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Abstract

Efficient coding and improvements in the execution order of the up-and-down-blocks
algorithm for monotone or isotonic regression leads to a significant increase in speed as
well as a short and simple O(n) implementation. Algorithms that use monotone regression
as a subroutine, e.g., unimodal or bivariate monotone regression, also benefit from the
acceleration. A substantive comparison with and characterization of currently available
implementations provides an extensive overview of up-and-down-blocks implementations
for the pool-adjacent-violators algorithm for simple linear ordered monotone regression.
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1. Introduction
Monotone or isotonic regression minimizes the weighted least squares loss function

f(x) =
n∑

i=1
wi (yi − xi)2 , (1)

under the restriction that x1 ≤ x2 ≤ . . . ≤ xn−1 ≤ xn, where yi, i = 1, . . . , n, are given data
values (in proper order) and wi, i = 1, . . . , n, are corresponding non-negative weights.
There is a substantial amount of literature on monotone or isotonic regression, starting with
Ayer, Brunk, Ewing, Reid, and Silverman (1955) and Van Eeden (1958) and followed by,
among others, Barlow, Bartholomew, Bremner, and Brunk (1972), Robertson, Wright, and
Dykstra (1988), and De Leeuw, Hornik, and Mair (2009). And there is also, as Best and
Chakravarti (1990) put it, “a bewildering variety of algorithms” available for solving the
problem. For the special case of simple linear orders in the L2 metric, addressed in the cur-
rent paper and given in (1), the pool-adjacent-violators algorithm (PAVA), due to Ayer et al.
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(1955), Miles (1959), and Kruskal (1964b), is commonly known as the fastest algorithm avail-
able (cf. Stout 2019). But although PAVA is known for its O(n) algorithmic complexity (see
Bentley 1976; Best and Chakravarti 1990), implementations do not necessarily inherit this
algorithmic characteristic without a struggle: An O(n) algorithmic complexity does neither
guarantee an O(n) nor a fast implementation. See, for an early reference on PAVA imple-
mentations, for example, Van Waning (1976), Grotzinger and Witzgall (1984), and for more
recent references Wikipedia (2022), Tulloch (2014a), and De Leeuw (2017).
Isotonic regression has applications in fields like operations research, signal processing, and
statistics, (see, e.g., Kyng, Rao, and Sachdeva 2015; Chatterjee, Guntuboyina, and Sen
2015). More specifically, concerning statistics, the pool-adjacent-violators algorithm and its
implementations have applications in, for example, test statistics (Bartholomew 1961), maxi-
mum likelihood estimation of ordered means (Robertson 1978), unimodal function estimation
(Turner and Wollan 1997; Eggermont and LaRiccia 2000; Reboul 2005), calculation of ad-
justed response probabilities (Pace, Stylianou, and Warltier 2007), assessing the quality of
micro-array titration data (Klinglmueller 2010), and efficient first-order generalized gradient
algorithms (Tibshirani and Suo 2016). In our case, monotone regression is used as part of a
larger procedure, like for one of its originators (Kruskal 1964a,b): the transformation step in
a nonmetric multidimensional scaling algorithm.
Due to the computational slowness of some monotone regression implementations (cf. Stout
2015), algorithmic workarounds have been used to reduce these computational burdens in
multidimensional scaling, such as regularly skipping the transformation step in favor of the
configuration fitting step (Busing, Commandeur, and Heiser 1997) or using another, less ap-
propriate but faster method, such as rank images (Guttman 1968), for at least the first few
steps of the iterative process (Stoop and De Leeuw 1982). In any case, multidimensional scal-
ing would certainly benefit from a reliable and fast monotone regression procedure, especially
when n becomes large.
This code snippet suggests yet another implementation of PAVA, that is both O(n) and fast,
and the snippet will proceed as follows. In Section 2, we give a general description of the
pool-adjacent-violators algorithm, provide examples of some algorithmic choices, and describe
our implementation of the algorithm. Extensions of the algorithm, procedures in which the
algorithm is used as a subroutine, are described in Section 3. In Section 4, we provide an
extensive comparison with several known and currently available implementations in terms of
speed. The extensions are additionally compared with available and comparable procedures.
The snippet ends with a conclusion.

2. Pool-adjacent-violators algorithm
The pool-adjacent-violators algorithm was first described by Ayer et al. (1955), but became
well-known by the up-and-down-blocks implementation of the algorithm described in Kruskal
(1964b). To clarify the link: in the latter, blocks are the collection of pooled values.
The general idea of the pool-adjacent-violators algorithm is as follows: Find an optimal
solution such that if yi ≥ yi+1, xi = xi+1 = (wixi + wi+1xi+1)/(wi + wi+1), for all i, i.e., in
short: if there is a violation, pool. The result is a composition of elements with non-decreasing
values.
Although the up-and-down-blocks algorithm seems quite straightforward, works very effi-
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ciently (Dykstra and Robertson 1982), and is trivial to implement in linear time (Stout
2019), Best and Chakravarti (1990) state that only a skillful implementation is of computa-
tional complexity O(n). Grotzinger and Witzgall (1984, page 262) discuss the algorithm and
the implementation decisions for the unweighted case. The differences between weighted and
unweighted algorithms vary widely across metrics, but for the L2 metric there is essentially
no difference (Stout 2019, Remark 4). This equivalence is not true for the L1 and L∞ metrics
that are much more difficult to solve, with or without weights. Important implementation
decisions for the current L2 case concern 1. the processing of pooled elements or block values
and 2. the direction and scope of violation checking. We will now discuss these two issues in
detail.

1. In essence, there are two ways to administrate pooled elements. The first (direct) ap-
proach updates the complete result vector after coalescing violating elements: the block
value is directly inserted in the results vector, at the designated positions. According to
Grotzinger and Witzgall (1984), this will result in an O(n2) procedure. Implementations
using this approach are, for example, from Van Waning (1976), Venables and Ripley
(2013), Dumelle, Kincaid, Olsen, and Weber (2022), and Turner (2020). The other
(postponed) approach collects all block values in a separate vector, which is expanded
later to obtain the final results vector. Although the direct updates approach does not
require additional memory to store the block values and lacks the need for an index
vector, keeping the results vector up-to-date might lead to a very slow procedure at
worst, while expanding the block values, in the postponed approach, can be performed
rather quickly.

2. Concerning the second issue on direction and scope of violation checking, first note
that all up-and-down-block implementations of the pool-adjacent-violators algorithm
access x sequentially, going from x1 to xn, repairing violations along the way. These
repairs may concern (a) only neighboring elements, (b) extend the scope to multiple
neighboring elements, either forward (up) or backward (down), or (c) extend the scope
to multiple neighboring elements in both directions.

