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Abstract

Due to tradition and ease of estimation, the vast majority of clinical and epidemiolog-
ical papers with time-to-event data report hazard ratios from Cox proportional hazards
regression models. Although hazard ratios are well known, they can be difficult to inter-
pret, particularly as causal contrasts, in many settings. Nonparametric or fully parametric
estimators allow for the direct estimation of more easily causally interpretable estimands
such as the cumulative incidence and restricted mean survival. However, modeling these
quantities as functions of covariates is limited to a few categorical covariates with non-
parametric estimators, and often requires simulation or numeric integration with para-
metric estimators. Combining pseudo-observations based on non-parametric estimands
with parametric regression on the pseudo-observations allows for the best of these two
approaches and has many nice properties. In this paper, we develop a user friendly, easy
to understand way of doing event history regression for the cumulative incidence and the
restricted mean survival, using the pseudo-observation framework for estimation. The
interface uses the well known formulation of a generalized linear model and allows for
features including plotting of residuals, the use of sampling weights, and correct variance
estimation.

Keywords: survival analysis, competing risks, pseudo-observations, regression, R.

1. Introduction

Approaches to event history modeling with covariates can be designated into three cate-
gories: nonparametric, semi-parametric, and fully parametric modeling. Under these three
paradigms, the flexibility with which one can incorporate covariate information, as well as
the estimands of interest, increases from nonparametric to fully parametric, but so do the
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assumptions that are required. Semiparametric Cox regression occupies the middle ground of
modeling assumptions, having an unspecified baseline hazard but still allowing for multiple
and continuous covariates (Cox 1972).
The vast majority of clinical and epidemiological papers with time-to-event data use hazard
ratios as their primary estimand. We believe this is due to two things, tradition, and how
easy Cox models are to estimate using standard statistical software. Fully parametric survival
models require some understanding of the parameterization to interpret the results. The re-
sults of a Cox model however are familiar even to first year medical students, yet hazard ratios
are commonly misinterpreted as relative risks (Sutradhar and Austin 2018). Furthermore, as
was pointed out by Aalen, Cook, and Røysland (2015); Martinussen, Vansteelandt, and An-
dersen (2020), hazard ratios are difficult to interpret as causal contrasts in many settings.
Nonparametric or fully parametric estimators allow for the direct estimation of cumulative
estimands that do not condition on past survival, which are therefore more easily causally
interpretable. However, incorporation of covariate information is limited to a few categorical
covariates in the former, and interpretation of the coefficients directly is challenging in the
latter.
With the term “cumulative estimand” we are referring to quantities that can be expressed as
expectations of functionals of random variables that represent times to some event of interest
that do not condition on past survival. This is in contrast to the hazard function, which is
defined in terms of the probability of failing at a particular time conditional on surviving up to
just before that time. Cumulative estimands that are commonly of interest are the probability
of surviving beyond a particular time (the survivor function or survival), the probability of
failing before a particular time (the cumulative incidence function or risk), and the restricted
mean survival. What we call cumulative estimands are sometimes referred to as “marginal” to
distinguish them from the hazard which is conditional on past survival. However, since we are
interested in regression modeling conditional on covariates, we will use the term “cumulative”
for clarity.
In many settings, the outcome of interest may be the time to failure due to one cause (for
example, death due to cancer), while the remaining causes (death not due to cancer) would
be considered competing causes or competing risks. In the presence of competing risks,
cumulative estimands include the probability of failing due to a particular cause before a
fixed time (the cause-specific cumulative incidence, also called the subdistribution) and the
restricted mean time lost (Zhao et al. 2018). In Cox regression, competing risks are often
treated as censoring events, but these cumulative estimands are related to the cause-specific
hazards of all of the causes, and hazards based on the subdistribution functions are even more
difficult to interpret.
Contrasts of cumulative estimands, such as the difference in survival probabilities, have easier
causal interpretations, and although there have been several methods suggested in the litera-
ture to model the effect of covariates on them, each has its limitations. An overview of fully
parametric models is provided by Royston and Parmar (2002), yet these models have similar
drawbacks as the Cox model and often require computationally complex post-estimation and
standardization to describe covariate effects on cumulative survival quantities. The Fine-Gray
model (Fine and Gray 1999) is touted as a model for the cause specific cumulative incidence
function, yet the main output from that model are ratios of the hazards defined by the subdis-
tribution functions which lack a useful interpretation in terms of an effect on the cumulative
incidence (Austin and Fine 2017). Scheike, Zhang, and Gerds (2008) and Tian, Zhao, and
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Wei (2014) developed inverse probability of censoring weighted estimating equation methods
for using covariates to predict the cumulative incidence probability and restricted mean event
time, respectively. These methods, however, can be statistically inefficient since they omit the
censored observations from the estimating equations, and can be difficult to use and model
dependent because they require modeling of the censoring distribution.
Pseudo-observations, as introduced by Andersen, Klein, and Rosthøj (2003), can be used
to fill this gap. Pseudo-observations are calculated for each individual in a sample based
on jackknife values calculated using nonparametric estimators of cumulative estimands. It
has been shown that using these pseudo-observations as the outcome (instead of the time
and event indicator pair) of regression models provides asymptotically unbiased estimates of
the associations of the covariates included in the model on the survival outcome of interest
(Graw, Gerds, and Schumacher 2009; Jacobsen and Martinussen 2016; Overgaard, Parner,
and Pedersen 2017). The key advantage is that they allow direct parametrization of covariate
associations with cumulative survival quantities of interest at a single or multiple times points
simultaneously.
Our goal is to provide an user friendly, easy to understand way of doing event history regression
for cumulative survival estimands, using the pseudo-observation framework. We do this in
our R package eventglm (Sachs and Gabriel 2022), using the well known formulation of a
generalized linear model (GLM) or generalized estimating equations (GEE) that builds on
and leverages the existing infrastructure for such models, specifically in the stats package
(R Core Team 2021) and the geepack package (Halekoh, Højsgaard, and Yan 2006). In
this paper we describe our implementation of pseudo-observation based approaches to event
history regression in the R package eventglm, with the primary functions cumincglm and
rmeanglm, highlighting the interpretation and useful properties of this approach. We use
simulated data to evaluate and compare the performance of the different methods to handle
covariate dependent censoring, and the different variance estimators in the single time point
setting, thus informing the default choices for the methods. Example data analyses are
illustrated on two datasets that are included in the package, showing how to use the package
and interpret the output. We show how the package is set up so that it can be extended
to accommodate new or different methods for pseudo-observation calculation. Finally, we
compare the computational performance of our implementation to the existing approaches for
calculating pseudo-observations. The package eventglm is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=eventglm.

1.1. Related work

A variety of regression models for time-to-event outcomes can be specified and estimated
using different R packages, but our main focus is on regression models for the cumulative
incidence and restricted mean survival. The primary infrastructure for the analysis of time-
to-event outcomes in R is in the survival package (Therneau and Grambsch 2000; Therneau
2022). Regression models for the cumulative incidence function are available in the timereg
(Scheike and Zhang 2011; Scheike and Martinussen 2006) and riskRegression (Gerds and Kat-
tan 2021) packages, which use the direct binomial approach for estimation in addition to the
Fine-Gray model for competing risks. The Cprob package (Allignol 2018; Allignol, Latouche,
Yan, and Fine 2011) implements cumulative incidence regression using temporal process re-
gression or the pseudo-observation approach. For computation of pseudo-observations, the
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pseudo (Pohar-Perme and Gerster 2017) and fastpseudo (Batten 2015) packages are designed
specifically for that task, while the prodlim (Gerds 2019) package provides functions to do
that for the cumulative incidence function. A Stata (StataCorp 2019) package (Overgaard,
Andersen, and Parner 2015) and a SAS (SAS Institute Inc. 2013) macro (Klein, Gerster, An-
dersen, Tarima, and Perme 2008) exist for computation of pseudo-observations. With all of
these packages that only compute pseudo-observations, it is left to the user to specify regres-
sion models, estimate them, and perform inference. This provides a great deal of flexibility,
but also is a barrier to entry for less experienced users of statistical methods.

2. Notation and estimands
Let Ti denote the time to event, δi ∈ {1, . . . , d} denote the indicator of the cause of the event
for d competing causes, and Xi a vector of covariates for subject i = 1, . . . , n. We will use
Vi to denote transformations of (Ti, δi) whose expectations represent summary statistics of
interest. Specifically, we consider the following, where 1{·} denotes the indicator function
that is 1 if the event in brackets is true, and 0 otherwise,

• The cause specific cumulative incidence of cause k at time t∗: Vi = 1{Ti < t∗, δi = k}
and E(Vi) = P(Ti < t∗, δi = k).

