
Exploring the Virtual Infrastructures as a Service

concept with HIPerNET

Pascale Primet Vicat-Blanc, Guilherme Koslovski, Fabienne Anhalt, Tram

Truong Huu, Johan Montagnat

To cite this version:

Pascale Primet Vicat-Blanc, Guilherme Koslovski, Fabienne Anhalt, Tram Truong Huu, Jo-
han Montagnat. Exploring the Virtual Infrastructures as a Service concept with HIPerNET.
[Research Report] RR-7185, INRIA. 2010, pp.36. <inria-00450409v2>

HAL Id: inria-00450409

https://hal.inria.fr/inria-00450409v2

Submitted on 21 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00450409v2

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
71

85
--

FR
+E

N
G

Domaine 3

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Exploration du concept d’Infrastructures en tant que
Services avec HIPerNET

Pascale Vicat-Blanc Primet — Guilherme Koslovski — Fabienne Anhalt — Tram Truong

Huu — Johan Montagnat

N° 7185

January 2010

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Exploration du concept d’Infrastructures en
tant que Services avec HIPerNET

Pascale Vicat-Blanc Primet, Guilherme Koslovski , Fabienne
Anhalt , Tram Truong Huu , Johan Montagnat

Domaine : Réseaux, systèmes et services, calcul distribué
Équipe-Projet ANR CIS 06 HIPCAL 005

Rapport de recherche n° 7185 — January 2010 — 32 pages

Résumé : Dans le contexte de l’expansion et de la convergence du calcul et des
communications, l’approvisionnement dynamique d’infrastructures distribuées
personnalisables et la virtualisation des ressources sont des concepts et des tech-
nologies prometteurs. Pour permettre aux utilisateurs de créer et d’apprécier de
telles infrastructures virtuelles, de nouveaux modèles et outils sont nécessaires.
Ce rapport de recherche présente le framework HIPerNET que nous concevons
et développons pour créer, gérer et contrôler des infrastructures virtuelles dans
le contexte de l’Internet haut-débit. L’idée clé de cette proposition est la com-
binaison de la virtualisation du réseau et du système, associées à la réservation
des ressources. Les motivations et les principes de conception d’HIPerNET sont
présentés. Puis, nous introduisons le concept des infrastructures virtuelles, ap-
pelées Virtual Private eXecution Infrastructures (VPXI). Pour aider à spécifier
des infrastructures isolées et personnalisées, HIPerNET se base sur VXDL, un
langage pour la description et la modélisation de VPXI, qui prend en compte
ces ressources d’extrémité ainsi que la topologie réseau virtuelle les intercon-
nectant. Nous illustrons la spécification, l’allocation et l’exécution de VPXI
en utilisant de réelles applications médicales distribuées à grande échelle. Les
résultats expérimentaux obtenus dans la plateforme Grid’5000 sont présentés et
analysés.

Mots-clés : HIPerNET, Infrastructures virtuelles, Iaas, Virtualisation Réseau,
VXDL, VPXI, Provisionnement, Isolation

Exploring the Virtual Infrastructures as a
Service concept with HIPerNET

Abstract: With the expansion and convergence of communication and comput-
ing, dynamic provisioning of customized networking and processing infrastruc-
tures, as well as resource virtualization, are appealing concepts and technologies.
Therefore, new models and tools are needed to allow users to create, trust and
enjoy such on-demand virtual infrastructures within a wide area context. This
research report presents the HIPerNET framework that we are designing and
developing for creating, managing and controlling virtual infrastructures in the
context of high-speed Internet. The key idea of this proposal is the combina-
tion of network- and system-virtualization associated with controlled resource
reservation to provide fully isolated environments. HIPerNET’s motivations and
design principles are presented. We then examine specifically how this framework
handles the virtual infrastructures, called Virtual Private eXecution Infrastruc-
tures (VPXI). To help specifying customized isolated infrastructures, HIPerNET
relies on VXDL, a language for VPXI description and modeling which considers
end-host resource as well as the virtual network topology interconnecting them,
including virtual routers. We exemplify the VPXI specification, allocation and
execution using a real large-scale distributed medical application. Experimental
results obtained within the Grid’5000 testbed are presented and analyzed.

Key-words: HIPerNET, Virtual Infrastructures, IaaS, Network Virtualization,
VXDL, VPXI, Provisioning, Isolation

Exploring the Virtual Infrastructures as a Service concept with HIPerNET 3

1 Introduction

The expansion and convergence of computing and communication paint a
new vision of the Internet : it is not only a black box providing pipes be-
tween edge machines, but becomes a world-wide reservoir increasingly embed-
ding computational and storage resources to meet the requirement of emerging
applications[1]. Consequently, the promising vision of grid computing—to bring
together geographically distributed resources to build very large-scale comput-
ing environments for data- or computing-intensive applications—along with the
service wave led naturally to the ”Infrastructure as a Service” paradigm[2].

High-end applications present new challenges—e.g., the amount of data to
process, the distribution of the data (wide-spreading of data sources over the
territory), the heterogeneity of the data (lack of well-established standards),
confidentiality—which results in high communication, storage, and computa-
tion requirements. Intensive data-processing applications require an access to in-
frastructures with high-performance data-movement facilities coordinated with
computational resources. However, current grid or cloud computing solutions[3,
4] built over traditional TCP/IP technology do not provide the performance
isolation and predictability required by these users. Other applications need
interconnections of large-scale instruments with high-performance computing
platforms. The proposed best-effort approaches often result in user dissatisfac-
tion and/or resource under-utilization. Moreover, system and middleware het-
erogeneity and complexity posed barriers to application portability. We expect
future Internet applications will be more and more demanding in terms of se-
curity, performance and quality of service. New technologies such as machine,
links or router virtualization are now envisionned as solutions to these issues.
Future applications may highly benefit from these innovations.

In this report, we argue that the extension of the Infrastructure as a Ser-
vice paradigm to network resources is promising and powerful. We show how
it can be implemented through the Virtual Private eXecution Infrastructure
(VPXI) concept. Seen as a fundamental building block, VPXIs could mark a
step forward in transforming the Internet into a huge, shared computing and
communication facility. Any entity (individual user, community, government,
corporate customer, high-level service provider) would dynamically rent the IT
resources combined with the networking resources it needs to solve its specific
problem. Based on this vision, this report presents HIPerNET, a framework to
create, manage and control confined Virtual Private eXecution Infrastructures
(VPXI) in a large-scale distributed environment.

In Section 2 we present the Virtual Private eXecution Infrastructure concept
and the HIPerNET framework, highlighting the originalities of its design. Sec-
tion 3 discusses the specification and allocation process of VPXIs based on the
VXDL, a language for virtual-infrastructure specification and modeling which
considers end-host resources as well as virtual network topology, including vir-
tual routers and timeline. In Section 4 we highlight the configuration step. The
configuration of a VPXI is based on the instantiation of virtual entities as well as
the configuration of various embedded mechanisms. Section 5 details the process
for mapping an application on physical resources in a virtualized-infrastructure
context. We illustrate application mapping through an example with the Bronze
Standard workflow. In Section 6 we give experimental results obtained on the

RR n° 7185

4 Vicat-Blanc Primet, Koslovski, Anhalt, Truong Huu, Montagnat

Grid’5000 testbed. Related works are in Section 7 while conclusion and perspec-
tives are developed in Section 8.

2 HIPerNET Concepts

2.1 Combining OS and Network Virtualization

The virtualization concept[5, 6, 7] enables an efficient separation between
services or applications and physical resources. The virtual-machines paradigm
is becoming a key feature of servers, distributed systems and grids as it provides
a powerful abstraction. It has the potential to simplify resource management
and to offer a great flexibility in resource usage. Each Virtual Machine (VM) a)
provides a confined environment where non-trusted applications can be run, b)
allows establishing limits in hardware-resource access and usage, through isola-
tion techniques, c) allows adapting the runtime environment to the application
instead of porting the application to the runtime environment (this enhances
application portability), d) allows using dedicated or optimized OS mechanisms
(scheduler, virtual memory management, network protocol) for each applica-
tion, e) enables applications and processes running within a VM to be managed
as a whole.

A virtual private network is classically provisioned over a public network
infrastructure to provide dedicated connectivity to a closed group of users.
Resource-guaranteed VPNs[8] can be obtained from a carrier but are gener-
ally static and require complex service level agreements (SLAs) and overheads.
Tunneled VPNs [9] such as those in use over the Internet are more lightweight
but offer low performance and no assured quality of service. The functionality
required for the automating dynamic provisioning of lightpath or virtual private
network capacities is emerging[10].

We propose here to combine and apply the concepts to both the IT re-
sources and the network to enable the creation of multiple, isolated and pro-
tected virtual aggregates on the same set of physical resources by sharing them
in time and space. These aggregations of virtual resources organized with virtual
interconnections are called Virtual Private eXecution Infrastructures (VPXI).
Moreovoer, virtualizing routers and switching equipments opens an interesting
door for the customization of packet routing, packet scheduling and traffic engi-
neering for each virtual interconnection network. Router-function customization
as well as data-plane virtualization offers a high flexibility for each infrastruc-
ture. Therefore, conceptually, the virtual infrastructures are logically isolated
by virtualization and enable the deployment of independant and customized
bandwidth provisioning, channel encryption, addressing strategies. The isola-
tion could also provide a high security level for each infrastructure. However,
obtaining full performance and security isolation remains a key technical issue
and most of the proposed virtual infrastructure frameworks do not address it
properly.

