
JSS Journal of Statistical Software
January 2022, Volume 101, Issue 11. doi: 10.18637/jss.v101.i11

BSL: An R Package for Efficient Parameter
Estimation for Simulation-Based Models via

Bayesian Synthetic Likelihood

Ziwen An
Queensland University

of Technology

Leah F. South
Lancaster University

Queensland University
of Technology

Christopher Drovandi
Queensland University

of Technology

Abstract

Bayesian synthetic likelihood (BSL; Price, Drovandi, Lee, and Nott 2018) is a popular
method for estimating the parameter posterior distribution for complex statistical models
and stochastic processes that possess a computationally intractable likelihood function.
Instead of evaluating the likelihood, BSL approximates the likelihood of a judiciously cho-
sen summary statistic of the data via model simulation and density estimation. Compared
to alternative methods such as approximate Bayesian computation (ABC), BSL requires
little tuning and requires less model simulations than ABC when the chosen summary
statistic is high-dimensional. The original synthetic likelihood relies on a multivariate
normal approximation of the intractable likelihood, where the mean and covariance are
estimated by simulation. An extension of BSL considers replacing the sample covariance
with a penalized covariance estimator to reduce the number of required model simula-
tions. Further, a semi-parametric approach has been developed to relax the normality
assumption. Finally, another extension of BSL aims to develop a more robust synthetic
likelihood estimator while acknowledging there might be model misspecification. In this
paper, we present the R package BSL that amalgamates the aforementioned methods and
more into a single, easy-to-use and coherent piece of software. The package also includes
several examples to illustrate use of the package and the utility of the methods.

Keywords: approximate Bayesian computation, covariance matrix estimation, Markov chain
Monte Carlo, likelihood-free methods, pseudo-marginal MCMC, model misspecification, whiten-
ing transformation.

https://doi.org/10.18637/jss.v101.i11
https://orcid.org/0000-0002-9947-5182
https://orcid.org/0000-0002-5646-2963
https://orcid.org/0000-0001-9222-8763

2 BSL: An R Package for Bayesian Synthetic Likelihood

1. Introduction
In the Bayesian framework, inference on the parameter θ ∈ Θ ⊆ Rp of a statistical model
is carried out using the posterior distribution p(θ|y), where y is the observed data. Bayes’
theorem shows that by incorporating information about θ obtained from observed data y
via the likelihood function p(y|θ), the prior knowledge p(θ) can be updated to provide the
posterior distribution,

p(θ|y) = p(y|θ)p(θ)∫
Θ p(y|θ)p(θ) dθ

∝ p(y|θ)p(θ).

In most applications, the evidence
∫

Θ p(y|θ)p(θ) dθ involves high dimensional integration
and is intractable. Recovery of the posterior distribution often relies on sampling methods,
such as Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC; Del Moral,
Doucet, and Jasra 2006).
However, in complex models, the likelihood function can be intractable or very expensive to
evaluate. The terminology “likelihood-free inference” typically refers to inference techniques
that do not require direct evaluation of the likelihood function, but rely on model simulations
to approximate the likelihood in some way. One successful method is approximate Bayesian
computation (ABC; Sisson, Fan, and Beaumont 2018). ABC essentially estimates the in-
tractable likelihood non-parametrically at θ with a simulation x ∼ p(·|θ). The raw dataset
is usually reduced down to summaries with a carefully chosen summary statistic function
S(·) : Rδ 7→ Rd, where δ and d are the dimension of the raw data and summary statis-
tics, respectively. Denote the observed and simulated summary statistics as sy = S(y) and
sx = S(x), respectively. The ABC likelihood function is given by

pϵ(sy|θ) =
∫

Y
Kϵ(ρ(sy, sx))p(x|θ) dx,

where ρ(·) is a discrepancy function, which measures the distance between the observed and
simulated summary statistics under a certain metric, e.g., the Euclidean distance. Also, Kϵ(·)
is a kernel weighting function, usually an indicator function I(· < ϵ) for convenience, which
links distance and tolerance ϵ. Here ϵ is used to trade-off between the bias and variance of the
likelihood estimator, i.e., as ϵ approaches zero the bias reduces but the variance increases. In
sampling methods like MCMC, a likelihood estimator with large variance can reduce efficiency
by causing the Markov chain to become stuck (Doucet, Pitt, Deligiannidis, and Kohn 2015).
Due to the non-parametric nature of the ABC likelihood estimate, ABC can be very inefficient
when the summary statistic is high dimensional (Blum 2010), which is often referred to as
the curse of dimensionality. Furthermore, ABC requires the user to select ρ, Kϵ and ϵ, and
the results can be sensitive to these choices.
Wood (2010) proposes to use a multivariate normal distribution to approximate the likelihood
function. Such an approximation is called the synthetic likelihood (SL). We later extend the
term to not only the multivariate normal distribution but also other reasonable parametric
approximations of the likelihood (Drovandi, Pettitt, and Lee 2015, provide a general frame-
work for such methods). Price et al. (2018) analyze SL in the Bayesian framework and name
it Bayesian synthetic likelihood (BSL). MCMC is used to explore the parameter space. The
paper uses extensive empirical results to show that BSL can outperform ABC even when the
model summary statistics show small departures from normality. BSL not only scales better
with the summary statistic dimension, but also requires less tuning and can be accelerated