(a) Implementations that only repair a single violation at the time might need to
restart the whole sequence, probably more than once, in order to eliminate all
violations. This approach is illustrated in the first part of Table 1 (1-up-0-down).
The block that arises in eliminating the violation in Step 4, 8 = x3 > x4 = 2,
does not resolve the re-created violation with the previous block (x1 = x2 = 6),
so Steps 8–10 are needed to properly solve the complete problem. This procedure
corresponds to one given by Miles (1959) and implementations are, for example,
given by Bril, Dykstra, Pillers, and Robertson (1984) and Turner (2020).

(b) Most up-and-down-blocks implementations check for a violation with the next ele-
ment, 1-up, followed by the elimination of all down-block violations (k-down) when
there was indeed a violation. When there was not, the procedure simply progresses
to the next element. Since the forward violations are resolved sequentially, and the
backward violations are immediately resolved too, this procedure uses exactly n
steps. An example of this procedure is given in the middle part of Table 1 (1-up-k-
down). Implementations of this kind are given by, for example, Kruskal (1964b),
Van Waning (1976), Cran (1980), Danisch (2016), and De Leeuw (2017).
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1-up-0-down 1-up-k-down k-up-k-down
i x 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 1 2 3 4 5
1 8 8 6 6 6 6 6 6 6 4 4 8 6 6 5.5 4.8 4 4 8 6 6 4 4
2 4 6 6 6 6 6 6 6 4 4 6 6 5.5 4.8 4 4 6 6 4 4
3 8 8 5 4 3 3 4 4 8 5.5 4.8 4 4 8 4 4
4 2 5 4 3 3 4 4 5.5 4.8 4 4 4 4
5 2 4 3 3 4 4 4.8 4 4 4 4
6 0 3 3 4 4 4 4 4 4
7 8 8 8 8 8

Table 1: Pool-adjacent-violators algorithm examples using different violation checking strate-
gies.

(c) The implementation suggested in this snippet adds yet another step. Observe that
the violation 8 = x3 > x4 = 2 is solved by combining two values, 8 and 2, resulting
in a (new) block value of 5, i.e., (8 + 2)/2 = 5. Instead of immediately turning
around and start solving down block violation, we may first look ahead for the next
value in the sequence, k-up, for if this element is smaller than or equal to 5, the
next value can immediately be pooled into the current block, i.e., (8+2+2)/3 = 4.
Looking ahead can be continued until the next element is larger than the current
block value or if we reach the end of the sequence. For the current example x6 = 0
is pooled into the block too, since 4 > 0, and the current block value becomes
(8 + 2 + 2 + 0)/4 = 3. The next element x7 = 8 is not a violator, since the current
block value equals 3 which is smaller than 8. The lookahead procedure is displayed
in Step 4 of the last part of Table 1 (k-up-k-down). Superfluous lookaheads,
e.g., Step 2 under k-up-k-down, more than offset the advantages of being able to
complete the sequence faster. Every additional upwards violation captured by the
lookahead procedure (here additionally combining elements x5 and x6 with x3 and
x4) avoids one or more up-and-down block violation eliminations that costs more
than double.

The pseudo-code for the implementation is given in Algorithm 1. We can clearly distinguish
the single upwards violation check in Line 11, the k-up procedure in Lines 16–21, and the
k-down violation checks in Lines 22–27. The lookahead procedure moves ahead one element
at the time with minimal cost: the new block value x (Line 15) is computed anyway and
subsequent elements are handled with maximum time efficiency. The down-block violations
(Lines 22–27) are handled with the same efficiency. In Lines 33–41 the block values are
expanded to the results vector in reversed order to avoid overwriting the data block values.
Although the current implementation of the pool-adjacent-violators algorithm is written in
C, a conversion to any other language should pose no serious problem given the pseudo-code
in Algorithm 1. The function monotone() is provided in the package monotone1 (Busing and
Claramunt Gonzalez 2022) which is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=monotone.

1Compiled with gcc -DNDEBUG -O2 -Wall -std=gnu99 -mfpmath=sse -msse2 -mstackrealign

https://CRAN.R-project.org/package=monotone
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Algorithm 1 Monotone regression minimizing f(x) =
∑n

i=1 wi (yi − xi)2

using the up-and-down-blocks implementation of the pool-adjacent-violators algorithm.
1: procedure monotone(n, x, w) ▷ x in expected order and w nonnegative
2: r0 ← 0 ▷ initialize index 0
3: r1 ← 1 ▷ initialize index 1
4: b← 1 ▷ initialize block counter
5: x̂← xb ▷ set previous block value
6: ŵ ← wb ▷ set previous block weight
7: for i← 2, n do ▷ loop over elements
8: b← b + 1 ▷ increase number of blocks
9: x← xb ▷ set current block value

10: W ← wb ▷ set current block weight
11: if x̂ > x then ▷ check for down violation of x
12: b← b− 1 ▷ decrease number of blocks
13: S ← ŵ × x̂ + W × x ▷ set current weighted block sum
14: W ←W + ŵ ▷ set new current block weight
15: x← S/W ▷ set new current block value
16: while i < n and x ≥ xi+1 do ▷ repair up violations
17: i← i + 1 ▷ increase element counter
18: S ← S + wi × xi ▷ set new current weighted block sum
19: W ←W + wi ▷ set new current block weight
20: x← S/W ▷ set new current block value
21: end while
22: while b > 1 and xb−1 > x do ▷ repair down violations
23: b← b− 1 ▷ decrease number of blocks
24: S ← S + wb × xb ▷ set new current weighted block sum
25: W ←W + wb ▷ set new current block weight
26: x← S/W ▷ set new current block value
27: end while
28: end if
29: xb ← x̂← x ▷ save block value
30: wb ← ŵ ←W ▷ save block weight
31: rb ← i ▷ save block index
32: end for
33: f ← n ▷ initialize “from” index
34: for k ← b, 1 do ▷ loop over blocks
35: t← rk−1 + 1 ▷ set “to” index
36: x← xk ▷ set block value
37: for i← f, t do ▷ loop “from” downto “to”
38: xi ← x ▷ set all elements equal to block value
39: end for
40: f ← t− 1 ▷ set new “from” equal to old “to” minus one
41: end for
42: end procedure
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3. Extensions
In several cases the pool-adjacent-violators algorithm is used as part of a larger algorithm.
It is expected that a faster sub-algorithm also improves the speed of the entire algorithm.
In this context we will discuss two algorithms: unimodal monotone regression and bivariate
monotone regression.

