gives access to the complete set Of4A. Gallitis, O. Lielausis, S. Dement’ev, E. Platacis, A. Cifersons, G. Ger-

electromagnetic variables involved in the induction: electric peth, T. Gundrum, F. Stefani, M. Christen, Hriéd, and G. Will, “De-
potential, currents, and magnetic field. Realistic boundary tection of a flow induced magnetic field eigenmode in the Riga dynamo
conditions can be considered. This scheme proves to be verycilty.” Phys. Rev. Lett.84, 4365(2000. = _

. . . . . - G. O. Roberts, “Dynamo action of fluid motions with two-dimensional
convenient t_o identify how induction mechams_ms develop as periodicity,” Philos. Trans. R. Soc. London, Ser2&1, 411 (1972.
the magnetic Reynolds number of the flow increases, andvu. B. Ponomarenko, “On the theory of the hydromagnetic dynamo,” J.
how they are related to the topology of the flow field. Inves- Appl. Mech. Tech. Physl4, 775(1973.
tigations of geometries that are relevant to geophysical situ- fégi'inzezrg/;é‘ia‘;rggﬁc dynamo with a small scale velocity field,” Phys.
ations are currently underway. In addition, the method whichs, ~G4jjitis. “Project of a liquid sodium MHD dynamo experiment,” Mag-
is at present restricted to stationary flows, could be readily netohydrodynamicéN.Y.) 1, 63 (1996.
extended for simple time-periodic flows. °See, for example, L. MarjeF. Perdis, M. Bourgoin, J. Burguete, A.

; : : Chiffaudel, F. Daviaud, S. Fauve, P. Odier, and J.-F. Pinton, “Open ques-
From a practlcal point of view our approach has enabled tions about homogeneous fluid dynamos: The VKS experiment,” Magne-

us a clefir iQentification of important induction_ mechanisms tohydrodynamics38, 163 (2002; W. L. Shew, D. R. Sisan, and D. P.
in von Kaman flows. When compared to experimental mea- Lathrop, “Mechanically forced and thermally driven flows in liquid so-
surements, our approach has lead to a very good quantitatiyglium.” ibid. 38, 121(2009, and references therein.

- - . H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Flu-
agreement, without any idjustable paramétérhe origin ids (Cambridge University Press, Cambridge, 1978

and development of thed” and w effects have been de- 1y | pudiey and R. W. James, “Time-dependent kinematic dynamos with
scribed in detail, as well as their interaction with expulsion stationary flows,” Proc. R. Soc. London, Ser4&5, 407 (1989.

which seems to dominate when the magnetic Reynolds num-L- Marié, J. Burguete, F. Daviaud, and J. dret, hurmerical study of
. omogeneous dynamo based on experimental vomEkta type flows,”
ber becomes large. We have also pointed out that boundar))éur_ Phys. J. B33, 469 (2003.

conditions may be essential in the induction process, particusr. avalos-zuniga, F. Plunian, and A. Gailitis, “Influence of electromag-
larly when the magnetic dissipation length is not small com- netic boundary conditions onto the onset of dynamo action in laboratory

pared to the flow integral scal@s is the case of most exPeriments,”Phys. Rev. B8, 066307(2003. .
¢ l/experimental situatioh s an example. we have P. Odier, J.-F. Pinton, and S. Fauve, “Advection of a magnetic field by a
natural/exp SA ple, turbulent swirling flow,” Phys. Rev. 558, 7397(1998.

shown that an external layer of conducting material behave®m. Bourgoin, R. Volk, P. Frick, S. Kripechenko, P. Odier, and J.-F. Pinton,
very differently than an external infinite conducting medium. “Induction mechanisms in a von Kean swirling flow of liquid gallium,”
Inr r h nam neration. it is viewed her Magnetohydrodynamic40, 13 (2004).