Journal of Statistical Software 3

with parallel computing. Recently, asymptotic properties of BSL have been derived under
various assumptions. Frazier and Drovandi (2021) develop a result for posterior concentration
and Frazier, Nott, Drovandi, and Kohn (2021) show that the BSL posterior mean is consistent
and asymptotically normally distributed.
In the standard BSL approach, the most obvious computational drawback is the need to gener-
ate a large number of simulations n for estimating a high-dimensional covariance matrix in the
SL. Several strategies have been devised to reduce the number of simulations n for estimating
the synthetic likelihood. An, South, Nott, and Drovandi (2019) propose to use the graphical
lasso to estimate a penalized covariance and provide an algorithm for selecting the penalty to
ensure reasonable mixing when placed inside an MCMC algorithm. Ong, Nott, Tran, Sisson,
and Drovandi (2018a) consider the shrinkage estimator of Warton (2008) in the context of
variational Bayesian synthetic likelihood to reduce the number of simulations. To improve the
efficacy of Warton’s shrinkage estimator within BSL, Priddle, Sisson, and Drovandi (in press)
employ a whitening transformation of the summary statistic. The whitening transformation
can significantly de-correlate the summary statistic so that more shrinkage can be applied
without losing much accuracy. Everitt (2017) considers a bootstrap approximation to lower
the variance of the SL estimator. Furthermore, the normality assumption of SL has also
been put under inspection by An, Nott, and Drovandi (2020), who consider a more flexible
approximation of the synthetic likelihood using a semi-parametric estimator with a Gaussian
copula. Frazier and Drovandi (2021) develop a robust BSL method by introducing a latent
parameter to account for the proposed model to be potentially unable to re-produce all of the
observed summary statistics.
There are existing packages in R (R Core Team 2021) for likelihood-free inference. For exam-
ple, the R packages abc (Csillery, Francois, and Blum 2012) and EasyABC (Jabot, Faure, and
Dumoulin 2013) exist for various ABC methods. The R package synlik (Fasiolo and Wood
2021) implements the classic SL method of Wood (2010). The package provides diagnostic
tools for the normal synthetic likelihood and incorporates MCMC to find the approximate
posterior distribution. However, synlik is limited to only the standard SL approach. Outside
of R, the ABCpy (Dutta et al. 2021) package in Python (Van Rossum et al. 2011) includes most
of the popular ABC algorithms and the standard SL approach. Further, the ELFI (engine for
likelihood-free inference) package (Lintusaari et al. 2018) in Python currently has support for
various ABC algorithms and also BOLFI (Bayesian optimization for likelihood-free inference;
Gutmann and Corander 2016).
Given the wide applicability of BSL (e.g., Karabatsos 2018; Barbu, Sethuraman, Billig, and
Levy 2018), it is important that BSL methods are directly accessible to practitioners. BSL has
been used for statistical inference in forest models (Hartig, Dislich, Wiegand, and Huth 2014),
cell biology (Drovandi, Grazian, Mengersen, and Robert 2018), cosmology (Leclercq 2018),
stochastic differential equation mixed effects models (Picchini and Forman 2019) and time-
censored aggregate data (Chen, Ye, and Zhai 2020). In this paper we introduce our BSL R
package (An, South, and Drovandi 2022), which implements the Bayesian version of synthetic
likelihood and many of the extensions listed earlier together with additional functionality
detailed later in the paper and which is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=BSL. The package is flexible in terms
of the prior specification, the implementation of the model simulation function and the choice
of the summary statistic function. Further, it includes several built-in examples to help the
user learn how to use the package.

https://CRAN.R-project.org/package=BSL

4 BSL: An R Package for Bayesian Synthetic Likelihood

The rest of this paper is structured as follows. Section 2 provides a brief description of
the statistical background for SL and several extensions based on unbiased estimators, semi-
parametric approaches, robustness to misspecification and shrinkage approaches. In Sections 3
and 4, we introduce the main functionalities of BSL with an illustrative toy example and a real
example, respectively. Section 5 concludes the paper with a summary and further discussion.

2. Bayesian synthetic likelihood
Following the notation in Section 1, we focus on reviewing three SL estimators to p(sy|θ)
and two shrinkage covariance estimation methods in Section 2.1 to Section 2.5. We briefly
introduce other implementation details in Section 2.6.
The SL estimator can be viewed as an auxiliary likelihood function pA(sy|ϕ) where the
subscript “A” denotes that we are using a parametric density approximation and ϕ is the
parameter of this parametric family of densities. To link this auxiliary likelihood to the actual
likelihood, there is a functional relationship between ϕ and θ, which may be denoted as ϕ(θ).
However, we drop the dependence on θ for notational convenience. The SL posterior is given
by

pA(θ|sy) ∝ pA(sy|ϕ)p(θ).

Unfortunately, the mapping from θ to ϕ is typically unknown. However ϕ can be estimated
with simulations. The estimated synthetic likelihood is placed within an MCMC algorithm to
sample from the corresponding approximate posterior of θ. Below we describe the synthetic
likelihood estimators supported by our package, which amount to choosing the form of pA

and the type of estimator of ϕ.

2.1. The standard BSL likelihood estimator

Assume we have obtained a collection of n simulations from the model at a proposed parameter
value of θ, i.e., x1, . . . , xn

iid∼ p(·|θ). The corresponding summary statistics are denoted as
si = S(xi) ∈ S ⊆ Rd for i = 1, . . . , n. Following Wood (2010), the SL p(sy|θ) is assumed to
be roughly multivariate normal. The classic SL estimator can be written as

psl(sy|ϕsl) = N (sy|ϕsl), (1)

where ϕsl = (µ(θ), Σ(θ)) is estimated with sample mean and covariance ϕ̂sl = (µn(θ), Σn(θ))

µn(θ) = 1
n

n∑
i=1

si

Σn(θ) = 1
n − 1

n∑
i=1

(si − µn(θ))(si − µn(θ))⊤.