• In the case where d = 1, the cumulative incidence (one minus survival) at time t∗:
Vi = 1{Ti < t∗} and E(Vi) = P(Ti < t∗).

• The expected lifetime lost due to cause k up to time t∗: Vi = (t∗ −min{Ti, t∗})1{δi = k}
and E(Vi) =

∫ t∗

0 P(Ti < u, δi = k) du, as was shown in Andersen (2013).

• In the case where d = 1, the restricted mean survival up to time t∗: Vi = min{Ti, t∗}
and E(Vi) =

∫ t∗

0 P(Ti > u) du.

Our main interest is in estimating the parameters of a generalized linear regression model for
Vi conditional on covariates Xi:

E(Vi | Xi) = g−1{X⊤
i β}, (1)

for some specified link function g.
The interpretation of the coefficients will depend on estimand of interest and the link function,
which is specified using the link argument of cumincglm and rmeanglm. For a model of the
cumulative incidence using the identity link (the default) g(x) = x, and for a single binary
covariate, we have

P(Ti < t∗ | Xi = xi) = β0 + β1xi,

so that β1 = P(Ti < t∗ | Xi = 1) − P(Ti < t∗ | Xi = 0), called the risk difference. This is
often of interest in medical studies to summarize the effect of a treatment or exposure. With
the log link (link="log"), we obtain exp(β1) = P(Ti < t∗ | Xi = 1)/P(Ti < t∗ | Xi = 0), the
relative risk or risk ratio. If instead our outcome is the restricted mean, for the identity link
the β1 is interpreted as the difference in restricted means comparing Xi = 1 to Xi = 0. With
the log link, we obtain the ratio of restricted means.
If odds ratios are of interest, then the link = "logit" option can be used for the cumulative
incidence. Another interesting option is the link = "cloglog": g(x) = log{− log(1−x)}, the
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complementary log log link for the cumulative incidence implies proportional hazards. Thus
models using the complementary log log link applied at various time points can be used to
estimate hazard ratios (subdistribution hazard ratios in the competing risks case (Austin and
Fine 2017)) and to assess the proportional hazards assumption (Perme and Andersen 2008).
Other options for link functions are probit, inverse, µ−2, square root, and users can define
custom link functions. It is not immediately clear what the interpretation of the regression
coefficients would be in these cases, but they are possible because the specification is based
on the quasi family. See the stats::family help file for more details on the possible link
functions.
An important property of the effect measures derived from these models is collapsibility. To
see this, consider another binary covariate Zi and the model

g{P(Ti < t∗ | Xi = xi, Zi = zi)} = β∗
0 + β∗

1xi + β∗
2zi.

If g is the identity or log and if Zi is independent of Xi, then β1 = β∗
1 ; this is not generally true

for other link functions (Neuhaus and Jewell 1993). Hazard ratios are not generally collapsible,
which is related to the fact that the hazard conditions on past survival (Sjölander, Dahlqwist,
and Zetterqvist 2016). Collapsibility is an important property in causal inference. This
comes up when adjusting for covariates in randomized controlled trials, and when adjusting
for measured confounders in observational studies. For more elaboration on this topic, see
Andersen, Syriopoulou, and Parner (2017) and Daniel, Zhang, and Farewell (2021).

2.1. Multiple time points
Andersen et al. (2003) described a multivariate version of the model in Equation 1 for the
cumulative incidence by considering a finite set of time points t1, . . . , tk, and the models of
the form

g{P(Ti < tl | Xi = xi)} = (β0 + βl) + β1xi, l = 1, . . . , k. (2)
In this model, the interpretation of the covariate effect β1 is similar to the models above, e.g.,
a risk difference or risk ratio, but assuming that the effect is the same at each of the time
points included in the model. In the model in Equation 2, the intercept depends on time, but
the covariate effect is assumed to be time-constant. The latter assumption can be relaxed to
allow the covariate effect to depend on time as well. In that case, there will be one coefficient
for each time point, each one representing the covariate effect on the outcome for that time.
Models can also include a mix of time varying and time constant covariate effects. All of
these types of models can be estimated using eventglm.

3. Estimation
We do not observe Ti and δi directly, but rather Yi = min{Ci, Ti} where Ci is the censoring
time, and ∆i ∈ {0, 1, . . . , d} where where 0 indicates censoring occurred before any of the
events. The collection of observations will be denoted Z1, . . . , Zn where Zi = (Yi, ∆i, Xi), and
are assumed to be independent and identically distributed.
If there were no censoring before time t∗, then the Vi are all observed for i = 1, . . . , n and the
parameters could be estimated using standard methods. When that is not the case, the model
can be estimated using pseudo-observations (Andersen et al. 2003), the computational meth-
ods for which we will describe in the next subsection. Let Pi denote the pseudo-observation
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for subject i which will remain abstract for the moment. When the pseudo-observations are
computed in a way that

E(Pi | Xi) = E(Vi | Xi) + op(1) (3)

in large samples, this motivates the idea of estimating β in Equation 1 by solving the esti-
mating equations

n∑
i=1

∂g−1

∂β
A−1

i {Pi − g−1(X⊤
i β)} =

n∑
i=1

Ui(β) = 0, (4)

for some specified variance parameter Ai which corresponds to the variance function of
stats::family or the working covariance matrix in the case of GEE. In our implementation,
the estimating equations are solved using the glm.fit function with the quasi family, with
variance = "constant", i.e., Ai = σ. It was suggested in Andersen et al. (2003) that
when the estimand is the cumulative incidence, efficiency gains could potentially be made
by specifying the variance function as mu(1-mu). This, however causes a great deal more
numerical instability so it is an area of future consideration. In the multiple time point models,
GEE is used with the glm.fit estimates used as starting values and working independence
covariance. The theoretical justification and precise conditions under which the solution to
Equation 4 is consistent and asymptotically normal have been studied in (Graw et al. 2009;
Jacobsen and Martinussen 2016; Overgaard et al. 2017; Overgaard, Parner, and Pedersen
2019).

3.1. Pseudo-observations calculation under independent censoring

Andersen et al. (2003) developed the original approach using the leave one observation out
jackknife. Let θ = E(Vi) denote the cumulative summary statistic of interest but marginal with
respect to the covariates (i.e., ignoring the covariates) and θ̂ an estimate of that quantity using
all of the observations. The estimator is generally nonparametric, e.g., the Aalen-Johansen
estimator (Aalen and Johansen 1978) of the cumulative incidence curve, or the Kaplan-Meier
estimator (Kaplan and Meier 1958) of the survivor curve, though recently parametric estima-
tors of the marginal quantities have been suggested (Nygård Johansen, Lundbye-Christensen,
and Thorlund Parner 2020; Sabathé, Andersen, Helmer, Gerds, Jacqmin-Gadda, and Joly
2020). Let θ̂−i denote the jackknife estimate obtained by leaving the ith observation out of
the sample and recomputing the estimate. Then the ith jackknife pseudo-observation is

Pi = nθ̂ − (n − 1)θ̂−i.

When θ is the cumulative incidence and the estimate is based on the Aalen-Johansen estima-
tor, then there are some computational tricks so that the estimator does not need to be rerun
n times. This approach is implemented in the prodlim package (Gerds 2019) that we made
some slight modifications to be more memory saving when there is a large dataset. In the
case of the restricted mean, no such tricks are readily implemented and the Aalen-Johansen
estimator is computed n times and integrated each time.
When Pi is computed in this way based on a nonparametric estimator, a key condition required
for Equation 3 to hold is that (Ti, Xi, ∆i) ⊥ Ci. This says that censoring is independent of
the event times and of all covariates in the model, called completely independent censoring.
In that case, the solution to the estimating equations in Equation 4 yields consistent and
asymptotically normal estimates of β.
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3.2. Pseudo-observations under covariate dependent censoring

If we instead assume for some subset of covariates X̃i that (Ti, Xi, ∆i) ⊥ Ci | X̃i then we can
use different approaches to computing the pseudo-observations that will satisfy Equation 3.
When X̃i only contains categorical covariates with a finite set of combinations, Andersen
and Pohar Perme (2010) suggested computing the jackknife Pi separately for each combi-
nation of values in X̃i. This is implemented in our package and can be obtained using the
model.censoring = "stratified" option.
If X̃i contains continuous covariates, then we can model the censoring mechanism conditional
on those covariates and use an inverse probability of censoring weighted (IPCW) marginal
estimator. Modeling the censoring process conditional on covariates and using inverse prob-
ability of censoring weighted estimators was first explored in Binder, Gerds, and Andersen
(2014). This was further developed in Overgaard et al. (2019) who showed that the property
in Equation 3 holds for IPCW estimators of the cumulative quantity E(Vi). Specifically, let

Ṽi =
{

Vi if Ci > Ti

0 otherwise

}
,

Ii = 1{Ci ≥ min(Ti, t∗)}, and let G(s; X̃i) = P(Ci ≥ s | X̃i). If the censoring mechanism
G can be estimated consistently by Ĝ, then the property in Equation 3 holds for jackknife
pseudo-observations based on the marginal estimator

θ̂b = n−1
n∑

i=1

ṼiIi

Ĝ{min(T̃i, t∗); X̃i}
.

