
JSS Journal of Statistical Software
January 2022, Volume 101, Issue 1. doi: 10.18637/jss.v101.i01

The poolr Package for Combining Independent and
Dependent p Values

Ozan Cinar
Maastricht University

Wolfgang Viechtbauer
Maastricht University

Abstract

The poolr package provides an implementation of a variety of methods for pooling
(i.e., combining) p values, including Fisher’s method, Stouffer’s method, the inverse chi-
square method, the binomial test, the Bonferroni method, and Tippett’s method. More
importantly, the methods can be adjusted to account for dependence among the tests
from which the p values have been derived assuming multivariate normality among the
test statistics. All methods can be adjusted based on an estimate of the effective number
of tests or by using an empirically-derived null distribution based on pseudo replicates that
mimics a proper permutation test. For the Fisher, Stouffer, and inverse chi-square meth-
ods, the test statistics can also be directly generalized to account for dependence, leading
to Brown’s method, Strube’s method, and the generalized inverse chi-square method. In
this paper, we describe the various methods, discuss their implementation in the package,
illustrate their use based on several examples, and compare the poolr package with several
other packages that can be used to combine p values.

Keywords: combining p values, dependent p values, R.

1. Introduction

“When a number of quite independent tests of significance have been made,
it sometimes happens that although few or none can be claimed individually as
significant, yet the aggregate gives an impression that the probabilities are on
the whole lower than would often have been obtained by chance. It is sometimes
desired, taking account only of these probabilities, and not of the detailed com-
position of the data from which they are derived, which may be of very different
kinds, to obtain a single test of the significance of the aggregate, based on the
product of the probabilities individually observed.” Fisher (1932, p. 99)

https://doi.org/10.18637/jss.v101.i01
https://orcid.org/0000-0003-0329-1977
https://orcid.org/0000-0003-3463-4063

2 The poolr Package for Combining Independent and Dependent p Values

The quote above, taken from the 4th edition of Fisher’s Statistical Methods for Research
Workers, reveals a longstanding interest by statisticians and researchers in methods for com-
bining the results of multiple significance tests. The goal is to combine the p values of several
significance tests – which are thematically related to each other in some way – into a single
p value that tests the significance of the collection as a whole. Numerous methods for this
purpose have been described in the literature (for some reviews, see Becker 1994; Cousins
2008; Rosenthal 1978).
Some well-known methods include those described by Fisher (1932), Stouffer, Suchman,
DeVinney, Star, and Williams Jr. (1949), and Wilkinson (1951). However, all of these methods
assume that the p values to be combined are derived from independent tests. This assumption
is known to be violated in many situations. For example, in genome-wide association studies
(GWAS), a million or more single-nucleotide polymorphisms (SNPs) are nowadays tested for
their association with some phenotype of interest. The p values from SNPs belonging to the
same gene or biological pathway can be combined to shift the focus of the study to higher
biological structures (Lehne, Lewis, and Schlitt 2011). However, SNPs show non-random as-
sociations known as linkage disequilibrium (LD) (Slatkin 2008), leading to dependence among
the tests and hence p values. Ignoring this dependence when combining the p values could
lead to overly conservative or to overly liberal Type I error rates (Alves and Hu 2014).
Methods for combining p values can be modified to account for dependence among the tests.
For example, Brown (1975) proposed using a Satterthwaite approximation for the distribution
of the test statistic of Fisher’s method that takes the degree of dependence into consideration.
Stouffer’s method can also be easily generalized to dependent tests (Strube 1985). Further-
more, several authors (Cheverud 2001; Nyholt 2004; Li and Ji 2005; Gao, Starmer, and
Martin 2008; Galwey 2009) have described methods to estimate the effective number of inde-
pendent tests using principal component analysis (PCA) of a correlation matrix that reflects
the dependence among the tests. Methods that assume independence can then be modified
based on such an estimate to take the degree of dependence into consideration. Finally, it
is also possible to combine dependent tests using empirically-derived null distributions using
resampling procedures (Lin 2005; Liu et al. 2010). Although the latter is often considered
a gold-standard technique, especially in the field of genomics, the increased computational
burden is an important drawback (Moskvina, O’Dushlaine, Purcell, Craddock, Holmans, and
O’Donovan 2011).
At the moment, there are various options available in R (R Core Team 2021) for combining
p values of independent and dependent tests. A large number of methods for combining
independent p values are implemented in the metap package (Dewey 2021). Three of these
methods (Fisher’s, Stouffer’s, and the logit-transformation method by George 1977) are also
available via the combine.test() function of the survcomp package (Schroeder, Culhane,
Quackenbush, and Haibe-Kains 2011), while the aggregation package (Yi and Pachter 2018)
also provides Fisher’s method in addition to the methods by Tippett (1931) and Lancaster
(1961). Independent p values can also be combined with the Fisher and Stouffer methods
using the metap() function of the gap package (Zhao 2007).
For dependent tests, EmpiricalBrownsMethod (Poole 2021) and CombinePValue (Dai, Leeder,
and Cui 2014) provide generalizations of Fisher’s method analogous to Brown (1975), but
avoid the numerical integration required by Brown’s method in various ways. However, both
implementations require access to the raw data, which limits their applicability to scenarios
where only the p values and some kind of correlation matrix reflective of the dependence struc-

Journal of Statistical Software 3

ture is available. The TFisher package also provides an implementation of Brown’s method,
and can work directly with a set of p values and a corresponding correlation matrix, but
the accompanying manuscript (Zhang, Tong, Landers, and Wu 2020) does not provide any
technical details about this aspect of the package. Finally, a method for combining (possibly
dependent) p values was recently described by Wilson (2019), which is implemented in the
harmonicmeanp package. We will examine all of these alternative packages in more detail
further below.
The primary aim of this paper, however, is to present a new package called poolr, which
provides a variety of methods for combining independent, and more importantly, dependent
p values. The package contains six “base methods” which can be adjusted based on four
different PCA-based approaches that estimate the effective number of tests. Furthermore,
the package can generate empirical null distributions for the base methods to calculate a
combined p value that accounts for the dependence among the tests. Finally, the package
includes implementations of Brown’s method, Strube’s generalization of the Stouffer method,
and the generalized inverse chi-square method.
The paper is structured as follows. In Section 2, we describe the methods that are imple-
mented in poolr. The functions and their arguments are then explained in Section 3. An
illustrative application of the poolr package is provided in Section 4, followed by a compari-
son, in Section 5, of the methods implemented in poolr with those in packages that also deal
with the combination of p values from independent and dependent tests. Finally, Section 6
concludes the paper with a discussion of some miscellaneous topics.

2. Methods
The problem to be addressed can be succinctly stated as follows. Let pi denote the one- or two-
sided p value corresponding to the i-th null hypothesis, H0i, where i = 1, . . . , k. We assume
that the tests being used to generate the pi values have nominal properties (i.e., the Type I
error rates are equal to the chosen α value). Therefore, we assume that pi ∼ Uniform(0, 1)
when H0i is true. The goal is to combine the p values into a single p value to test the joint
null hypothesis that H0i is true for all k tests,

H0 : ∩k
i=1 H0i,

versus the alternative
H1 : at least one H0i is false.

We will denote the combined p value with pc and use αc to denote the desired Type I error
rate to which pc is compared to determine whether the joint null should be rejected or not.

2.1. Base methods

Six “base methods” are available in poolr for this task. All but one of these methods assume
that the p values to be combined are independent of each other. These base methods can be
adjusted to consider the degree of dependence among the tests. We will start by introducing
the base methods and then continue with describing the possible adjustments.

4 The poolr Package for Combining Independent and Dependent p Values

Fisher’s method
Fisher’s method (Fisher 1932) is one of the most commonly used techniques for combining a
set of p values. Assuming that pi ∼ Uniform(0, 1), it can be shown that −2 ln(pi) is chi-square
distributed with 2 degrees of freedom (df). A combined test statistic can then be calculated
with

X2 = −2
k∑

i=1
ln(pi). (1)

Since the sum of independent chi-square distributed random variables is also chi-square dis-
tributed (with degrees of freedom equal to the sum of the degrees of freedom of the summands),
X2 follows a chi-square distribution with df = 2k under the joint null hypothesis. Therefore,
the combined p value is given by pc = 1 − F (X2, 2k) where F (·, f) denotes the cumulative
distribution function of a chi-square distribution with df = f .

Stouffer’s method
Stouffer’s method (Stouffer et al. 1949) is another well-known method for pooling p values.
Let Φ(·) denote the cumulative distribution function of a standard normal distribution and
Φ−1(·) its inverse. Given that the p values are uniformly distributed under the null hypothesis,
zi = Φ−1(1 − pi) follows a standard normal distribution, and thus

z =
k∑

i=1
zi/

√
k (2)

is also standard normal under the joint null. Note that we use 1 − pi in the computation of
zi such that this will yield a large positive value of zi when pi is small. The combined p value
can then be calculated with pc = 1 − Φ(z).

Inverse chi-square method
Analogous to Stouffer’s “inverse-normal” method, in the inverse chi-square method (not to be
confused with Fisher’s method) we transform the p values using the inverse of the cumulative
distribution function of a chi-square distribution with one degree of freedom, which we denote
by F −1(·, 1). Hence

X2 =
k∑

i=1
F −1(1 − pi, 1) (3)

follows a chi-square distribution with df = k and the combined p value is then given by
pc = 1 − F (X2, k).

Binomial test
The binomial test (Wilkinson 1951) follows naturally after noting that rejection versus non-
rejection of a true null hypothesis can be considered to be a Bernoulli distributed random
variable with the rejection probability denoted by α. Hence, when all k null hypotheses are
true, the number of tests that lead to rejection, say r, follows a Binomial distribution, that
is, r ∼ Binomial(k, α). Therefore, we can compute the combined p value with

pc =
k∑

x=r

(
k

x

)
αx(1 − α)k−x, (4)

Journal of Statistical Software 5

which gives the probability of obtaining r or more rejections (“successes”) under the joint
null. Hence, if pc ≤ αc, we reject the joint null. We can therefore regard the binomial test as
a method for examining whether there is an “excess of significant results” among the set of k
tests when assuming that the joint null hypothesis is true.
Note that α (i.e., the threshold for declaring an individual test as significant or not) can
be different from αc (the desired Type I error rate for the combined test). In fact, due to
the discrete nature of pc as computed with (4), the Type I error rate of the binomial test
is bounded by αc from above, that is, its actual Type I error rate may be lower than αc

(i.e., Pr(pc ≤ αc) ≤ αc for the binomial test, with strict equality holding for the Fisher,
Stouffer, and inverse chi-square methods).1

Bonferroni method

The last two methods to be described are more commonly thought of as multiple testing
correction techniques, but are equally applicable in the present context. The first is the
well-known Bonferroni correction (e.g., Goeman and Solari 2014), arguably one of the most
commonly applied multiple testing correction techniques in research. As used for that purpose,
the hypothesis-wise Type I error rate (i.e., α) is divided by the number of simultaneous tests
(i.e., k). Then α/k is used as the significance threshold for the individual tests, which can
be shown to control the family-wise Type I error rate (i.e., the probability of committing at
least one Type I error across all k tests is then at most α). Equivalently, we can multiply
the p value of each test by k and use α as the significance threshold (i.e., tests for which
pi × k ≤ α are significant).
Although the Bonferroni method is typically formulated as a multiple testing correction, it is
also possible to use it as a method for combining p values. The motivation is that the joint
null hypothesis should be rejected if at least one of the individual null hypotheses is rejected
(cf. Simes 1986). For this, we only need to consider the smallest p value of the tests whose
p values are to be combined. Therefore, the combined p value is then computed with

pc = min(1, min(p1, . . . , pk) × k),

which can be compared with αc to test the joint null hypothesis.
In contrast to the previous methods (and contrary to common belief), the Bonferroni method
does not assume independence among the tests (Goeman and Solari 2014). Hence, it controls
the Type I error rate (in the sense that Pr(pc ≤ αc) ≤ αc under the joint null) whether the
tests are independent or not. However, the method is slightly conservative under independence
(e.g., for αc = 0.05, the actual Type I error rate converges to limk→∞ 1 − (1 − 0.05/k)k =
1 − e−0.05 ≈ 0.0488) and it can be much more conservative when the tests are dependent.
The use of the Bonferroni correction as a method for combining p values shows that all
multiple testing correction methods (that directly operate on the p values) can also be used
as methods for combining p values. As long as one of the corrected p values leads to a
rejection, the joint null can also be rejected. Therefore, one could consider other multiple
testing correction methods that are less conservative than the Bonferroni method. The one

1Also note that when αc < αk, we can never reject the joint null with the binomial test. This may be
a non-issue when testing a single joint null hypothesis, but in some situations (e.g., genetics), we often test
many joint null hypotheses (e.g., for multiple genes), in which case αc may be set to a low value to correct for
multiple testing. It may then be impossible to reject a particular joint null hypothesis for which k is too low.

6 The poolr Package for Combining Independent and Dependent p Values

that immediately comes to mind is Holm’s method (Holm 1979), which is also valid under any
type of dependence structure among the tests and is less conservative than the Bonferroni
correction (Goeman and Solari 2014).
Holm’s procedure is a sequential “step-down” variant of the Bonferroni correction. It starts
by multiplying the smallest p value with the number of simultaneous tests. If this corrected
p value is larger than α, then none of the null hypotheses are rejected, whereas testing
continues with the second smallest p value if the first step does lead to a rejection (and so
on). As a method for combining p values (i.e., for testing the joint null hypothesis), Holm’s
procedure is therefore identical to the Bonferroni method, since only the smallest p value
(multiplied by k) needs to be considered.
Other multiple testing correction methods such as those described by Simes (1986), Hochberg
(1988), Hommel (1988), Benjamini and Hochberg (1995), and Benjamini and Yekutieli (2001)
can also be used as methods for combining p values in the same manner and, compared to the
Bonferroni/Holm method, can potentially lead to different conclusions when testing a joint
null hypothesis. However, the methods by Benjamini and Hochberg (1995) and Benjamini
and Yekutieli (2001) are not meant to control the family-wise Type I error rate, but the false
discovery rate, and the other methods will only control the family-wise Type I error rate
under independence or, in some cases, under the assumption of “positive dependence through
stochastic ordering” (PDS, Goeman and Solari 2014).