3.1. Unimodal monotone regression

Unimodal monotone regression minimizes the same weighted least squares loss function al-
ready given in (1), but with the following, slightly different restriction:

x1 ≤ . . . ≤ xm−1 ≤ xm ≥ xm+1 ≥ . . . ≥ xn,

indicating that the sequence increases first and then decreases. When the position of mode
m, where increase changes in decrease, is known, we are left with an isotonic regression on
i = 1, . . . , m − 1 and an antitonic regression on i = m + 1, . . . , n. For an unknown mode,
we choose the one with the lowest error sum-of-squares, which by the way is not necessarily
unique. The unimodal restriction is also referred to as an umbrella ordering and further
discussions can be found in Barlow et al. (1972); Robertson et al. (1988); Geng and Shi
(1990), and Stout (2008). The following example is from the Iso package (Turner 2020),
which contains the function ufit(), and it clearly shows the increase, the decrease, and the
mode (element number 8 with mode value 293.8).

R> y <- c(0.0, 61.9, 183.3, 173.7, 250.6, 238.1, 292.6, 293.8, 268.0, 285.9,
+ 258.8, 297.4, 217.3, 226.4, 170.1, 74.2, 59.8, 4.1, 6.1)
R> library("monotone")
R> unimonotone(y)

[1] 0.000 61.900 178.500 178.500 244.350 244.350 292.600 293.800 277.525
[10] 277.525 277.525 277.525 221.850 221.850 170.100 74.200 59.800 5.100
[19] 5.100

Turner and Wollan state that “fitting an isotonic model with such a constraint is essentially
trivial; one simply fits two separate models with linear order constraints.” (Turner and Wol-
lan 1997, page 308). Turner (2020) uses pava() for the separate models, whereas Geng and
Shi (1990) use amalgm() (Cran 1980). However, minimizing (1) for all modes m = 1, . . . , n,
including corresponding antitonic regressions, takes O(n2) time (Stout 2000, Section 2), al-
though concerning time Geng and Shi (1990) state: “Not much time is consumed, but it is
worth noting that the execution time increases linearly with K increasing” (here, K represents
the length of the vector, i.e., n).
The prefix approach proposed by Stout (2008) and implemented in the package UniIsoRegres-
sion (Xu, Sun, Karunakaran, and Stout 2017) reduces the calculations for unimodal isotonic
regression to O(2n), using reg_1d_l2() to fit the separate, isotonic and antitonic, models.
Instead of fitting an isotonic and an antitonic regression for each m = 1, . . . , n, only one of
each regressions is needed. The information contained in the vectors with block values and
block sizes (see Stout 2008, Figure 5 and Figure 7) suffices to rapidly rebuild the monotone
regressions for one specific mode m.
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The current k-up-k-down approach, as described in Section 2, uses indices to identify blocks
and collects all block values at the origin of the data vector (see Algorithm 1). Although such
an approach makes it unnecessary to allocate an extra vector for the blocks, at the same time
it becomes impossible to rebuild the regressions for one single mode m afterwards. This can
easily be solved by using block sizes instead of indices and leaving the block values in place.
This recover-afterwards-possibility approach corresponds not only to the prefix approach of
Stout (2008), but also to the _inplace_contiguous_isotonic_regression procedure of
Varoquaux, Tulloch, and Lee (2016). The general scheme of the unimodal algorithm follows
the procedure described by Stout (2008).
The procedure is implemented in the function unimonotone() in the monotone package. Note
that since the mode value xm corresponds to an actual data vector value ym (see, for example,
Stout 2008), the mode cannot be a pooled element or combined block value. This means that
candidate mode values emerge when the condition x̂ > x (Algorithm 1, Line 11) is actually
false, in which case the error sum-of-squares needs to be saved for future use. This also means
that the block size for the candidate mode will be equal to 1. Since the error sum-of-squares
is only needed in the prescribed case, it suffices to keep track of the total sum-of-squares and
the regression sum-of-squares and update the error sum-of-squares based on these two sums
progressively.

3.2. Bivariate monotone regression

In some monotone regression problems we have more than one independent variable. When
there are only two variables this is referred to as bivariate monotone regression. In that
case, the data consists of a matrix and a solution is sought where both rows and columns are
monotonically increasing. The following example is from Dykstra (1981) and the solution is
given by bimonotone() (monotone package).

R> G <- matrix(c( 1, 5.2, 0.1, 0.1, 5, 0, 6, 2, 3, 5.2, 5, 7, 4, 5.5,
+ 6, 6), 4, 4)
R> print(G)

[,1] [,2] [,3] [,4]
[1,] 1.0 5 3.0 4.0
[2,] 5.2 0 5.2 5.5
[3,] 0.1 6 5.0 6.0
[4,] 0.1 2 7.0 6.0

R> library("monotone")
R> bimonotone(G)

[,1] [,2] [,3] [,4]
[1,] 1.0 2.5 3.0 4.0
[2,] 1.8 2.5 5.1 5.5
[3,] 1.8 4.0 5.1 6.0
[4,] 1.8 4.0 6.5 6.5

In an iterative algorithm to solve the bivariate monotone regression problem, simple uni-
variate monotone regression is used as a subroutine. The algorithm, due to Dykstra and



8 A Simple and Fast O(n) PAVA Implementation

Original Allows Auxiliary Auxiliary Direct Forward Backward
Implementation Year language weights floats integers updates checks checks
fitm() 1964 Fortran Yes n n No 1 k
wmrmnh() 1978 Fortran Yes - - Yes 1 k
amalgm() 1980 Fortran Yes 2n - No 1 k
pav() 1984 Fortran Yes 4n n No 1 0
isoreg() 1995 C No n - Yes k 0
isopava() 1997 Fortran Yes - n Yes 1 0
isotonic() 2001 C No - - Yes k 0
isomean() 2010 C Yes 2n n No 0 k
pooledpava() 2013 Python Yes 2n n No 0 k
linearpava() 2014 Julia Yes - - Yes k 0
inplacepava() 2016 Python Yes - n No 1 k
mdpava() 2016 C++ No n n No 1 k
reg1dl2() 2017 C++ Yes 3n 2n No 0 k
jbkpava() 2017 C Yes 2n 3n No 1 k
monotone() 2019 C Yes - n No k k

Table 2: Overview of implementations (year = first year of publication; original lan-
guage = original implementation language; allows weights = weighted or unweighted im-
plementation; auxiliary floats = additional memory allocation for floating point numbers;
auxiliary integers = additional memory allocation for integers, used for indices or block sizes;
direct updates = continuous fully updated result vector; forward checks = none (0-up), single
(1-up), or multiple (k-up); backward checks = none (0-down) or multiple (k-down)).