INRIA

Exploring the Virtual Infrastructures as a Service concept with HIPerNET 5

2.2 HIPerNET and Virtual Private Execution Infrastruc-
tures concept

2.2.1 Design principles of the HIPerNET framework.

The HIPerNET framework combines system and networking virtualization
technologies with crypto-based-security, bandwidth sharing and advance reser-
vation mechanisms to offer dynamic networking and computing infrastructures
as services. This framework is transparent to all types of upper layers : up-
per layer protocols (e.g., TCP, UDP), APIs (e.g., sockets), middlewares (e.g.,
Globus [3], Diet [11]), applications, services and users. It helps end users with
intensive-application deployment, execution and debugging, by providing an en-
vironment to run them on scalable, controlled, distributed and high-capacity
platforms. HIPerNET is also mostly agnostic of lower layers and can be de-
ployed over IP as well as lambda networks.

The HIPerNET framework is responsible for the creation, management and
control of dynamic entities called VPXIs, as defined in the next section, pro-
viding a generalized infrastructure service. It supervises VPXIs during their
whole lifetime. The key principle is to have operations realized automatically.
For this, HIPerNET defines and activates mechanisms to automatically con-
trol the VPXIs as well as the status of the underlying exposed substrate called
HIPerSpace. HIPerNET integrates classical FACPS (fault-tolerance, account-
ing, configuration, performance and security) management functions to these
dematerialized entities. In the context of this report, we focus on two critical
aspects of the virtualisation context : network configuration and performance
isolation. Neither the security mechanisms—which are other key points of this
framework [12]—relying on SPKI and the HIP protocol, nor the advance reser-
vation algorithms or the migration mechanisms for fault-tolerance, are described
in this report.

Figure 1 illustrates two virtual execution infrastructures (VPXI A and VPXI
B) allocated on a global exposed infrastructure (HIPerSpace) using the HIPer-
NET framework 1.

Fig. 1 – Example of a VPXI allocation on a distributed and virtualized
HIPerSpace.

1The HIPerNET software is under development within the ANR HIPCAL project [13]

RR n° 7185

6 Vicat-Blanc Primet, Koslovski, Anhalt, Truong Huu, Montagnat

At the lower level, the HIPerNET framework accesses and controls a part
of the physical infrastructure which is virtualized and called the HIPerSpace.
Enrolled physical resources are then registered to the HIPerNET registrar and
can be allocated to VPXIs. Once the resources have been exposed, HIPerNET
gets full control over it. This set of exposed virtualized resources composes the
substrate hosting the VPXIs. At run-time, the HIPerNET manager communi-
cates with the nodes of the HIPerSpace to deploy virtual nodes, monitor their
status and configure control tools to supervise the resource usage.

In this fully-virtualized scenario, HIPerNET interacts with multiple resource
providers to plan, monitor and control them. Functions such as fault manage-
ment, load balancing, bandwidth management and performance control are han-
dled taking both network- and resource-virtualization techniques into account.

The current HIPerNET software implements virtual links at layer 3 of the
OSI model (using IPsec and the HIP protocol [14]) enabling multiple virtual
overlay networks to cohabit on a shared communication infrastructure. An over-
lay network has an ideal vantage point to monitor and control the underlying
physical network and the applications running on the VMs. All network over-
lays and virtual end hosts are kept isolated both at the network and OS level
to ensure security, performance control and adaptability. We also study the im-
plementation of these virtual links at lower level (layer 2 or layer 1) within the
CARRIOCAS project[10], [15].

2.2.2 Virtual Private Execution Infrastructure concept.

We define the Virtual Private eXecution Infrastructure (VPXI) concept as
the HIPerNET’s management unit. VPXIs are an organized aggregation of vir-
tual computing resources interconnected by a virtual private overlay network
for a defined time period. Ideally, any user of a VPXI has the illusion that he is
using his own dedicated system, while he really is using multiple systems, part
of the global distributed infrastructure. The resulting virtual instances are kept
isolated from each others and the members of a VPXI have a consistent view
of a single private TCP/IP overlay, independently from the underlying physical
topology. A VPXI can span multiple networks belonging to disparate admin-
istrative domains. In virtual infrastructures, a user can join from any location
and use the same applications he was using on the Internet or its intranet.

Each VPXI is specified according to the user requirements. The specification
is interpreted, allocated and configured using basic entities, which are building
blocks composing the virtual execution infrastructures, as VXNodes : virtual
end hosts, VXRouters : virtual routers, and VXLinks : virtual links.

VXNodes : Virtual end hosts. VXNodes or virtual end hosts are per-
sonalized virtual machines that are allocated in physical hosts, and managed by
HIPerNET to make sure they share the physical resources among them in a con-
fined, secured and isolated way. Developed in accordance with the specifications
of users and applications, each virtual end host can be parameterized (e.g., CPU,
RAM memory, storage) and configured (e.g., operating system, communication
tools) respecting the key set of parameters informed during their specification.
Otherwise, end hosts can be organized individually or in groups, recursively.
Basically, a VPXI represents a complex infrastructure, composed by individual
end hosts that interact with groups (clusters or grids). Groups allow HIPerNET

INRIA

Exploring the Virtual Infrastructures as a Service concept with HIPerNET 7

to manage a set of virtual end hosts with the same characteristics all together,
thus avoid unnecessary complex topologies and configuration scenarios.

VXRouters : Virtual routers. Within the VPXI design, virtual routers,
which we call VXRouters, are fully-personalizable components of the VPXIs.
For example, these VXRouters, instantiated within physical Linux routers, will
run inside isolated virtual machine instances. In our approach, all traditional
network planes (data, control and management) are virtualized. Therefore, users
can use any protocol and control mechanism on their allocated virtual router,
and within the virtual interconnection network. HIPerNET implements a default
routing mechanism on the virtual routers, but users can reconfigure it. They
can deploy customized routing protocols, and configure the packet-queuing dis-
ciplines, packet filtering and monitoring mechanisms they want. HIPerNET only
manages the physical substrate and the resources attribution to each VXRouter.
Also, VXRouters represent strategic points of the network for rate control as
they concentrate aggregated VPXI traffic. By limiting the rate and policing the
traffic of the different VXRouters, the traffic of VPXIs can be controlled and
the user is provided with a fully isolated execution infrastructure. The control
is implemented in the substrate, hence its implementation and management is
transparent to the user. The advantage of having controlled environments is
twofold : users have strong guarantees, while the network provider can better
exploit the network by sharing it efficiently but differently between users.

VXLinks : Virtual links. Virtual execution infrastructures can be composed
by several VXNodes, groups of them, and VXRouters. All these components
are interconnected using VXLinks or virtual links. Each VXLink is a temporary
path allocated among multiple physical channels. As in a real infrastructure,
each link can be parameterized with different metrics according to the applica-
tions’ requirements. Metrics such as bandwidth, latency and direction can be
valuated for each virtual link. Using the source-destination definition, it is pos-
sible to organize the model of the virtual infrastructure, defining and asking for
specific configurations in critical paths, that can interfere with the execution of
applications.

HIPerNET comprises a module to specify virtual infrastructures. This mod-
ule relies on the VXDL [16] language and provides users with a large flexibility
in VPXI design as illustrated in the next section.

3 VXDL : Specifying and modeling Virtual Pri-
vate Execution Infrastructures

3.1 Needs for a specific language

Users need to define the virtual private execution infrastructures they request
according to the applications’ requirements. This process requires a specific lan-
guage to describe virtual resources and networks. Existing languages are used
in different areas of networks or IT resources management. The Common Infor-
mation Model Specification (CIM) [17] provides a common set of objects and