Tippett’s method

Tippett’s method (also known as the Dunn-Šidák correction, based on Dunn 1958 and Šidák
1967) is another multiple testing correction (Tippett 1931). As used for this purpose, the
hypothesis-wise error rate is set to 1 − (1 − α)1/k, which controls the family-wise Type I
error rate at α (i.e., it does not exhibit the slightly conservative behavior of the Bonferroni
method), but is only guaranteed to do so under independence. The joint null hypothesis would
therefore be rejected if min(pi) ≤ 1−(1−α)1/k. Correspondingly, the combined p value based
on Tippett’s method is given by

pc = 1 − (1 − min(p1, . . . , pk))k,

which should be compared with αc to test the significance of the joint null hypothesis.

2.2. Adjustments

In the previous section, we described six base methods for combining p values that are available
in the poolr package. Five of these methods are only guaranteed to control the Type I error
rate when the p values to be combined are independent. The Bonferroni correction is the
only exception to this, but its Type I error rate can be quite conservative when the tests are
dependent. Therefore, for all methods, we can apply certain adjustments that may help to
bring their Type I error rates closer to the nominal level even when the tests are dependent.
For these adjustments, we assume that the p values to be combined are derived from k
hypothesis tests with test statistics t1, . . . , tk that follow, under the joint null hypothesis,
a multivariate normal distribution with means equal to zero, variances equal to unity, and
correlation matrix Rt. For example, suppose we conduct k one-sample z tests of the null
hypotheses H0i : µi = µ0i for i = 1, . . . , k based on n observations of the random variables

Journal of Statistical Software 7

X1, X2, . . . , Xk, which themselves are multivariate normal. Then the scenario outlined above
is exactly fulfilled since the joint null distribution of the test statistics is then also multivariate
normal. Moreover, the correlations among the k random variables to be tested are exactly
identical to the correlations among the test statistics of the z tests.
The same scenario arises in other contexts, at least asymptotically. For example, when
conducting one- or two-sample t tests with interchanging variables, the test statistics converge
in distribution to multivariate normality. The same applies when fitting k regression models
with interchanging variables (each testing the association between some predictor and one of
k different response variables, or vice-versa, when testing the association between one of k
different predictors and some response variable). In fact, under the regularity conditions of
the multivariate central limit theorem (e.g., Van der Vaart 1998), the interchanging variables
do not have to follow a multivariate normal distribution for the test statistics to converge
to multivariate normality. Hence, the scenario covers not only linear but also other types of
regression models (e.g., logistic, Poisson). Moreover, while Rt is not exactly known in any
of these examples, the correlations among the interchanging variables can be collected in a
k × k correlation matrix denoted by Rx, which is a consistent estimate of Rt (in which case
the multidimensional central limit theorem still holds; Härdle and Simar 2015).
Hence, in what follows, we assume that the dependence among the tests and hence p values
arises through the correlations among a set of interchanging elements across the analyses, as
reflected by the correlation matrix Rx. The latter can be computed from the data at hand or
from reference databases in some fields (Liu et al. 2010).

Effective number of tests

When conducting k tests that are dependent in the manner described above, we can think
of this as a scenario where we are effectively conducting a smaller number of independent
tests. For example, suppose three SNPs are tested for their association with some phenotype
of interest. If the SNPs are in perfect linkage equilibrium (and hence there is no correlation
among the genotypes at the three locations), we are conducting three independent tests. On
the other hand, if the SNPs are in perfect LD, then we are actually conducting the same test
three times, leading to three identical p values, and hence the effective number of tests is one.
Depending on the degree of LD among the SNPs, the effective number of tests will therefore
lie somewhere between these two extremes. A variety of methods have been proposed based
on this concept to quantify the degree of dependence among multiple tests.
All of these methods start by applying PCA to Rx, the matrix with the correlations among
the interchanging elements (Cheverud 2001; Galwey 2009; Gao et al. 2008; Li and Ji 2005;
Nyholt 2004). Let λi denote the i-th eigenvalue thereof such that λ1 ≥ λ2 ≥ . . . ≥ λk. Then
Cheverud (2001) and Nyholt (2004) propose to estimate the effective number of tests with

mCN = 1 + (k − 1)
(

1 − Var(λ)
k

)
, (5)

where Var(λ) is the observed sample variance among the k eigenvalues. Alternatively, Li and
Ji (2005) suggest to calculate the effective number of tests with

mLJ =
k∑

i=1
h(|λi|), (6)

8 The poolr Package for Combining Independent and Dependent p Values

where h(x) = I(x ≥ 1) + (x − ⌊x⌋) and ⌊·⌋ is the floor function. Another approach, described
by Gao et al. (2008), estimates the effective number of tests with

mGAO = argmin
x∈{1,...,k}

(∑x
i=1 λi∑k
i=1 λi

> C

)
, (7)

where C is a user-defined parameter which is usually set to 0.995 (i.e., mGAO is the number
of principal components needed such that C × 100% of the total variance is accounted for).
Finally, according to Galwey (2009), the effective number of tests should be computed with

mGAL =

(∑k
i=1

√
λ′

i

)2

∑k
i=1 λ′

i

, (8)

where λ′
i = max[0, λi].

Although on first sight the calculations appear to be rather different, the methods have some
common properties. When Rx is an identity matrix, then λi = 1 for i = 1, . . . , k and hence
m = k (where m denotes one of the estimates of the effective number of tests described above).
The only exception to this is mGAO, as it may yield an estimate less than k, depending on
C and k (e.g., when C = 0.995 and k > 200, then mGAO < k). On the other hand, when all
correlations in Rx are equal to 1, then λ1 = k and λi = 0 for i = 2, . . . , k and hence m = 1
for all methods. However, differences in the value of m can arise for intermediate cases, as
we will illustrate later on.
Once m is calculated with one of the methods described above, the methods that were de-
scribed in Section 2.1 can be adjusted based on this quantity. In particular, the test statistic
for Fisher’s method is then computed with

X̃2 = m

k
× X2, (9)

where X2 is given by (1). Then X̃2 is assumed to follow a chi-square distribution with df = 2m
and hence the combined p value is now calculated with pc = 1 − F (X̃2, 2m). Similarly, for
the inverse chi-square method, we also use (9), except that X2 is then given by (3) and the
combined p value is calculated with pc = 1 − F (X̃2, m). The test statistic for Stouffer’s
method is adjusted with

z̃ =
√

m

k
× z,

where z is given by (2). The combined p value is then calculated with pc = 1 − Φ(z̃). For the
binomial method, we first compute r̃ = ⌊ r×m

k ⌋ and then obtain the combined p value with

pc =
m∑

x=r̃

(
m

x

)
αx(1 − α)m−x.

Instead of using the floor function, one could also compute r̃ using rounding, but we prefer the
former for its conservativeness. Finally, for the Bonferroni and Tippett methods, we simply
replace k with m and hence the combined p values are calculated with

pc = min(1, min(p1, . . . , pk) × m)

Journal of Statistical Software 9

and
pc = 1 − (1 − min(p1, . . . , pk))m,

respectively.
The adjustments are made in such a way so that they simplify to the base methods when
m = k. Moreover, when m = 1, the same test is effectively conducted k times, leading to k
identical p values (i.e., p ≡ p1 = . . . = pk). In this case, the “combined” p value based on the
adjusted methods will be identical to p, except for the binomial method, which either yields
a p value of 1 (when p > α, so that r̃ = 0) or equal to α (when p ≤ α, so that r̃ = 1).
However, it should be noted that these adjustments based on an estimate of the effective num-
ber of tests are ad hoc rather than principled techniques. In fact, one can construct examples
under which the assumed distributions of the adjusted test statistics do not correspond to
their analytically provable distributions. Moreover, even estimates of the effective number of
tests may not coincide with our expectations. For example, suppose that Rx is block-diagonal
with b blocks of sizes k1, . . . , kb with perfect correlation within blocks, that is,

Rx =

1k1

1k2
. . .

1kb

where 1kj

is a kj × kj matrix of all 1s. Then the eigenvalues of Rx are simply the block sizes
sorted by decreasing magnitude followed by k − b zeros. In this case, mLJ = b as we would
expect (i.e., the effective number of tests is then equal to the number of blocks), but this is
not guaranteed for the other estimators.2 Hence, adjustments based on an effective number
of tests have received some criticism in the literature (e.g., Dudbridge and Koeleman 2004;
Salyakina, Seaman, Browning, Dudbridge, and Muller-Myhsok 2005) and should therefore be
applied with caution.

Correlation among dependent p values

Although PCA is typically applied to Rx, one can also make the argument that this matrix
does not directly reflect the degree of dependence among the p values. In addition, one also
needs to consider the type and sidedness of the tests conducted. For example, suppose for
n observations of the random variables X1, X2, . . . , Xk, we conduct k one-sample t tests of
the null hypotheses H0i : µi = µ0i for i = 1, . . . , k. When conducting two-sided tests, then
the correlations among the p values are roughly approximated by |Rx|3 under the joint null
hypothesis, which we can see by means of a small simulation study:

R> set.seed(2468)
R> n <- 20
R> Rmat <- matrix(0.8, nrow = 2, ncol = 2)
R> diag(Rmat) <- 1

2When the blocks are of equal size, then both mLJ and mGAL are guaranteed to be equal to b, but still not
so for mCN and mGAO.

10 The poolr Package for Combining Independent and Dependent p Values

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(a) One−Sided Tests

ρ

E
st

im
at

ed
 C

or
re

la
tio

n

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

(a) Two−Sided Tests

ρ

E
st

im
at

ed
 C

or
re

la
tio

n

Figure 1: Estimated correlation between (a) one- and (b) two-sided p values from one-sample
t tests as a function of the true correlation (ρ) between the two variables tested (the gray
lines are based on the approximations ρ and |ρ|3, respectively).

R> P <- replicate(1000, {
+ X <- mvtnorm::rmvnorm(n, mean = c(0, 0), sigma = Rmat)
+ p.two.sided.1 <- t.test(X[, 1], alternative = "two.sided")$p.value
+ p.two.sided.2 <- t.test(X[, 2], alternative = "two.sided")$p.value
+ p.one.sided.1 <- t.test(X[, 1], alternative = "greater")$p.value
+ p.one.sided.2 <- t.test(X[, 2], alternative = "greater")$p.value
+ c(p.two.sided.1, p.two.sided.2, p.one.sided.1, p.one.sided.2)})
R> Rmat[1, 2]^3

[1] 0.512

R> cor(P[1,], P[2,])

[1] 0.5174277

On the other hand, for one-sided tests, the correlations among the p values are approximately
given by Rx, as we can see in this example:

R> Rmat[1, 2]

[1] 0.8

R> cor(P[3,], P[4,])

[1] 0.7889211

Journal of Statistical Software 11

Figure 1 shows that these approximations roughly hold for values of ρ between −0.99 and
0.99. The same approximations also apply when conducting two-sample t tests for a set of
k variables and for regression models (either with a single response variable and k different
predictors or vice-versa).
One could easily obtain even better approximations using more complex polynomials, but
under the assumptions stated earlier, we can derive the correlations among the p values
directly. In particular, assume [ti, tj]⊤ ∼ MVN

(
[0, 0]⊤,

[1 ρij

ρij 1

])
, where ρij is the element in

the i-th row and j-th column of Rt. Making use of the “law of the unconscious statistician”
(DeGroot and Schervish 2011), the correlation among the one-sided p values, pi = 1 − Φ(ti)
and pj = 1 − Φ(tj), is then given by

Cor(pi, pj) = 12
+∞¨

−∞

(1 − Φ(ti)) × (1 − Φ(tj))f(ti, tj) dti dtj − 3, (10)

since E[pi] = E[pj] = 1/2 and Var[pi] = Var[pj] = 1/12. For two-sided p values, pi =
2(1 − Φ(|ti|)) and pj = 2(1 − Φ(|tj |)), the correlation is given by

Cor(pi, pj) = 12
+∞¨

−∞

2(1 − Φ(|ti|)) × 2(1 − Φ(|tj |))f(ti, tj) dti dtj − 3. (11)

For example, if ρij ∈ (0, 0.3, 0.6, 0.9, 0.95), then Cor(pi, pj) is equal to (0.000, 0.288, 0.582,
0.892, 0.946) for one-sided and (0.000, 0.056, 0.250, 0.701, 0.831) for two-sided tests.
Hence, it may be advantageous to construct a matrix based on the correlations among the
p values using these “exact” computations before computing the effective number of tests
as described above. For this purpose, poolr provides appropriate lookup tables for (10) and
(11) that obviate the need for the numerical integration described above (which can be time
consuming when k is large, since k(k − 1)/2 correlations need to be computed).