Robertson (1982) and, independently, to Sasabuchi, Inutsuka, and Kulatunga (1983), im-
proves significantly on earlier algorithms proposed by Gebhardt (1970) and Dykstra (1981)
(cf. Dykstra and Robertson 1982) and only needs to solve univariate monotone regression
problems repeatedly along rows and columns until convergence. The algorithm extends nat-
urally to more than two variables, in which case each iteration consists of more than two
sub-cycles, something we are not going to pursuit here.
An implementation, published as Algorithm AS 206 (Bril et al. 1984), with corrections, is
available as biviso() from Iso. The Fortran code uses pav() as the univariate monotone
regression subroutine. The simple order case in the algorithm of Sasabuchi et al. (1983)
is solved using the procedure amalgm() of Cran (1980). Both pav() and amalgm() are
introduced in the next section.
An entirely different approach, but not pursuit here due to several reasons, is taken by Stout
(2015). It is based on an order preserving embedding into a directed acyclic graph (DAG)
and compared to previously mentioned algorithms it is claimed to improve running time by a
significant factor. The procedure is implemented in UniIsoRegression as function reg_2d().

4. Comparisons

In this section, we will compare the current implementation with other PAVA implementa-
tions. Many implementations of the pool-adjacent-violators algorithm can be found and most
are some variant of the up-and-down-blocks algorithm, mainly written in C, Fortran, Java,
Julia, Python, or R.
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Table 2 provides a listing of all participating implementations2. For a proper comparison, all
implementations have been translated into plain C (when needed) to avoid differences due to
compiler characteristics. The implementations are provided in the legacy() function of the
package monotone, accompanying this snippet.
Algorithm suggestions without a clear implementation (e.g., Gebhardt 1970), or implementa-
tions too deeply nested in other software (e.g., Weka by Witten, Frank, Hall, and Pal 2016), or
implementations that could not be translated into C without a certain amount of force (e.g.,
gpava() by De Leeuw et al. 2009, pava() by Raubertas 1994, contained in SAGx Broberg
2020, or pava() contained in lecture notes on isotonic regression Geyer 2020), were not taken
into account.
An historical overview and characterization of each implementation listed in Table 2, as well
as a comparison with the original function in either R, Fortran, or C, if available, is given in
Appendix A.
Now, the simulation study consists of two stages3. In the first stage, all implementations are
included in the comparison in order to distinguish the O(n) implementations from the O(n2)
implementations. In the second stage, only the O(n) implementations are compared on speed
and ranked using different random data vectors.

4.1. Stage 1: Distinguishing O(n) and O(n2) implementations

From the implementation decisions in Section 2, the overview of implementations in Table 2,
and the characterization given in Appendix A, it is clear that some implementation might
be fast when the vector is already (almost) in the right order, for example wmrmnh() or
isotonic(), but not in the opposite direction (almost complete disorder). Other implemen-
tations might just be fast in this opposite direction, e.g., pooledpava() or isoreg(), and not
in the ordered situation. One situation that is not especially favorable for any implementation
given in Table 2 is the following:

set_data_vector <- function(n) {
half <- n / 2
return(c(1:half, half:1))

}

To distinguish O(n) and O(n2) implementations, it suffices to use this (nonrandom) data
vector with four different vector sizes: n = 100, 1000, 10000, 100000.
The package microbenchmark (Mersmann 2021) is used to time the implementations. Each
implementation run is evaluated 100 times by microbenchmark() in random order with 2
warm-up evaluations. We will consider average timing performance only4.
Table 3 shows the results of the simulation study. As expected, the timings increase with
either n or n2. The last column clearly shows which implementations are slowest. Comparing
the last to the second to last column for these implementations shows a close to 100 times
increase in timings while the data vector size is only tenfold. For example, isoreg() increases

2The weights wi in (1) are set to one, in order to allow isoreg(), isotonic(), and mdpava() to compete.
3All simulations have been run on an Apple Macbook Pro with an Intel(R) Core(TM) i9-9880H CPU @

2.30GHz, running the 64-bit Windows 10 Operating System.
4Full results, including best and worst timings, are provided as supplementary materials.
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Implementation n = 100 n = 1000 n = 10000 n = 100000
fitm() 4.690 15.932 159.580 4170.953
wmrmnh() 5.202 134.934 12971.086 1963115.876
amalgm() 5.458 103.358 9564.534 1081874.874
pav() 8.327 299.754 29117.754 3050869.166
isoreg() 7.525 296.066 28054.968 2782377.579
isopava() 18.237 1047.448 108726.536 11003871.990
isotonic() 8.616 380.128 36798.018 3688134.227
isomean() 4.692 14.420 112.229 1970.113
pooledpava() 4.786 15.522 123.404 1952.878
linearpava() 7.780 294.595 29512.901 2994164.059
inplacepava() 4.547 13.169 135.845 1443.377
mdpava() 4.629 14.958 185.757 1515.005
reg1dl2() 4.857 15.184 120.942 2323.007
jbkpava() 5.230 56.540 217.683 2291.755
monotone() 3.734 9.859 73.557 1141.088

Table 3: Mean timing performance in microseconds for the 15 PAVA implementations (see
Table 2) for the nonrandom data vector and four different data vector sizes.

in time from 28 milliseconds for n = 10000 to 2782 milliseconds for n = 100000, while, for
example, jbkpava() only increases from 0.217 milliseconds to 2.291 milliseconds for the same
vector sizes, respectively. It is more difficult to deduce this conclusion based on the first
two columns, probably due to a lack of precision or some code timings independent of n or
n2. Hereafter these slowest implementations, i.e., wmrmnh(), amalgm(), pav(), isoreg(),
isopava(), isotonic(), and linearpava(), will be referred to as the O(n2) implementa-
tions.
When we compare the O(n2) implementations to the design decisions shown in Table 2,
we notice that all implementations that use direct updates are among the O(n2) imple-
mentations, i.e., wmrmnh(), isoreg(), isotonic(), isopava(), and linearpava(). This
observation confirms Grotzinger and Witzgall’s claim that direct updates lead to an O(n2)
implementation. Further, the implementations that only have one single upwards violation
check (1-up-0-down), i.e., pav() and isopava(), also belong to the O(n2) implementations.
Besides, isopava() falls in both categories, direct updates and 1-up-0-down, which is clearly
illustrated by the highest mean timings for all vector sizes. Although amalgm() does not
belong to the just mentioned categories, this implementations has one serious delaying factor:
the update scheme shifts the whole vector backwards on every single pool operation, quite a
time consuming process.