In practice, G is estimated using a regression model for the outcome of the time to censoring,
that is, using (T̃i, Bi) as the outcome where Bi = 1 if ∆i = 0 and Bi = 0 otherwise. In our
package, we have implemented estimation of the probability of remaining uncensored at the
observed time using a Cox model (Cox 1972) combined with the Breslow estimator of the
cumulative hazard (model.censoring = "coxph") or using Aalen’s additive hazards model
(model.censoring = "aareg") (Aalen 1989).
This weighting approach (ipcw.method = "binder") is the default when model.censoring
is "coxph" or "aareg". An alternative formulation is to use the estimator

θ̂h =
∑n

i=1 Ṽiwi∑n
i=1 wi

, where wi = Ii

Ĝ{min(T̃i, t∗); X̃i}
,

which is what would be implied as the solution to the first degree method of moments equa-
tions (Hájek 1971). This estimator is available using the option ipcw.method = "hajek". In
our simulation study, we find similar performance with the (Binder et al. 2014) approach.
The covariates X̃i are specified as a one-sided formula in the formula.censoring argument.
If this argument is NULL, the default, then the same covariates as specified on the right side of
the main formula are used. The covariates are required to be categorical if the "stratified"
option is used. Otherwise, the censoring formula is just as flexible as in glm, allowing for
interactions, transformations, splines, and more.
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3.3. Variance estimation

Given calculations of the Pi using one of the methods described above, and a specification of
the regression model, including the link function g and function Ai in Equation 4, one can then
solve the estimating equations to obtain β̂ an estimate of β. If one were to make the usual
assumptions of a generalized linear model, namely independent and identically distributed
observations and correct specification of the mean and variance models, an estimate of the
asymptotic variance of β̂ would be the standard model-based variance estimator. This is
available in the package by specifying the option type = "naive" in vcov, but it is not
recommended. Since the Pi are only approximately independent and identically distributed,
Andersen et al. (2003) suggested instead using the robust sandwich variance estimator. The
sandwich variance is the default that we use in the package (type = "robust" in vcov),
by using the implementation available in vcovHC function of the sandwich package (Zeileis
2004, 2006). In our si mulation study, it was the clear superior approach. The option type
= "cluster" uses the cluster-robust variance estimator of vcovCL, also in sandwich. With
multiple time points, the robust variance estimator as implemented in geepack (Halekoh et al.
2006) is returned with the option type = "robust".
Jacobsen and Martinussen (2016) argue that the remainder term in the Taylor series expansion
used to justify the sandwich variance estimate does not converge to 0 quickly enough, and
Overgaard et al. (2017) derived a variance estimator that accounts for this remainder for the
cumulative incidence. Simulation studies therein showed that the Huber-White variance tends
to be conservative and that small gains can be made by using Overgaard’s corrected variance
estimator for the cumulative incidence outcome. Overgaard et al. (2019) further developed
similar theory for the inverse probability of censoring weighted estimators. The variance
expressions are quite complex and will not be reproduced here, but they are implemented in
the package (using type = "corrected" in vcov). This option is available for the cumulative
incidence and survival for a single time point only.
The nonparametric bootstrap can also be used to estimate the variance of β̂ in which the
pseudo-observations are recalculated for each bootstrap subsample (Efron 1992). We do not
directly implement a bootstrap method for variance estimation, as existing tools in R can be
used for that purpose, which we demonstrate in the example.

4. Main package functions and properties
The primary user-facing functions of the eventglm package are cumincglm and rmeanglm.
These are designed to be analogous to the stats::glm function, but for the cumulative inci-
dence outcome or restricted mean outcome, respectively. A minimal call to either cumincglm
or rmeanglm requires three arguments: formula, time, and data. The left hand side of the for-
mula must be a call to Surv, which specifies a possibly right censored time-to-event outcome,
with or without competing risks. Currently only right censoring is supported (not interval
censoring nor left truncation), which means there can be only a single time variable pro-
vided to Surv. The Surv function is imported from survival and re-exported by eventglm for
convenience’s sake (so users do not have to use library("survival") or survival::Surv).
Without competing risks, the event indicator in Surv will normally be 0 for censored and 1
for the event. With competing risks, the event indicator should be a factor whose first level
indicates censoring, and the other levels indicating the possible event types. In the competing
risks case the cause argument is also required, which specifies the failure type of interest as



Journal of Statistical Software 9

the factor level either as an integer or character value. In the absence of competing risks,
the cumincglm has the option to specify survival = TRUE, which provides a model for the
survival (one minus the cumulative incidence).
The time argument may be a vector of times for cumincglm and must be a single numeric
value for rmeanglm, which specifies the time(s) t∗ at which it is of interest to model the
cumulative incidence, survival, restricted mean, or expected lifetime lost. The times must be
less than or equal to the largest observed event time in the sample. By default, when time is
a vector, the model allows time varying intercepts but it is assumed that all covariate effects
are not time varying. We provide the special term tve() that can be used in the right side
of the formula to indicate that the covariate wrapped inside the term is assumed to be time
varying. This is illustrated in the example below.
The data argument should be a data frame in which the variables specified in the formula
can be found. The link argument determines the link function g in our notation, which is
identity by default, and any value that is supported by the stats::quasi family can be used
here.
Covariate dependent censoring can be handled using the argument model.censoring, which
is "independent" by default, assuming completely independent censoring. Alternatives are
"stratified", "coxph", or "aareg", and each of these three options require a specification
of the relationship between censoring and covariates in the formula.censoring argument.
If formula.censoring is left unspecified, the right hand side of the main formula is used,
otherwise a one sided formula can be specified with the implicit outcome of the censoring
time. Only categorical covariates may be specified with the "stratified" option.
Since the modeling framework is based on glm, all modeling features such as splines, quadratic
terms, interactions, and contrasts that can be used in glm can be used in the eventglm versions
by specifying them as usual on the right side of the relevant formulas. This is true for both
the main formula and the formula for censoring. The remaining arguments are passed on
to glm.fit, and are used in the same way here. A noteworthy argument is weights, which
can be used to specify prior weights for the observations. These can be used to specify
inverse probability of missingness weights, propensity scores weights for causal inference, or
sampling weights. We illustrate the use of sampling weights for case-cohort sampling in the
data analysis example.
In addition to the standard methods print and summary that detail the model fit, we pro-
vide many post-estimation features in correspondence with ‘glm’ objects. For example vcov,
confint are used for inference with the argument type that determines the type of variance
calculation ("robust" by default). Furthermore, predict, and residuals can be used for
prediction of individual values and model checking of various kinds. The residuals in the
cumulative incidence model are scaled by default according to the recommendations of Perme
and Andersen (2008):

ε̂i = Ê(Vi) − Ŷi√
Ŷi(1 − Ŷi)

.

The objects returned by cumincglm and rmeanglm inherit the classes ‘pseudoglm’, ‘glm’, and
‘lm’, so in addition to the methods we define, many more are available using existing in-
frastructure. The y element of the objects of class ‘pseudoglm’ returned by these functions
contains the pseudo-observations and these can be used for other purposes without recalcu-
lating them again, such as estimating relative survival (Pavlič and Pohar Perme 2019).
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5. Data analysis examples

R> library("survival")
R> library("eventglm")

The eventglm package includes two example datasets:

• colon: Data from a clinical trial of adjuvant chemotherapy for colon cancer. Levamisole
is a low-toxicity compound and 5-FU is a moderately toxic chemotherapy agent. There
are only one record per patient that includes the time to death (or censoring). This is
redistributed from the survival package, with a small modification to include only the
death outcome.