Empirically-derived null distributions using pseudo replicates

Another approach to account for the dependence among the p values is to make use of re-
sampling methods such as permutation tests (e.g., Good 2013; Westfall and Young 1993).
In fact, in certain research areas (e.g., genomics), permutation tests are often regarded as a
gold-standard technique (Johnson et al. 2010; Moskvina et al. 2011).
The basic idea behind a permutation test is to reshuffle the data in such a way that relevant
features of the data structure are preserved (e.g., the correlation among multiple predictors
or response variables) except for the association to be tested. Based on the reshuffled data,
we then compute the test statistic of interest. By repeating this process a large number of
times, an empirical distribution of the test statistic under the null hypothesis is generated.
The proportion of values in this empirical distribution that are at least as extreme as the
observed test statistic (i.e., the one obtained with the original data) then yields the p value
of the permutation test.
As a simple example of how permutation tests can be used to combine p values, suppose we test
the association between the case-control status of a group of subjects with each of k SNPs in
a gene using the Cochran-Armitage trend test (e.g., Laird and Lange 2011; Ziegler and König

12 The poolr Package for Combining Independent and Dependent p Values

2010) with the goal of testing the significance of the gene as a whole. The smallest p value
among the k SNPs could then serve as the test statistic of interest. For the permutation test,
we randomly reshuffle the case-control status of the subjects (preserving the degree of LD
among the SNPs), computing the smallest p value of the trend tests for each rearrangement.
The permutation-based combined p value of the k tests is then given by the proportion of
times that the smallest p value under the permutation distribution is equal to or smaller than
the smallest observed p value (i.e., closer to 0 is more “extreme” for this test statistic).
Using the smallest p value as the test statistic of interest is a common approach in permutation
testing (e.g., Laird and Lange 2011; Ziegler and König 2010). It is easy to see that this is
equivalent to using either the Bonferroni or Tippett’s method as the test statistic of interest
(for the permutation test, the two methods yield an identical combined p value, since they are
both monotonic functions of min(p1, . . . , pk)). However, since no single method for combining
p values is optimal (i.e., none of the methods is a uniformly most powerful test; Birnbaum
1954), one could also consider using the combined p value from one of the other base methods
as the test statistic of interest (e.g., for GWAS, Moskvina et al. 2011 actually recommend to
base the permutation procedure on Fisher’s method).
Permutation-based methods are attractive, as they can be regarded as non-parametric, valid
under broad assumptions, and in some sense “exact” (Ernst 2004). If implemented correctly,
the test also automatically reflects relevant properties of the data such as the correlations
among the predictors or response variables (Conneely and Boehnke 2007). An important
drawback is the computational burden of the method. An exact permutation test requires
computing the test statistic of interest under every possible rearrangement of the data. How-
ever, the number of rearrangement is often so large as to make this computationally infea-
sible. Instead, a large number of random rearrangements are typically used. Regardless, to
obtain a stable approximation of the p value that would have been obtained with an exact
permutation test, we need to generate the test statistic under a large number of random re-
arrangements, which can still be a substantial computational burden (Moskvina et al. 2011),
especially when permutation tests need to be repeatedly conducted. For example, in GWAS,
one might easily test 20,000 or more genes in this manner. Unless heavily parallelized, these
computations can take days or even weeks to complete. Moreover, since the p values for the
genes would usually be corrected for multiple testing, it is necessary to estimate tail-area
p values accurately, possibly requiring 106–107 iterations per gene (e.g., using a Bonferroni
correction for multiple testing in 20,000 genes, the difference between .00001 × 20,000 = 0.2
and .000001 × 20,000 = 0.02 is highly relevant).
We can greatly speed up this process by using an empirically-derived null distribution that
is not based on the original data, but by using pseudo replicates (e.g., Lin 2005; Liu et al.
2010). The general logic of this procedure is as follows. As described earlier, we assume that
the joint null distribution of the test statistics of the k tests that were conducted can be
approximated by a multivariate normal distribution with a mean vector of zeros and that Rx

(the matrix with the correlations among the interchanging elements across the tests) serves as
an estimate of the variance-covariance matrix of these test statistics. Hence, let Z denote an
(s×k) matrix of s replicates of random data generated from such a k-dimensional multivariate
normal distribution and either P = 1 − Φ(Z) or P = 2 × (1 − Φ(|Z|)) – depending on whether
one- or two-sided tests were originally conducted – the matrix with the corresponding p values,
with Φ(·) applied element-wise. An empirically-derived null distribution can then be obtained
by applying a particular base method to the values in each row of P, yielding p1

c , . . . , ps
c. The

Journal of Statistical Software 13

combined p value is then given by

pc =
∑s

l=1 I(pl
c ≤ pobs

c) + 1
s + 1 , (12)

where pobs
c is the combined p value obtained from the observed p values and I(·) is the indicator

function. We add 1 in the numerator and denominator to avoid the possibility of obtaining a
combined p value equal to zero and to yield a test with the correct size (Phipson and Smyth
2010).
In comparison to a “proper” permutation test, this approach requires only a fraction of the
computation time. A further advantage of this method is that it does not require access to
the raw data, only the p values of the individual tests and the correlation matrix Rx (and in
some situations, the latter can be approximated based on reference data sets or other external
information).

Generalized methods derived under dependence
Finally, it is also possible to modify the Fisher, Stouffer, and inverse chi-square methods
so that the dependence structure is directly considered in the construction of the respective
test statistic and the calculation of the combined p value. The first method is based on
Brown (1975), who described a modification of Fisher’s method for pooling the results of k
one-sided one-sample z tests of the null hypotheses H0i : µi ≤ µ0i for the random variables
X1, X2, . . . , Xk that are assumed to have a joint multivariate normal distribution. This is in
fact an example of the scenario outlined earlier, since the joint null distribution of the test
statistics is then also multivariate normal and the correlations among the k random variables
to be tested are exactly identical to the correlations among the test statistics of the z tests
(i.e., Rx = Rt).
Under the joint null hypothesis, the X2 value of Fisher’s method then has expected value
E(X2) = 2k and variance Var(X2) = 4k + 2∑k−1

i=1
∑k

j>i Cov(−2 ln(pi), −2 ln(pj)), where the
covariance term is given by

Cov(−2 ln(pi), −2 ln(pj)) = 4
+∞¨

−∞

ln(1 − Φ(ti)) × ln(1 − Φ(tj))f(ti, tj) dti dtj − 4, (13)

which can be computed using numerical integration under the stated assumptions. Brown
(1975) then proposed to use a Satterthwaite approximation to the distribution of X2 based on
a scaled chi-square distribution, that is, assume that X2 ∼ cχ2

f (or equivalently, X2/c ∼ χ2
f),

where χ2
f is a chi-square random variable with df = f . In that case, X2 has expected

value cf and variance 2fc2 and we can equate these quantities to E(X2) and Var(X2),
respectively. Solving these equations for c and f yields f = 2(E(X2))2/Var(X2) and c =
Var(X2)/(2E(X2)). Following this, the combined p value can then be calculated with pc =
1 − F (X2/c, f).
As noted by Yang, Li, Williams, and Buu (2016), for two-sided p values, the only change
required is that we compute the covariance with

Cov(−2 ln(pi), −2 ln(pj)) = 4
+∞¨

−∞

ln(2(1−Φ(|ti|)))× ln(2(1−Φ(|tj |)))f(ti, tj) dti dtj −4. (14)

14 The poolr Package for Combining Independent and Dependent p Values

The rest of the procedure remains unchanged. While Brown (1975), Kost and McDermott
(2002), and Yang et al. (2016) have provided closed-form approximations to (13) and (14) to
avoid the numerical integration step, the poolr package makes use of lookup tables for (13)
and (14) that were precomputed using Gaussian quadrature to high precision (see below for
details). In this way, we provide an “exact”‘ implementation of Brown’s method that is
computationally efficient.
The next base method whose test statistic can be directly calculated under dependence is
Stouffer’s method, which was generalized to dependent tests by Strube (1985). For this, we
compute the combined test statistic with

z =
∑k

i=1 zi√
Var(∑k

i=1 zi)
(15)

and pc = 1 − Φ(z) as before. The difficulty then lies in computing the denominator, since
Var(∑k

i=1 zi) = k + 2∑k−1
i=1

∑k
j>i Cov(Φ−1(1 − pi), Φ−1(1 − pj)). For one-sided tests, Strube

(1985) suggested to approximate Cov(Φ−1(1 − pi), Φ−1(1 − pj)) by ρij , which follows directly
from the scenario outlined earlier, since

Cov(Φ−1(1 − pi), Φ−1(1 − pj)) =
+∞¨

−∞

Φ−1(1 − (1 − Φ(ti))) × Φ−1(1 − (1 − Φ(tj)))f(ti, tj) dti dtj = ρij . (16)

For two-sided tests, the covariance is then given by

Cov(Φ−1(1 − pi), Φ−1(1 − pj)) =
+∞¨

−∞

Φ−1(1 − 2(1 − Φ(|ti|))) × Φ−1(1 − 2(1 − Φ(|tj |)))f(ti, tj) dti dtj , (17)

which can be evaluated using numerical integration.
However, two aspects of Strube’s method when applied to two-sided tests require further
attention. First, (17) is an improper integral with an infinite discontinuity when either ti or
tj is equal to 0, which raises the concern that (17) is divergent. Although we cannot prove
this analytically, we can however demonstrate via simulation methods that (17) converges to
a finite and fixed value and hence (17) must be convergent.3 Second, Strube’s method makes
the implicit assumption that the zi values are multivariate normal, so that the numerator
in (15) is also normal. For one-sided tests, this is unobjectionable, at least for the assumed
scenario where the test statistics are multivariate normal (in which case the transformation of
the one-sided p values to the zi values simply yields back the original test statistics). However,
for two-sided tests, the zi values are not multivariate normal (although each zi is marginally
normal), even when the test statistics were so to begin with. As a result, the numerator of
(15) and hence z is not normal. Asymptotically (i.e., for sufficient large k), normality of z may

3For this, we generate a large number of random (ti, tj) pairs from a bivariate normal distribution with
known correlation, transform these values into zi and zj , and then compute their covariance. For an increasing
number of samples, the covariance between zi and zj converges to a finite and fixed value that is identical to
the covariance derived via numerical integration of (17).

Journal of Statistical Software 15

still hold, but demonstrating this for particular cases requires further assumptions underlying
versions of the central limit theorem for dependent random variables (e.g., Billingsley 1995;
Resnick 2014). For example, for tests based on data with a spatial or temporal configuration,
this would require that the degree of dependence decays with the distance between the data
points at a sufficiently fast rate. However, characterizing the specific conditions under which
the asymptotic normality of z can be safely assumed would require further work. For these
reasons, we would caution against the use of Strube’s method for combining the results of
two-sided tests at the moment.
As an alternative, one can generalize the inverse chi-square method in an analogous manner
as was done by Brown for Fisher’s method. In particular, for the test statistic (3), it generally
holds that E(X2) = k and Var(X2) = 2k + 2∑k−1

i=1
∑k

j>i Cov(F −1(1 − pi, 1), F −1(1 − pj , 1))
under the joint null hypothesis. For one- and two-sided tests, the covariance is given by

Cov(F −1(1 − pi, 1), F −1(1 − pj , 1)) =
+∞¨

−∞

F −1(1 − (1 − Φ(ti)), 1) × F −1(1 − (1 − Φ(tj)), 1)f(ti, tj) dti dtj − 1 (18)

and

Cov(F −1(1 − pi, 1), F −1(1 − pj , 1)) =
+∞¨

−∞

F −1(1 − 2(1 − Φ(|ti|)), 1) × F −1(1 − 2(1 − Φ(|tj |)), 1)f(ti, tj) dti dtj − 1, (19)

respectively, which we can again evaluate numerically under the assumption of multivariate
normality of the original test statistics. As in Brown’s method, we use a Satterthwaite
approximation with f = 2(E(X2))2/Var(X2) and c = Var(X2)/(2E(X2)) and then compute
the combined p value with pc = 1 − F (X2/c, f).

3. Implementation
This section describes the functions in the poolr package (Cinar and Viechtbauer 2022) which
can be used to apply the methods presented in the previous section. The package is available
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/
package=poolr and can be installed and loaded in the usual manner:4

R> install.packages("poolr")
R> library("poolr")

The poolr package is primarily used via six functions that implement the “base methods”
described in Section 2.1, namely:

• fisher(): for Fisher’s method,

• stouffer(): for Stouffer’s method,
4The development version of the package is hosted on GitHub (https://github.com/ozancinar/poolr).

https://CRAN.R-project.org/package=poolr
https://CRAN.R-project.org/package=poolr
https://github.com/ozancinar/poolr

16 The poolr Package for Combining Independent and Dependent p Values

• invchisq(): for the inverse chi-square method,

• binomtest(): for the binomial test,

• bonferroni(): for the Bonferroni method,

• tippett(): for Tippett’s method.

The functions feature a consistent syntax. The following are the arguments of the fisher()
function as an illustration.

R> args(fisher)

function (p, adjust = "none", R, m, size = 10000, threshold,
side = 2, batchsize, nearpd = TRUE, ...)

NULL

We will explain the purpose of the various arguments in the following sections.

3.1. Combining independent p values

Independent p values can be combined by supplying a vector of p values to the p argument
of the base functions. For example:

R> pvals <- c(0.02, 0.03, 0.08, 0.20)
R> (res <- fisher(pvals))

combined p-values with: Fisher's method
number of p-values combined: 4
test statistic: 23.107 ~ chi-square(df = 8)
adjustment: none
combined p-value: 0.003228942

The results are stored as a list in an object of class ‘poolr’ that is printed with the S3 method
print.poolr(). The output displays the combined p value along with additional information
about the methods used. The information shown in the third line varies with respect to the
base function. The fisher(), stouffer(), and invchisq() functions display the respective
test statistic and its assumed distribution under the joint null from which the combined p value
is derived, whereas the output of the binomtest() function shows the number of significant
individual p values.5 The remaining functions, bonferroni() and tippett(), simply indicate
the minimum individual p value. If only the combined p value is of interest, it is stored as
list element p. Hence, for these toy data, the combined p value for all six methods can be
obtained with:

R> fun <- c("fisher", "stouffer", "invchisq", "binomtest", "bonferroni",
+ "tippett")
R> round(sapply(fun, function(f) do.call(f, list(p = pvals))$p), digits = 5)

5For binomtest(), the default value of α (i.e., the significance level of the individual tests) is 0.05. A
different value of α can be passed to the function via the ... argument (e.g., binomtest(p, alpha = 0.01)).