4.2. Stage 2: Comparing O(n) implementations

For the O(n) implementations timing experiment, we use five random data vectors (see Ta-
ble 4), scaled between 0 and 10. An impression for n = 100 is given in Figure 1. We use
the same vector sizes as before, which brings the total number of cells to 5 × 4 = 20. Each
cell is replicated 100 times, with different random error for each replication. We will consider
the average performances for vector size and data vectors, respectively, of all O(n) imple-
mentations5, and let microbenchmark() use the multicomp package (Hothorn, Bretz, and

5Full results are provided as supplementary materials.



Journal of Statistical Software – Code Snippets 11

Description Equation R code
Order xi = i x <- 1:n
Sinus order xi = 5i/n + sin(10i/n) x <- 5 * (1:n) / n + sin(10 * (1:n) / n)
No order xi = 5 x <- rep(5, n)
Sinus disorder xi = n− 5i/n + sin(10i/n) x <- n - 5 * (1:n) / n + sin(10 * (1:n) / n)
Disorder xi = n− i + 1 x <- n:1

scaling between 0 and 10 x <- x - min(x); x <- x / max(x); x <- 10 * x
standard normal error x <- x + rnorm(n)

Table 4: Overview of random data vector variants, scaling of data, and adding random error.
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Figure 1: Overview of data vector variants: order (left panel, red dots), sinus order (left panel,
green dots), no order (middle panel), sinus disorder (right panel, green dots), and disorder
(right panel, red dots).

n = 100 n = 1000 n = 10000 n = 100000
Implementation Mean cld Mean cld Mean cld Mean cld
fitm() 4.324 c 20.071 g 178.634 c 1909.611 e
isomean() 4.363 e 20.158 h 184.779 cd 2003.587 f
pooledpava() 4.425 f 17.859 d 163.636 b 1806.446 d
inplacepava() 4.132 b 15.733 c 153.224 b 1654.275 b
mdpava() 4.346 d 18.690 e 162.874 b 1737.621 c
reg1dl2() 4.584 g 15.056 b 126.953 a 1923.846 e
jbkpava() 4.686 h 19.659 f 193.563 d 2432.005 g
monotone() 3.425 a 12.530 a 118.900 a 1322.806 a

Table 5: Mean timing performance in microseconds for the O(n) implementations on four
different vector sizes, augmented with a statistical ranking in compact letter display (cld).

Westfall 2021) for multiple comparisons and a statistical ranking, displayed in compact letter
display (cld, Piepho 2004).
Table 5 shows the results for all vector sizes, averaged over data vector variants. Seemingly
there is only little difference in the timings. Multiple comparisons indicate nevertheless that
monotone() is significantly faster in all cases.
Table 6 shows the results for the five data vector variants from Table 4, as well as an overall
mean and a ranking. The timings are averaged over all data vector sizes, taking into account



12 A Simple and Fast O(n) PAVA Implementation

Order Sinus order No order Sinus disorder Disorder
Implementation Mean cld Mean cld Mean cld Mean cld Mean cld Overall Rank

fitm() 28.059 d 26.707 d 28.233 d 21.930 c 20.409 b 25.068 6
isomean() 28.238 d 26.792 d 27.880 d 23.084 d 21.881 cd 25.575 7
pooledpava() 25.389 c 24.606 c 25.087 c 23.004 d 22.582 de 24.134 5
inplacepava() 23.783 b 23.240 b 23.554 b 20.876 b 19.694 b 22.229 2
mdpava() 25.247 c 24.780 c 25.618 c 22.430 cd 21.689 c 23.953 4
reg1dl2() 23.366 b 23.352 b 23.432 b 23.125 d 22.756 e 23.206 3
jbkpava() 28.448 d 28.349 e 28.294 d 26.695 e 25.963 f 27.550 8
monotone() 20.008 a 19.250 a 19.847 a 15.852 a 14.914 a 17.974 1

Table 6: Mean timing performance in nanoseconds for the O(n) implementations on the five
data vector variants from Table 4, augmented with a statistical ranking in compact letter
display (cld) and a final ranking.
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Figure 2: Data used for unimodal (left hand side) and bivariate (right hand side) monotone
regression simulations.

the vector sizes, that is, the timing is divided by the vector size before averaging. The results
thus indicate the number of nanoseconds it takes to process one single data vector element.
It is striking how little difference there seemingly is between the different data vector variants.
Apparently, for these O(n) implementations, it takes between 15 and 29 nanoseconds to
process one single element, almost irrespective of the constitution of the data vector. This is
not something to be said from the O(n2) implementations, that can differ markedly for the
different data vector variants. We can, nevertheless, observe that (sinus) disordered vectors
take less time for all implementations, improving on their ordered variant by 13% on average.
Considering the weights, the results confirm the statement of Stout (2019) that weights do
not play an important role for L2 implementations. Although isoreg() and isotonic()
belong to the O(n2) implementations, on different grounds than lacking weights, mdpava()
does not. The latter resides in the middle of the O(n) implementations using weights.
A special remark is in order for fitm() (Kruskal 1964b): it is the oldest implementation,
apparently slightly messy coded, but still extremely fast. In the end, monotone() is more
than 19% faster than the next implementation (inplacepava()) and more than 34% faster
than the slowest O(n) implementation (jbkpava()), not to mention the speed differences with
the O(n2) implementations.
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4.3. Extensions

In a small simulation study, we compare the three different implementations of unimodal
monotone regression, i.e., Iso::ufit() (Turner 2020), UniIsoRegression::d1_l2() (Xu
et al. 2017), based on Stout (2008), and the current implementation, unimonotone(). We use
a concatenation of the random data vector variants sinus order and sinus disorder given in Ta-
ble 4. An example data vector is displayed in Figure 2 (left hand side). Each n = 1000 vector is
replicated 100 times, with different random error for each replication, and microbenchmark()
(times = 100, check = "equivalent", control = list(warmup = 2)) is used for the
timings.