• mgus2: Observational data from 1341 patients with monoclonal gammopathy of un-
determined significance (MGUS). The outcome of interest is the time to plasma cell
malignancy (PCM), with death as a competing risk, and censoring at the last month
of contact. This dataset is redistributed from the survival package with an added com-
peting risks event indicator.

To illustrate the basic concepts, Figure 1 shows the nonparametrically estimated survival
quantities under consideration for the two datasets: the Kaplan-Meier survival curves for
each treatment group in the colon cancer study, and the Aalen-Johansen estimates of the
cumulative incidence for PCM and death. The vertical dotted line indicates the times of
interest, with the open circles at the probabilities at that time, and the shaded areas indicate
the restricted mean survival (colon) and the expected lifetime lost (mgus2) up to the times
of interest.
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Figure 1: Marginal survival quantities of interest for the colon cancer dataset (left panel) and
the MGUS dataset (right panel).
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5.1. Overall survival in colon cancer

We can now do inference on the cumulative incidence of death and the restricted mean survival
in the colon dataset using the eventglm package and the main functions that do the model
fitting: cumincglm and rmeanglm. These functions resemble the glm function, with two key
differences: the outcome is a call to Surv, and there is an argument time that specifies the
fixed time point at which the cumulative incidence or restricted mean is of interest. First, we
fit a regression model for the cumulative incidence, or one minus survival:

R> colon.cifit <- cumincglm(Surv(time, status) ~ rx,
+ time = 2500, data = colon)
R> summary(colon.cifit)

Call:
cumincglm(formula = Surv(time, status) ~ rx, time = 2500, data = colon)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.5875 -0.4902 -0.3467 0.4863 2.1103

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.54345 0.02946 18.449 < 2e-16 ***
rxLev -0.02907 0.04173 -0.697 0.48596
rxLev+5FU -0.13176 0.04186 -3.148 0.00165 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasi family taken to be 1)

Null deviance: 253.10 on 928 degrees of freedom
Residual deviance: 250.15 on 926 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 2

R> se.ci <- sqrt(diag(vcov(colon.cifit, type = "robust")))
R> b.ci <- coefficients(colon.cifit)
R> conf.ci <- confint(colon.cifit)
R> round(cbind(b.ci, conf.ci), 2)

b.ci 2.5 % 97.5 %
(Intercept) 0.54 0.49 0.60
rxLev -0.03 -0.11 0.05
rxLev+5FU -0.13 -0.21 -0.05

We find that compared to observation alone, the Levamisole alone treatment group has a -0.03
difference in the cumulative incidence of death at 2500 days, with 95% confidence interval
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-0.11, 0.05, while the Levamisole plus 5-FU group has a -0.13 difference in the cumulative
incidence of death at 2500 days, with 95% confidence interval -0.21, -0.05. This roughly agrees
with the Kaplan-Meier estimates from survfit:

R> colon.smry <- summary(colonsfit, times = 2500, rmean = 2500)
R> cbind(eventglm = b.ci, survfit = c(1 - colon.smry$surv[1],
+ (1 - colon.smry$surv[2:3]) - (1 - rep(colon.smry$surv[1], 2))))

eventglm survfit
(Intercept) 0.54345139 0.54479221
rxLev -0.02907499 -0.02990601
rxLev+5FU -0.13175778 -0.13301654

Unlike survfit, it is trivial to perform inference using the summary or confint methods that
we provide for objects of class ‘pseudoglm’. We can fit another model using the log link to
obtain estimates of the relative risks comparing the active treatment arms to the observation
arm:

R> colon.rr <- cumincglm(Surv(time, status) ~ rx, time = 2500,
+ data = colon, link = "log")
R> br.ci <- coefficients(colon.rr)
R> confr.ci <- confint(colon.rr)
R> round(exp(cbind(br.ci, confr.ci)), 2)

br.ci 2.5 % 97.5 %
(Intercept) 0.54 0.49 0.6
rxLev 0.95 0.81 1.1
rxLev+5FU 0.76 0.63 0.9

We find that the estimated probability of death before 2500 days in the Levamisole alone arm
is 0.95 times lower compared to observation with 95% confidence interval 0.81, 1.10 and the
estimated probability of death before 2500 days in the Levamisole+5FU arm is 0.76 times
lower compared to observation with 95% confidence interval 0.63, 0.90.
Now for the restricted mean:

R> colon.rmfit <- rmeanglm(Surv(time, status) ~ rx,
+ time = 2500, data = colon)
R> summary(colon.rmfit)

Call:
rmeanglm(formula = Surv(time, status) ~ rx, time = 2500, data = colon)

Deviance Residuals:
Min 1Q Median 3Q Max

-1839.4 -903.8 620.9 829.9 848.1

Coefficients:
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 1667.403 49.949 33.382 < 2e-16 ***
rxLev -6.074 71.739 -0.085 0.93253
rxLev+5FU 194.954 70.498 2.765 0.00569 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasi family taken to be 1)

Null deviance: 734414066 on 928 degrees of freedom
Residual deviance: 726392934 on 926 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 2

R> se.rm <- sqrt(diag(vcov(colon.rmfit, type = "robust")))
R> b.rm <- coefficients(colon.rmfit)
R> conf.rm <- confint(colon.rmfit)
R> round(cbind(b.rm, conf.rm), 2)

b.rm 2.5 % 97.5 %
(Intercept) 1667.40 1569.50 1765.30
rxLev -6.07 -146.68 134.53
rxLev+5FU 194.95 56.78 333.13

We find that compared to observation alone, the Levamisole alone treatment group has a -6.07
difference in the mean time to death up to 2500 days, with 95% confidence interval -146.68,
134.53, while the Levamisole plus 5-FU group has a 194.95 difference in the mean time to
death up to 2500 days, with 95% confidence interval 56.78, 333.13. Again, this roughly agrees
with the Kaplan-Meier estimates from survfit:

R> cbind(eventglm = b.rm,
+ survfit = c(colon.smry$table[1, 5],
+ colon.smry$table[2:3, 5] - colon.smry$table[1, 5]))

eventglm survfit
(Intercept) 1667.40308 1666.948078
rxLev -6.07367 -5.708803
rxLev+5FU 194.95446 195.313754

A key advantage of the regression approach is that it gives us the ability to adjust or model
other covariates. In this example, since it is a randomized trial, all baseline covariates should
be independent of treatment assignment. However, several of these variables are associated
with time to death, so they can be used as precision variables. We would expect that adjusting
for age, or the number of positive lymph nodes (more than 4) in the above models would
reduce the standard error estimates of the treatment effects, without changing the coefficient
estimates. Let us find out:
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R> colon.rm.adj <- rmeanglm(Surv(time, status) ~ rx + age + node4,
+ time = 2500, data = colon)
R> summary(colon.rm.adj)

Call:
rmeanglm(formula = Surv(time, status) ~ rx + age + node4, time = 2500,

data = colon)

Deviance Residuals:
Min 1Q Median 3Q Max

-2035.7 -788.5 443.2 647.6 1385.7

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2067.576 151.579 13.640 < 2e-16 ***
rxLev 3.421 67.516 0.051 0.95958
rxLev+5FU 185.349 67.365 2.751 0.00593 **
age -3.735 2.391 -1.562 0.11824
node4 -644.960 64.854 -9.945 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasi family taken to be 1)

Null deviance: 734414066 on 928 degrees of freedom
Residual deviance: 650039827 on 924 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 2

The estimates of the treatment effects do not notably change and the standard errors are
about 5% smaller.
For the cumulative incidence, we can specify the multivariate model by specifying time as a
vector. Then the output includes the intercept term which corresponds to the smallest time,
plus the main effects of each of the times on the intercept.