RR n° 7185

8 Vicat-Blanc Primet, Koslovski, Anhalt, Truong Huu, Montagnat

relationship among them. The CIM architecture is based on the UML concept
and provides language CQL (CIM Query Language) to select sets of properties
from CIM-object instances. CQL is a subset of SQL-92 with some extensions
specific to CIM. In this case, CQL allows queries asking for a set of resources
with certain configurations, but does not have parameters to interact with the
allocation system, for example informing the basic location of a component. An
other common example is the Network Description Language (NDL) [18]. NDL
is a collection of schemas (topology, layer, capability, domain and physical) used
to represent a network infrastructure at different levels. This language is guided
by the Resource Description Framework (RDF) [19], a general-purpose language
for representing information on the Web. Basically, RDF (and NDL) explores a
graph data model composed by a set of RDF triples (a subject, an object and
a predicate (property)). The triple concept is difficult to adapt to recursive de-
scription, like groups or aggregates found in virtual infrastructures. A descriptive
language dedicated to virtual infrastructures description must be more adaptive
than conventional solutions and needs to combine the space and temporal as-
pects of virtual infrastructures. During the specification process, new challenges
coming from virtualization techniques have to complement the management,
configuration and execution features of classical languages. We identify some
desirable aspects that must be explored for descriptive languages : a) recursive
representation of individual resources and groups ; b) each resource must be
characterized using an extensible list of descriptive parameters to represent the
necessary configuration—e.g., RAM memory, CPU speed, storage capability ;
c) considering the configuration and deployment is also necessary to describe
the software (e.g., operating systems) and tools (e.g., communication and pro-
gramming tools) that must be used in VPXI ; d) each component (individually
or in group) should be characterized as its elementary function, for example
to describe a set of computing nodes or storage nodes ; e) it must be possible
to express the composition of virtual network topology, detailing each virtual
link. On the other hand, parameters should enable an abstract description, for
example, informing a virtual link description that must be used to intercon-
nect a group of resources ; f) the executing timeline of the infrastructure (this
parameter should help in resources reservation and co-scheduling) ; g) security
attributes for each resource element (access control, confidentiality level) ; h)
commercial attributes for each resource element (maximum cost) ; and i) tem-
poral attributes for each resource element (time window for provisioning).
Within a given time slot, a VPXI can be formally represented as a graph—
G(V,E)—where V is a set of vertices and E represents a set of edges. A vertex
is in charge of active data processing functions and an edge is in charge of moving
data between vertices. Figure 2 illustrates this concept, representing a virtual
infrastructure composed by the aggregation of virtual machines interconnected
via virtual channels. It shows two VXRouters (vertices rvA and rvB) which are
used to interconnect and perform the network control functions among the other
virtual resources (vertices rv 1 to 8). These virtual routers can independently
forward the traffic of the different virtual infrastructures sharing the same phys-
ical network. Each edge represents a virtual link used to interconnect a pair of
virtual resources, which contains different configurations, as lv1 and lv2. Note
that at the next time slot, the configuration may be different.

INRIA

Exploring the Virtual Infrastructures as a Service concept with HIPerNET 9

Fig. 2 – Example of a VPXI composition using graph notation.

To specify a virtual execution infrastructure we introduce VXDL (Virtual
Resources and Interconnection Networks Description Language), a language
that besides allowing end-resource description lets users describe the desired
virtual network topology (using the same grammar), including virtual routers
and timeline representation 2. Implemented with the XML standard, VXDL
helps users and applications to create or change VPXI specifications. The VXDL
grammar is divided into Virtual Resources description, Virtual Network Topol-
ogy description and Virtual Timeline description [16]. A new key aspect of this
language is that all these basic descriptions are optional : it is possible to specify
a simple communication infrastructure, or a simple end-ressource aggregate.

3.2 Virtual resources description

The key point explored in this part of the VXDL grammar is enabling users
and applications to describe in a simple and objective way all the necessary
end hosts, and groups of them. The parameters proposed in VXDL are directly
related to virtual infrastructures, and besides allowing basic resource parameter-
ization (e.g., maximum and minimum values acceptable to RAM memory and
CPU frequency), VXDL lets users directly interact with management frame-
works (such as HIPerNET). For this reason, VXDL suggests the definition of
parameters such as anchor, number of virtual machines allocated per physical
host, and key components.

The anchor parameters act in the physical allocation of a VPXI. We know
that in a virtualized substrate the VPXI can be allocated anywhere, but some-
times it is necessary that a virtual end host (or group) must be positioned in
a physical location (e.g., a site or a machine—URL, IP) in accordance with a
basic location. Yet, analyzing a virtualized substrate, multiple virtual machines
can be allocated in the same physical host, sharing the real resources among
them. VXDL enables the definition of a maximum number of virtual machines
that must be allocated in a physical host, enabling users to interact directly
with the allocation algorithm. The key parameter acts in the identification of

2More information about VXDL is provided on http://www.ens-lyon.fr/LIP/RESO/

Software/vxdl

RR n° 7185

http://www.ens-lyon.fr/LIP/RESO/Software/vxdl
http://www.ens-lyon.fr/LIP/RESO/Software/vxdl

10 Vicat-Blanc Primet, Koslovski, Anhalt, Truong Huu, Montagnat

Fig. 3 – A graph representing a network topology.

the most important components of the VPXI. This information will help in the
allocation, informing that the component must be allocated in advance.

3.3 Virtual network topology description

VXDL improves the network topology description in two key points : I) en-
abling the specification together with other components, using the same gram-
mar ; II) applying the concept of link organization, which permits a simple and
abstract description. Links can define connections between end hosts, between
end hosts and groups, inside groups, between groups and VXRouters, and be-
tween VXRouters. Using this concept users can model their VPXIs in accor-
dance with their applications. Figure 3 presents a possible VPXI composed by
two groups (clusters), each with 8 nodes interconnected using 2 VXRouters.

In VXDL grammar, the definition of source-destination pairs for each link
is proposed. A single link can be applied to different pairs, simplifying the spec-
ification of complex infrastructures. For example, links used to interconnect a
homogeneous group, such as a cluster, can all be defined in a same link descrip-
tion. Each link can receive a parameterization involving latency, bandwidth and
direction. To latency and bandwidth, the maximum and minimum values are
applied.

3.4 Virtual timeline description

Any VPXI can be permanent, semi-permanent or temporary. The VPXIs are
allocated for defined lifetime in time slots. Time slots are configurable param-
eters and are specific to the HIPerSpace. Often the VPXI components are not
used simultaneously or all along the VPXI’s lifetime. Thus, the specification of
an internal timeline for each VPXI can help the middleware in the allocation,
scheduling and provisioning processes. Periods can be defined in function of their
usages, as data transfer or computation, delimited by temporal marks. A period
can start after the end of another period or after an event. Looking at figure 4
we can observe three execution stages of an application. This VPXI is composed
by one data storage cluster, three computation clusters and one visualization
cluster, all interconnected through virtual links. In stage I, it is necessary to
perform a data transfer between the storage cluster and the computation clus-
ters. During this transfer, a high-bandwidth configuration is required, which is
not necessary in the others stages. As early as in stage II, the three computation
clusters execute an application, possibly requesting links with a low latency in
communication to the substrate framework. Finally, stage III asks for a high
bandwidth again to perform the data transfer and results visualization. In this

INRIA

Exploring the Virtual Infrastructures as a Service concept with HIPerNET 11

Fig. 4 – Example of a virtual timeline definition.

example, the periods between stages I and II or stages II and III can be defined
in a relative way : after the data transfer, in stage II, computation starts and
the low latency on the intra-cluster links is implemented. VXDL explores the
relative definitions using common parameters as start, after and until.

4 Deployment and provisioning of VPXIs

In a typical scenario, HIPerNET receives a user’s VPXI request, specified
in VXDL. The software interprets it, then checks its feasibility and potentially
negotiates security, performance, planning and price with the customer or its
representative. When an agreement has been found, a VPXI instance is allocated
and scheduled as proposed in [20]. The VPXI is then provisionned according to
the schedule. Finally, the deployment of a VPXI consists in instantiating and
configuring the specified virtual entities (VXNodes, VXRouters and VXLinks)
on top of the physical substrate. First, all the virtual nodes (end hosts and
routers) are deployed, then the virtual links and routes are set up. Routes are
configured individually in all the VXNodes and VXRouters. During the VPXI’s
lifetime, its allocation may change as described in section 3.4. In this case, if
the topology changes, new VXLinks are deployed if necessary and the routes
are reconfigured in all the VXNodes and VXRouters to reconnect the topology.
Below, we describe the mechanisms that are deployed to virtualize the network
resources.

4.1 VPXI network resource provisioning

Virtual infrastructures share a physical substrate network. To ensure VPXI
isolation, the resource sharing between different virtual infrastructures needs
to be finely controlled. To achieve this, a set of control mechanisms residing
inside the physical substrate nodes are set up. They are in charge of super-
vising, at runtime, how the physical capacity is allocated to the virtual nodes
and links. After the VPXI allocation and scheduling process, virtual capacities
are assigned to each virtual node and link. Then, these capacities are reserved
and provisionned in the physical substrate. During the deployment phase, the
control tools are invoked at each involved substrate node, in order to enforce
allocations during the VPXI lifetime. At runtime, the control tool’s actions can

RR n° 7185

12 Vicat-Blanc Primet, Koslovski, Anhalt, Truong Huu, Montagnat

be reconfigured when the VPXI’s requirements change. This happens for ex-
ample when the execution moves from one stage to the next. At that moment,
HIPerNET updates the configuration of the deployment according to the allo-
cation corresponding to the new stage. Thus, it reconfigures the control tools,
in order to change the resource attribution. The control tools have three main
features : they manage the bandwidth, CPU and memory sharing among the
virtual domains, so that they offer the user provisionned VPXIs according to
his requirements.

During the negotiation, a VPXI user can specify a desired bandwidth per
virtual link, associated to one of the following services :

– Guaranteed minimum : the minimum rate that has to be available on
the virtual link at any moment ;

– Allowed maximum : the maximum capacity the virtual link must allow
at any moment ;

– Static reservation : in this case, the guaranteed minimum is equal to
the allowed maximum.