Unit: microseconds
expr min lq mean median uq

ufit() 779090.1 806475.3 810007.01363 810962.6 814629.0
uniisoregression() 37.0 46.7 61.00116 61.4 72.4

unimonotone() 14.0 20.8 27.98501 27.7 34.1
max neval cld

991932.2 10000 b
196.1 10000 a
113.1 10000 a

The timing results show that ufit() is, by far, the slowest procedure and for two reasons:
it solves 2n regression problems each time and uses an O(n2) procedure for each problem.
Since Geng and Shi (1990) use a similar procedure, it falsifies their statement on time, as
using an O(n2) procedure does consume time and execution time increases quadratically
with n. The difference between UniIsoRegression::d1_l2() and unimonotone() is not
significant, although that is due to the high timings of Iso::ufit(). Practically speaking,
unimonotone() is more than twice as fast as UniIsoRegression::d1_l2(). The difference
can be explained by the faster monotone regression procedure (cf. Sections 4.1–4.2) for both
isotonic and antitonic regressions and by the selective and progressive updating of the error
sum-of-squares.
For the bivariate monotone regression case, we compare the biviso() and bimonotone()
functions from the Iso and monotone packages, respectively6. Both implementations use the
simple univariate implementation as a subroutine, i.e., pav() and monotone(), respectively.
The simulated 32 × 32 data matrix G with n ≈ 1000 is generated as gij = i + j + r, where
error r is an uniform random number between −i and j. An example 10× 10 data matrix is
displayed in Figure 2. Each matrix is replicated 100 times, with different random error for
each replication, and microbenchmark() (times = 100, control = list(warmup = 2)) is
used for the timings.

Unit: milliseconds
expr min lq mean median uq max neval cld

biviso() 7.249 7.311 7.465 7.438 7.589 8.708 100 c
bimonotone(default) 3.052 3.091 3.164 3.124 3.188 3.437 100 b

bimonotone(eps=1.0e-5) 1.989 2.010 2.058 2.022 2.057 2.422 100 a
6Although indeed seriously faster, reg_2d() from UniIsoRegression based on Stout (2015) is omitted from

the comparison due to a different algorithmic approach and due to different, probably invalid, results.
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It is clear from the microbenchmark results that bimonotone() is significantly faster, al-
though both procedure are quite slow, considering the timings are in milliseconds, not in
microseconds. Compared to the original implementation almost forty years ago, the precision
has increased considerably, namely from four significant digits (cf. Dykstra and Robertson
1982) to eight significant digits (cf. Turner 2020)7. Decreasing precision to the original status
reduces the time from 3.164 to 2.058 milliseconds. It is expected that the implementation
of Sasabuchi et al. (1983) is faster than biviso() because amalgm() is faster than pav(),
just as that bimonotone() is faster than the other implementations, because monotone() is
faster.

5. Conclusion
An O(n) algorithm does not imply an O(n) implementation, nor does it imply a fast im-
plementation. Many skillfully implemented versions of the pool-adjacent-violators algorithm
have preceded the current implementation, some of them with computational complexity O(n)
or close, some of them fast, some of them both.
A close inspection of the up-and-down-blocks algorithm revealed that there was still something
to be gained: an important acceleration occurs during the sequential handling of the up-blocks
checks. In case of a violation, continued up-block checks or lookaheads are performed first,
accelerating the overall sequence by cutting down on some operations, before initiating the
common series of down-block amalgamations.
For the comparison of implementations in terms of speed, we have used microbenchmark. We
could also have looked at the number of operations, like multiplication, division, addition,
assignment, and comparison, an implementation has to perform to get to the answer. Just
counting the number of different operations confirms the working ingredient of the lookahead
procedure and reveals why monotone() is fast: it simply does not duplicate any operation.
For example, isopava() needs 56928 operations (in total) for an n = 100 non-random data
vector variant (see Section 4.1), while monotone() only needs 1950, which is only about 3.5%.
In everyday use, such as part of an iterative algorithm, e.g., an alternating non-metric mul-
tidimensional scaling algorithm, there will be little difference between monotone() and the
next O(n) implementation. However, for heavily repeated use, like in unimodal or bivariate
monotone regression procedures, or for large problem sizes, it is unwise to consider slower
procedures as an option when speed is an issue.
Low-level optimizations, or cleverly constructed assembly code, might even improve on the
current version, but that might reduce the readability, simplicity, elegance, and most certainly
the transferability of the current implementation.
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A. Legacy functions
The package monotone contains a function called legacy() that holds all PAVA implemen-
tations used in the comparison of Section 4. An overview of the implementations is provided
in Table 2. In this appendix, we provide a description of the origin of the algorithm, pro-
vide basic references, and indicate algorithmic particularities. Given the original function, if
available, we use the microbenchmark package to compare the original function to the legacy
function (microbenchmark parameters: times = 100, check = "equivalent", control =
list(warmup = 2)). These comparisons use all five data vector variants (see Table 4) with a
vector length of n = 1000 and 100 replications, i.e., 100 different data vectors. The following
list of implementations is in historical order as much as possible.

A.1. fitm() : legacy(x, w, type = 1)

The up-and-down-blocks implementation of the pool-adjacent-violators algorithm, written
in Fortran by Kruskal, can be found in mdscal() (Version 5MS, October 1971, Unchanged
from Version 4, January 1968) and later in kyst() (Modified for KYST by J. Kruskal and
J. Seery, 1973). These versions deviate slightly from the original unweighted description in
Kruskal (1964b). Both versions are quite similar and the actual PAVA algorithm is only a
part of the subroutine fitm(), which computes a nonmetric or ordinal transformation using
either primary or secondary approach to ties, that is, either untying tied values or keeping
tied values tied, respectively. The implementation uses a vector with elements wixi preset
to check for violations. Two large coding blocks handle either a down-block or an up-block
violation. Only when both violations are dealt with, which is a maximum of one up-block
coalescence and possibly more down-block fusions, the process is continued to the next, active,
element. In the end, the result vector is created from the non-violating blocks. The original
Fortran code is full of clever goto’s and inimitable memory management. Unfortunately, the
implementation does not exist as a single function.

A.2. wmrmnh() : legacy(x, w, type = 2)

In Van Waning (1976), several PAVA implementations are compared with respect to memory
requirements and speed. The subroutine wmrmnh() comes out as a winner (fast and without
additional memory requirements, the latter being quite important in the Seventies) and has
been implemented in smacof-1b() by van Waning and Stoop (Stoop and De Leeuw 1982). In
2014, the original Fortran code has been translated into C, after translations into languages
like MATLAB and R in intermediate years, by Groenen and Van den Burg for the use in
smacof (Mair, Groenen, and De Leeuw 2022). The clear and short implementation uses a
simple check to start the recovering of violations. If the vector is already ordered and a few
violations remain, this implementation is really fast. Unfortunately, if this is not the case,
only solving down-block violations and, moreover, using direct updates, results in a somewhat
slow implementation. The original Fortran code is still available (subroutine wmrmnh) and so
is the derived C code implementation supplied with the smacof package in wmonreg.c. The
original functions are significantly slower than the legacy function.
Unit: microseconds

expr min lq mean median uq max neval cld
original (Fortran) 13.3 44.4 198.5744 72.3 399.9 2485.6 50000 b

original (C) 14.4 45.7 199.7564 73.3 400.9 2761.1 50000 b
legacy 16.5 47.0 161.2173 66.4 319.6 655.0 50000 a
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A.3. amalgm() : legacy(x, w, type = 3)