R> colon.mvt <- cumincglm(Surv(time, status) ~ rx + age + node4,
+ time = c(500, 1000, 2500), data = colon)
R> summary(colon.mvt)

Call:
cumincglm(formula = Surv(time, status) ~ rx + age + node4, time = c(500,

1000, 2500), data = colon)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.7816 -0.3199 -0.1067 0.3923 1.9567
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.0283668 0.0616262 -0.460 0.64530
factor(pseudo.time)1000 0.1702833 0.0123396 13.800 < 2e-16 ***
factor(pseudo.time)2500 0.3517497 0.0164225 21.419 < 2e-16 ***
rxLev -0.0095644 0.0282455 -0.339 0.73490
rxLev+5FU -0.0739035 0.0279946 -2.640 0.00829 **
age 0.0019857 0.0009879 2.010 0.04442 *
node4 0.2767752 0.0277118 9.988 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasi family taken to be 1)

Null deviance: 620.31 on 2786 degrees of freedom
Residual deviance: 516.91 on 2780 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 2

To allow the covariate effects to vary by time, we can enclose any of the covariates in the right
side of the formula in tve. For example, we can estimate time varying effects of treatment:

R> colon.mvt2 <- cumincglm(Surv(time, status) ~ tve(rx) + age + node4,
+ time = c(500, 1000, 2500), data = colon)
R> colon.mvt2

Call: cumincglm(formula = Surv(time, status) ~ tve(rx) + age + node4,
time = c(500, 1000, 2500), data = colon)

Model for the identity cumulative incidence at time 500 1000 2500

Coefficients:
(Intercept) factor(pseudo.time)1000

-0.045210 0.178401
factor(pseudo.time)2500 age

0.394161 0.001986
node4 factor(pseudo.time)500:rxLev

0.276775 -0.008465
factor(pseudo.time)1000:rxLev factor(pseudo.time)2500:rxLev

0.013173 -0.033402
factor(pseudo.time)500:rxLev+5FU factor(pseudo.time)1000:rxLev+5FU

-0.023553 -0.070427
factor(pseudo.time)2500:rxLev+5FU

-0.127730

Degrees of Freedom: 2786 Total (i.e. Null); 2776 Residual



16 Event History Regression with Pseudo-Observations in R

In the above output, in addition to the intercept term plus the main effects of each of the
times on the intercept, for each covariate wrapped in the special term tve, there is the inter-
action between each of the time points and that covariate. Thus, for example, the coefficient
labelled factor(pseudo.time)500:rxLev is interpreted as the risk difference comparing the
Levamisole along group to the Observation group at 500 days, adjusting for the other covari-
ates in a time constant manner. In this model, we observe that the effect on survival, on the
risk difference scale, of Levamisole plus 5-FU gets larger in magnitude over time, similar to
what we can see in the Kaplan-Meier curves.

5.2. Modeling censoring

By default, we assume that time to censoring is independent of the time to the event, and of
all covariates in the model. This is more restrictive than parametric survival models, or Cox
regression, which only assumes that censoring time is conditionally independent of event time
given the covariates in the model. We provide several options to relax that assumption using
the model.censoring and formula.censoring options. The first is to compute pseudo-
observations stratified on a set of categorical covariates, which assumes that the censoring is
independent given a set of categorical covariates:

R> colon.ci.cen1 <- cumincglm(Surv(time, status) ~ rx + age + node4,
+ time = 2500, data = colon, model.censoring = "stratified",
+ formula.censoring = ~ rx)

Next, we can assume that the time to censoring follows a Cox model given a set of covariates.
By default, the same covariate formula (right hand side) as the main model is used, but any
formula can be specified. We can also use Aalen’s additive hazards model instead of a Cox
model for the censoring distribution. Then IPCW pseudo-observations are used (Overgaard
et al. 2019). The two different weighting options ("binder", the default or "hajek") can be
specified with the ipcw.method option.

R> colon.ci.adj <- cumincglm(Surv(time, status) ~ rx + age + node4,
+ time = 2500, data = colon, model.censoring = "independent",
+ formula.censoring = ~ rx + age + node4)
R> colon.ci.cen2 <- cumincglm(Surv(time, status) ~ rx + age + node4,
+ time = 2500, data = colon, model.censoring = "coxph",
+ formula.censoring = ~ rx + age + node4)
R> colon.ci.cen3 <- cumincglm(Surv(time, status) ~ rx + age + node4,
+ time = 2500, data = colon, model.censoring = "aareg",
+ formula.censoring = ~ rx + age + node4)
R> colon.ci.cen2h <- cumincglm(Surv(time, status) ~ rx + age + node4,
+ time = 2500, data = colon, model.censoring = "coxph",
+ formula.censoring = ~ rx + age + node4,
+ ipcw.method = "hajek")
R> colon.ci.cen3h <- cumincglm(Surv(time, status) ~ rx + age + node4,
+ time = 2500, data = colon, model.censoring = "aareg",
+ formula.censoring = ~ rx + age + node4,
+ ipcw.method = "hajek")
R> round(cbind("indep" = coef(colon.ci.adj),



Journal of Statistical Software 17

+ "strat" = coef(colon.ci.cen1),
+ "coxipcw" = coef(colon.ci.cen2),
+ "aalenipcw" = coef(colon.ci.cen3),
+ "coxipcw.hajek" = coef(colon.ci.cen2h),
+ "aalenipcw.hajek" = coef(colon.ci.cen3h)), 3)

indep strat coxipcw aalenipcw coxipcw.hajek aalenipcw.hajek
(Intercept) 0.318 0.314 0.535 0.596 0.297 0.317
rxLev -0.034 -0.035 -0.034 -0.036 -0.031 -0.036
rxLev+5FU -0.127 -0.128 -0.127 -0.127 -0.110 -0.129
age 0.002 0.002 0.002 0.002 0.003 0.002
node4 0.332 0.334 0.335 0.334 0.330 0.335

The model objects include the estimated weights in the element called ipcw.weights. It is
recommended to inspect the distribution of these weights in case of issues in estimation that
may be caused by extreme values of the estimated weights.

R> summary(colon.ci.cen2$ipcw.weights)

V1
Min. :0.2702
1st Qu.:0.4832
Median :0.9094
Mean :0.7680
3rd Qu.:0.9988
Max. :1.0000

5.3. Competing risks in plasma cell malignancy

The package works very similarly when there are competing risks. The key differences are
that the event indicator in Surv is a factor with more than 2 levels and that the cause option
is used to specify the cause of interest. The MGUS dataset has a number of covariates, and
the time until progression to PCM, or death. Here the event PCM is of primary interest, with
death being a competing event. We can get similar estimates to the marginal Aalen-Johansen
estimates for the cumulative incidence of PCM at 10 years and the expected lifetime lost due
to PCM up to 10 years with similar commands as above.

R> cumincglm(Surv(etime, event) ~ sex,
+ cause = "pcm", time = 120, data = mgus2)

Call: cumincglm(formula = Surv(etime, event) ~ sex, time = 120,
cause = "pcm", data = mgus2)

Model for the identity cumulative incidence of cause pcm at time 120

Coefficients:
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(Intercept) sexM
0.07383 -0.01857

Degrees of Freedom: 1383 Total (i.e. Null); 1382 Residual

R> mgfit1 <- rmeanglm(Surv(etime, event) ~ sex,
+ cause = "pcm", time = 120, data = mgus2)
R> mgfit1
R> plot(mgfit1)

Call: rmeanglm(formula = Surv(etime, event) ~ sex, time = 120,
cause = "pcm", data = mgus2)

Model for the identity restricted mean time lost due to cause pcm at time 120

Coefficients:
(Intercept) sexM

4.793 -1.293

Degrees of Freedom: 1383 Total (i.e. Null); 1382 Residual

Including other covariates in the model is done using the standard formula interface. Inspec-
tion of the diagnostic plots in Figure 2 reveals that a more complex model may by appropriate.

R> mgfitrmean <- rmeanglm(Surv(etime, event) ~ sex * age + hgb + I(hgb^2),
+ cause = "pcm", time = 120, data = mgus2)
R> summary(mgfitrmean)

Call:
rmeanglm(formula = Surv(etime, event) ~ sex * age + hgb + I(hgb^2),

time = 120, cause = "pcm", data = mgus2)

Deviance Residuals:
Min 1Q Median 3Q Max

-7.050 -4.749 -3.947 -3.258 112.814

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.21179 19.75007 0.011 0.991
sexM 1.34720 4.31629 0.312 0.755
age 0.06192 0.04760 1.301 0.193
hgb 0.23018 3.28708 0.070 0.944
I(hgb^2) -0.01679 0.12814 -0.131 0.896
sexM:age -0.03255 0.06260 -0.520 0.603

(Dispersion parameter for quasi family taken to be 1)
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Figure 2: Regression diagnostic plots in the MGUS example.