The user can use one of these services to specify its application’s requirements.
A user who wants to execute, for example, a distributed application commu-
nicating with MPI will specify a guaranteed minimum rate which can not be
decreased during negotiation. If the user specifies an allowed maximum, the ne-
gotiation will result in a bandwidth equal or below this maximum. This link is
shared in a best-effort way with other traffic. Specifying a static rate gives the
user the impression that he works in a dedicated physical network whose links
have the specified capacity. He will be able to obtain the specified bandwidth at
any moment but can never exceed it. This kind of service allows no negotiation
and could for example help with conducting reproducible experiments where
link availability should not vary.

According to these user specifications and the free capacity on the physical
substrate, a static bandwidth reservation is made. Then, HIPerNET’s control
mechanism allocates the maximum bandwidth for each virtual link in order
to guarantee the negociated bandwidth. The configuration takes place on both
ends of the virtual link configuring the physical interfaces.

Let’s consider two users of two VPXIs who specified different rates for the
different virtual links. The user of VPXI 1 desires a bandwidth of 100 Mb/s
on virtual link A (VL A) and a bandwidth of 200 Mb/s on VL B connected to
VXRouter (VXR) 1. The user of VPXI 2 wants both virtual links connected to
VXRouter 2, VL C and VL D, to allow 400 Mb/s. Figure 5 shows the specified
virtual network configurations of VPXI 1 and VPXI 2. HIPerNET configures
the virtual link rates to these values during the deployment of VPXI 1 and
VPXI 2.

Users can also specify a maximum percentage of the physical CPU a virtual
node of a VPXI should be allowed to use. This quantity of CPU is allocated
in the available CPU of the physical machine. The available quantity of CPU
corresponds to the CPU of the physical machine minus the part of the CPU in
use for the machine’s host system, or domain 0 (dom0) in the Xen terminology.
CPUavailable = CPUmachine − CPUdom0

Dom0 consumes a small part of CPU time for the control mechanisms and a
considerable part for networking as it is in charge of forwarding the packets of
all the virtual machines, or domains U (domUs).

INRIA

Exploring the Virtual Infrastructures as a Service concept with HIPerNET 13

Fig. 5 – User bandwidth specification for two VPXIs.

CPUdom0 = CPUcontrol + CPUnetworking and CPUcontrol � CPUnetworking

So CPUdom0 can be established according to the sum of the maximum rates
specified by all the domUs hosted on the considered physical machine. In Sec-
tion 6.3, this relationship is evaluated on virtual routers.

The next section gives more details on the VXRouters.

4.2 Implementation of VXRouters

In the current HIPerNET implementation, the VXRouters consist in software
routers implemented inside virtual machines. These VXRouters are hosted by
network-aware servers. We call them HPSRouters (High Performance Software
routers) as they are commodity servers with the required hardware to support
high-performance networking (several network interface cards, several CPUs
and a huge amount of memory) used as Linux routers. Current commercial
virtual or logical routers do not support the full virtualization of the router
data planes. The performance impact of the data-plane virtualization is indeed
an issue. However, recent analysis have demonstrated that modern virtualization
techniques are improving rapidly, making our VXRouter approach interesting
and promising [21]. Figure 6 shows an example of a physical router hosting two
VXRouters. These virtual routers have to share the physical resources of the
machine and additional processing is necessary.

Customized routing and traffic-engineering functions can be set up on the
VXRouters. A VPXI user can, for example, choose to adapt the routing in order
to satisfy specific Quality of Service requirements, as illustrated in Figure 7.

In this example, latency-sensitive traffic and bandwidth-aware traffic are
routed on different paths. 1 Gb/s links are allocated between each one of the
three VXRouters to transmit latency sensitive traffic. All high-throughput traf-
fic, which can be pipelined, is redirected over Site 2. The advantage of this rout-
ing scheme is that the user needs to provision only 2 links with 5 Gb/s instead
of 3. As presented in [22], this is an example of efficient channel provisioning
combining routing and traffic engineering.

RR n° 7185

14 Vicat-Blanc Primet, Koslovski, Anhalt, Truong Huu, Montagnat

Fig. 6 – Model of a physical router hosting VXRouters.

Fig. 7 – Example of bandwidth allocation for latency-sensitive and high-
bandwidth flows.

5 Executing distributed applications on virtual-
ized infrastructures

Programming applications on large-scale distributed environments is diffi-
cult. Defining the optimal infrastructure to execute them is another issue. The
flexibility offered by virtual infrastructures could make the problem even more
complex. Promising work on workflow has been done in the area of application
development to optimize their usage of distributed environments. We propose
to explore how this work can also benefit to the composition of virtual infras-
tructures.

In our model, the application-mapping process is separated in three steps :
I) workflow generation : the workflow is generated using information ex-

tracted from the application, such as benchmarks results, data input descrip-
tion, data transfer in each module, and the number of nodes required to perform
a satisfactory execution.

II) workflow translation into VXDL : taking into account the application’s
requirements (RAM configuration, CPU speed, and storage size), users can de-
velop a VXDL description, asking for the desirable configuration of the VPXI.
At this point users can also declare that some components must be allocated in
a specific location as well as define the virtual network topology specifying the
proximity (latency configuration) of the components and the needed bandwidth.

III) VPXI allocation : in this step VPXI management framework will allo-
cate the virtual components respecting the configuration expressed by the user

INRIA

Exploring the Virtual Infrastructures as a Service concept with HIPerNET 15

(such as parametrizations and time periods organization). In a second phase, the
software configuration (OS, programming and communication tools), extracted
directly from the application and described using VXDL, will be deployed within
the virtual machines that compose the VPXI.

5.1 Workflow language

Complex applications able to exploit large scale distributed environments
are generally described with workflows. These workflows are interpreted by en-
gines that convert the description of work in execution scripts. Several workflow
languages have been proposed in the literature. On grid-based infrastructures,
Directed Acyclic Graph (DAG)-based languages such as the MA-DAG language,
part of the DIET middleware [11], have often been used. They provide a explicit,
static graph of all computing tasks to be performed. To ease definition of grid ap-
plications with a complex logic to be represented, more abstract language have
been introduced. For instance, Scufl was introduced within the myGrid project3

to present data flows enacted through the Taverna workflow engine [23]. It is one
of the first grid-oriented data flow languages that focuses on the application data
flow rather than on the generated graph of tasks. The GWENDIA language4

considered in this paper is a data-flow oriented language that aims at easing the
description of the complex application data flows from a user point of view while
ensuring good application performances and grid resources usage. An example
of a graphic representation of workflow description is given in figure 8. In this
figure Floating and Reference are representing data unit to be processed and
CrestLines, CrestMatch, PFMatchICP, PFRegister, Yasmina and Baladin are
processing units. Floating and Reference represent groups of data items to be
processed : processing units will be invoked as many time as needed to process
all data items received. The user describing the application focus on the data
processing logic rather than on the execution schedule. The structural applica-
tion workflow is transformed into an execution schedule dynamically, while the
workflow engine is being executed.

GWENDIA is represented in XML using the tags and syntax defined below :
Types : values flowing through the workflow are typed. Basic types are

integer, double, string and file.
Processors : a processor is a data production unit. A regular processor

invokes a service through a known interface. Special processors are workflow
input (a processor with no inbound connectivity, delivering a list of externally
defined data values), sink (a processor with no outbound connectivity, receiving
some workflow output) and constant (a processor delivering a single, constant
value).

Processor ports : processor input and output ports are named and de-
clared. A port may be an input (<in> tag), an output (<out> tag) or both an
input/output value (<inout> tag). The input ports also define iteration strate-
gies that control the number of invocation of the processor as a function of its
inputs.

Data link : a data link is a simple connection between a processor output
port and a processor input port.

3myGrid UK e-Science project : www.mygrid.org
4GWENDIA is defined in the context of the ANR-06-MDCA-009 GWENDIA project :

http://gwendia.polytech.unice.fr

RR n° 7185

www.mygrid.org
http://gwendia.polytech.unice.fr

16 Vicat-Blanc Primet, Koslovski, Anhalt, Truong Huu, Montagnat

CrestLines

Floating Reference CL_size

CrestMatch
PFMOpt

PFMatchICP

Yasmina

YasminaOpt

Baladin

BaladinOpt

PFRegister

Results

Fig. 8 – Bronze Standard workflow

Workflow managers are associated with these workflow language and are in
charge of optimizing the execution of workflows. For example, MOTEUR [24]
is a data-intensive grid-interfaced workflow manager. MOTEUR can enact a
workflow represented in Scufl language or in GWENDIA language and submits
the workflow tasks to a grid infrastructure. To optimize the execution, it enables
three levels of parallelism : workflow parallelism, data parallelism and pipelining.

5.2 Workflow translation into VXDL

A workflow description represents the input/output data, the processors (a
data-processing module), and the relationship between an application’s pro-
cessors. In our model, the workflow description will be translated in a VPXI
description, specified in VXDL. Generally, to execute a complex application in
a virtualized infrastructure, one has to consider that a middleware has to su-
pervise the execution of the different tasks. In our example, the workflow engine
(MOTEUR) and a specific task scheduler are executed for every application on
independent computing resources. Input data and the intermediate results also
require the presence of a file server. Therefore the VXDL description of any
VPXI executing an application controled by the MOTEUR engine will contain
a generic part describing these 3 nodes.