(2)

Although ϕ̂sl is an unbiased estimator of ϕsl, N (sy|ϕ̂sl) is not an unbiased estimator of
N (sy|ϕsl). However, empirical results demonstrate that the approximate posterior exhibits
very weak dependence on n (Price et al. 2018). Nevertheless, if n is prohibitively small, then
there can be significant Monte Carlo error in the MCMC approximation of the BSL target.

Journal of Statistical Software 5

2.2. An unbiased BSL likelihood estimator

Ghurye and Olkin (1969) provide an unbiased estimator for the multivariate normal density
based on independent simulations from it. Price et al. (2018) show the viability of this
estimator by using it in place of the standard SL estimator within an MCMC algorithm. The
estimator, denoted as uBSL, requires n > d + 3 for unbiasedness to hold. The estimated
auxiliary parameter ϕ̂go can be written as (µn(θ), Mn(θ)), where Mn(θ) = (n − 1)Σn(θ).
Definitions of µn(θ) and Σn(θ) can be found in Equation 2. The unbiased likelihood estimator
is given by

pgo(sy|ϕgo) = (2π)−d/2 c(d, n − 2)
c(d, n − 1)(1 − 1/n)d/2 |Mn(θ)|−(n−d−2)/2

Ψ
(
Mn(θ) − (sy − µn(θ))(sy − µn(θ))⊤

1 − 1/n

)(n−d−3)/2
, (3)

where
c(k, v) = 2−kv/2π−k(k−1)/4∏k

i=1 Γ
(v − i + 1

2
)

and

Ψ(A) =
{

|A| if A > 0,

0 otherwise.

In spite of the fact that the normality assumption is rarely true in practice, the approximate
posterior distributions obtained by uBSL show less dependence on n when compared to BSL
(Price et al. 2018).

2.3. A semi-parametric BSL likelihood estimator

Although the estimators of Equations 1 and 3 are straightforward to compute, the normality
assumption of the summary statistic could be restrictive in some cases. It is thus of interest to
consider a more robust likelihood estimator that can handle non-normal summary statistics
whilst not sacrificing much on computational efficiency.
Here we briefly describe the semi-parametric likelihood estimator of An et al. (2020), which
is aliased as “semiBSL” by the authors. The paper shows examples where BSL fails to
produce accurate posterior approximations whilst semiBSL can still produce reasonable pos-
terior estimates. The semiBSL estimator harnesses kernel density estimation (KDE) to non-
parametrically estimate the univariate distributions of the summary statistics and uses the
Gaussian copula to model the dependence amongst summaries. This semi-parametric esti-
mator provides additional robustness over the multivariate normal assumption and is quick
to apply.
The estimator involves two aspects: modeling the marginals and modeling the dependence
structure. We first describe KDE for estimating the marginals. Denoting sj

i for j = 1, . . . , d as
the j-th component of si, if the summary statistic is continuous or approximately continuous
(e.g., large counts), a KDE of the j-th marginal density is given by

ĝj(x) = 1
n

n∑
i=1

Kh(x − sj
i), (4)

6 BSL: An R Package for Bayesian Synthetic Likelihood

where Kh(·) is a non-negative kernel function with bandwidth parameter h. See Izenman
(1991) for a review and discussion of KDE. Similarly, the corresponding estimated cumulative
distribution function Ĝj(·) can be obtained. The choice of the kernel function could be various.
An et al. (2020) select the Gaussian kernel for simplicity and for its unbounded support.
By using KDE, the semiBSL estimator can accommodate non-normal marginal summary
statistics. For the second aspect, semiBSL uses a Gaussian copula to model dependence
between summaries. The density function for the Gaussian copula is given by

cR(u) = 1
|R|

exp
{

− 1
2η⊤(R−1 − Id)η

}
,

where R is the correlation matrix, η = (Φ−1(u1), . . . , Φ−1(ud))⊤, Φ−1(·) is the inverse CDF of
a standard normal distribution, and Id is a d-dimensional identity matrix. The main appeal
of the Gaussian copula here is that it is fast to estimate the correlation matrix (see details
later). Combining the advantages from both aspects, we are then able to have a tractable
likelihood estimator written as pssl(sy|ϕssl), where ϕssl = (R, u1, . . . , ud, g1(s1

y), . . . , gd(sd
y))

is estimated by ϕ̂ssl = (R̂, û1, . . . , ûd, ĝ1(s1
y), . . . , ĝd(sd

y)), ûj = Ĝj(sj
y) and ĝj(sj

y) is given by
Equation 4. The full semiBSL density estimator is given by

pssl(sy|ϕ̂ssl) = 1√
R̂

exp
{

− 1
2 η̂⊤

sy
(R̂−1 − Id)η̂sy

} d∏
j=1

ĝj(sj
y). (5)

Finally we provide details on obtaining R̂. With a collection of simulations {ηsi
}n

i=1, it can
either be estimated with maximum likelihood estimation, or as An et al. (2020) advocate, one
could use the Gaussian rank correlation (GRC; Boudt, Cornelissen, and Croux 2012). The
GRC estimator is known to be more robust. The (i, j)-th entry of the GRC matrix is given
by

ρ̂grc
i,j =

∑n
k=1 Φ−1

(r(si
k)

n + 1
)
Φ−1

(r(sj
k)

n + 1
)

∑n
k=1 Φ−1

(k

n + 1
)2 ,

where r(·) : R → A, and A ≡ {1, . . . , n}, is the rank function. Note that here the GRC is
used to estimated the correlation matrix in semiBSL. However, our package also permits the
use of the GRC in standard BSL to provide more robustness. In doing so, a transformation
to the covariance matrix is needed afterwards.
We point out that when the data generation process is complicated, most of the computational
cost will be spent on model simulations. Thus the computational overhead introduced by the
semi-parametric likelihood estimator may be negligible relative to the standard SL estimator.