..egall dstot Edy ?1 O.ge .e ar‘]to. Mt S efer:j .e € a%N. L. Peffley, A. B. Cawthrone, and D. P. Lathrop, “Toward a self-
a positive loop-bac mechanism In t € iteration of the induc- generating magnetic dynamo: The role of turbulence,” Phys. Re&1,E
tion process. A dynamo is identified if the operatbRm 5287(2000).
independent has a positive eigenvalue. The neutral mode”L., Marie, J. Burguete, A. Chiffaudel, F. Daviaud, E. Ericher, C. Gasquet, F.
Perelis, S. Fauve, M. Bourgoin, M. Moulin, P. Odier, J.-F. Pinton, A.

then has the geometry of the associated eigenvector. As ex-Guigon’ J-B. Luciani, F. Namer. and J’ drat. "MHD in von Karmn

plair_1ed, this approach has a firm link with ,the, usual kine- gyirling flows,” in Dynamo and Dynamics: A Mathematical Challenge,
matic dynamo framework. In the case of vonrken flows, Proceedings of the NATO Advanced Research Workshop, €argeance,

Downloaded 28 Jun 2004 to 128.117.136.194. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 16, No. 7, July 2004 An iterative study of induction effects 2547

21-26 August, 2000 NATO Science Series Il Vol. 26, edited by 25F. Ravelet, M.S. thesis, Pierre & Marie Curie University, 2002.

P. Chossat, D. Armbruster, and |. Opréduwer Academic, Dordrecht,  2°N. O. Weiss, “The expulsion of magnetic flux by eddies,” Proc. R. Soc.
200D . _ _ _ London, Ser. A293 310 (1966.

M. Bourgoin, L. Marie F. Petrelis, J. Burguete, A. Chiffaudel, F. Daviaud, 27p qgjer, J.-F. Pinton, and S. Fauve, “Magnetic induction by coherent

S. Fauve, P. Odier, and J.-F. Pinton, “MHD measurements in the von vortex motion,” Eur. Phys. J. B6, 373(2000.

Karman sodium experiment,” Phys. Fluidg, 3046(2002. 28 . ) ) ) )
190 Marié, . Petrelis, M. Bourgoin, J. Burguete, A. Chiffaudel, F. Daviaud, R L. Parker, “Reconnexion of lines of force in rotating spheres and cyl-
nders,” Proc. R. Soc. London, Ser.291, 60 (1966.

S. Fauve, P. Odier, and J.-F. Pinton, “Open questions about homogeneog . : .
fluid dynamos; the VKS experiment,” Magnetohydrodynamgg 163 E. N. Parker, "Hydromagnetic dynamo models,” Astrophys163 255

(2002. (1955.

20, Martin, P. Odier, J.-F. Pinton, and S. Fauve, “Effective permeability in *°F. Krause and K.-H. Riler, Mean Field Magnetohydrodynamics and Dy-
a binary flow of liquid gallium and iron beads,” Eur. Phys. J.1B, 337 namo Theory(Pergamon, New York, 1980

21(2000- _ S1F, Parélis, M. Bourgoin, L. Marig J. Burquete, A. Chiffaudel, F. Daviaud,
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannéty; S. Fauve, P. Odier, and J.-F. Pinton, “Nonlinear magnetic induction by
merical Recipe¢Cambridge University Press, Cambridge, 1988 helical motion in a liquid sodium turbulent flow,” Phys. Rev. Le®0,

22G. A. Baker, “Application of the Padapproximants method to the inves- 174501(2003
tigation of some magnetic properties of the Ising model,” Phys. R24, 2\ yamada H Ji S Hsu. T. Carter. R. Kulsrud. Y. Ono. and F. Perkins

768 (1961).
23y Pgnty,])H. Politano, and J.-F. Pinton, “Simulation of induction at low “Identification of Y-shaped and O-shaped diffusion regions during mag-
magnetic Prandtl number,” Phys. Rev. L2, 144503(2004. netic reconnection in a laboratory plasma,” Phys. Rev. L&8. 3117
2*0Overture library, “Object-oriented tools for solving PDEs in complex ge-  (1997.
ometries,” http://www.lInl.gov/CASC/Overture 33M. Bourgoin, Ph.D. thesis, Ecole Normale Stipare de Lyon, 2003.

Downloaded 28 Jun 2004 to 128.117.136.194. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