The variable part of the VPXI description directly depends on the informa-
tion extracted from the workflow such as input data, the number of processors,
and the links between the processors. The computation time, the data volume
and the number of invocations of each module is another information that can
be extracted from the workflow. Given p the number of processors (modules) of
an application, the user can naively request n virtual computing resource and
evenly split the set of resources among the workflow processors. Each module
therefore has n/p resources. This will of course be sub-optimal since the proces-

INRIA

Exploring the Virtual Infrastructures as a Service concept with HIPerNET 17

sors have different execution times. A first variant of this naive strategy could
take into account extra information on the benchmarked execution time of each
module.

5.3 Medical application example

Let us illustrate this VPXI description and embedding problem through a
complex, real-scale medical-image analysis application known as bronze stan-
dard.

The bronze standard [25] technique tackles the difficult problem of validat-
ing procedures for medical-image analysis. As there is usually no reference, or
gold standard, to validate the result of the computation in the field of medical-
image processing, it is very difficult to objectively assess the results’ quality. The
statistical analysis of images enables the quantitative measurement of computa-
tion errors. The bronze standard technique statistically quantifies the maximal
error resulting from widely used image registration algorithms. The larger the
sample image database and the number of registration algorithms to compare
with, the most accurate the method. This procedure is therefore very scalable
and it requires to compose a complex application workflow including different
registration-computation services with data transfer inter-dependencies.

Bronze standard’s workflow is enacted with the data-intensive grid-interfaced
MOTEUR workflow manager [24] designed to optimize the execution of data-
parallel flows. It submits the workflow tasks to the VPXI infrastructure through
the DIET middleware [11], a scalable grid scheduler based on a hierarchy of
agents communicating through CORBA.

The estimated algorithm performance is valid for a typical database image.
In the experiments reported below, we use a clinical database of 32 pairs of
patient images to be registered by the different algorithms involved in the work-
flow. For each run, the processing of the complete image database results in
the generation of approximately 200 computing tasks. As illustrated in figure 8,
the workflow of the application has a completely deterministic pattern. All pro-
cessors of this application have the same number of invocations. The execution
time and the data volume transferred of each processor have been mesured in
initial microbenchmarks reported in table 1.

Module Execution time Data volume
CrestLines 35s 32MB
CrestMatch 4s 36MB

PFMatchICP 14s 10MB
PFRegister 1s 0.5MB

Yasmina 62s 22MB
Baladin 250s 25MB

Tab. 1 – Execution time and processed data volume for each module of bronze
standard.

Let us now consider a request for a VPXI composed of 35 nodes to execute
Bronze Standard’s workflow. Three nodes will be dedicated to the generic part :
1 node for MOTEUR, 1 node for the middleware server and 1 node for the
database server. The 32 nodes left are distributed and allocated proportionally

RR n° 7185

18 Vicat-Blanc Primet, Koslovski, Anhalt, Truong Huu, Montagnat

to the execution time of the workflow processors : 3 nodes for CrestLines, 1
node for CrestMatch, 1 node for PFMatchIP, 1 node for PFRegister, 22 nodes
for Baladin, and 4 nodes for Yasmina. Then, for this same computing-resources
set, several variants of VPXI descriptions with different network topologies can
be expressed. We exemplify developing two different VPXI descriptions. The
listing below presents a VXDL description of a virtual node (MOTEUR) and a
computing cluster (Baladin).

Fig. 9 – VPXI description of the bronze standard’s workflow.

Figure 9 illustrates the description of a VPXI using graphs. All components
and network links required to execute bronze standard’s workflow are repre-
sented. We developed two descriptions considering this scenario : in VPXI 1
the network is composed by two links type, one with low latency intra cluster
and the other one with a maximum latency of 10 ms to interconnect the clusters.
In VPXI 2 the network comprises three virtual links : one with a low intra-
cluster latency (maximum latency of 0.200 ms), another one with a latency of
10 ms interconnecting the components except one asking for a maximum la-
tency of 0.200 ms to interconnect CrestMatch (dark blue) with the components
PFMatchICP, Yasmina and Baladin (blue in the figure).

Let us now illustrate how each VPXI description can be embedded in a
physical substrate. We propose two different solutions for both VPXI, which
correspond to four different physical allocations as represented in figure 10.
In this example, Site 1 and Site 2 represent two geographically-distributed-
resources sets.

In VPXI 1 - Allocation I, intra-cluster link specification enables the al-
location of loosely connected resources. In this embedding solution, 1 virtual
machine per each physical node is allocated.

In VPXI 1 - Allocation II each physical node in clusters CrestMatch,
PFRegister, Yasmina, and Baladin are allocated 2 virtual machines.

The VPXI 2 - Allocation III respects the required interconnection allo-
cating corresponding resources in the same physical set of resources (such as

INRIA

Exploring the Virtual Infrastructures as a Service concept with HIPerNET 19

Fig. 10 – Allocations of descriptions VPXI-1 and VPXI-2.

a site in a grid). This embedding solution explores the allocation of 1 virtual
machine per physical node.

VPXI 2 - Allocation IV explores the same physical components as Allo-
cation III but allocates 2 virtual machines per physical node in the CrestMatch,
PFRegister, Yasmina, and Baladin clusters.

RR n° 7185

20 Vicat-Blanc Primet, Koslovski, Anhalt, Truong Huu, Montagnat

6 Experiments

This section presents experimental results of the current implementation of
network virtualisation in HIPerNET. Rate control for bandwidth provisioning,
performance isolation and the CPU cost of bandwidth are investigated. To in-
stantiate virtual end hosts and virtual routers, we chose to use the Xen [6]
technology because of the offered flexibility : distinct operating systems with
distinct kernels can run in each virtual machine and the user is provided with
full configurability to implement individual virtual networks. All the experi-
ments are executed within the Grid’5000 [26] platform, using Xen 3.2 and IBM
Opteron servers with one 1 Gb/s physical interface. The machines have two
CPUs (one core each).

6.1 Context : Adaptation to Grid’5000

The HIPerNET software is currently being adapted to Grid’5000 [26], the
national experimental shared facility, to enable reproducible experiments on cus-
tomizable topologies. Figure 11 represents the Grid’5000 testbed with its nine

Fig. 11 – Grid’5000 infrastructure with HPSRouters.

sites interconnected with 10 Gb/s dedicated lambdas. An HPSRouter is inserted
on each site. These machines host VPXI’s VPXRouters to support diverse rout-
ing strategies and innovative transport protocols. Another goal is to control the
bandwidth-sharing of the physical inter-site links for isolated, controlled, and
reproducible experiments. VPXIs can be reserved and deployed over several ge-
ographically distributed sites. Figure 12 represents an example of three VPXIs,
extended over three distinct sites. Each site is provided with a HPSRouter host-
ing one VPXRouter per VPXI. Those virtual routers are gateways, forwarding
all the traffic of a VPXI between the site’s LAN and the interconnection net-
work. With this model, the VPXRouters are able to control the traffic of the
VPXIs and their bandwidth sharing of the physical links over the backbone
network. The VPXRouters are interconnected over the backbone across several
hops via IP-tunnels giving the VPXI user the illusion that the different parts of

INRIA

Exploring the Virtual Infrastructures as a Service concept with HIPerNET 21

Fig. 12 – Allocation of 3 VPXIs in the Grid’5000 infrastructure.

his VPXI are directly interconnected by a single router, even though they are
in reality located on distant physical locations.
To face scalability issues, we assume that at a given time, only a limited num-
ber of experiments will request for a confined VPXI and a dedicated channel
(for example, 10%=1 Gb/s). The others, which are considered not ”commu-
nication sensitive”, will run without any network control in the classical and
fully-transparent best effort mode. The aggregated bandwidth allocated to the
VPXI is limited to a configurable percentage of the access link’s capacity. The
shaped VPXI-traffic leaving the physical routers hosting the VPXRouters is
fully isolated from the remaining best-effort traffic of Grid’5000. To guaran-
tee this, the switch where the VPXRouter-traffic and the Grid’5000 best-effort
traffic come together distinguishes the two traffics and gives a strict priority to
the VPXRouter-traffic. The background traffic, i.e. all the traffic that does not
require specific treatment, is forwarded through the classical best effort path.

6.2 Rate control and performance isolation experiment

The goal of this experiment is to evaluate the isolation between VXRouters
when their are mapped on the same physical router.

6.2.1 Experimental setup

Two VXRouters called VXR1 and VXR2 share one physical machine to
forward the traffic of two VPXIs (VPXI 1 and VPXI 2). Each virtual router
has two virtual interfaces connected to two virtual links as represented on Fig-
ure 13. These links are configured to allow a maximum bandwidth R of respec-
tively RV LA = RV LB = 150Mb/s and RV LC = RV LD = 300Mb/s. Figure 13
represents this setup.