Journal of Statistical Software 17

fisher stouffer invchisq binomtest bonferroni tippett
0.00323 0.00100 0.00507 0.01402 0.08000 0.07763

As the example shows, conclusions can differ (e.g., for αc = 0.05) depending on the method
used for combining the p values.
Note that one should not conclude based on this example that the Bonferroni and Tippett
methods are always less powerful than the other methods. Among other things, the power
of the methods depends on whether the “signal” is concentrated in one or a few tests or
distributed across all or many of them. In the former case, the Bonferroni and Tippett
methods will tend to be more powerful, which we can illustrate with a simple simulation
where we repeatedly generate normally distributed test statistics with mean 0 for all but one
of k tests, turn these test statistics into (two-sided) p values, apply each method, and obtain
its empirical rejection rate:

R> k <- 10
R> iters <- 10000
R> set.seed(8780)
R> Z <- replicate(iters, rnorm(k, mean = c(3, rep(0, k - 1)), sd = 1))
R> P <- 2 * pnorm(abs(Z), lower.tail = FALSE)
R> sapply(fun, function(f) mean(apply(P, 2,
+ function(pvals) do.call(f, list(p = pvals))$p) <= 0.05))

fisher stouffer invchisq binomtest bonferroni tippett
0.4341 0.2183 0.4858 0.0605 0.5926 0.5966

On the other hand, when the null hypothesis is false for all of the tests, then Fisher’s, Stouf-
fer’s, and the inverse chi-square method will tend to have higher power:

R> Z <- replicate(iters, rnorm(k, mean = rep(1, k), sd = 1))
R> P <- 2 * pnorm(abs(Z), lower.tail = FALSE)
R> sapply(fun, function(f) mean(apply(P, 2,
+ function(pvals) do.call(f, list(p = pvals))$p) <= 0.05))

fisher stouffer invchisq binomtest bonferroni tippett
0.5549 0.5114 0.5467 0.2393 0.3006 0.3053

3.2. Combining dependent p values
Under dependence, the base functions can be modified using the adjustment techniques de-
scribed in Section 2.2. In the following sections, we will demonstrate the use of these tech-
niques on a set of correlated p values generated below. We will assume that there are k = 5
correlated tests and the test statistics derived from these tests follow a multivariate normal
distribution with zero means and unit variances (i.e., the joint null hypothesis is true) and
that the test statistics have a constant correlation of 0.7.

R> Rmat <- matrix(0.7, nrow = 5, ncol = 5)
R> diag(Rmat) <- 1
R> Rmat

18 The poolr Package for Combining Independent and Dependent p Values

[,1] [,2] [,3] [,4] [,5]
[1,] 1.0 0.7 0.7 0.7 0.7
[2,] 0.7 1.0 0.7 0.7 0.7
[3,] 0.7 0.7 1.0 0.7 0.7
[4,] 0.7 0.7 0.7 1.0 0.7
[5,] 0.7 0.7 0.7 0.7 1.0

We can then simulate the test statistics and corresponding (two-sided) p values with:

R> ti <- c(mvtnorm::rmvnorm(1, mean = rep(0, 5), sigma = Rmat))
R> round(ti, digits = 5)

[1] 1.11566 1.02047 0.59187 2.04723 2.08762

R> pvals <- 2 * pnorm(abs(ti), lower.tail = FALSE)
R> round(pvals, digits = 5)

[1] 0.26457 0.30750 0.55394 0.04064 0.03683

Coincidentally, when (incorrectly) assuming independence, all methods except the ones by
Bonferroni and Tippett yield a significant combined p value for these data:

R> round(sapply(fun, function(f) do.call(f, list(p = pvals))$p), digits = 5)

fisher stouffer invchisq binomtest bonferroni tippett
0.03770 0.02142 0.04782 0.02259 0.18416 0.17109

Adjusting based on the effective number of tests

As a first type of adjustment, we can estimate the effective number of tests (m) and incorpo-
rate this information into the methods for combining the p values. For this, we set argument
adjust to "nyholt", "liji", "gao", or "galwey" corresponding to (5), (6), (7), and (8),
respectively.6 Argument R is then used to specify the correlation matrix of the test statistics.
The estimate of m is provided in the output along with a reference to the article where the
method was first described. Below is an example where we adjust Fisher’s method using an
estimate of the effective number of tests based on Li and Ji (2005):

R> fisher(pvals, adjust = "liji", R = Rmat)

combined p-values with: Fisher's method
number of p-values combined: 5
test statistic: 11.525 ~ chi-square(df = 6)
adjustment: effective number of tests (m = 3; Li & Ji, 2005)
combined p-value: 0.0734

6When using the Gao adjustment, C = 0.995 by default, but a different value of C can be passed to the
function via the ... argument (e.g., fisher(pvals, adjust = "gao", R = Rmat, C = 0.95)).

Journal of Statistical Software 19

The base functions employ the meff() function of the poolr package to estimate the effective
number of tests during this process. This function can also be called directly if only the
estimate of m is of interest. For example, we can quickly compare the estimates of m across
the different estimation methods with:

R> methods <- c("nyholt", "liji", "gao", "galwey")
R> sapply(methods, function(method) meff(Rmat, method = method))

nyholt liji gao galwey
3 3 5 3

All estimates agree here except for the method by Gao et al. (2008), which gives the somewhat
surprising estimate of m = k.
For clarity, we should note that Rmat is treated here synonymously as the correlation matrix
among the test statistics, Rt, and as the correlation matrix of the interchanging elements
across the five tests, Rx (e.g., when running five regression models, each testing the association
between some predictor of interest and one of five different response variables). Assuming
that the size of the sample (based on which the test statistics were obtained) was sufficiently
large, the distinction between these two correlation matrices is negligible. However, this will
not always be true and we will consider in more detail the relationship between these two
types of correlation matrices in the discussion section.
Furthermore, in the example above, we used the correlation matrix among the test statistics
(Rt) for estimating m. Earlier, we discussed the possibility of using the correlations among
the p values instead. For the multivariate normal case, the mvnconv() function can be used
to obtain these correlations (based on Equations 10 and 11).
The function has the following syntax: mvnconv(R, side = 2, target, cov2cor = FALSE).
The correlation matrix of the test statistics is passed to the function via the R argument, while
argument side specifies the sidedness of the tests (i.e., 1 or 2 for one- or two-sided tests, re-
spectively). The target argument is a character string to specify for which target statistic
the covariance matrix should be obtained, and logical argument cov2cor can be set to TRUE if
the covariance matrix should be converted into the corresponding correlation matrix. For the
present purposes, we would like to convert Rmat into the correlation matrix of the two-sided
p values (based on Equation 11), so we set target = "p" and cov2cor = TRUE:

R> (Rpmat <- mvnconv(Rmat, target = "p", cov2cor = TRUE))

[,1] [,2] [,3] [,4] [,5]
[1,] 1.0000000 0.3589436 0.3589436 0.3589436 0.3589436
[2,] 0.3589436 1.0000000 0.3589436 0.3589436 0.3589436
[3,] 0.3589436 0.3589436 1.0000000 0.3589436 0.3589436
[4,] 0.3589436 0.3589436 0.3589436 1.0000000 0.3589436
[5,] 0.3589436 0.3589436 0.3589436 0.3589436 1.0000000

The resulting correlation matrix can then be used in combination with any of the base func-
tions and methods for estimating the effective number of tests. For example:

R> fisher(pvals, adjust = "liji", R = Rpmat)

20 The poolr Package for Combining Independent and Dependent p Values

combined p-values with: Fisher's method
number of p-values combined: 5
test statistic: 15.367 ~ chi-square(df = 8)
adjustment: effective number of tests (m = 4; Li & Ji, 2005)
combined p-value: 0.0524

Finally, to provide additional flexibility, the base functions also have an argument called m
which allows the user to specify an estimate of the effective number of tests (e.g., as obtained
with some other method not implemented in the poolr package). Returning to the earlier
example where we used Rmat directly as input, these two approaches are therefore synonymous
(output omitted):

R> fisher(pvals, adjust = "liji", R = Rmat)
R> fisher(pvals, m = meff(Rmat, method = "liji"))

Adjusting based on empirically-derived null distributions

When setting adjust = "empirical", the combined p value is obtained via empirically-
derived null distributions as described earlier. Argument R is then used to specify the correla-
tion matrix of the test statistics, while argument size specifies the size of the null distribution
that should be generated (s = 10,000 by default). The latter is done by the empirical()
function, which uses (a slightly simplified version of) mvtnorm::rmvnorm() to generate the
s × k matrix of pseudo replicates of the test statistics, converts them to one- or two-sided
p values (depending on the side argument, which is set to 2 by default), and then applies
the respective base method to each row. For example, we can apply this approach to Fisher’s
method with:

R> fisher(pvals, adjust = "empirical", R = Rmat)

combined p-values with: Fisher's method
number of p-values combined: 5
test statistic: 19.208 ~ chi-square(df = 10)
adjustment: empirical distribution (size = 10000)
combined p-value: 0.106 (95% CI: 0.0996, 0.112)

Under the assumption that the combined p value represents an estimate of the “true” com-
bined p value that would have been obtained under an infinite number of replications, the
function also provides a confidence interval for the combined p value based on the Clopper
and Pearson (1934) method (using stats::binom.test() for the computations).
Although generating the null distribution using pseudo replicates is much faster than perform-
ing a “proper” permutation test using the raw data, it is still computationally more demanding
than the other adjustment techniques. The main factor that affects the computation time is
the size of the empirical distribution generated. To reduce the computational burden, Liu
et al. (2010) proposed a stepwise algorithm that starts with a relatively small null distribution
and only proceeds to generate a larger distribution when the combined p value is small. The
poolr package also provides the possibility to use such a stepwise algorithm via the size and
threshold arguments of the base functions. In particular, for j = 1, . . . , length(size),

Journal of Statistical Software 21

1. estimate the combined p value based on size[j],

2. if the combined p value is ≥ than threshold[j], stop (and report the combined p value),
otherwise go back to 1.

By setting size to a vector with increasing values (e.g., size = c(1000, 100000, 10000000))
and threshold to decreasing values (e.g., threshold = c(0.10, 0.01, 0)), one can quickly
obtain a fairly accurate estimate of the combined p value if it is far from significant (e.g., ≥ .10),
but hone in on a more accurate estimate that is closer to 0. Note that the last value of
threshold should be 0 (and is forced to be inside of the functions), so that the algorithm
is guaranteed to terminate (hence, one can also leave out the last value of threshold, so
threshold = c(0.10, 0.01) would also work in the example above). For example:

R> fisher(pvals, adjust = "empirical", R = Rmat,
+ size = c(1000, 10000, 100000), threshold = c(0.10, 0.01))

combined p-values with: Fisher's method
number of p-values combined: 5
test statistic: 19.208 ~ chi-square(df = 10)
adjustment: empirical distribution (size = 1000)
combined p-value: 0.116 (95% CI: 0.0967, 0.137)

Since the combined p value is just a bit larger than 0.10 (the first threshold) in this example,
we have decreased the computational burden, since only 1000 values of the null distribution
needed to be generated. While the difference may be hardly noticeable in the present case,
when applying such methods repeatedly under circumstances where many combined p values
are likely to be insignificant (e.g., for a large number of genes in the GWAS setting), this
approach can help to reduce the total computation time considerably. For example:7

R> Z <- mvtnorm::rmvnorm(1000, mean = rep(0, 5), sigma = Rmat)
R> P <- 2 * pnorm(abs(Z), lower.tail = FALSE)
R> system.time(p <- apply(P, 1, function(pvals)
+ fisher(pvals, adjust = "empirical", R = Rmat)$p))

user system elapsed
53.780 0.004 53.784

R> system.time(p <- apply(P, 1, function(pvals)
+ fisher(pvals, adjust = "empirical", R = Rmat,
+ size = c(1000, 10000, 100000), threshold = c(0.10, 0.01))$p))

user system elapsed
17.198 0.051 17.251

Generating the null distribution requires simulating a size×k matrix of pseudo test statistics.
By default, this is done in a single step, so this entire matrix needs to be held in memory

7All timings reported in this paper were obtained by running the code on an Intel Xeon E5-2630v4 processor.

22 The poolr Package for Combining Independent and Dependent p Values

temporarily. When size and k are very large, doing so can lead to memory allocation
problems. In cases where this problem occurs, it can be avoided by dividing the process that
generates the null distribution into multiple batches with smaller sizes, which can be done by
setting the batchsize argument to some value smaller than size. Doing so reduces memory
usage, but leads to an increase in the computation time:

R> system.time(p <- apply(P, 1, function(pvals)
+ fisher(pvals, adjust = "empirical", R = Rmat, batchsize = 100)$p))

user system elapsed
63.160 0.016 63.177

Note that size does not need to be an even multiple of batchsize (the size of the last batch
will be adjusted appropriately such that the null distribution will always be of the requested
size).