Null deviance: 448531 on 1370 degrees of freedom
Residual deviance: 447259 on 1365 degrees of freedom

(13 observations deleted due to missingness)
AIC: NA

Number of Fisher Scoring iterations: 2

The vcov function has several options for calculation of the estimated variance of the es-
timated regression parameters using the type argument. By default, the robust variance
estimates are used (type="robust"), based on the Huber-White estimator. Other options
are "naive", and "corrected", where corrected refers to the variance estimators suggested
by Overgaard et al. (2017) which are based on a second order Von-Mises expansion. We can
also use the bootstrap. This recalculates the pseudo-observations every time, but it is still
quite fast because of the C code underlying the computation. Let us compare:

R> nboot <- 1000
R> bootests <- matrix(numeric(nboot * 4), nrow = nboot, ncol = 4)
R> for(i in 1:nboot) {
+ mgus.b <- mgus2[sample(1:nrow(mgus2), replace = TRUE), ]
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Figure 3: Histogram showing the distribution of predicted lifetimes lost due to PCM up to
120 days in the MGUS example.

+ mgfitrmean.b <- rmeanglm(Surv(etime, event) ~ sex + age + hgb,
+ cause = "pcm", time = 120, data = mgus.b)
+ bootests[i,] <- coefficients(mgfitrmean.b)
+ }
R> mgfitrmean2 <- rmeanglm(Surv(etime, event) ~ sex + age + hgb,
+ cause = "pcm", time = 120, data = mgus2)
R> se.boot <- sqrt(diag(cov(bootests)))
R> round(cbind(se.boot = se.boot,
+ se.robust = sqrt(diag(vcov(mgfitrmean2))),
+ se.naive = sqrt(diag(vcov(mgfitrmean2, type = "naive")))), 3)

se.boot se.robust se.naive
(Intercept) 3.979 3.874 4.749
sexM 0.994 0.992 1.012
age 0.029 0.029 0.041
hgb 0.250 0.251 0.253

The corrected estimator does not handle ties, and so is not presented for this example.
Predicted restricted means give a possible method to predict individual event times, while
the predicted cumulative incidence should be probabilities. Note that with the identity and
log links, the predicted cumulative incidences are not guaranteed to be between 0 and 1.

R> hist(predict(mgfitrmean, newdata = mgus2),
+ xlab = "Predicted lifetime lost due to PCM up to 120 days",
+ main = "")

5.4. Case cohort sampling

Parner, Andersen, and Overgaard (2020) describe how to fit regression models with pseudo-
observations that account for case-cohort sampling. The basic idea is weighted estimating
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equations, which we can implement easily with the weights argument that gets passed to
glm.fit. First let us create a case-cohort sample of the MGUS dataset by sampling the
malignancy events with probability 0.9, and a random subcohort with probability 0.2.

R> set.seed(918)
R> subc <- rbinom(nrow(mgus2), size = 1, prob = 0.2)
R> samp.ind <- subc + (1 - subc) * (mgus2$event == "pcm") *
+ rbinom(nrow(mgus2), size = 1, prob = 0.9)
R> mgus2.cc <- mgus2[as.logical(samp.ind), ]
R> mgus2.cc$samp.wt <- 1 / ifelse(mgus2.cc$event == "pcm",
+ 0.2 + 0.8 * 0.9, 0.2)

Now, the weighted regression model should give similar results as the unweighted one in the
full sample:

R> mgfit.cc <- rmeanglm(Surv(etime, event) ~ I(age - 65) + sex + hgb,
+ cause = "pcm", time = 120, data = mgus2.cc,
+ weights = samp.wt)
R> mgfit.full <- rmeanglm(Surv(etime, event) ~ I(age - 65) + sex + hgb,
+ cause = "pcm", time = 120, data = mgus2)
R> mdf <- data.frame(casecohort = summary(mgfit.cc)$coefficients[,1:2],
+ fullsamp = summary(mgfit.full)$coefficients[, 1:2])
R> colnames(mdf) <- c("case cohort Est", "SE", "full Est", "SE")
R> round(mdf, 3)

case cohort Est SE full Est SE
(Intercept) 6.343 3.803 6.886 3.431
I(age - 65) 0.044 0.037 0.045 0.029
sexM -1.053 1.117 -0.990 0.992
hgb -0.147 0.277 -0.188 0.251

6. Numerical studies

6.1. Simulation study of statistical properties

We conducted a simulation study with the goal of determining which methods should be used
as the defaults in our package. The key criteria are validity, as measured by type I error
rates, bias, and confidence interval coverage, robustness to misspecification of the censoring
mechanism, and statistical efficiency. Detailed descriptions of the simulation setup and results
are in the Appendix, and code available in the replication script.
According to our simulation study, the stratified option works quite well even when the cen-
soring model is misspecified, and the Aalen additive model tends to work better than the Cox
model. Even when the censoring models are misspecified, either by omitting covariates or
incorrectly assuming proportional hazards, some form of adjustment for covariate dependent
censoring is an improvement over assuming completely independent censoring. There were no
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Figure 4: Running time comparison of the calculation of pseudo-observations for the survival
probability at a fixed time (left panel), and the restricted mean survival (right panel).

clear differences in terms of bias comparing the Binder versus Hajek weighting approaches.
The robust variance estimator (the sandwich variance as implemented in the sandwich pack-
age) is the clearly superior approach for inference, with minimal bias and approximately
correct confidence interval coverage coverage in all cases. Overgaard’s corrected variance
estimator has only marginal benefits over the robust estimator in a few cases.

6.2. Speed and memory comparison

Pseudo-observations can also be computed using the packages pseudo, prodlim (survival and
cumulative incidence only), and fastpseudo (restricted mean only). The pseudo package does
the job, but is not optimzed for speed or memory usage. The prodlim approach is optimized
in C code, but cannot handle large datasets because it stores the jackknife values for every
observed event time. We have optimized this code further in eventglm so that it only stores
the jackknife values for the time of interest, thus it can be used for much larger datasets. We
compare the speed of computing the pseudo-observations for the survival curve at a fixed time
in Figure 4. These timing calculations were done on a laptop with an 9th generation Intel
core i7 processor, and 8gb of RAM. Neither pseudo nor prodlim are able to handle a dataset
with 100,000 observations, while eventglm can go at least an order of magnitude larger and
in a reasonable amount of time.
The fastpseudo package uses only base R to efficiently compute pseudo-observations for the
restricted mean survival, but does not handle competing risks. Upon inspection of the code
during testing, it is clear that it also can only handle integer observation times, which is
something that is not clearly documented in the package. Since the restricted mean does
require computing the survival curve at all times less than the time of interest, the default
method in eventglm has the same limitations as prodlim. However, the IPCW method only
requires fitting a regression model for the time to censoring once, and then simply computing
means, and thus can be applied to much larger datasets. The stratified option can also be
used to improve computational efficiency as computing several sets of pseudo-observations on
partitions of the data can be faster and a better use of memory than doing it once for a large
dataset.
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7. Extending eventglm
As of version 1.1.0, the argument model.censoring of cumincglm and rmeanglm refers to a
function. This function is the workhorse that does the computation of the pseudo-observations
that are later used in the generalized linear model. A number of computation methods are
built in as “modules” that are contained in the source file called “pseudo-modules.R”. As an
example, consider the independent module:

R> eventglm::pseudo_independent

function(formula, time, cause = 1, data,
type = c("cuminc", "survival", "rmean"),
formula.censoring = NULL, ipcw.method = NULL) {
margformula <- update.formula(formula, . ~ 1)
mr <- model.response(model.frame(margformula, data = data))
stopifnot(attr(mr, "type") %in% c("right", "mright"))
marginal.estimate <- survival::survfit(margformula, data = data)
if(type == "cuminc") {

POi <- get_pseudo_cuminc(marginal.estimate, time, cause, mr)
} else if(type == "survival") {

if(marginal.estimate$type != "right") {
stop("Survival estimand not available for outcome with
censoring type", marginal.estimate$type)

}
POi <- 1 - get_pseudo_cuminc(marginal.estimate, time, cause, mr)

} else if(type == "rmean") {
POi <- get_pseudo_rmean(marginal.estimate, time, cause, mr)

}
POi

}
<bytecode: 0x0000017d922fa750>
<environment: namespace:eventglm>

This function, and any pseudo-observation module, must take the same named arguments
(though they do not all have to be used), and return a vector of pseudo-observations. Users
can specify their own functions directly, or by name. Our built in modules all have the prefix
pseudo_, and so if a name is given rather than a function, we search for functions with this
prefix first, and if not found, without the prefix.

7.1. Example: Parametric pseudo-observations

Let us see how to define a custom function for computation of pseudo-observations. In this
first example, we will fit a parametric Weibull survival model with survreg marginally and
do jackknife leave-one-out estimates. This may be useful if there is interval censoring, for
example.