Three cases of user traffic can be distinguished by
1. in-profile traffic : the sum of the traffic on virtual link X is smaller than

the allowed maximum rate RV LX ;
2. limit traffic : the sum of the traffic on virtual link X is equal to the allowed

maximum rate ;

RR n° 7185

22 Vicat-Blanc Primet, Koslovski, Anhalt, Truong Huu, Montagnat

Fig. 13 – Experimental setup with 2 VPXIs with different bandwidth require-
ments.

3. out-of-profile traffic : the sum of the traffic on virtual link X exceeds the
allowed maximum rate.

This experiment aims at determining if the traffic-control techniques limit
the traffic to the desired rate and if isolation is guaranteed. Isolation means that
limit or out-of-profile traffic should have no impact on the available bandwidth
on the physical link, and thus none on the available bandwidth of concurrent
virtual links.

Table 2 lists four testcases to validate our implementation. In this exper-
iment, we suppose a congestion factor (CF) of 0.8 for in-profile traffic which
means that traffic is sent at 80% of the maximum allowed speed. Limit traffic
has a CF of 1 and for out-of-profile traffic, a CF of 1.2 is chosen.

VPXI 1 VPXI 2
Case 1 in profile in profile
Case 2 limit limit
Case 3 in profile limit
Case 4 in profile out of profile

Tab. 2 – User traffic for different test cases.

One flow is sent from virtual end hosts Ai and Ci to the corresponding
virtual end hosts Bi and Di, respectively. The flows are sent in the different
cases so that their sum on each VXRouter corresponds to the profile specified
in Table 2.

6.2.2 Results

The results of these experiments show that the desired rate on each virtual
link can be obtained with our configuration and that out-of-profile traffic does
not impact other traffic sharing the same physical link.

In case 1, where all the traffic is in profile, requiring less bandwidth than
allowed, each flow gets its desired bandwidth and no packet loss is detected
with UDP. For case 2, the flows try to get 100% of the maximum available
bandwidth. This causes some sporadic packet losses which cause some instan-
taneous throughput decreases in TCP as illustrated in Figure 14. The overall
throughput still reaches the allowed maximum value.

INRIA

Exploring the Virtual Infrastructures as a Service concept with HIPerNET 23

Fig. 14 – Test case 2 : TCP Rate with VPXI 1 and 2 being at the limit rate
(with a congestion factor(CF) of 1).

Fig. 15 – Test case 4 : TCP Rate with VPXI 1 being in profile and VPXI 2 out
of profile (with a congestion factor(CF) of 1.2).

Figures 15 and 16 show respectively the results with TCP and UDP flows
in testcase 4 where the two flows of VPXI 1 are in profile, their sum 30 + 90 =
120Mb/s does not exceed the maximum allowed value of 150Mb/s. With TCP
and UDP, both flows attempt their desired rate and with UDP, no loss is de-
tected. The two flows of VPXI 2 try to exceed the allowed value of 300Mb/s
by sending at 120 + 240 = 360Mb/s. As a result, they see some of their pack-
ets dropped at the incoming interface of the physical router. TCP reacts in a
sensitive way to this packet drop. It tries to share the available bandwidth by

RR n° 7185

24 Vicat-Blanc Primet, Koslovski, Anhalt, Truong Huu, Montagnat

Fig. 16 – Test case 4 : UDP Rate with VPXI 1 being in profile and VPXI 2 out
of profile (with a congestion factor(CF) of 1.2).

the two flows. So flow 1 gets generally the 120Mb/s as it is less than half of the
available 300Mb/s. Flow 2 requiring 240Mb/s varies a lot to get also an average
throughput of about half of the 300Mb/s.

With UDP (Figure 16), the packet drop of the flows of VPXI 2 causes a
regular decrease of the bandwidth. Flow 1 looses an average 13% of its packets
and flow 2 an average of 18% of its packets. The average of these two values is
slightly smaller than the percentage of exceeding packets (1− (1/1.2) = 16.6%)
implied by the congestion factor of 1.2.

These results show that only flows which try to exceed the fixed limit band-
width are penalized in this configuration. In profile and even limit flows are
not impacted. In this way, individual rate sharing is efficient in this model and
isolation is guaranteed.

6.3 CPU cost of bandwidth

To find out how much CPU is needed to forward flows in domain U, making
use of data-plane virtualization, and how this value depends on the forwarding
rate, this experiment measures the CPU usage of Xen during forwarding on
VXRouters with different rates. This experiment is executed with 1, 2 and 4
concurrent VXRouters on a single physical router, each one forwarding a sin-
gle UDP flow with different rates. The rate of each flow is incremented every
60 seconds so that the aggregate rate on the set of virtual routers increments
by 10 Mb/s. During each interval, the CPU use of the physical router is mea-
sured with the xentop tool. Figure 17 shows the CPU utilization of dom0 of the
physical router in the different cases. It increases with the increasing aggregate
forwarding rate in the VXRouters. Surprisingly, this overhead does not signif-
icantly vary with different numbers of VXRouters. It is even almost identical
when 2, 4 or 8 VXRouters are forwarding simultaneously flows.

INRIA

Exploring the Virtual Infrastructures as a Service concept with HIPerNET 25

Fig. 17 – Dom0 CPU use with 1, 2, 4 or 8 concurrent VXRouters forwarding
UDP flows.

Fig. 18 – DomU CPU use with 1, 2, 4 or 8 concurrent VXRouters forwarding
UDP flows.

The corresponding CPU utilization of a domU during the same experiments
is represented on Figure 18. The overhead increases with the forwarding rate,
but in the case of dom0, it does not increase with the number of concurrent
VXRouters. Only the cost of a single VXRouter represents an exception.

This means that the CPU cost of a physical router hosting VXRouters
depends strictly on the aggregate forwarding rate and not on the number of
VXRouters it hosts.

RR n° 7185

26 Vicat-Blanc Primet, Koslovski, Anhalt, Truong Huu, Montagnat

6.4 Medical imaging application deployment on the testbed

For testing VPXIs, a system image containing the operating system based
on a standard Linux distribution Debian Etch with a kernel version 2.6.18-8
for AMD64, the domain-specific image processing services and the middleware
components (MOTEUR and DIET) was created. The experiments on the VPXIs
described in the section 5.3 were performed. In each experiment, we repeated the
application 10 times to measure the average and standard deviation of the ap-
plication makespan, the data transfer and task execution time. The physical in-
frastructure is reserved on the Grid’5000 clusters : capricorne (Lyon), bordemer
(Bordeaux) and azur (Sophia) which CPUs are 2.0 GHz dual-cores Opterons.
The distance between clusters is 500km and they are connected through 10Gbps
links. Each VPXI is composed of 35 nodes divided in generic and variable part :
3 nodes are dedicated to generic part (MOTEUR, DIET, file server) using 1
CPU per node and the remaining 32 nodes of the variable part are allocated
dependently on the VPXIs (VPXI 1 - Allocation I and VPXI 2 - Allocation III
used 1 CPU per node while VPXI 1 - Allocation II and VPXI 2 - Allocation
IV used 1 CPU core per node).

Coallocating resources on one grid site : the application’s makespan on
the VPXI 2 - Allocation III and VPXI 2 - Allocation IV is 11min 44s (±49s) and
12min 3s (±50s) respectively. This corresponds to a +3.8% makespan increase,
due to the execution overhead when there are two virtual machines collocated
on the same physical resource. Indeed, we present in the table 3 the average
execution time of application services on the VPXI 2 - Allocations III and IV.
We can observe that the average execution overhead is 5.17% (10.53% in the
worst case and 1.28% in the best case).

Services Allocation III Allocation IV variation
CrestLines 34.12 ± 0.34 36.84 ± 5.78 +7.97%
CrestMatch 3.61 ± 0.48 3.99 ± 0.63 +10.53%

PFMatchICP 11.93 ± 2.76 12.75 ± 5.35 +6.87%
PFRegister 0.78 ± 0.18 0.79 ± 0.18 +1.28%

Yasmina 59.72 ± 14.08 61.53 ± 13.98 +3.03%
Baladin 244.68 ± 16.68 247.99 ± 19.51 +1.35%

Tab. 3 – Execution time on VPXI 2 - Allocations III and IV

Resources distributed over 2 sites : when porting the application from
a local infrastructure to a large scale infrastructure, the data transfer increases.
Table 4 presents the data transfer time (s) of the application services on VPXI 2
- Allocation IV (local) and VPXI 1 - Allocation II (distributed over 2 sites). The
measured overhead is 150% in the worst case. Conversely, some local transfers
may be slightly reduced. In the case of our application however, this overhead
has little impact on the application makespan since it is compensated for by the
parallel data transfer and computations. Indeed, the makespan is 12min (±12s)
and 12min 11s (±20s) on VPXI 1 - Allocation I and VPXI 1 - Allocation II
respectively, very similar to the performance of VPXI 2 - Allocation IV.