Adjusting based on generalized methods

As discussed earlier, the Fisher, Stouffer, and inverse chi-square methods can also be directly
generalized to account for dependence. To make use of these methods, we set adjust =
"generalized" in the respective base functions. Moreover, Rt needs to be converted into
a matrix that contains the covariances among the appropriate transformation of the test
statistics before it can be passed to the functions via the R argument. In principle, this
step requires repeatedly solving double integrals numerically, which is computationally very
demanding. This problem can be easily sidestepped via a well-known memoization technique,
namely the use of a lookup table that contains pre-computed values of these covariances for
the various “target” statistics. The dataset mvnlookup in the poolr package contains such a
table:

R> head(mvnlookup)

rhos m2lp_1 m2lp_2 z_1 z_2 chisq1_1 chisq1_2 p_1 p_2
1 1.000 4.0000 4.0000 1.000 1.0000 2.0000 2.0000 0.0833 0.0833
2 0.999 3.9949 3.9908 0.999 0.9811 1.9971 1.9956 0.0832 0.0830
3 0.998 3.9901 3.9823 0.998 0.9735 1.9944 1.9915 0.0831 0.0826
4 0.997 3.9854 3.9738 0.997 0.9669 1.9917 1.9875 0.0831 0.0823
5 0.996 3.9806 3.9653 0.996 0.9610 1.9891 1.9836 0.0830 0.0819
6 0.995 3.9758 3.9568 0.995 0.9555 1.9864 1.9796 0.0829 0.0816

Columns m2lp_1 and m2lp_2 correspond to (13) and (14), columns z_1 and z_2 to (16)
and (17), and columns chisq_1 and chisq_2 to (18) and (19), respectively. The last two
columns are the covariances among one- and two-sided p values, which we already made use
of earlier (or rather, the correlations).
The values in the lookup table were computed using Gauss-Legendre quadrature with the help
of the pracma package (Borchers 2021). For this, we used a very fine grid with dimensions
1000×1000 on the interval [−5, 5] for both test statistics. Total construction time of the lookup

Journal of Statistical Software 23

table was about 45 hours using 18 cores in parallel on a workstation with two Intel Xeon E5-
2630v4 processors. Values were cross-checked using adaptIntegrate() from the cubature
package (Narasimhan, Johnson, Hahn, Bouvier, and Kiêu 2021) and via simulations.
Instead of using the table directly, mvnconv() conveniently allows the transformation of an
entire Rt matrix into the required covariance matrix. The Rt matrix is passed to the function
via the R argument, target should be set to either "m2lp", "z", or "chisq1" for functions
fisher(), stouffer(), and invchisq(), respectively, and argument side to 1 or 2 depending
on the sidedness of the tests (with 2 being the default). For example:

R> mvnconv(Rmat, target = "m2lp")

[,1] [,2] [,3] [,4] [,5]
[1,] 4.0000 1.9286 1.9286 1.9286 1.9286
[2,] 1.9286 4.0000 1.9286 1.9286 1.9286
[3,] 1.9286 1.9286 4.0000 1.9286 1.9286
[4,] 1.9286 1.9286 1.9286 4.0000 1.9286
[5,] 1.9286 1.9286 1.9286 1.9286 4.0000

For convenience (and to reduce potential usage errors), when mvnconv() is used within a call
to a base function with adjust = "generalized", the target argument is automatically set
to the appropriate option. Hence, the following code will run the appropriate “generalized”
version of each test:

R> fisher(pvals, adjust = "generalized", R = mvnconv(Rmat))

combined p-values with: Fisher's method
number of p-values combined: 5
test statistic: 6.559 ~ chi-square(df = 3.415)
adjustment: Brown's method
combined p-value: 0.115

R> stouffer(pvals, adjust = "generalized", R = mvnconv(Rmat))

combined p-values with: Stouffer's method
number of p-values combined: 5
test statistic: 1.283 ~ N(0,1)
adjustment: Strube's method
combined p-value: 0.0998

R> invchisq(pvals, adjust = "generalized", R = mvnconv(Rmat))

combined p-values with: inverse chi-square method
number of p-values combined: 5
test statistic: 3.78 ~ chi-square(df = 1.69)
adjustment: Satterthwaite approximation
combined p-value: 0.116

24 The poolr Package for Combining Independent and Dependent p Values

Although the results from Strube’s method appear sensible here, we reiterate our caution
about the use of this method for two-sided tests.
Note that all of the methods implemented in the poolr package are equally applicable to
one-sided tests. For example, suppose that the test statistics simulated earlier were used to
test one-sided hypotheses such that only positive values could lead to rejection. Then the
one-sided p values would be:

R> pvals <- pnorm(ti, lower.tail = FALSE)
R> round(pvals, digits = 5)

[1] 0.13228 0.15375 0.27697 0.02032 0.01842

Only two minor changes are now required to the code above. First, whenever mvnconv() is
called, we need to set argument side = 1, so that the appropriate column from the lookup
table is used for converting the correlations to the covariances. For example:

R> fisher(pvals, adjust = "generalized", R = mvnconv(Rmat, side = 1))

combined p-values with: Fisher's method
number of p-values combined: 5
test statistic: 7.18 ~ chi-square(df = 2.747)
adjustment: Brown's method
combined p-value: 0.0546

Moreover, when using adjust = "empirical" in any of the base functions, the side argu-
ment needs to be set in the same manner, so that the pseudo replicates of the test statistics
are also appropriately converted into one-sided p values. For example:

R> fisher(pvals, adjust = "empirical", R = Rmat, side = 1)

combined p-values with: Fisher's method
number of p-values combined: 5
test statistic: 26.14 ~ chi-square(df = 10)
adjustment: empirical distribution (size = 10000)
combined p-value: 0.0539 (95% CI: 0.0495, 0.0585)

4. Example
The example above was based on simulated data. In this section, we illustrate the use of
the poolr package using real data from a candidate-gene study by Van Assche et al. (2017)
who examined the association between 4947 SNPs and depressive symptoms, as measured
with the Center of Epidemiologic Studies Depression Scale (CES-D Scale), in a sample of 982
adolescents. Here, we focus on the 23 SNPs that are part of the glutamate-related GRID2IP
gene and the 886 adolescents with complete data on these 23 SNPs.
Object grid2ip.geno is a data frame with the genotypes of the subjects for these 23 SNPs.
For example, the genotypes of the first six subjects for the first five SNPs are:

Journal of Statistical Software 25

R> grid2ip.geno[1:6, 1:5]

rs10267908 rs112305062 rs117541653 rs11761490 rs11773436
1 T/T G/G G/G G/G G/G
2 A/T G/G G/G G/G G/G
3 A/A A/G G/G G/G A/G
4 A/T G/G G/G G/G G/G
5 A/T G/G G/G G/G G/G
7 A/T G/G G/G G/G A/G

The corresponding (log-transformed) CES-D values of these subjects are contained in the
vector grid2ip.pheno. For the first six subjects, the values are:

R> head(grid2ip.pheno)

[1] 2.3025851 2.1972246 0.6931472 1.9459101 1.0986123 3.0910425

Using the genetics package (Warnes 2021), we can transform the genotypes into the number
of minor alleles in each SNP with:

R> G <- as.data.frame(lapply(grid2ip.geno, function(snp)
+ genetics::genotype(snp)))
R> X <- as.data.frame(lapply(G, function(snp)
+ genetics::allele.count(snp)[, 2]))
R> X[1:6, 1:5]

rs10267908 rs112305062 rs117541653 rs11761490 rs11773436
1 2 0 0 0 0
2 1 0 0 0 0
3 0 1 0 0 1
4 1 0 0 0 0
5 1 0 0 0 0
6 1 0 0 0 1

Finally, using the number of minor alleles as predictors, we can fit an additive model (Laird
and Lange 2011) to each SNP, with the (log-transformed) CES-D values as response variable:

R> pvals <- sapply(X, function(x) coef(summary(lm(grid2ip.pheno ~ x)))[2, 4])

The p values of the first five SNPs are:

R> pvals[1:5]

rs10267908 rs112305062 rs117541653 rs11761490 rs11773436
0.011366143 0.506359643 0.123029250 0.099923843 0.001687646

Based on the genotypes, the corresponding 23 × 23 LD correlation matrix can be constructed
with:

26 The poolr Package for Combining Independent and Dependent p Values

rs10267908
rs112305062
rs117541653

rs11761490
rs11773436
rs11980487
rs12535126
rs12702520
rs13224458
rs13308709

rs2347781
rs28631414

rs2881698
rs34411495

rs4720679
rs4724818
rs6463568
rs6946362

rs73059362
rs7791451
rs7804541
rs7808436

rs78156368

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

+0.0

+0.1

+0.2

+0.3

+0.4

+0.5

+0.6

+0.7

+0.8

+0.9

+1.0

Figure 2: LD correlation matrix of 23 SNPs belonging to the GRID2IP gene.

R> LD <- genetics::LD(G)$r
R> LD[lower.tri(LD)] <- t(LD)[lower.tri(LD)]
R> diag(LD) <- 1
R> LD[1:5, 1:5]

rs10267908 rs112305062 rs117541653 rs11761490 rs11773436
rs10267908 1.0000000 0.186527151 -0.19163219 -0.130103725 -0.38913793
rs112305062 0.1865272 1.000000000 0.14506274 -0.009624355 -0.26038439
rs117541653 -0.1916322 0.145062740 1.00000000 -0.096507476 0.09946650
rs11761490 -0.1301037 -0.009624355 -0.09650748 1.000000000 -0.01903163
rs11773436 -0.3891379 -0.260384395 0.09946650 -0.019031629 1.00000000

For convenience, the poolr package contains objects grid2ip.p and grid2ip.ld with the
p values and the LD correlation matrix, respectively, so that the steps above could in principle
be skipped. We can double-check that these objects are identical to the ones we generated
above with:

R> c(all.equal(pvals, grid2ip.p), all.equal(LD, grid2ip.ld))

[1] TRUE TRUE

Figure 2 shows a heatmap of (the upper triangular part of) the LD correlation matrix.
Below we show how the combined p value for this gene can be obtained by using Fisher’s
method along with all possible adjustments (only one effective number of tests adjustment is
shown for brevity; the estimate of m was 15 in this case). Note that the string passed to the
adjust argument can also be abbreviated. Also, we use matrix LD (based on the interchanging
elements) as an approximation to the correlations among the test statistics.

Journal of Statistical Software 27

method base nyholt liji gao galwey empirical generalized permutation
"fisher" 8.857 7.849 6.160 7.175 5.479 3.012 3.581 3.062
"stouffer" 8.781 7.761 6.051 7.079 5.362 3.146 3.951 3.176
"invchisq" 8.352 7.415 5.845 6.789 5.213 2.942 3.420 2.981
"binomtest" 8.424 7.945 5.454 7.202 4.704 3.377 3.381
"bonferroni" 1.411 1.472 1.597 1.517 1.659 1.519 1.518
"tippett" 1.419 1.479 1.602 1.524 1.663 1.519 1.518

Table 1: Results (− log10(pc)-transformed values) when applying all base methods and ad-
justments to the 23 SNPs in the GRID2IP gene.

R> c(fisher = fisher(pvals)$p,
+ liji = fisher(pvals, adjust = "liji", R = LD)$p,
+ emp = fisher(pvals, adjust = "emp", R = LD)$p,
+ brown = fisher(pvals, adjust = "gen", R = mvnconv(LD))$p)

fisher liji emp brown
1.389547e-09 6.918130e-07 7.999200e-04 2.622587e-04

All of the combined p values above agree that the gene is significantly associated with the
phenotype of interest. For illustration purposes, we applied all base methods and their ad-
justments to these data, yielding the results shown in Table 1 (results are given as − log10(pc)-
transformed values for easier comparison of very small values). Regardless of the base and
adjustment method used, all combined p values reached significance at αc = 0.05 (note:
− log10(0.05) ≈ 1.301). However, we see considerable differences in the level of significance
depending on the method used.
In the last column of the table, we also provide the combined p values derived from conven-
tional permutation tests using the raw data. For this, we tested the associations between the
SNPs and the randomly reshuffled phenotype and then combined the resulting p values with
each of the base methods. After repeating this process s = 106 times, we then computed
the combined p value for each base method with (12). In this example, the approach using
pseudo replicates (also using size = 1e+06) yielded almost identical results as the “proper”
permutation tests. However, while the latter took approximately 7 hours to complete, the
former took less than 10 seconds per base method.8

5. Comparison with other packages
Several R packages and functions are already currently available to combine (dependent)
p values. In this section, we discuss their functionality and compare them to the poolr
package based on the example data discussed in the previous section.
A first option is the p.adjust() function from the base package stats. This function provides
a variety of methods for adjusting a set of p values for multiple testing. As described earlier,

8In the permutation test, we used coef(summary(lm(...))) to extract p values based on the permuted
data in each iteration (similar to how we computed the observed p values for the 23 SNPs earlier). The
code underlying these functions carries out various pre- and post-processing steps that are not relevant for
the present purposes. We can reduce the computation time considerably by using RcppEigen::fastLmPure()
(Bates and Eddelbuettel 2013). Doing so reduces the computation time to about 20 minutes.

28 The poolr Package for Combining Independent and Dependent p Values

Package Fisher Stouffer Invchisq Tippett Logit
metap 8.857127 8.781088 8.351928 1.419033 8.724881
survcomp 8.857127 8.781088 8.724881
aggregation 8.857127 8.351928 1.419033
gap 8.857127 8.781088
poolr 8.857127 8.781088 8.351928 1.419033

Table 2: Results (− log10(pc)-transformed values) when applying various implementations of
methods to the 23 SNPs in the GRID2IP gene that assume independence between the SNPs.

this function can therefore also be used for combining p values, although the Bonferroni
correction and Holm’s method are most relevant here, as they are the two methods available
via this function that control the family-wise error rate under arbitrary assumptions. Using
the example data, we can illustrate the equivalence of the Bonferroni and Holm methods and
the implementation in the poolr package with:

R> c(p.adjust_bonferroni = min(p.adjust(pvals, method = "bonferroni")),
+ p.adjust_holm = min(p.adjust(pvals, method = "holm")),
+ poolr_bonferroni = bonferroni(pvals)$p)

p.adjust_bonferroni p.adjust_holm poolr_bonferroni
0.03881585 0.03881585 0.03881585

For researchers that want to use methods that were specifically developed for combining
p values, several packages are available (via CRAN and Bioconductor). The metap pack-
age (Dewey 2021) is the most comprehensive one, providing a wide variety of methods for
combining independent p values, including the ones part of the poolr package except for the
Bonferroni method. Furthermore, the combine.test() function from the survcomp package
(Schroeder et al. 2011) provides implementations of the Fisher and Stouffer methods and
the logit-transformation method by George (1977), whereas the aggregation package (Yi and
Pachter 2018) provides functions for the Fisher, Tippett, and inverse chi-square methods (the
latter being a special case of the method by Lancaster 1961). Finally, the gap package (Zhao
2007) provides functions for Fisher’s and Stouffer’s methods. Below, we show how to apply
these methods to the example data.9 The − log10(pc)-transformed values provided in Table 2
demonstrate that results coincide across packages.