R> pseudo_parametric <- function(formula, time, cause = 1, data,
+ type = c("cuminc", "survival", "rmean"),
+ formula.censoring = NULL, ipcw.method = NULL) {



24 Event History Regression with Pseudo-Observations in R

+ margformula <- update.formula(formula, . ~ 1)
+ mr <- model.response(model.frame(margformula, data = data))
+ marginal.estimate <- survival::survreg(margformula, data = data,
+ dist = "weibull")
+ theta <- pweibull(time, shape = 1 / marginal.estimate$scale,
+ scale = exp(marginal.estimate$coefficients[1]))
+ theta.i <- sapply(1:nrow(data), function(i) {
+ me <- survival::survreg(margformula, data = data[-i, ],
+ dist = "weibull")
+ pweibull(time, shape = 1 / me$scale,
+ scale = exp(me$coefficients[1]))
+ })
+ POi <- theta + (nrow(data) - 1) * (theta - theta.i)
+ POi
+ }

Now let us try it out by passing it to the cumincglm function and compare to the default
independence estimator:

R> fitpara <- cumincglm(Surv(time, status) ~ rx + sex + age, time = 2500,
+ model.censoring = pseudo_parametric,
+ data = colon)
R> fitdef <- cumincglm(Surv(time, status) ~ rx + sex + age, time = 2500,
+ model.censoring = "independent",
+ data = colon)
R> sapply(list(parametric = fitpara, default = fitdef),
+ coefficients)

parametric default
(Intercept) 0.5473823439 0.489105540
rxLev -0.0216382248 -0.029287251
rxLev+5FU -0.1488141565 -0.132651617
sex 0.0008128962 -0.010226326
age 0.0004232579 0.001004726

You can also refer to the function with a string, omitting the "pseudo_" prefix, if you wish,
e.g.,

R> fitpara <- cumincglm(Surv(time, status) ~ rx + sex + age, time = 2500,
+ model.censoring = "parametric",
+ data = colon)

7.2. Example 2: Infinitesimal jackknife

When the survival package version 3.0 was released, it became possible to get the influ-
ence function values returned from survfit estimation functions. These efficient influence
functions are used in the variance calculations, and they are related to pseudo-observations.
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More information is available in the “Pseudo-values” vignette of survival, which is under de-
velopment at the time of writing. We can use this feature to create a custom function for
infinitesimal jackknife pseudo-observations:

R> pseudo_infjack <- function(formula, time, cause = 1, data,
+ type = c("cuminc", "survival", "rmean"),
+ formula.censoring = NULL, ipcw.method = NULL) {
+ marge <- survival::survfit(update.formula(formula, . ~ 1),
+ data = data, influence = TRUE)
+ tdex <- sapply(time, function(x) max(which(marge$time <= x)))
+ pstate <- marge$surv[tdex]
+ POi <- matrix(pstate, nrow = marge$n,
+ ncol = length(time), byrow = TRUE) +
+ (marge$n) * (marge$influence.surv[, tdex + 1])
+ POi
+ }

Note that this computes pseudo-observations for survival, rather than the cumulative inci-
dence, so to compare we can use the survival = TRUE option. Now we try it out

R> fitinf <- cumincglm(Surv(time, status) ~ rx + sex + age, time = 2500,
+ model.censoring = "infjack",
+ data = colon)
R> fitdefsurv <- cumincglm(Surv(time, status) ~ rx + sex + age,
+ time = 2500, survival = TRUE, data = colon)
R> sapply(list(infjack = fitinf, default = fitdefsurv),
+ coefficients)

infjack default
(Intercept) 0.510826426 0.510894460
rxLev 0.029260880 0.029287251
rxLev+5FU 0.132636051 0.132651617
sex 0.010256818 0.010226326
age -0.001003621 -0.001004726

8. Conclusion
Using the pseudo-observation approach, in comparison to Cox regression or fully parametric
regression, can directly parametrize associations of interest between covariates and cumulative
summaries of survival. This provides valid inference under similar assumptions as the Cox
model, but easier interpretation of resulting coefficients, particularly when one is interested in
causal effects. Given the advantages of the pseudo-observation approach, it is not surprising
that there has been a great deal of development of statistical methods surrounding the estima-
tion and inference based on them. However, we believe the barrier to this approach becoming
as common as Cox regression is the lack of easy implementation. Our package enables the
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use of these methods with a user-friendly interface that will be familiar to even a beginning R
user but, by leveraging existing infrastructure, allows for the flexibility and options advanced
R users are expecting. For example, the objects returned by cumincglm and rmeanglm in-
herit from ‘pseudoglm’, ‘glm’, and ‘lm’, so in addition to the methods we define, many more
are available using existing infrastructure available in such packages as stats, broom, splines,
and many more (R Core Team 2021; Robinson, Hayes, and Couch 2022). Our hope is that
pseudo-observation based survival regression will become as common as Cox models.

8.1. Future work

A GEE approach that allows for borrowing information across multiple time points was
actually suggested initially (Andersen et al. 2003), although it was found that the robust
standard errors used in GEE are not exactly correct Overgaard et al. (2017). Our future goal
is to implement the standard error calculations that correctly account for both the correlated
data and the pseudo-observation calculation when there are multiple time points. The key
challenge is to design the interface with the appropriate balance of usability, understanding
and flexibility.
In addition to new features such as goodness of fit statistics based on cumulative residuals as
described by Pavlič, Martinussen, and Andersen (2019), we also plan to extend to additional
estimands like unrestricted lifetime and the probability of being in state in more general multi-
state model settings, allowing for left-trunction or delayed entry. To this end, the modular
approach we described in Section 7 allows the user to specify their own model.censoring
function that takes as input the design matrix and outputs the vector of pseudo-observations
that are used in the subsequent models. This allows further development and implementation
of new methods in this area, such as the use of the infinitesimal jackknife and the use of
flexible parametric models for interval censoring. This opens up a lot of possibilities for
future extensions of eventglm, and will also make it easier to maintain.
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A. Simulation study

A.1. Data generation

We generated datasets with competing risks according to Beyersmann, Latouche, Buchholz,
and Schumacher (2009) as follows: We first generated a binary covariate Z as Bernoulli with
probability 0.3, a normal random variable with mean 4 and standard deviation 4, and a log
normal random variable with parameters 0 and 1: X1, X2. Then Q = (1, Z, X1, X2). We
used a proportional hazards Weibull distribution to generate the time data for k = 1, 2,
with a hazard of: hk(t | Q) = γk ∗ (1/e(Q⊤ζk))γk ∗ tγk−1 and a cumulative hazard given
by: Hk(t | Q) = (1/e(Q⊤ζk))γk ∗ (t)γk , where Q is the vector of all covariates of interest in
this order (1, Z, X1, X2), which then correspond to the cause specific vector of coefficients
ζk = (ζ0, ζz, ζx1, ζx2). The overall survivor function of the times to any of the events is then
given by: P(Tov > t | Q) = exp (− ∑

k Hk(t | Q)).
We create overall survival times (times to any event) by inverting the CDF, one less the sur-
vivor, using the probability integral transform to obtain overall survival times, Tov. We then
determine which of the event types a time belongs to by randomly generating from a Bernoulli
with probability hm(Tov | Q)/(hm(Tov | Q)+hm′(Tov | Q)) and assigning event type 1 if 1 and
2 if 0. We then generate Weibull censoring times using the rweibull parameterization with
shape parameter equal to eQ⊤α and scale parameter γc. The intercept (i.e., first element)
of α determines the amount of censoring, and whether the remaining coefficients are non-
zero determines whether the censoring depends on covariates. When γc = 1, the censoring
times follow a proportional hazards model, and thus the Cox model for the censoring times
is correctly specified.
We consider a binary covariate of main interest (with probability 0.3), and two continuous
covariates, one normally distributed with mean 4 and variance 1, and the other log normally
distributed with parameters 0 and 1. Intercept and shape parameters were determined so that
the proportion of observations having the event of interest was approximately equally probable
as the competing event before the time of interest and for varying amounts of censoring. We
consider 3 different effects of covariates on the outcome of interest. In the null scenario, there
is no association of any covariates with the event times. We additionally consider moderate
and large effect sizes in combination will small effects of the continuous covariates. We allow
for any (or none) of the covariates to be associated with censoring. Specific parameter values
are given in the supplementary materials and as a companion R package (sachsmc/pseudoglm
on GitHub) for running the simulation studies. Within each scenario, we consider different
sample sizes, censoring rates, and strength of covariate effects on the censoring time.
For each scenario and simulation replicate, we fit regression models with the cause of interest
at a fixed time modeled as a function of the binary covariate of interest, adjusted for the two
continuous covariates. We did this for the cumulative incidence and the restricted mean at
a fixed time for the identity and log link functions and compared the estimated coefficient
for the binary covariate to the true coefficient. All of the available model estimation options
were run and compared in the simulation study. We report a subset of the findings that are
representative of the main conclusions, using a sample size of 500 observations, with 1000
simulation replicates.
The true values of the coefficients were determined by generated a very large sample of
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covariates Q, then calculating the corresponding true values of the cumulative incidence or
restricted mean life time lost, and finally regressing those true values against the covariates
using the link function. Samples large enough to achieve a precision of 1e-4 on the coefficient
values were used. Code for reproducing the simulation study is available in the reproducibility
materials as an R script.