2.4. A robust BSL likelihood estimator for model misspecification

Model misspecification could be particularly harmful to likelihood-free simulation-based ap-
proaches as the data generating process (DGP) is often complicated. Frazier, Robert, and
Rousseau (2020) demonstrate how the pseudo-true parameter value is not recovered asymp-
totically by ABC algorithms under model misspecification. Further, Frazier and Drovandi
(2021) demonstrate that BSL can produce unreliable inferences when the model is not com-
patible with the observed summary statistic (compatibility is described in more detail in

Journal of Statistical Software 7

Definition 1 below). Let Pθ and Πθ be the probability measure for the likelihood and prior
beliefs for some θ ∈ Θ ⊆ Rp, respectively. Let b0 := plimS(y) and b(θ) := plimS(x) be the
probability limit for the observed and simulated summary statistics, respectively.

Definition 1. The model Pθ × Πθ and summary statistic map S(·) are compatible if

inf
θ∈Θ

∥b(θ) − b0∥ = 0.

The above definition of compatibility essentially means that asymptotically the observed sum-
mary statistic can be replicated with the assumed DGP and some parameter value with prior
support. With the notion of compatibility defined, Frazier and Drovandi (2021) proposed
two different approaches, mean adjustment and variance inflation, that help address incom-
patibility between model and summary statistics. We refer to these methods in this paper
as robust BSL (rBSL). Both approaches define an augmented parameter ζ = (θ⊤, γ⊤)⊤ ∈
Θ × G ⊆ Rp+d, where γ = (γ1, . . . , γd)⊤ is the additional free parameter to account for mean
adjustment or variance inflation depending on the approach. The prior distribution of ζ can
be written as p(θ)×p(γ), where p(γ) is the prior distribution of γ. We use the prior choice of
Frazier and Drovandi (2021) in the BSL package, but refer the readers to the original paper
for details.
Frazier and Drovandi (2021) demonstrate that when Definition 1 holds, the posterior for γ
converges to its prior, and the inferences on θ are similar to when standard BSL is used. When
compatibility is not satisfied, the posterior for γ will concentrate away from zero and will be
different from the prior for the corresponding statistics that the model cannot match. This
allows the inferences on θ to be less impacted by statistics that the model is not compatible
with. A useful by-product of rBSL, in the presence of incompatibility, is that the variance of
the robust synthetic likelihood estimator is much smaller than that of the standard synthetic
likelihood estimator, since the mean adjustment and variance inflation help ensure that the
observed statistic does not sit as far in the tails of the synthetic likelihood. Frazier and
Drovandi (2021) demonstrate that the efficiency of MCMC can be greatly improved with
rBSL when compatibility is not met.
The rBSL likelihood is still approximated by a Gaussian distribution,

prsl(sy|ϕrsl) = N (sy|ϕrsl), (6)

where ϕrsl represents the auxiliary parameter of choice, i.e., ϕrsl-m and ϕrsl-v for mean ad-
justment and variance inflation approaches, respectively. For notational convenience, in Sec-
tion 2.4, let µ and Σ be the sample mean µn(θ) and sample covariance Σn(θ) in Equation 2,
respectively.

Mean adjustment
The mean adjustment approach (rBSL-M) aims to handle the incompatibility by adjusting
the simulated means. Following the notation of sample mean and covariance in Equation 2,
the adjusted mean parameter is defined as

µ̃n(ζ) = µ + diag(Σ1/2)γ,

where diag(A) represents the diagonal matrix with diagonal elements the same as the diagonal
elements of A. This ensures that the components of γ have the same scale. The auxiliary
parameter for rBSL-M can be written as ϕrsl-m = (µ̃n(ζ), Σ).

8 BSL: An R Package for Bayesian Synthetic Likelihood

Variance inflation
Similarly, the variance inflation approach (rBSL-V) allows the variance of the synthetic like-
lihood to be inflated. The variance parameter for rBSL-V is given by

Σ̃n(ζ) = Σ +

σ11γ2

1 0 · · · 0
0 σ22γ2

2 · · · 0
...

...
0 0 · · · σppγ2

p

 ,

where σij is the (i, j)-th element of Σ. The auxiliary parameter for rBSL-V can be written
as ϕrsl-v = (µ, Σ̃n(ζ)).

2.5. An accelerated likelihood estimator with shrinkage estimation
We can see from Equations 1 and 5 that both estimators involve estimation of a covariance or
correlation matrix. The number of free parameters in the covariance matrix grows quadrati-
cally with the number of summary statistics. Thus, for a high-dimensional summary statistic,
a large number n of simulations may be required to estimate the likelihood with reasonable
precision.
Here we introduce two shrinkage estimators of the covariance matrix that have shown to be
useful in empirical examinations (Ong et al. 2018a; An et al. 2019, 2020). The shrinkage
estimators can be applied to BSL and semiBSL. Note that we skip uBSL because the unbi-
asedness property will be violated with shrinkage estimation. The selection of the penalty
parameter will be discussed later in Section 2.6. For clarification, we change the notations in
Section 2.5 temporarily and restore them back after. Let x1, . . . , xn be samples from a mul-
tivariate normal distribution N (µ, Σ). The dimension of each sample is d. S is the sample
covariance and Θ = Σ−1 is the precision matrix.