R> k <- length(pvals)
R> invisible(capture.output(pkgs_ind <- matrix(c(
+ metap::sumlog(pvals)$p,
+ metap::sumz(pvals)$p,
+ metap::invchisq(pvals, 1)$p,
+ metap::minimump(pvals)$p,

9Since gap::metap() always generates output via cat(), we use invisible(capture.output(...)) to
suppress it. Also, for Stouffer’s method, the function incorrectly divides the provided p values by 2, so we
must double them first to obtain the correct result (it also incorrectly takes the absolute value of (2) before
computing pc, which does not affect results in the present case since z is positive to begin with, but would
have the effect of turning a set of really insignificant p values into a significant combined p value).

Journal of Statistical Software 29

+ metap::logitp(pvals)$p,
+ survcomp::combine.test(pvals, method = "fisher"),
+ survcomp::combine.test(pvals, method = "z.transform"), NA, NA,
+ survcomp::combine.test(pvals, method = "logit"),
+ aggregation::fisher(pvals), NA,
+ aggregation::lancaster(pvals, rep(1, k)),
+ aggregation::sidak(pvals), NA,
+ gap::metap(data.frame(p = rbind(unname(pvals)),
+ n = rbind(rep(1, k))), N = k, prefixp = "p.", prefixn = "n.")$p,
+ gap::metap(data.frame(p = rbind(2 * unname(pvals)),
+ n = rbind(rep(1, k))), N = k, prefixp = "p.", prefixn = "n.")$p1,
+ NA, NA, NA,
+ poolr::fisher(pvals)$p,
+ poolr::stouffer(pvals)$p,
+ poolr::invchisq(pvals)$p,
+ poolr::tippett(pvals)$p, NA), nrow = 5, byrow = TRUE,
+ dimnames = list(c("metap", "survcomp", "aggregation", "gap", "poolr"),
+ c("Fisher", "Stouffer", "Invchisq", "Tippett", "Logit")))))
R> -log10(pkgs_ind)

These results ignore the fact that the 23 p values to be combined are dependent. For combining
dependent p values, several other R packages are available. The CombinePValue package (Dai
et al. 2014) provides an approach that is analogous to Brown’s method, but (in addition to
the actual p values to be combined) requires the user to provide a matrix of p values based
on which the variance-covariance matrix of the −2 ln(pi) will be estimated. In other words,
instead of using analytic methods such as (13) and (14) to construct this variance-covariance
matrix, it is estimated empirically. As described in the documentation, the matrix of p values
used for this step can be generated based on the raw data using resampling methods. Below,
we construct such a matrix by repeatedly permuting the phenotype. Using the same variance-
covariance matrix (after the −2 ln() transformation) as input for fisher() yields identical
results.10

R> P <- replicate(200, {
+ yperm <- sample(grid2ip.pheno)
+ sapply(X, function(x) coef(summary(lm(yperm ~ x)))[2, 4])})
R> CombinePValue::selfcontained.test(pvals, p_permu = P)[[1]]

[1] 6.693278e-05

R> fisher(pvals, adjust = "gen", R = cov(t(-2 * log(P))))$p

[1] 6.693278e-05

Ideally, one would want to increase the number of replicates, but doing so would be time
intensive (e.g., for 10,000 replicates, the code above takes a bit over 4 minutes to complete,

10Very minor discrepancies can occur in some cases because CombinePValue constrains p values to fall in
the interval [10−6, 1 − 10−6], while no such restriction is applied in poolr.

30 The poolr Package for Combining Independent and Dependent p Values

while fisher(pvals, adjust = "generalized", R = mvnconv(LD)) takes a fraction of a
second). Moreover, if one generates the p value matrix by resampling the raw data, one could
just as well apply a proper permutation test directly as part of this process (instead of using
this step only for generating the matrix that serves as input for the p_permu argument).
As another alternative, the EmpiricalBrownsMethod package (Poole 2021) also implements a
version of Brown’s method and just like the CombinePValue package sidesteps the numerical
integration but does so in a slightly different manner by requiring the user to input the raw
data matrix that contains the interchanging elements. Each variable in this matrix is then
transformed into percentiles using its empirical cumulative distribution function (as estimated
via stats::ecdf()) which in turn are −2 ln()-transformed. These transformed values are then
used to estimate the variance-covariance matrix of the −2 ln(pi) values. Using the example
data, one would therefore use this package as follows:

R> EmpiricalBrownsMethod::empiricalBrownsMethod(t(X), p_values = pvals)

[1] 3.288796e-09

If we manually apply the step that estimates the variance-covariance matrix, replace the
diagonal values by 4 (which we know to be true and is also done by CombinePValue), and
then use this matrix as input to fisher(), we obtain the same result:

R> V <- EmpiricalBrownsMethod:::calculateCovariances(t(X))
R> diag(V) <- 4
R> fisher(pvals, adjust = "gen", R = V)$p

[1] 3.288796e-09

However, this result seems “too significant” compared to the combined p value we obtained
above when using the CombinePValue approach or Brown’s method proper (recall that
fisher(pvals, adjust = "gen", R = mvnconv(LD))$p yields 0.000262). There are two
reasons for this discrepancy. First, in the present context, the variables in X (i.e., the number
of minor alleles in each SNP) can only take on three unique values and so will the −2 ln()-
transformed percentiles based on which the covariances are estimated. Hence, each covariance
is estimated based on a 3 × 3 contingency table where the marginal distributions of the two
variables are also often quite unbalanced. As a result, the covariances in V are much smaller
than what they should be, at least when compared to cov(t(-2 * log(P))) from above or
when using the “exact” covariances from mvnconv(LD, target = "m2lp"). This leads to an
undercorrection for dependence in Brown’s method and hence to a combined p value that
is anticonservative. A way around this problem might be to simulate a data matrix from a
multivariate normal distribution based on the same variance-covariance matrix as the original
data and use this as input for the method:11

R> S <- mvtnorm::rmvnorm(886, mean = rep(0, k), sigma = LD)
R> EmpiricalBrownsMethod::empiricalBrownsMethod(t(S), p_values = pvals)

11Note, however, that this approach is stochastic and will lead to (slightly) different results on repeated
runs.

Journal of Statistical Software 31

[1] 1.082403e-05

R> V <- EmpiricalBrownsMethod:::calculateCovariances(t(S))
R> diag(V) <- 4
R> fisher(pvals, adjust = "gen", R = V)$p

[1] 1.082403e-05

Although improved, this result still seems anticonservative. The reason for this is that the
approach taken by empiricalBrownsMethod() implicitly assumes that the p values to be
combined are one-sided. We can demonstrate this by comparing the variance-covariance
matrix obtained above with the one we obtain using mvnconv() when setting side = 1:

R> round(unname(V), digits = 4)[1:4, 1:8]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 4.0000 0.5769 -0.6079 -0.1057 -1.2269 1.1555 -0.0490 0.7288
[2,] 0.5769 4.0000 0.4935 0.0387 -0.9727 2.2010 0.0343 -0.6188
[3,] -0.6079 0.4935 4.0000 -0.2153 0.3087 0.2160 -0.2581 -0.3923
[4,] -0.1057 0.0387 -0.2153 4.0000 -0.1508 -0.2183 3.4120 0.0971

R> mvnconv(LD, target = "m2lp", side = 1)[1:4, 1:8]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 4.0000 0.6351 -0.6006 -0.4123 -1.1635 1.1999 -0.3036 0.8749
[2,] 0.6351 4.0000 0.4881 -0.0326 -0.8009 2.0748 -0.0098 -0.6245
[3,] -0.6006 0.4881 4.0000 -0.3099 0.3300 0.2184 -0.3380 -0.3752
[4,] -0.4123 -0.0326 -0.3099 4.0000 -0.0618 -0.3005 3.5402 -0.0876

Clearly, the former is an approximation to the latter, while for two-sided p values one should
really use:

R> mvnconv(LD, target = "m2lp")[1:4, 1:8]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 4.0000 0.1366 0.1440 0.0660 0.5922 0.4575 0.0352 0.2522
[2,] 0.1366 4.0000 0.0821 0.0004 0.2642 1.2526 0.0000 0.1563
[3,] 0.1440 0.0821 4.0000 0.0367 0.0383 0.0170 0.0439 0.0544
[4,] 0.0660 0.0004 0.0367 4.0000 0.0014 0.0345 3.2279 0.0028

or more directly:

R> fisher(pvals, adjust = "gen", R = mvnconv(LD))$p

[1] 0.0002622587

32 The poolr Package for Combining Independent and Dependent p Values

−1.0 −0.5 0.0 0.5 1.0

−
0.

03
0

−
0.

02
0

−
0.

01
0

0.
00

0

ρ

D
iff

er
en

ce

Figure 3: Difference between (14) and the covariances as approximated by the TFisher
package as a function of ρ.

Hence, the EmpiricalBrownsMethod package, at least in its present form, should only be used
for combining one-sided p values and care must be taken when the interchanging variables
have rather discrete distributions (e.g., as when using genotype data in GWAS).
In contrast to the previous two options, the TFisher package (Zhang et al. 2020) provides an
approximation to Brown’s method that does not require access to the raw data. Although the
manuscript does not explain how the covariances among the −2 log(pi) values are approxi-
mated, the source code indicates that the package simply computes 4×R2 (with the squaring
done element-wise). Using the same approximation as input for the fisher() function yields
the same combined p value:

R> 1 - TFisher::p.tpm(sum(-2 * log(pvals)), n = k, tau1 = 1, M = LD)

[1] 0.0002822384

R> fisher(pvals, adjust = "gen", R = 4 * LD^2)$p

[1] 0.0002822384

This result is quite close to the combined p value obtained above with the “exact” version
of Brown’s method. The explanation for this is provided by Figure 3, which shows that the
simple approximation for the covariances used by TFisher is surprisingly accurate, deviating
at most by −0.033 from the covariances computed based on (14). However, here we now
have the opposite problem compared to EmpiricalBrownsMethod: Since it is not possible to
change how the covariances are approximated, TFisher should only be used when combining
two-sided p values.
Finally, a rather different approach to combining p values is implemented in the harmon-
icmeanp package (Wilson 2019). In essence, the method uses the harmonic mean of the

Journal of Statistical Software 33

p values,12

p̄ = k∑k
i=1 1/pi

,

based on which an asymptotically exact combined p value is computed using the Landau
distribution (for details, see Wilson 2019). The method is robust to positive dependence
among the p values and does not require any further input other than the p values to be
combined:

R> harmonicmeanp::p.hmp(pvals, L = k)

p.hmp
0.01302627

Although significant, this result is more conservative than the one we obtained with Brown’s
method. Further work is necessary to compare the methods implemented in poolr with the
approach implemented in the harmonicmeanp package.

6. Discussion
The poolr package provides a collection of methods for combining p values that may be
correlated due to non-independence among the tests from which they were derived. The
package contains functions for a variety of “base methods” for combining independent p values
along with several adjustments to these methods to account for dependence. Furthermore,
the package provides logical extensions of various adjustments that have been described only
incompletely in the literature and hence offers a more complete set of procedures.
For example, the base methods can be adjusted based on an estimate of the effective number
of tests. However, only a subset of these adjustments have been described in the literature
(e.g., Galwey 2009). In particular, the combination of this adjustment approach with the
inverse chi-square method, the binomial method, and Stouffer’s method is to our knowledge
novel. Moreover, while the pseudo replication approach has been proposed in combination
with the inverse chi-square method and the Bonferroni correction (Lin 2005; Liu et al. 2010),
it can also be used in combination with any of the other methods. Finally, the use of the
Satterthwaite approximation in combination with the inverse chi-square method is to our
knowledge novel.
In this article, we illustrated the use of the poolr package with a dataset that was originally
collected for a candidate-gene study. The same methods would be equally applicable to GWAS
and other types of genetic studies (e.g., microarrays, DNA methylation analyses), studies
using imaging techniques (e.g., functional magnetic resonance imaging), and essentially any
situation where interest is not focused on the significance of individual tests (e.g., for SNPs,
voxel), but of larger functional or structural units (e.g., genes, pathways, brain regions).
In applications of these types, researchers often want to compute a combined p value for
many such units. The total computation time can then become a major concern. Carrying
out proper permutation tests for all units might in fact be computationally too demanding, at

12We assume equal weights here; for the more general equation allowing different weights to be applied to
the p values, see Wilson (2019).