The up-and-down-blocks algorithm was first described by Kruskal (1964b) and subsequently
drawn up in a flow chart by Barlow et al. (1972). The implementation was published
more than a decade later as Algorithm AS 149 by Cran (1980). The algorithm implements
amalgm(), short for “the amalgamation of means”, is written in ISO Fortran, and contains
just a little less goto’s than Kruskal’s original version. Like fitm(), this implementation
uses two large coding blocks to take care of the violations. However, there is a lot more
overhead in the calculation of block values in case of violations compared to fitm(). The
continuous updating of the result vector in both coding blocks does not help to create a fast
implementation. There is a small statistical difference between the original Fortran function
and the legacy function in C in favor of the legacy function.

Unit: microseconds
expr min lq mean median uq max neval cld

original 226.8 249.0 264.2632 256.7 280.8 5289.7 50000 b
legacy 220.0 241.5 256.5742 249.6 272.4 479.7 50000 a

A.4. pav() : legacy(x, w, type = 4)

Bril et al. publish Algorithm AS 206: Isotonic Regression in Two Independent Variables,
which implements the isotonic regression algorithm of Dykstra and Robertson (1982). Part of
the algorithm, more specifically part 206.1, contains the subroutine pav(), an implementation
of the pool-adjacent-violators algorithm, discussed by Barlow et al. (1972) (Bril et al. 1984),
but nevertheless quite different from fitm() and amalgm(). The implementation allocates
an abundance of memory for all possible vectors. For each violation, the complete vector is
shifted to the left, merging the violator with the preceding block into one new block, before
continuing with the next element. Only for completely ordered data or for data with only a
few violations this implementation is fast. Before using the legacy function and comparing it
with the original, a bug was removed to obtain proper results (for the enthusiast: the number
of block elements, contained in NW, was lacking from the shift operation in the loop with label
40). Both implementations are not very fast and the original function clearly outperforms
the legacy function.

Unit: microseconds
expr min lq mean median uq max neval cld

original 348.8 372.9 397.8627 386.7 411.8 861.4 50000 a
legacy 344.0 417.9 451.5271 441.7 477.0 913.6 50000 b

A.5. isoreg() : legacy(x, w, type = 5)

In their book on Modern Applied Statistics with S, Venables and Ripley (2013) describe the
function isoMDS(), which implements Kruskal’s multidimensional scaling algorithm (Kruskal
1964b). The monotone transformation in isoMDS() is contained in the function VR_mds_fn(),
written by Ripley in 1995, and later added as isoreg() (Ripley 2003) to the stats package
in R (R Core Team 2022). It is one of the shortest implementations and uses the cumulative
sum of the data elements to handle violation checks. After determining the smallest slope
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(violation), the violation is dealt with. For vectors in (almost) the right order, there is
quite some redundancy due to unnecessary calculations, and the implementation is not very
fast. Unfortunately, this implementation does not allow for weights, nor is the strategy with
cumulative sums claimed to be suitable for a weighted implementation. Comparison of the
original function with the legacy function reveals that there is indeed quite some overhead in
isoreg() when it comes to simple isotonic regression.

Unit: microseconds
expr min lq mean median uq max neval cld

original 32.0 35.4 87.39017 45.6 149.1 321.7 50000 b
legacy 9.6 12.0 32.96522 16.5 57.6 147.7 50000 a

A.6. isopava() : legacy(x, w, type = 6)

In 1997, Turner and Wollan developed a technique for estimating the location of the maxi-
mum of a set of data by applying isotonic regression to unimodal orderings. Code to effect
the necessary calculations was initially written in S-PLUS and later translated into R. In 2008,
Turner incorporated the code into the Iso package, including the functions pava() (Fortran-
based) and pava.sa() (R-based). We use the name isopava() to avoid name conflicts. The
implementation resembles wmrmnh() by Van Waning (1976), but lacks the speedy updates
as for each violation, the whole vector range is assessed, but only one up-block violations is
solved. Combined with direct updates, this implementation is by far the slowest implementa-
tion for simple linear orderings. A comparison between the legacy function and the original
function, the R function pava() containing the call to the compiled Fortran code, shows that
the latter is significantly faster, although both functions are quite slow (note the measuring
unit milliseconds instead of microseconds).

Unit: milliseconds
expr min lq mean median uq max neval cld

original 1.1273 1.1895 1.241744 1.2432 1.2642 2.7154 50000 a
legacy 1.2074 1.3053 1.361961 1.3608 1.3943 1.9876 50000 b

A.7. isotonic() : legacy(x, w, type = 7)

The R package spsurvey (Dumelle et al. 2022) contains a test for the parallel regression as-
sumption, which uses isotonic(), an R function for isotonic regression. The function was
written by Kincaid in 2001 and one-to-one translated into the legacy C function. The shortest
implementation of all only checks for up-block violations and is required to do so multiple
times. Each time, it is determined whether the vector is monotone or not. Although there
is some overhead in the violation checking, the short and clear approach might perform rea-
sonably fast, also because there are no weights involved. The comparison between the legacy
function and the original function is not completely fair, because isotonic() is completely
written in R, including three nested while loops.

Unit: microseconds
expr min lq mean median uq max neval cld

original 3743.8 5248.7 6450.36712 5916.3 7659.0 139887.7 50000 b
legacy 17.8 29.0 37.16069 34.5 43.1 174.7 50000 a
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A.8. isomean() : legacy(x, w, type = 8)

In package fdrtool (Strimmer 2008; Klaus and Strimmer 2021), part of the function monoreg()
uses C code to execute the PAVA algorithm. The referring function isomean() is ported from
R by Strimmer (https://github.com/cran/fdrtool/blob/master/src/isomean.c), origi-
nally written by Balabdaoui, Rufibach, and Santambrogio (2011), and also used in, for exam-
ple, misoreg (Klinglmueller 2010). The function is described as similar to isoreg(), with the
addition that monoreg() accepts weights. This seems to be an understatement considering
the substantial speed difference between the two implementations. The isomean() implemen-
tation uses additional memory for blocks, weights, and indices. There is only a down-block
violation check and an original formula for the block value update. Block values are expanded
in the final stage of the function. Comparing the legacy function with the original R and C
implementations shows that the R function monoreg() is clearly the slowest implementation,
mainly due to quite some overhead not needed for simple monotone regression.