Resources distributed over 3 sites : further distributing computational
resources causes an additional increase of the data-transfer overheads. An ad-
ditional experiment with VPXI 1 - Allocation II the generic part of which is

INRIA

Exploring the Virtual Infrastructures as a Service concept with HIPerNET 27

Services Allocation IV Allocation II variation
CrestLines 2 ± 0.45 3.01 ± 1.6 +50.5%
CrestMatch 1.99 ± 0.34 1.83 ± 0.36 -8.04%

PFMatchICP 1.3 ± 0.4 3.25 ± 0.13 +150%
PFRegister 0.51 ± 0.23 0.43 ± 0.09 -15.69%

Yasmina 1.19 ± 0.27 1.16 ± 0.21 -2.52%
Baladin 1.17 ± 0.38 1.81 ± 1.03 +54.7%

Tab. 4 – Data transfer time on the local VPXI 2 - Allocation IV and large scale
VPXI 1 - Allocation II infrastructure

located in Lyon while the variable part is randomly distributed in Lyon, Bor-
deaux and Sophia leads to a makespan of 12min 13s (± 30s) with a data-transfer
overhead of 176% in the worst case.

7 Related work

Infrastructure virtualization is a hot topic studied in several projects [27, 28,
29]. In [27], the authors propose VINI, a virtual network infrastructure that al-
lows several virtual networks to share a single physical infrastructure, similarly
to HIPerNET. Researchers can run experiments in virtual network slices with
XORP routing software, running inside UML instances. They can configure it
and choose a protocol among the available ones. HIPerNET pushes this facil-
ity a step further adding data-plane virtualization and allowing users to chose
the operating system and install any routing software. This also provides full
isolation between virtual nodes and controlled resource sharing. VINI has dedi-
cated IP address blocks, HIPerNET interposes a HIP-layer between the network
and the application levels, that provides each resource with a unique identifier
(HIT).
Trellis [30] is a network-hosting platform deployed on the VINI facility. Like
HIPerNET, it is a virtual-network substrate that can run on commodity hard-
ware. It is implemented using VServer’s [31] container-based virtualization be-
cause of its networking performance. For the reasons described before, we use
the Xen hypervisor which has become promising in terms of its growing network
performance in its recent versions.
VINI and Trellis are evaluated on PlanetLab [32] which provides users with
slices of virtual ressources distributed among its overlay infrastructure. Those
virtual resources are VServers providing generally end-host functionalities. In
HIPerNET, we chose to integrate the resource ”virtual router” too, allowing
users to custom the routing. HIPerNET is evaluated in a confined large-scale
experimental facility.
In the GENI design [28] the users are provided with slices like in VINI, but
these slices are composed of resources which can be either virtual machines or
just partitions of physical resources. GENI’s goal is to provide users with mul-
tiple shareable types of resources. The HIPerNET approach is compatible with
GENI. Our goal in HIPCAL is to prove the concept by implementing it in a real
testbed. The presented early results are promising
The idea to decouple services from the infrastructure with virtualization is also

RR n° 7185

28 Vicat-Blanc Primet, Koslovski, Anhalt, Truong Huu, Montagnat

described in CABO [29]. CABO’s argument is to give Internet service providers
end-to-end control while using the physical equipments of different physical-
infrastructure providers. HIPerNET combines network virtualization with end-
host virtualization to provide users with virtual computing infrastructures, in-
terconnected by an end-to-end controlable virtual network.

The main difference between these projects and HIPerNET is that HIPer-
NET provides users with full configurability. HIPerNET gives users root access
to the virtual nodes. This means that users can deploy any operating system
they choose on the node, and so have full configuration ability. It is then always
possible to restrict configurability features for unexperimented users.

Resource sharing in terms of bandwidth in virtual networks has been treated
by DaVinci [33], a design and mathematical model of dynamic adaptation of vir-
tual networks to their performance objectives. While DaVinci’s design enables
optimal physical-link utilization through monitoring, HIPerNET’s implemen-
tation focuses on giving strong performance guarantees and isolation to users,
avoiding interferences if a virtual-network user tries to exceed his allocated rate.

Previous research on virtual routers has concluded that they have lower
performance with Xen’s data-plane virtualization than with control-plane vir-
tualization only [34]. But as HIPerNET focuses on full configurability including
OS choice, Xen’s data-plane virtualization meets its requirements. In particular,
Xen’s data-plane virtualization performance has already been growing with the
successive versions, now achieving Linux-like throughput, at least for big pack-
ets [21]. Moreover, major promising network improvements are expected in the
next version [35].

Current hardware solutions like Juniper’s TX Matrix Plus routers5 allow
running up to 16 routing instances. By virtualizing the control-plane, they in-
tend to offer a gain in routing capacity and reduce power consumption, a goal
they share with server consolidation. Even though these routers do have very
good performance, they are not as easily deployable at a very large scale and
for experimentation purpose as VXRouters. They do not allow the same config-
uration facility.
An interesting approach using virtual routers is the ability to migrate them over
the substrate, to meet the resource requirements at any moment and optimize
the overall resource utilization. This concept is described in [36]. In combination
with the HIPerNET framework, this type of dynamic allocation would allow op-
timal resource utilization in accordance with the user-defined specification and
is also interesting for fault tolerancy. In addition to the migration, resource
utilization on the links between the virtual routers can also be optimized by
allocating a virtual path to multiple physical links as suggested in [37]. This al-
lows allocating virtual links which require more capacity than is free on a single
physical link. These extensions will be studied for integration in HIPerNET.
Existing commercial products, including Amazon’s Elastic Compute Clouds
(EC2)6, Enomaly’s Elastic Computing Platform (ECP)7 or GOGRID8, like
HIPerNET, allow users to reserve a set of resources, choose an OS and cus-

5http ://www.juniper.net/products and services/t series core platforms/index.html
6http ://aws.amazon.com/ec2
7http ://www.enomaly.com
8http ://www.gogrid.com

INRIA

Exploring the Virtual Infrastructures as a Service concept with HIPerNET 29

tomize it. Others are less configurable, like 3tera’s AppLogic9 which has no OS
choice and b-hive10 which is data-center oriented. All these clouds middlewares
are suitable to perform computation or storage and are not intended to host vir-
tual routers, as no special physical routing machines exist to carry the virtual
routers, these would be hosted on an end host like in overlay networks. Moreover
these Cloud Computing solutions do not intend to control the network or the
communication performance as HIPerNET does.

8 Conclusion

The convergence of communication and computing in the Internet encour-
ages a Networking and Computing Infrastructure as a Service (IaaS) approach.
In this context, this report puts in perspective the concept of Virtual Private
eXecution Infrastructure (VPXI), the VXDL langage and the HIPerNET soft-
ware which is developed within the ANR HIPCAL project to create and super-
vise VPXIs multiplexed in time and space. HIPerNET allows users to submit
VPXIs requests, and allows infrastructure owners to virtualize a physical sub-
strate network to share it efficiently and dynamically. We overviewed the VXDL
language—which conforms to the XML standard—that we have defined to en-
able users to dimension VPXIs precisely and to specify their attributes. Once
specified, a VPXI request is submitted to the HIPerNET engine which processes
it and allocates resources accordingly. HIPerNET is responsible for admission
control, resource discovery and allocation, and VPXI management in terms of
fault, accounting, performance, configuration and security. This research report
concentrated on the network-resource configuration feature of the HIPerNET
framework. HIPerNET integrates virtualized software routers, VXRouters, to
give users the ability to fully customize networking and routing functions. A val-
idation of the link-control services for managing and sharing bandwidth between
the virtual networks has been presented, as well as an evaluation of the data-
plane virtualization in terms of CPU overhead. The results showed that, thanks
to the HIPerNET mecanisms, in profile and limit flows are not impacted by non-
conforming traffic. In this way, we demonstrated that in our implementation of
the HIPerNET model, individual rate control is efficient and isolation is guaran-
teed. We also showed that the CPU cost of a software router hosting VXRouters
depends strictly on the aggregate forwarding rate and not on the number of
VXRouters it hosts. We are currently deploying the HIPerNET framework in-
tegrating the virtual-routers and virtual-links control in Grid’5000’s 10 Gb/s
context to isolate VPXIs dedicated to distributed applications experiments. We
are also investigating security, resilience and performance aspects with real user
applications. We illustrated the execution of a real medical application on a
virtual infrastructure. In particular, we presented the process of translating an
applicaton’s workflow into the VXDL description of a VPXI. Experimental re-
sults of the deployment and execution of this application in different virtual
infrastructures using the HIPerNET framework within the Grid’5000 substrate
assess the pertinence of the VXDL language and of the HIPerNET framework.
Based on these promising results, our future works will explore an approach to

9http ://www.3tera.com
10http ://www.bhive.net

RR n° 7185

30 Vicat-Blanc Primet, Koslovski, Anhalt, Truong Huu, Montagnat

automate the translation of the workflow in a VXDL description, with the aim of
extracting the expertise of application and workflow developers to ease the em-
bedding process, while improving end-user satisfaction as well as infrastructure
usage.