Graphical lasso
The graphical lasso (Friedman, Hastie, and Tibshirani 2008) aims to find a sparse precision
matrix by maximizing the following l1 regularized log-likelihood

log p(x) = c + log |Θ| − tr(ΘS) − λ∥Θ∥1,

where c is a constant, ∥ · ∥1 is the l1 norm, and λ is the penalty parameter. The problem
is solved with convex optimization. The penalty parameter λ controls the sparsity in Θ,
where large λ leads to high sparsity and vice versa. We refer the readers to Friedman et al.
(2008) for more details about the graphical lasso. In our package we use the graphical lasso
implementation in the R package glasso (Friedman, Hastie, and Tibshirani 2019).

Warton’s estimator
Warton (2008) introduces a straightforward shrinkage estimator that is extremely fast to
compute but still performs well. Define D̂ as the diagonal matrix of S, then the sample
correlation matrix can be computed with Ĉ = D̂

−1/2
SD̂

−1/2. The Warton’s shrinkage for
the correlation matrix is given by

Ĉλ = λĈ + (1 − λ)Id,

Journal of Statistical Software 9

where λ ∈ [0, 1] is the shrinkage parameter and Id is the identity matrix. The correlation
matrix reduces to the identity matrix as λ approaches 0. With a correlation to covariance
conversion, we get the Warton’s covariance estimator for Σ

Σ̂λ = D̂
1/2

ĈλD̂
1/2

. (7)

Warton’s estimation with whitening transformations

Motivated by further reducing the number of model simulations, Priddle et al. (in press)
propose to use a de-correlation technique based on whitening transformations to encourage
greater shrinkage of the covariance matrix. With the summary statistics significantly de-
correlated, Priddle et al. (in press) propose to use Warton’s estimator (Equation 7) with a
significant amount of shrinkage in order to reduce the number of model simulations required.
In some numerical examples, Priddle et al. (in press) find that combining the whitening
transformations together with Warton’s shrinkage estimator permits the use of a diagonal
covariance matrix in the synthetic likelihood without much loss of accuracy compared to
standard BSL. The whitening transformation (Kessy, Lewin, and Strimmer 2018) is a linear
transformation that aims to de-correlate the random variables (or summary statistics in the
context of BSL) such that the whitened covariance matrix could be close to an identity matrix.
Let W be a d × d matrix, which satisfies W ⊤W = Θ. Let s be a d-dimensional random
variable with covariance matrix Σ. A whitening transformation on s using W is s̃ = W s. In
the BSL context, s represents the summary statistic. The covariance matrix of the whitened
summary statistic is given by

Var(s̃) = Var(W s) = W ΣW ⊤ = Id,

where W is the whitening matrix. Ideally, upon the above transformation, the covariance
matrix of the synthetic likelihood would be close to an identity matrix. However, the restric-
tion of W ⊤W = Θ still does not identify a unique matrix W . Kessy et al. (2018) outline
five natural choices of the whitening matrix. Priddle et al. (in press) demonstrate that the
principle component analysis (PCA) whitening method produces the most accurate posterior
result when applied in a BSL algorithm. Thus, we take PCA as the default method to es-
timate the whitening matrix. The implementation of whitening transformations in BSL is
through the R package whitening (Strimmer, Jendoubi, Kessy, and Lewin 2019).
Using eigendecomposition, the covariance matrix is decomposed as Σ = UΛU⊤, where U is
the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues. The PCA whitening
matrix is given by

W PCA = Λ−1/2U⊤.

The whitening matrix to use is determined by a relatively large number of offline simulations
at a point estimate of the parameter, and is subsequently fixed during BSL. If the point
estimate has reasonable posterior support, then the whitening transformation can be effective
in de-correlating the statistic at model parameter values with non-negligible posterior support
(Priddle et al. in press).

10 BSL: An R Package for Bayesian Synthetic Likelihood

Algorithm 1: Procedure to select the penalty value λ for BSL or semiBSL with shrinkage
estimation.
Input : The BSL method to be used, either BSL or semiBSL, denoted method; the

shrinkage estimation to be used, either graphical lasso or Warton, denoted
shrinkage; parameter value with non-negligible posterior support θ0; the
number of simulations n; a number of potential penalty values, λ1, . . . , λK ; the
standard deviation of the log-likelihood estimator to aim for σ; and the
number of repeats M .

Output: The selected penalty parameter λ.
for m = 1 to M do

Generate n datasets with the simulation function {xi}n
i=1

iid∼ p(·|θ0).
Compute the corresponding summary statistics {si}n

i=1 = {S(xi)}n
i=1.

for k = 1 to K do
if method is BSL then

Compute the penalized covariance matrix Σn,λk
using the shrinkage method

of shrinkage with the samples {si}n
i=1.

Compute the sample mean µn(θ).
Set ϕ̂sl = (µn(θ), Σn,λk

).
Estimate the log SL lm,k = log psl(sy|ϕ̂sl) with Equation 1.

end
if method is semiBSL then

Compute and penalize the Gaussian rank correlation matrix using the
shrinkage method of shrinkage with the samples {si}n

i=1, and save it to
Rn,λk

.
Compute û1, . . . , ûd, ĝ1(s1

y), . . . , ĝd(sd
y).