Unit: microseconds
expr min lq mean median uq max neval cld

original (R) 97.6 113.7 120.26143 119.0 124.7 234.4 50000 c
original (C) 13.3 17.0 20.61951 21.3 23.2 3130.7 50000 b

legacy 12.9 16.8 20.02457 19.3 22.9 55.5 50000 a

A.9. pooledpava() : legacy(x, w, type = 9)

In the years 2012–2014 an accessible page on isotonic regression appears on Stat Wiki
(Wikipedia 2022). On that page, the pool-adjacent-violators algorithm is described in pseudo-
code and references are provided to implementations in R, Java, and Python. As for Python,
isotonic regression is implemented in scikit-learn (Pedregosa et al. 2011) in 2013 for which
Tulloch (2014b) creates a considerably faster Cython implementation, still using the initially
used active set method (cf. De Leeuw et al. 2009). Switching to a true PAVA implementation,
a whole team of contributors writes pooledpava(), which closely corresponds to the pseudo-
code of Wikipedia. pooledpava() uses additional memory, for indices, data, and weights,
does not use direct updates but expands the block values afterwards, and only checks for
down-block violations. The coalescence, however, handles one element at the time, slowing
the process down considerably. The legacy function closely follows the Cython implementa-
tion.

A.10. linearpava() : legacy(x, w, type = 10)

The Wikipedia (2022) team also works on linearpava(), apparently the fastest of the imple-
mentations. All versions, pooledpava(), linearpava(), and inplacepava() (to be discussed
hereafter), later appear in Julia (Tulloch 2014a). The linearpava() implementation is al-
most identical to isotonic(), but for the weights: it only checks for up-block violations,
but does so beyond the next element and no memory allocation is needed due to the direct
update approach. Despite the correspondence with isotonic() and the additional use of
weight, linearpava() is way faster than isotonic(). It clearly dismisses the Grotzinger
and Witzgall (1984) claim that direct updates lead to O(n2) algorithmic behavior. There is
not an original function available for R.

https://github.com/cran/fdrtool/blob/master/src/isomean.c
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A.11. inplacepava() : legacy(x, w, type = 11)

The scikit-learn branch undergoes another major change in 2016, when Varoquaux et al. (2016)
implement inplacepava() (originally called _inplace_contiguous_isotonic_regression),
an implementation matching linearpava() in terms of speed. The implementation of
inplacepava() is probably the most sophisticated implementation. The procedure checks for
an up-block violations first, and once found, it switches to checks for down-block violations.
The block values are kept at the first element location of a block, hence the term “inplace”.
It resembles the PAVA procedure described by Stout (2008) used for unimodal regression. In
the end, only the first elements of the blocks need to be expanded to the whole block. There
is no original implementation available for the use in R.

A.12. mdpava() : legacy(x, w, type = 12)

An implementation in C++, pava(), is from Danisch (2016), and part of a program (https:
//github.com/maxdan94/Density-Friendly) that is used for computing the density-friendly
decomposition (Tatti and Gionis 2015) and the densest subgraph in large sparse graphs (see
Danisch, Chan, and Sozio 2017). mdpava() (renamed to avoid name conflicts again) is the
shortest implementation, although it does not allow for weights. It only checks for down-
block violations (after one up-wards check) and expands the block values afterwards. Due
to its simplicity and the absence of weights, it makes a fast implementation. The original
function is faster than the legacy function, a difference we cannot explain, since both codes
are remarkably similar, and it makes mdpava() nearly as fast as monotone().

Unit: microseconds
expr min lq mean median uq max neval cld

original 8.2 9.699 10.49971 10.202 10.701 63.599 50000 a
legacy 12.9 14.700 15.54204 15.100 15.600 53.900 50000 b

A.13. reg1dl2() : legacy(x, w, type = 13)

In Stout (2000) an algorithm is introduced for unimodal regression, as noted earlier. A
good part of the algorithm consists of an isotonic regression procedure, called prefix isotonic
regression, that saves the block values for subsequent use to form the isotonic (and antitonic)
regressions for the unimodal regression problem. The actual paper is published years later
as Stout (2008) due to “a series of absurd delays” as Stout puts it on his website (https:
//web.eecs.umich.edu/~qstout/abs/UniReg.html). In 2017, the first version of the R
package UniIsoRegression is released that, among other things, performs the simple isotonic
regression. The code for the isotonic regression can be found on GitHub https://github.
com/xzp1995/UniIsoRegression. The function reg_1d_l2(), written in C++, has some
overhead for the simple isotonic regression, preserving memory for weights, weighted values,
block values, weighted squared values, level errors, and left and right block indices. The
function only checks for down violations, collects the pooled elements in a separate vector,
and thus expands the block values at the end into the result vector. The legacy function
differs from the original function in three aspects: The original function is written in C++,
a bug has been removed that invalidated the results, and overhead (needed for unimodal
monotone regression) was removed to increase speed. It seems that this latter adjustment
paid off.

https://github.com/maxdan94/Density-Friendly
https://github.com/maxdan94/Density-Friendly
https://web.eecs.umich.edu/~qstout/abs/UniReg.html
https://web.eecs.umich.edu/~qstout/abs/UniReg.html
https://github.com/xzp1995/UniIsoRegression
https://github.com/xzp1995/UniIsoRegression


Journal of Statistical Software – Code Snippets 25

Unit: microseconds
expr min lq mean median uq max neval cld

original 22.1 25.8 26.99130 26.3 26.9 93.1 50000 b
legacy 13.0 15.4 16.08711 15.9 16.4 46.1 50000 a

A.14. jbkpava() : legacy(x, w, type = 14)

The last contribution comes from one of the early adapters, as De Leeuw supervised the work
of Van Waning (1976), proved the correctness of Kruskal’s algorithms in case of ties (De
Leeuw 1977), published on techniques involving isotonic regression, like SMACOF() (Stoop and
De Leeuw 1982) and GIFI() (Gifi 1990), and contributed to software for these techniques
(Mair et al. 2022; De Leeuw and Mair 2009; Mair, De Leeuw, and Groenen 2019). In De
Leeuw (2016, 2017) (work in progress), a PAVA implementation in C, jbkpava(), is described
that is easily modified for other purposes and performs relatively uniformly under difference
problem instances (De Leeuw 2017). The implementation uses a C structure to keep block
information: values, weights, sizes, and previous and next block indices. Violations are solved
in both directions by constantly ensuring the blocks are either up-satisfied or down-satisfied.
jbkpava() is clearly the more readable and modern version of fitm(). The legacy function
is identical to the original function.
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