Acknowledgments

This work has been funded by INRIA and the French ministry of Education
and Research via the HIPCAL ANR grant and by the CARRIOCAS pôle Sys-
tem@tic grant. Experiments presented in this paper were carried out using the
Grid’5000 experimental testbed, an initiative from the French Ministry of Re-
search through the ACI GRID incentive action, INRIA, CNRS, RENATER and
other contributing partners (see https ://www.grid5000.fr). The authors would
like to thank Augustin Ragon for his contribution as well as Olivier Mornard
and Jean-Patrick Gelas for their help in the development and validation of the
HIPerNet software. The authors would like to thank the anonymous reviewers
for their fruitful comments and suggestions.

Références

[1] The RESERVOIR Seed Team, “RESERVOIR - An ICT Infrastructure for
Reliable and Effective Delivery of Services as Utilities,” Tech. Rep. H-0262,
IBM Research Division, Feb. 2008.

[2] “Evaluation of current network control and management plane for multi-
domain network infrastructure.” FEDERICA Deliverable DJRA1.1, July
2008.

[3] I. Foster and C. Kesselman, “Globus : A metacomputing infrastructure
toolkit,” International Journal of Supercomputer Applications, vol. 11,
pp. 115–128, 1996.

[4] “EGEE : Enabling Grids for E-sciencE.” http ://www.eu-egee.org.
[5] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable

third generation architectures,” in SOSP ’73 : Proceedings of the fourth
ACM symposium on Operating system principles, (New York, NY, USA),
p. 121, ACM, 1973.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
SOSP ’03 : Proceedings of the nineteenth ACM symposium on Operating
systems principles, (New York, NY, USA), pp. 164–177, ACM, 2003.

[7] J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Virtualizing I/O devices
on VMware workstation’s hosted virtual machine monitor,” in Proc. 2001
Usenix Annual Technical Conference, pp. 1–14, Usenix Assoc., 2001.

[8] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan,
and J. E. van der Merive, “A flexible model for resource management in
virtual private networks,” SIGCOMM Comput. Commun. Rev., vol. 29,
no. 4, pp. 95–108, 1999.

[9] M. Finlayson, J. Harrison, and R. Sugarman, “VPN Technologies - A Com-
parison.” Data Connection Limited, Feb. 2003.

INRIA

Exploring the Virtual Infrastructures as a Service concept with HIPerNET 31

[10] P. Vicat-Blanc Primet, S. Soudan, and D. Verchère, “Virtualizing and
scheduling optical network resource for emerging IT services,” IEEE OSA
Journal of Optical Communications and Networking(JOCN), vol. 1, June
2009.

[11] E. Caron and F. Desprez, “DIET : A Scalable Toolbox to Build Network
Enabled Servers on the Grid,” Int. Journal of High Performance Computing
Applications, vol. 20, no. 3, pp. 335–352, 2006.

[12] P. Vicat-Blanc Primet, J.-P. Gelas, O. Mornard, G. Koslovski, V. Roca,
L. Giraud, J. Montagnat, and T. T. Huu, “A scalable security model for
enabling Dynamic Virtual Private Execution Infrastructures on the Inter-
net,” in IEEE International Conference on Cluster COmputing and the
Grid CCGrid2009, (Shanghai), May 2009.

[13] “HIPCAL Project.” http ://www.ens-
lyon.fr/LIP/RESO/Projects/HIPCAL/ProjetsHIPCAL.html.

[14] R. Moskowitz and P. Nikander, “Host Identity Protocol (HIP) Architec-
ture,” IETF Request for Comments, RFC 4423, May 2006.

[15] “Calcul Réparti sur Réseau Internet Optique à Capacité Surmultiplée
(CARRIOCAS),” 2007. http ://www.carriocas.org.

[16] G. Koslovski, P. Vicat-Blanc Primet, and A. S. Charão, “VXDL : Virtual
Resources and Interconnection Networks Description Language,” in Grid-
Nets 2008, Oct. 2008.

[17] “Common Information Model (CIM) Standards.”
http ://www.dmtf.org/standards/cim/.

[18] J. van der Ham, F. Dijkstra, F. Travostino, H. Andree, and C. de Laat,
“Using RDF to Describe Networks,” Future Generation Computer Systems,
Feature topic iGrid 2005, Oct. 2006.

[19] “Resource Description Framework (RDF) / W3C Semantic Web Activity.”
http ://www.w3.org/RDF/.

[20] G. Koslovski, T. Truong Huu, J. Montagnat, and P. Vicat-Blanc Primet,
“Executing distributed applications on virtualized infrastructures specified
with the VXDL language and managed by the HIPerNET framework,”
in First International Conference on Cloud Computing (CLOUDCOMP
2009), (Munich, Germany), October 2009.

[21] F. Anhalt and P. Vicat-Blanc Primet, “Analysis and experimental evalu-
ation of data plane virtualization with Xen,” in ICNS 09 : International
Conference on Networking and Services, (Valencia, Spain), Apr. 2009.

[22] D. M. Divakaran and P. Vicat-Blanc Primet, “Channel Provisioning in
Grid Overlay Networks (short paper),” in Workshop on IP QoS and Traffic
Control, Dec 2007.

[23] T. Oinn, P. Li, D. B. Kell, C. Goble, A. Gooderis, M. Greenwood, D. Hull,
R. Stevens, D. Turi, and J. Zhao, Taverna/myGrid : Aligning a Workflow
System with the Life Sciences Community, ch. 19, pp. 300–319. Springer-
Verlag, 2007.

[24] T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec, “Flexible and ef-
ficient workflow deployement of data-intensive applications on grids with
MOTEUR,” Int. Journal of High Performance Computing and Applications
(IJHPCA), vol. 22, pp. 347–360, Aug. 2008.

RR n° 7185

32 Vicat-Blanc Primet, Koslovski, Anhalt, Truong Huu, Montagnat

[25] T. Glatard, X. Pennec, and J. Montagnat, “Performance evaluation of grid-
enabled registration algorithms using bronze-standards,” in Medical Image
Computing and Computer-Assisted Intervention (MICCAI’06), Oct. 2006.

[26] F. Cappello, P. Primet et al., “Grid’5000 : A Large Scale and Highly Re-
configurable Grid Experimental Testbed,” in GRID ’05 : Proceedings of the
6th IEEE/ACM International Workshop on Grid Computing, pp. 99–106,
IEEE Computer Society, 2005.

[27] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In VINI
veritas : realistic and controlled network experimentation,” in SIGCOMM
’06 : Proceedings of the 2006 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications, pp. 3–14, ACM,
2006.

[28] “GENI System Overview.” The GENI Project Office, September 2008.

[29] N. Feamster, L. Gao, and J. Rexford, “How to lease the internet in your
spare time,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 1, pp. 61–64,
2007.

[30] S. Bhatia, M. Motiwala, W. Muhlbauer, V. Valancius, A. Bavier, N. Feam-
ster, L. Peterson, and J. Rexford, “Hosting Virtual Networks on Commod-
ity Hardware,” tech. rep., Georgia Tech Computer Science Technical Report
GT-CS-07-10, Jan 2008.

[31] “Linux VServers Project.” http ://linux-vserver.org.

[32] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson,
T. Roscoe, T. Spalink, and M. Wawrzoniak, “Operating system support for
planetary-scale network services,” in NSDI’04 : Proceedings of the 1st con-
ference on Symposium on Networked Systems Design and Implementation,
(Berkeley, CA, USA), pp. 19–19, USENIX Association, 2004.

[33] J. He, R. Zhang-Shen, Y. Li, C.-Y. Lee, J. Rexford, and M. Chiang,
“DaVinci : Dynamically Adaptive Virtual Networks for a Customized Inter-
net,” in CoNEXT ’08 : Proceedings of the 2008 ACM CoNEXT conference,
ACM, 2008.

[34] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy,
“Towards high performance virtual routers on commodity hardware,” in
CoNEXT ’08 : Proceedings of the 2008 ACM CoNEXT conference, ACM,
2008.

[35] J. R. Santos, Y. Turner, G. Janakiraman, and I. Pratt, “Bridging the
gap between software and hardware techniques for I/O virtualization,” in
ATC’08 : USENIX 2008 Annual Technical Conference on Annual Technical
Conference, (Berkeley, CA, USA), pp. 29–42, USENIX Association, 2008.

[36] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford, “Vir-
tual routers on the move : live router migration as a network-management
primitive,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 231–242,
2008.

[37] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network em-
bedding : substrate support for path splitting and migration,” SIGCOMM
Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, 2008.

INRIA

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	HIPerNET Concepts
	Combining OS and Network Virtualization
	HIPerNET and Virtual Private Execution Infrastructures concept
	Design principles of the HIPerNET framework.
	Virtual Private Execution Infrastructure concept.

	VXDL: Specifying and modeling Virtual Private Execution Infrastructures
	Needs for a specific language
	Virtual resources description
	Virtual network topology description
	Virtual timeline description

	Deployment and provisioning of VPXIs
	VPXI network resource provisioning
	Implementation of VXRouters

	Executing distributed applications on virtualized infrastructures
	Workflow language
	Workflow translation into VXDL
	Medical application example

	Experiments
	Context: Adaptation to Grid'5000
	Rate control and performance isolation experiment
	Experimental setup
	Results

	CPU cost of bandwidth
	Medical imaging application deployment on the testbed

	Related work
	Conclusion