Set ϕ̂ssl = (Rn,λk
, û1, . . . , ûd, ĝ1(s1

y), . . . , ĝd(sd
y)).

Estimate the log SL lm,k = log pssl(sy|ϕ̂ssl) with Equation 5.
end

end
end
Compute σk as the standard deviation of {lm,k}M

m=1 for k = 1, . . . , K.
Choose the λ for which the empirical standard deviation σk is closest to σ.

Penalty selection

An et al. (2019) introduce a penalty selection approach for BSLasso (BSL with graphical
lasso). The general approach can also be used with Warton’s shrinkage estimator. Our
goal is to reduce the value of n required while still maintaining a similar level of noise in
the SL approximation. Denote σ as the standard deviation of the penalized log-likelihood
estimator that we are aiming for. The value of σ is typically around 1.5, as suggested below
in Section 2.6. The algorithm for selecting the penalty parameter is given in Algorithm 1.
Here we use λ for the penalty parameter for both the graphical lasso and Warton’s estimator
for notational convenience.

Journal of Statistical Software 11

2.6. Other implementation details

Incorporating BSL with MCMC

Once we have selected a likelihood function estimator, we can use a Bayesian sampling al-
gorithm to sample from the BSL approximation to the posterior p(θ|sy). This is currently
achieved using MCMC in our package. Pseudo-code for the MCMC BSL algorithm (except
rBSL) is provided in Algorithm 2. The rBSL estimator of Section 2.4 operates on the aug-
mented parameter space Θ × G. Frazier and Drovandi (2021) use a component-wise MCMC
algorithm to update θ and γ alternately. The update of θ is the same as Algorithm 2, and
in each iteration γ is updated with a slice sampler (Neal 2003).
Price et al. (2018) demonstrate empirically that the BSL posterior depends weakly on the
number of simulations n used to estimate the synthetic likelihood at each iteration of MCMC.
Further, Frazier et al. (2021) show, under some conditions, that the BSL posterior can achieve
correct frequentist uncertainty quantification asymptotically with n growing at any arbitrarily
slow rate as the sample size increases. Therefore, as recommended by Price et al. (2018), we
suggest to tune n based on maximizing computational efficiency in a similar way as suggested
in the pseudo-marginal MCMC literature (Andrieu and Roberts 2009). In pseudo-marginal
MCMC, an intractable likelihood is replaced with a non-negative unbiased estimator based
on some form of Monte Carlo using N “particles”; for example, using a particle filter with N
particles to obtain an unbiased estimator of the likelihood for state space models (Andrieu,
Doucet, and Holenstein 2010). Increasing N reduces the variance of the likelihood estimator,
which leads to a more statistically efficient MCMC algorithm. However, the cost per MCMC
iteration increases. On the other hand, taking N too small leads to poor statistical efficiency
of MCMC as the chain often gets stuck for long periods at a greatly overestimated estimate
of the likelihood. Doucet et al. (2015) suggest to choose N that produces an estimated log-
likelihood with a standard deviation of roughly 1 when evaluated at a parameter value with
reasonable posterior support. In the context of standard BSL, Price et al. (2018) demonstrate
empirically that aiming for a standard deviation of the synthetic log-likelihood estimator of
around 1.5–2 at a representative parameter value provides the most computationally efficient
results.
As shown in Price et al. (2018), there is another connection between BSL and pseudo-marginal
MCMC, specifically related to the uBSL algorithm of Section 2.2. Unlike pseudo-marginal
MCMC, the synthetic likelihood estimated from n simulations does not produce an unbi-
ased estimate of the actual synthetic likelihood where the relationship between (µ, Σ) and
θ is known; or equivalently assuming that we could perform an infinite number of model
simulations. Therefore, as already mentioned, BSL theoretically depends on n. The uBSL
algorithm of Section 2.2 can be thought of as a pseudo-marginal MCMC method that targets
p(θ|sy) when the summary statistics follow a multivariate Gaussian distribution since it uses
an exactly unbiased estimator of the multivariate Gaussian density.
We recommend that the initial value of the Markov chain has non-negligible support under
the BSL posterior. Our experience with MCMC BSL is that if the chain is initialized far in
the tails of the BSL posterior, then MCMC BSL exhibits slow convergence. The initial value
for the Markov chain may be sourced from experts, previous analyses in the literature or a
short run of another likelihood-free algorithm. In low dimensions, using BSL with multiple
randomized starts may be helpful in finding a region with non-negligible support.

12 BSL: An R Package for Bayesian Synthetic Likelihood

Algorithm 2: MCMC BSL algorithm.
Input : Summary statistic of the observed data sy; the prior distribution p(θ), the

proposal distribution q(·|·); the number of simulations used to estimate the
synthetic likelihood n; the number of iterations M ; and the initial value of the
chain θ0.

Output: MCMC samples (θ0, θ1, . . . , θM) from the BSL posterior, pA(θ|sy). Some
samples can be discarded as burn-in if required.

Generate n datasets with the simulation function {xi}n
i=1

iid∼ p(·|θ0).
Compute the corresponding summary statistics {si}n

i=1 = {S(xi)}n
i=1.

Estimate the auxiliary parameter ϕ̂ depending on the SL estimator.
Compute the estimated SL p̂0

A = p̂A(sy|ϕ̂) with Equation 1, 3 or 5.
for i = 1 to M do

Propose a parameter value with θ∗ ∼ q(·|θi−1).
Generate n datasets with the simulation function {x∗

i }n
i=1

iid∼ p(·|θ∗).
Compute the corresponding summary statistics {s∗

i }n
i=1 = {S(x∗

i)}n
i=1.