A.2. Results

Under the null setting, where none of the covariates are associated with the outcome, we find
that all of the methods are approximately unbiased and preserve the nominal type I error rate
(data not shown). This holds regardless of whether or how strongly associated the covariates
are with censoring (similar to what was found in the simulations study of Binder et al. (2014)).
The more interesting results are where we find when and how the standard pseudo-observation
method and the stratified method break down due to dependent censoring. In what follows,
we present settings with samples of size 500 and the identity link. The patterns of relative
performance of the methods for other sample sizes and link functions are similar.

In Table 1, we show the bias of the coefficient estimates for the cumulative incidence as a
proportion of the true coefficient value and empirical standard deviation over the 1000 simula-
tion replicates in a subset of the scenarios and with a subset of the methods. The beta.cens
column shows the values of the three coefficients (binary, continuous 1, continuous 2) repre-
senting the strengths of the associations between the covariates and censoring. When there
is a large amount of censoring (80%), the independent approach shows a large amount of
bias. When the censoring depends only on the binary covariate (0.1, 0, 0), the stratified ap-
proach effectively removes that bias. When the censoring depends on all three covariates, the
stratified approach is misspecified and thus biased, but the weighting methods (ipcw.aalen
and ipcw.coxph) effectively decrease that bias. The true censoring model does not follow
the proportional hazards model, and thus the ipcw.coxph approach is misspecified and is
apparently less efficient but more effective at reducing bias as compared to the ipcw.aalen
approach. Similar trends were observed with the restricted mean models.

Drilling down into the scenario with a large amount of covariate dependent censoring, we
compare the different inverse probability of censoring weighting approaches in Table 2. The
second column shows whether the censoring model follows proportional hazards or not, and
the weighting column shows the weighting method used. All weighting methods exhibit
similarly small amounts of bias, with no clear patterns emerging regarding degrees of bias
or relative efficiency. It seems that the Binder approach to weighting combined with either
Aalen’s additive hazards model or the Cox proportional hazards model would work well in
many plausible scenarios.

Turning now to the variance estimation, Table 3 shows the bias of the standard deviation
estimation relative to the empirical standard deviation over the replicates, along with the
95% confidence interval coverage using the different variance estimates. The robust variance
estimator (the sandwich variance as implemented in the sandwich package) is the clear winner
here, with minimal bias and approximately correct coverage in all cases. The corrected
variance estimator has marginal benefits over the robust variance estimator in some settings,
that is, smaller variance but still correct coverage.
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Coeff. Cens. rate beta.cens Independent Stratified ipcw.aalen ipcw.coxph
moderate 0.50 (0.1, 0, 0) 0.054 (0.069) 0.019 (0.066) 0.021 (0.067) 0.019 (0.070)
moderate 0.50 (0.1, 0.1, 0.05) 0.057 (0.069) 0.022 (0.066) 0.026 (0.068) 0.009 (0.072)
moderate 0.80 (0.1, 0, 0) 0.099 (0.154) −0.007 (0.135) −0.007 (0.150) −0.057 (0.163)
moderate 0.80 (0.1, 0.1, 0.05) 0.144 (0.164) 0.034 (0.145) 0.032 (0.191) −0.055 (0.220)
large 0.50 (0.1, 0, 0) 0.034 (0.047) 0.000 (0.042) 0.003 (0.042) 0.001 (0.045)
large 0.50 (0.1, 0.1, 0.05) 0.059 (0.048) 0.022 (0.044) 0.008 (0.045) 0.002 (0.048)
large 0.80 (0.1, 0, 0) 0.079 (0.099) −0.005 (0.086) 0.017 (0.095) 0.008 (0.116)
large 0.80 (0.1, 0.1, 0.05) 0.122 (0.104) 0.031 (0.090) 0.006 (0.122) −0.016 (0.151)

Table 1: Bias and empirical standard deviation of the coefficient estimate under different
censoring scenarios and using different estimation methods.

Coeff. Cens. model Cens. rate Weighting ipcw.aalen ipcw.coxph
moderate PH 0.50 Binder 0.019 (0.065) 0.012 (0.066)
moderate PH 0.50 Hajek 0.020 (0.065) 0.003 (0.066)
moderate PH 0.80 Binder −0.005 (0.119) −0.004 (0.123)
moderate PH 0.80 Hajek 0.016 (0.124) 0.027 (0.131)
moderate nonPH 0.50 Binder 0.009 (0.066) 0.005 (0.067)
moderate nonPH 0.50 Hajek 0.026 (0.068) 0.009 (0.072)
moderate nonPH 0.80 Binder 0.020 (0.156) 0.042 (0.164)
moderate nonPH 0.80 Hajek 0.032 (0.191) −0.055 (0.220)
large PH 0.50 Binder 0.001 (0.043) 0.001 (0.044)
large PH 0.50 Hajek 0.004 (0.044) 0.001 (0.045)
large PH 0.80 Binder 0.010 (0.076) 0.009 (0.077)
large PH 0.80 Hajek 0.014 (0.079) 0.009 (0.089)
large nonPH 0.50 Binder 0.004 (0.044) 0.002 (0.045)
large nonPH 0.50 Hajek 0.008 (0.045) 0.002 (0.048)
large nonPH 0.80 Binder −0.025 (0.095) −0.030 (0.105)
large nonPH 0.80 Hajek 0.006 (0.122) −0.016 (0.151)

Table 2: Bias and empirical standard deviation of the coefficient estimate under different
censoring scenarios and using different estimation methods.
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Scenario Cens. model Cens. rate Corrected Naive Robust
Cumulative incidence

null PH 0.50 −0.04 (0.94) −0.04 (0.94) −0.03 (0.94)
null PH 0.80 −0.04 (0.93) −0.04 (0.94) −0.03 (0.93)
null nonPH 0.50 −0.00 (0.94) 0.00 (0.95) 0.01 (0.94)
null nonPH 0.80 0.02 (0.95) 0.02 (0.96) 0.03 (0.96)
moderate PH 0.50 0.02 (0.95) 0.01 (0.95) 0.05 (0.96)
moderate PH 0.80 −0.04 (0.94) −0.03 (0.94) 0.03 (0.95)
moderate nonPH 0.50 −0.02 (0.94) −0.04 (0.94) 0.02 (0.95)
moderate nonPH 0.80 −0.08 (0.93) −0.04 (0.95) 0.08 (0.96)
large PH 0.50 −0.01 (0.93) 0.25 (0.98) 0.12 (0.96)
large PH 0.80 −0.06 (0.91) 0.21 (0.98) 0.14 (0.97)
large nonPH 0.50 0.02 (0.94) 0.28 (0.98) 0.12 (0.97)
large nonPH 0.80 −0.07 (0.90) 0.19 (0.97) 0.10 (0.97)

Restricted mean
null PH 0.50 — −0.04 (0.94) −0.05 (0.93)
null PH 0.80 — −0.04 (0.94) −0.04 (0.94)
null nonPH 0.50 — −0.01 (0.96) −0.01 (0.94)
null nonPH 0.80 — 0.04 (0.97) 0.03 (0.93)
moderate PH 0.50 — 0.06 (0.97) 0.02 (0.96)
moderate PH 0.80 — 0.03 (0.95) 0.02 (0.95)
moderate nonPH 0.50 — 0.04 (0.95) 0.00 (0.94)
moderate nonPH 0.80 — 0.03 (0.95) 0.04 (0.95)
large PH 0.50 — 0.32 (0.99) 0.05 (0.96)
large PH 0.80 — 0.29 (0.99) 0.09 (0.96)
large nonPH 0.50 — 0.32 (0.99) 0.03 (0.95)
large nonPH 0.80 — 0.25 (0.98) 0.05 (0.94)

Table 3: Proportional bias of the estimated standard error relative to the empirical standard
deviation and 95% confidence interval coverage.
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