34 The poolr Package for Combining Independent and Dependent p Values

least for those without access to powerful hardware to parallelize the procedures. An obvious
alternative approach – with a negligible computational burden – is to apply the Bonferroni
method to the p values within each unit, but this is often overly conservative. The methods
implemented in the poolr package can be more powerful and at the same time are much
less computationally demanding than permutation tests. Even the approach that mimics the
latter can be carried out in seconds (as opposed to minutes or hours) through the use of
pseudo replicates.
Moreover, an advantage of the methods implemented in poolr is that they do not require
access to the raw data. The methods can be applied as long as the p values are available
and a matrix that reflects the correlations among the test statistics. How to obtain the
latter however requires some thought. As we mentioned earlier, the correlations among the
interchanging elements across analyses is often a good proxy. We can illustrate this point with
a simple example. Suppose we test whether some continuous response variable of interest
is associated with a number of dichotomous predictors. Let the correlation (i.e., the phi
coefficient) between two of the predictors be:

R> p11 <- 0.40
R> p10 <- 0.20
R> p01 <- 0.10
R> p00 <- 0.30
R> (p11 * p00 - p10 * p01) /
+ sqrt((p11 + p10) * (p01 + p00) * (p11 + p01) * (p10 + p00))

[1] 0.4082483

Now we repeatedly simulate data for n = 100 individuals under this scenario and extract the
test statistics. Their correlation is very close to that of the two predictors themselves:

R> n <- 100
R> Z <- replicate(10000, {
+ X <- rmultinom(n, 1, c(p11, p10, p01, p00))
+ x1 <- X[1,] + X[2,]
+ x2 <- X[1,] + X[3,]
+ y <- rnorm(n)
+ res1 <- RcppEigen::fastLmPure(cbind(1, x1), y)
+ res2 <- RcppEigen::fastLmPure(cbind(1, x2), y)
+ c(res1$coefficients[2] / res1$se[2],
+ res2$coefficients[2] / res2$se[2])})
R> cor(Z[1,], Z[2,])

[1] 0.4112019

A further assumption underlying several of the methods is that the test statistics follow a
multivariate normal distribution. In the example above, we know that the test statistics
actually follow t-distributions with df = 98. However, from a practical point of view, this is
hardly distinguishable from a normal distribution. To examine whether the assumption of
joint multivariate normality is acceptable here, Figure 4 provides a filled contour plot of the

Journal of Statistical Software 35

Figure 4: Filled contour plot showing the joint distribution of the test statistics and a QQ-
plot of the Mahalanobis distances of the test statistics against the theoretical quantiles of a
chi-square distribution with df = 2.

joint distribution of the two test statistics (based on two-dimensional kernel density estimation
obtained via MASS::kde2d()) and a QQ-plot of the Mahalanobis distances of the test statistics
against the theoretical quantiles of a chi-square distribution with df = 2 (which, under the
assumption of joint multivariate normality, is the asymptotic distribution of the Mahalanobis
distances; Healy 1968). Except for a few observations in the tail region, the assumption of
multivariate normality appears to be an adequate approximation in this example.
Simulations for other types of scenarios and models (e.g., with continuous but skewed pre-
dictors, with interchanging response variables as opposed to interchanging predictors, or for
logistic regression models) suggest that the findings above hold with some generality as long as
the sample size is sufficiently large.13 However, further work is required to delineate the spe-
cific circumstances under which (and how) the correlations among the interchanging elements
can be mapped to the correlations among the test statistics.
For smaller sample sizes, the methods for converting the correlations among the test statistics
into the covariances among the various target statistics (e.g., the −2 ln()-transformed p values
needed for Brown’s method) may need to be adjusted (e.g., Kost and McDermott 2002). In
future versions, we plan on expanding the package with additional lookup tables for other
cases besides the multivariate normal one.
We may also consider expanding the package with additional base methods for combining
p values (and appropriate adjustments thereof to account for dependence). The choice of
methods currently implemented was based on various considerations, including the attention
the various methods have received in the literature. The methods by Fisher and Stouffer
are often discussed, especially as alternatives to “proper” meta-analytic methods for com-
bining evidence when only limited information about the studies/estimates to be combined
is available (e.g., Laird and Mosteller 1990; Schmid, Koch, and LaVange 1991; National Re-
search Council 1992; Piegorsch and Bailer 2009). Including the inverse chi-square method,

13For example, using logistic regression models with x1 and x2 as the response variables and y as the predictor
in the simulation above yields essentially identical results.

36 The poolr Package for Combining Independent and Dependent p Values

these methods are also representative of the general class of methods that Loughin (2004)
describes as “quantile combination methods”, that is, they are all based on ∑k

i=1 F −1(pi),
where F −1(·, 1) is the inverse of some cumulative distribution function (not necessarily for
the chi-square distribution). In contrast, the Bonferroni and Tippett methods, and in a broad
sense also the binomial test, belong to the class of “order-statistic combination methods” that
make use of the fact that the ranked p values represent order statistics from a uniform dis-
tribution under the joint null hypothesis. The former two are particularly interesting due to
their focus on the strongest “signal” (which may be of interest in certain circumstances) while
the latter has the intuitive appeal of being a method that looks for “excess significance” in
the set of p values.
Our choices were also influenced by methods that have received heightened attention in the
genetics literature, given that the development of the poolr package was motivated, at least
in part, by our work in this area. Aside from Fisher’s, the Bonferroni, and Tippett’s meth-
ods, this in particular led to the inclusion of the inverse chi-square method (e.g., see Liu
et al. 2010, who discuss the use of this method in combination with the pseudo replication
approach).14 Although there are several other methods for combining p values (e.g., those
proposed by Edgington 1972 and George 1977), they have not received as much attention as
the aforementioned ones. Moreover, these two methods are currently only appropriate for
combining independent p values and are already available in the metap package.
One issue we have not yet touched on is the possibility that Rx may not be a positive semi-
definite matrix. Although we have assumed that the test statistics follow a multivariate
normal distribution, in which case Rt must be non-negative definite by definition, we cannot
observe the latter and instead use Rx to approximate Rt. Depending on how the elements in
Rx are computed, this matrix may not be positive semi-definite. For example, suppose Rx

contains the correlations among the interchanging elements across the analyses and some
of the values of these variables are missing. If pairwise correlations are computed from
different subsets of the data, then Rx is not guaranteed to be positive semi-definite. As a
result, negative eigenvalues can arise, which has implications for the estimates of the effective
number of tests described in Section 2.2. While the various estimators are defined in such a
way that they can still be used in the presence of negative eigenvalues, it is currently unclear
how negative eigenvalues should best be handled when using these adjustments. Therefore,
whenever negative eigenvalues arise, the poolr package will issue a warning to make the user
aware of this issue.
Moreover, such a correlation matrix would lead to an error when trying to generate multi-
variate normal random values for the empirically-derived null distributions. By default, poolr
then uses a (slightly simplified) version of the Matrix::nearPD() function to find the nearest
positive semi-definite matrix of Rx (Higham 2002) before proceeding with the computations
(and issues a warning to inform the user that this algorithm was applied). In such a case,
the same adjustment is also made when using the generalized methods (i.e., Brown’s method,
Strube’s method, and the generalized inverse chi-square method). One can set argument
nearpd = FALSE, in which case the use of this adjustment is disabled and the warning then
turns into an error.

14Also, popular tests in this area (such as the Cochran-Armitage trend test, the allelic association test, or
tests based on a dominant, recessive, or heterozygote (dis)advantage model) all lead to one degree of freedom
chi-square tests (Ziegler and König 2010). Then (3) is simply the sum of these chi-square statistics, which
therefore suggests itself as a natural way of combining the information across multiple SNPs.

Journal of Statistical Software 37

Finally, we are fully aware of concerns about the overuse, overemphasis, or misinterpreta-
tion of p values and potential dangers that may arise from drawing dichotomous conclusions
based thereupon (e.g., see Wasserstein and Lazar 2016, and the corresponding supplementary
materials). Where possible, we therefore thoroughly support the call for increased emphasis
on estimation in place of testing (with corresponding intervals that reflect the uncertainty of
the estimates) and the use of meta-analytic methods to combine such estimates (Cumming
2012). However, in situations where we envision the use of the methods described in this
paper (such as GWAS), there may not be any consistent directionality of the effects such
that their combination using standard meta-analytic methods would be meaningful (e.g., the
minor alleles at a locus may either be protective or harmful and this may differ across SNPs
within a gene). Hence, methods based on the combination of p values may still have their
place and we believe that the poolr package provides a useful collection of methods for this
purpose.

References

Alves G, Hu YK (2014). “Accuracy Evaluation of the Unified p-Value from Combining Cor-
related p-Values.” PLOS One, 9(3), e91225. doi:10.1371/journal.pone.0091225.

Bates D, Eddelbuettel D (2013). “Fast and Elegant Numerical Linear Algebra Using the
RcppEigen Package.” Journal of Statistical Software, 1(5), 1–24. doi:10.18637/jss.
v052.i05.

Becker BJ (1994). “Combining Significance Levels.” In H Cooper, LV Hedges (eds.), The
Handbook of Research Synthesis, pp. 215–230. Russell Sage Foundation, New York.

Benjamini Y, Hochberg Y (1995). “Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society B, pp.
289–300. doi:10.1111/j.2517-6161.1995.tb02031.x.

Benjamini Y, Yekutieli D (2001). “The Control of the False Discovery Rate in Multiple
Testing under Dependency.” The Annals of Statistics, 29(4), 1165–1188. doi:10.1214/
aos/1013699998.

Billingsley P (1995). Probability and Measure. John Wiley & Sons, New York.

Birnbaum A (1954). “Combining Independent Tests of Significance.” Journal of the American
Statistical Association, 49(267), 559–547. doi:10.2307/2281130.

Borchers HW (2021). pracma: Practical Numerical Math Functions. R package version 2.3.3,
URL https://CRAN.R-project.org/package=pracma.

Brown MB (1975). “A Method for Combining Non-Independent, One-Sided Tests of Signifi-
cance.” Biometrics, 31(4), 987–992. doi:10.2307/2529826.

Cheverud JM (2001). “A Simple Correction for Multiple Comparisons in Interval Mapping
Genome Scans.” Heredity, 88(1), 52–58. doi:10.1046/j.1365-2540.2001.00901.x.

https://doi.org/10.1371/journal.pone.0091225
https://doi.org/10.18637/jss.v052.i05
https://doi.org/10.18637/jss.v052.i05
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.2307/2281130
https://CRAN.R-project.org/package=pracma
https://doi.org/10.2307/2529826
https://doi.org/10.1046/j.1365-2540.2001.00901.x

38 The poolr Package for Combining Independent and Dependent p Values

Cinar O, Viechtbauer W (2022). poolr: Methods for Pooling p-Values from (Dependent)
Tests. R package version 1.1-1, URL https://CRAN.R-project.org/package=poolr.

Clopper CJ, Pearson ES (1934). “The Use of Confidence or Fiducial Limits Illustrated in the
Case of the Binomial.” Biometrika, 26(4), 404–413. doi:10.1093/biomet/26.4.404.

Conneely KN, Boehnke M (2007). “So Many Correlated Tests, So Little Time! Rapid Ad-
justment of p Values for Multiple Correlated Tests.” The American Journal of Human
Genetics, 81(6), 1158–1168. doi:10.1086/522036.

Cousins RD (2008). “Annotated Bibliography of Some Papers on Combining Significances or
p-Values.” Technical report, University of California.

Cumming G (2012). Understanding the New Statistics: Effect Sizes, Confidence Intervals,
and Meta-Analysis. Routledge, New York. doi:10.4324/9780203807002.

Dai H, Leeder JS, Cui Y (2014). “A Modified Generalized Fisher Method for Combining
Probabilities from Dependent Tests.” Frontiers in Genetics, 5, 32. doi:10.3389/fgene.
2014.00032.

DeGroot MH, Schervish MJ (2011). Probability and Statistics. 4th edition. Pearson, Boston.

Dewey M (2021). metap: Meta-Analysis of Significance Values. R package version 1.6, URL
https://CRAN.R-project.org/package=metap.

Dudbridge F, Koeleman BP (2004). “Efficient Computation of Significance Levels for Multi-
ple Associations in Large Studies of Correlated Data, Including Genomewide Association
Studies.” American Journal of Human Genetics, 75(3), 424–435. doi:10.1086/423738.

Dunn OJ (1958). “Estimation of the Means of Dependent Variables.” The Annals of Mathe-
matical Statistics, 29(4), 1095–1111. doi:10.1214/aoms/1177706443.

Edgington ES (1972). “An Additive Method for Combining Probability Values from Indepen-
dent Experiments.” The Journal of Psychology, 80(2), 351–363. doi:10.1080/00223980.
1972.9924813.

Ernst MD (2004). “Permutation Methods: A Basis for Exact Inference.” Statistical Science,
19(4), 676–685. doi:10.1214/088342304000000396.

Fisher RA (1932). Statistical Methods for Research Workers. 4th edition. Oliver and Boyd,
Edinburgh. doi:10.1007/978-1-4612-4380-9_6.

Galwey NW (2009). “A New Measure of the Effective Number of Tests, A Practical Tool for
Comparing Families of Non-Independent Significance Tests.” Genetic Epidemiology, 33(7),
559–568. doi:10.1002/gepi.20408.

Gao X, Starmer J, Martin ER (2008). “A Multiple Testing Correction Method for Genetic
Association Studies Using Correlated Single Nucleotide Polymorphisms.” Genetic Epidemi-
ology, 32(4), 361–369. doi:10.1002/gepi.20310.

George EO (1977). Combining Independent One-Sided and Two-Sided Statistical Tests: Some
Theory and Applications. PhD dissertation, University of Rochester.

https://CRAN.R-project.org/package=poolr
https://doi.org/10.1093/biomet/26.4.404
https://doi.org/10.1086/522036
https://doi.org/10.4324/9780203807002
https://doi.org/10.3389/fgene.2014.00032
https://doi.org/10.3389/fgene.2014.00032
https://CRAN.R-project.org/package=metap
https://doi.org/10.1086/423738
https://doi.org/10.1214/aoms/1177706443
https://doi.org/10.1080/00223980.1972.9924813
https://doi.org/10.1080/00223980.1972.9924813
https://doi.org/10.1214/088342304000000396
https://doi.org/10.1007/978-1-4612-4380-9_6
https://doi.org/10.1002/gepi.20408
https://doi.org/10.1002/gepi.20310

Journal of Statistical Software 39

Goeman J, Solari A (2014). “Multiple Hypothesis Testing in Genomics.” Statistics in
Medicine, 33(11), 1946–1978. doi:10.1002/sim.6082.