Estimate the auxiliary parameter ϕ̂ depending on the SL estimator.
Compute the estimated SL p̂∗

A = p̂A(sy|ϕ̂) with Equation 1, 3 or 5.

Compute r = min
(

1,
p̂∗

A p(θ∗) q(θi−1|θ∗)
p̂i−1

A p(θi−1) q(θ∗|θi−1)

)
.

if U(0, 1) < r then
Set θi = θ∗ and p̂i

A = p̂∗
A.

else
Set θi = θi−1 and p̂i

A = p̂i−1
A .

end

end

3. Using the BSL package
In this section, we introduce the BSL package with an illustrative example available from the
package. In the following section we consider a real example, which is also available in the
package. Two main functionalities that are offered in the BSL package are (1) running an
MCMC algorithm with a chosen SL estimator to sample from the approximate posterior dis-
tribution, and (2) selecting the penalty parameter with the given SL estimator and shrinkage
method. Parallel computing is supported with the R package foreach (Kane, Emerson, and
Weston 2013; Microsoft Corporation and Weston 2020b) so that the n independent model
simulations can be run on a multi-core computer if desired.

3.1. Description of the MA(2) example

Here we consider the MA(2), moving average of order 2, time series model with parameter
θ = (θ1, θ2). The parameter space is constrained to {θ : −1 < θ2 < 1, θ1 + θ2 > −1, θ1 − θ2 <
1} so that the process is stationary and invertible. The model has two favorable properties
as an illustrative example: (1) the likelihood is tractable and hence sampling from the true
posterior is feasible for comparisons, and (2) the data generation process is fast. The model

Journal of Statistical Software 13

can be described with the following equation

yt = zt + θ1zt−1 + θ2zt−2, for t = 1, . . . , T ,

where zt
iid∼ N (0, 1) for t = −1, 0, . . . , T is white noise. The prior is set to be uniform on

the feasible region of the parameter space, and zero elsewhere. We set T = 50 and use the
raw data as the summary statistic. Note that the likelihood function is exactly multivariate
normal with mean zero, VAR(yt) = 1 + θ2

1 + θ2
2, COV(yt, yt−1) = θ1 + θ1θ2, COV(yt, yt−2) = θ2,

and with all other covariances being 0. We load the observed data and simulation function
with

R> data("ma2", package = "BSL")

3.2. The model object

Before running any BSL algorithm, we shall first define the model or DGP that will later be
used in simulations. The S4 class ‘MODEL’ contains all the ingredients that constitute a model;
namely a simulation function (fnSim), a summary statistic function (fnSum), a point estimate
or initial value of the parameter (theta0) and other optional arguments (for example simArgs
and fnLogPrior as given below). The first three must be provided for a valid ‘MODEL’ object.
The validity check is automatic upon the creator function newModel. The following command
creates a ‘MODEL’ object for the MA(2) example

R> ma2Model <- newModel(fnSim = ma2_sim, fnSum = function(x) x,
+ simArgs = list(T = 50), theta0 = c(0.6, 0.2), fnLogPrior = ma2_prior)

*** initialize "MODEL" ***
has simulation function: TRUE
has summary statistics function: TRUE
has initial guess / point estimate of the parameter: TRUE
running a short simulation test ... success
*** end initialize ***

Here we use the built-in simulation function ma2_sim. For simplicity, the summary statistic
function returns the raw data without any processing. We set the initial guess of the param-
eter to be theta0 = c(0.6, 0.2), which will also be used as the starting value in MCMC.
We can see in the console message that upon initialization, the newModel creator function
automatically checks if the three requisites exist. By default, the creator function also checks
if the functions can run properly by running 10 simulations as a short test. The short test
can be disabled with flag test = FALSE if desired.

The simulation function

A fast simulation function is important to the efficiency of BSL methods. The package sup-
ports two types of simulation functions. One type of simulation function is where multiple
simulations are produced with vectorized code. Ideally, if code vectorization can be im-
plemented, it is preferable to speed up the simulation process. However, in most complex

14 BSL: An R Package for Bayesian Synthetic Likelihood

applications, it will usually not be possible to vectorize independent simulations. Thus the
second type of simulation only generates a single realization of the model.
The simulation function must be provided by the user. We recommend optimizing the simu-
lation function to avoid any inefficiency. If the DGP is complex and time-consuming, we also
encourage users to write their own simulation function in C/C++ and use Rcpp (Eddelbuet-
tel and François 2011) to call the function within R, as the running time of the algorithm is
typically dominated by model simulations. For a reference text on writing functions in Rcpp,
see Eddelbuettel (2013).

Non-vectorized simulation function. For a non-vectorized simulation function, the model
parameter θ must be supplied as the first argument of the function. Additional arguments can
be put after θ if needed. The output of a non-vectorized simulation function is not restricted
to any R class, but must be appropriate to pass to the summary statistic function directly.
For example, the function below takes two arguments and returns a single simulation result.
The additional parameter T determines the length of the time series, and can be supplied as
a list in the model creator (simArgs = list(T = 50)).