Good P (2013). Permutation Tests: A Practical Guide to Resampling Methods for Testing
Hypothesis. Springer-Verlag, New York.

Härdle WK, Simar L (2015). Applied Multivariate Statistical Analysis. 4th edition. Springer-
Verlag, New York. doi:10.1007/978-3-540-72244-1.

Healy MJR (1968). “Multivariate Normal Plotting.” Journal of the Royal Statistical Society C,
17(2), 157–161. doi:10.2307/2985678.

Higham NJ (2002). “Computing the Nearest Correlation Matrix: A Problem from Finance.”
IMA Journal of Numerical Analysis, 22(3), 329–343. doi:10.1093/imanum/22.3.329.

Hochberg Y (1988). “A Sharper Bonferroni Procedure for Multiple Tests of Significance.”
Biometrika, 75(4), 800–802. doi:10.1093/biomet/75.4.800.

Holm S (1979). “A Simple Sequentially Multiple Test Procedure.” Scandinavian Journal of
Statistics, 6, 65–70.

Hommel G (1988). “A Stagewise Rejective Multiple Test Procedure Based on a Modified
Bonferroni Test.” Biometrika, 75(2), 383–386. doi:10.1093/biomet/75.2.383.

Johnson RC, Nelson GW, Troyer JL, Lautenberger JA, Kessing BD, Winkler CA, O’Brien
SJ (2010). “Accounting for Multiple Comparisons in a Genome-Wide Association Study
(GWAS).” BMC Genomics, 11(1), 724. doi:10.1186/1471-2164-11-724.

Kost JT, McDermott MP (2002). “Combining Dependent p-Values.” Statistics and Probability
Letters, 60, 183–190. doi:10.1016/s0167-7152(02)00310-3.

Laird NM, Lange C (2011). The Fundamentals of Modern Statistical Genetics. Springer-
Verlag, New York. doi:10.1007/978-1-4419-7338-2.

Laird NM, Mosteller F (1990). “Some Statistical Methods for Combining Experimental Re-
sults.” International Journal of Technology Assessment in Health Care, 6(1), 5–30. doi:
10.1017/s0266462300008916.

Lancaster HO (1961). “The Combination of Probabilities: An Application of Orthonormal
Functions.” Australian Journal of Statistics, 3(1), 20–33. doi:10.1111/j.1467-842x.
1961.tb00058.x.

Lehne B, Lewis CM, Schlitt T (2011). “From SNPs to Genes: Disease Association at the
Gene Level.” PLOS One, 6(6), e20133. doi:10.1371/journal.pone.0020133.

Li J, Ji L (2005). “Adjusting Multiple Testing in Multilocus Analyses Using the Eigenvalues
of a Correlation Matrix.” Heredity, 95(3), 221–227. doi:10.1038/sj.hdy.6800717.

Lin DY (2005). “An Efficient Monte Carlo Approach to Assessing Statistical Significance
in Genomic Studies.” Bioinformatics, 21(6), 781–787. doi:10.1093/bioinformatics/
bti053.

https://doi.org/10.1002/sim.6082
https://doi.org/10.1007/978-3-540-72244-1
https://doi.org/10.2307/2985678
https://doi.org/10.1093/imanum/22.3.329
https://doi.org/10.1093/biomet/75.4.800
https://doi.org/10.1093/biomet/75.2.383
https://doi.org/10.1186/1471-2164-11-724
https://doi.org/10.1016/s0167-7152(02)00310-3
https://doi.org/10.1007/978-1-4419-7338-2
https://doi.org/10.1017/s0266462300008916
https://doi.org/10.1017/s0266462300008916
https://doi.org/10.1111/j.1467-842x.1961.tb00058.x
https://doi.org/10.1111/j.1467-842x.1961.tb00058.x
https://doi.org/10.1371/journal.pone.0020133
https://doi.org/10.1038/sj.hdy.6800717
https://doi.org/10.1093/bioinformatics/bti053
https://doi.org/10.1093/bioinformatics/bti053

40 The poolr Package for Combining Independent and Dependent p Values

Liu JZ, Mcrae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, AMFS Investigators,
Hayward NK, Montgomery GW, Visscher PM, Martin NG, Macgregor S (2010). “A Ver-
satile Gene-Based Test for Genome-Wide Association Studies.” The American Journal of
Human Genetics, 87(1), 139–145. doi:10.1016/j.ajhg.2010.06.009.

Loughin TM (2004). “A Systematic Comparison of Methods for Combining p-Values From
Independent Tests.” Computational Statistics & Data Analysis, 47(3), 467–485. doi:
10.1016/j.csda.2003.11.020.

Moskvina V, O’Dushlaine C, Purcell S, Craddock N, Holmans P, O’Donovan MC (2011).
“Evaluation of an Approximation Method for Assessment of Overall Significance of
Multiple-Dependent Tests in a Genomewide Association Study.” Genetic Epidemiology,
35(8), 861–866. doi:10.1002/gepi.20636.

Narasimhan B, Johnson SG, Hahn T, Bouvier A, Kiêu K (2021). cubature: Adaptive Mul-
tivariate Integration over Hypercubes. R package version 2.0.4.2, URL https://CRAN.
R-project.org/package=cubature.

National Research Council (1992). Combining Information: Statistical Issues and Opportu-
nities. National Academic Press, Washington, DC.

Nyholt DR (2004). “A Simple Correction for Multiple Testing for Single-Nucleotide Poly-
morphisms in Linkage Disequilibrium with Each Other.” The American Journal of Human
Genetics, 74(4), 765–769. doi:10.1086/383251.

Phipson B, Smyth GK (2010). “Permutation p-Values Should Never Be Zero: Calculating
Exact p-Values When Permutations Are Randomly Drawn.” Statistical Applications in
Genetics and Molecular Biology, 9(1). doi:10.2202/1544-6115.1585.

Piegorsch WW, Bailer JA (2009). “Combining Information.” Wiley Interdisciplinary Reviews:
Computational Statistics, 1(3), 354–360. doi:10.1002/9781118445112.stat03704.

Poole W (2021). EmpiricalBrownsMethod: Uses Brown’s Method to Combine p-Values
from Dependent Tests. R package version 1.22.0, URL https://www.bioconductor.org/
packages/EmpiricalBrownsMethod/.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Resnick SI (2014). A Probability Path. Springer-Verlag, New York. doi:10.1007/
978-0-8176-8409-9.

Rosenthal R (1978). “Combining Results of Independent Studies.” Psychological Bulletin,
85(1), 185–193. doi:10.1037/0033-2909.85.1.185.

Salyakina D, Seaman SR, Browning BL, Dudbridge F, Muller-Myhsok B (2005). “Evaluation
of Nyholt’s Procedure for Multiple Testing Correction.” Human Heredity, 60(1), 19–25.
doi:10.1159/000087540.

Schmid JE, Koch GG, LaVange LM (1991). “An Overview of Statistical Issues and Methods
of Meta-Analysis.” Journal of Biopharmaceutical Statistics, 1(1), 103–120. doi:10.1080/
10543409108835008.

https://doi.org/10.1016/j.ajhg.2010.06.009
https://doi.org/10.1016/j.csda.2003.11.020
https://doi.org/10.1016/j.csda.2003.11.020
https://doi.org/10.1002/gepi.20636
https://CRAN.R-project.org/package=cubature
https://CRAN.R-project.org/package=cubature
https://doi.org/10.1086/383251
https://doi.org/10.2202/1544-6115.1585
https://doi.org/10.1002/9781118445112.stat03704
https://www.bioconductor.org/packages/EmpiricalBrownsMethod/
https://www.bioconductor.org/packages/EmpiricalBrownsMethod/
https://www.R-project.org/
https://doi.org/10.1007/978-0-8176-8409-9
https://doi.org/10.1007/978-0-8176-8409-9
https://doi.org/10.1037/0033-2909.85.1.185
https://doi.org/10.1159/000087540
https://doi.org/10.1080/10543409108835008
https://doi.org/10.1080/10543409108835008

Journal of Statistical Software 41

Schroeder MS, Culhane AC, Quackenbush J, Haibe-Kains B (2011). “survcomp: An
R/Bioconductor Package for Performance Assessment and Comparison of Survival Models.”
Bioinformatics, 27(22), 3206–3208. doi:10.1093/bioinformatics/btr511.

Šidák Z (1967). “Rectangular Confidence Regions for the Means of Multivariate Normal
Distributions.” Journal of the American Statistical Association, 62(318), 626–633. doi:
10.1080/01621459.1967.10482935.

Simes JR (1986). “An Improved Bonferroni Procedure for Multiple Tests of Significance.”
Biometrika, pp. 751–754. doi:10.1093/biomet/73.3.751.

Slatkin M (2008). “Linkage Disequilibrium: Understanding the Evolutionary Past and Map-
ping the Medical Future.” Nature Reviews Genetics, 9(6), 477–485. doi:10.1038/nrg2361.

Stouffer SA, Suchman EA, DeVinney LC, Star SA, Williams Jr RM (1949). The American
Soldier: Adjustment During Army Life (Vol. 1). Princeton University Press, Princeton.

Strube MJ (1985). “Combining and Comparing Significance Levels from Nonindependent
Hypothesis Tests.” Psychological Bulletin, 97(2), 334–341. doi:10.1037/0033-2909.97.
2.334.

Tippett LHC (1931). Methods of Statistics. Williams Norgate, London.

Van Assche E, Moons T, Cinar O, Viechtbauer W, Oldehinkel AJ, Van Leeuwen K, Ver-
schueren K, Colpin H, Lambrechts D, Van den Noortgate W, Goossens L, Claes S,
Van Winkel R (2017). “Gene-Based Interaction Analysis Shows GABA Ergic Genes Inter-
acting with Parenting in Adolescent Depressive Symptoms.” Journal of Child Psychology
and Psychiatry, 58(12), 1301–1309. doi:10.1111/jcpp.12766.

Van der Vaart AW (1998). Asymptotic Statistics. Cambridge University Press, New York.

Warnes G (2021). genetics: Population Genetics. R package version 1.3.8.1.3, URL https:
//CRAN.R-project.org/package=genetics.

Wasserstein RL, Lazar NA (2016). “The ASA’s Statement on p-Values: Context, Process,
and Purpose.” The American Statistician, 70(2), 129–133. doi:10.1080/00031305.2016.
1154108.

Westfall PH, Young SS (1993). Resampling-Based Multiple Testing: Examples and Methods
for p-Value Adjustment. John Wiley & Sons, New York.

Wilkinson B (1951). “A Statistical Consideration in Psychological Research.” Psychological
Bulletin, 48(2), 156–158. doi:10.1037/h0059111.

Wilson DJ (2019). “The Harmonic Mean p-Value for Combining Dependent Tests.” Pro-
ceedings of the National Academy of Sciences of the United States of America, 116(4),
1195–1200. doi:10.1101/171751.

Yang JJ, Li J, Williams LK, Buu A (2016). “An Efficient Genome-Wide Association Test for
Multivariate Phenotypes Based on the Fisher Combination Function.” BMC Bioinformat-
ics, 17, 19. doi:10.1186/s12859-015-0868-6.

https://doi.org/10.1093/bioinformatics/btr511
https://doi.org/10.1080/01621459.1967.10482935
https://doi.org/10.1080/01621459.1967.10482935
https://doi.org/10.1093/biomet/73.3.751
https://doi.org/10.1038/nrg2361
https://doi.org/10.1037/0033-2909.97.2.334
https://doi.org/10.1037/0033-2909.97.2.334
https://doi.org/10.1111/jcpp.12766
https://CRAN.R-project.org/package=genetics
https://CRAN.R-project.org/package=genetics
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1037/h0059111
https://doi.org/10.1101/171751
https://doi.org/10.1186/s12859-015-0868-6

42 The poolr Package for Combining Independent and Dependent p Values

Yi L, Pachter L (2018). aggregation: p-Value Aggregation Methods. R package version 1.0.1,
URL https://CRAN.R-project.org/package=aggregation.

Zhang H, Tong T, Landers JE, Wu Z (2020). “TFisher: A Powerful Truncation and Weighting
Procedure for Combining p-Values.” The Annals of Applied Statistics, 14(1), 178–201. doi:
10.1214/19-aoas1302.

Zhao JH (2007). “gap: Genetic Analysis Package.” Journal of Statistical Software, 23(8),
1–18. doi:10.18637/jss.v023.i08.

Ziegler A, König IR (2010). A Statistical Approach to Genetic Epidemiology. 2nd edition.
John Wiley & Sons, Weinheim.

Affiliation:
Ozan Cinar
Department of Psychiatry and Neuropsychology
School for Mental Health and Neuroscience
Faculty of Health, Medicine, and Life Sciences
Maastricht University, The Netherlands
E-mail: ozan.cinar@maastrichtuniversity.nl

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/
January 2022, Volume 101, Issue 1 Submitted: 2020-02-21
doi:10.18637/jss.v101.i01 Accepted: 2021-06-02

https://CRAN.R-project.org/package=aggregation
https://doi.org/10.1214/19-aoas1302
https://doi.org/10.1214/19-aoas1302
https://doi.org/10.18637/jss.v023.i08
mailto:ozan.cinar@maastrichtuniversity.nl
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v101.i01

	Introduction
	Methods
	Base methods
	Fisher's method
	Stouffer's method
	Inverse chi-square method
	Binomial test
	Bonferroni method
	Tippett's method

	Adjustments
	Effective number of tests
	Correlation among dependent p values
	Empirically-derived null distributions using pseudo replicates
	Generalized methods derived under dependence

	Implementation
	Combining independent p values
	Combining dependent p values
	Adjusting based on the effective number of tests
	Adjusting based on empirically-derived null distributions
	Adjusting based on generalized methods

	Example
	Comparison with other packages
	Discussion