R> ma2_sim

function (theta, TT)
{

rand <- rnorm(TT + 2)
y <- rand[3:(TT + 2)] + theta[1] * rand[2:(TT + 1)] + theta[2] *

rand[1:TT]
return(y)

}
<bytecode: 0x55dc695279d8>
<environment: namespace:BSL>

Vectorized simulation function. The vectorized simulation function is slightly different
to the non-vectorized one. It is specified with argument fnSimVec in the model creator
newModel. If a vectorized simulation function is provided, it will override the usage of the
non-vectorized function fnSim. The input of fnSimVec must follow the order of n, θ and
additional arguments. The output can either be a list of the n simulation results or a matrix
where each row represents a simulation result. Note that vectorized simulation is incompatible
with parallel computing described later. Below is a vectorized simulation function for the
MA(2) model.

R> ma2_sim_vec

function (n, theta, TT)
{

rand <- matrix(rnorm(n * (TT + 2)), n, TT + 2)
y <- rand[, 3:(TT + 2)] + theta[1] * rand[, 2:(TT + 1)]
+theta[2] * rand[, 1:TT]
return(y)

}
<bytecode: 0x55dc695f2d58>
<environment: namespace:BSL>

Journal of Statistical Software 15

The summary statistic function

The summary statistic function takes a simulation result as the first input. Similarly to the
simulation function, if the summary statistic function requires additional arguments, they
can be stored as a list and passed to sumArgs in the model creator function. The output of
the summary statistic function must be a d-dimensional vector of summary statistics. For
simplicity, we load the identity function that returns the same data as the summary statistic
in the MA(2) example.

The prior function

fnLogPrior computes the log density of the prior distribution. If the prior function is not
provided, an improper flat prior will be used by default. However, in practice, defining a
proper prior distribution is always recommended. This function should only take θ as its
input argument, and the output must not be +∞. Note that the normalization constant of
the prior distribution can be ignored, as we do below for the MA(2) example. Here the prior
is uniform on the defined triangular region of θ.

R> ma2_prior

function (theta)
{

log(theta[2] < 1 & sum(theta) > -1 & diff(theta) > -1)
}
<bytecode: 0x00000203cf6184f8>
<environment: namespace:BSL>

3.3. The main function

The primary function of the package is bsl, which uses MCMC to draw samples from an
approximation to the idealized BSL posterior distribution pA(θ|sy). The type of likelihood
estimator described in Section 2 (BSL, uBSL, semiBSL and rBSL) can be specified by the
argument method. Shrinkage estimation on the covariance matrix in BSL and the correlation
matrix in semiBSL can be specified with shrinkage. The minimal requirements of the bsl
function include the observed data (y), the number of simulations for synthetic likelihood
estimation (n), total number of MCMC iterations (M) and the covariance matrix of the normal
random walk Metropolis algorithm (covRandWalk). For the MA(2) example, a minimalistic
call to the main function that runs MCMC BSL (using the estimator of Equation 1) is given
by the following command,

R> resultMa2BSL <- bsl(y = ma2$data, n = 500, M = 100000, model = ma2Model,
+ covRandWalk = ma2$cov, method = "BSL")

Similarly, we can run MCMC uBSL, semiBSL and rBSL by changing the method option,

R> resultMa2uBSL <- bsl(y = ma2$data, n = 500, M = 100000,
+ model = ma2Model, covRandWalk = ma2$cov, method = "uBSL")
R> resultMa2SemiBSL <- bsl(y = ma2$data, n = 500, M = 100000,
+ model = ma2Model, covRandWalk = ma2$cov, method = "semiBSL")

16 BSL: An R Package for Bayesian Synthetic Likelihood

Figure 1: The correlation matrix (left) and inverse correlation matrix (right) of the true
likelihood function for the MA(2) example.

R> resultMa2rBSLM <- bsl(y = ma2$data, n = 500, M = 100000,
+ model = ma2Model, covRandWalk = ma2$cov, method = "BSLmisspec",
+ misspecType = "mean", tau = 0.5)
R> resultMa2rBSLV <- bsl(y = ma2$data, n = 500, M = 100000,
+ model = ma2Model, covRandWalk = ma2$cov, method = "BSLmisspec",
+ misspecType = "variance", tau = 0.5)

The normal random walk covariance matrix, covRandWalk, should be defined based on the
parameterization used in the MCMC sampling; if a parameter transformation is employed,
the covariance matrix should be specified accordingly.

Shrinkage of the likelihood estimator

Implementation of shrinkage methods described in Section 2.5 can be specified with arguments
shrinkage ("glasso" for the graphical lasso estimator and "Warton" for Warton’s estimator)
and penalty for the penalty value (λ in the graphical lasso or Warton’s estimator). Note that
the shrinkage takes place on the covariance matrix for method "BSL", and on the correlation
matrix (of the Gaussian copula) for method "semiBSL".
Shrinkage should only be used when there is a relatively large number of entries near zero
in the precision matrix for graphical lasso and covariance matrix for Warton’s approach.
This can be checked by inspecting the inverse correlation matrix or the correlation matrix
at a representative parameter value. In the MA(2) example, we are able to calculate the
true covariance matrix. For more complex models the covariance matrix can be estimated
with a large number of model simulations at a reasonable parameter value. Here we use
the ggcorrplot function in ggcorrplot (Kassambara 2019) to visualize the matrices. The
visualization of the correlation matrix and inverse correlation matrix for the MA(2) example
are shown in Figure 1.
Both of the figures suggest that the correlation and inverse correlation matrices are sparse.
It is also recommended to check the level of sparsity by computing the proportion of partial
correlations below a certain threshold. For example, 81% of the partial correlations between

Journal of Statistical Software 17

the summary statistics of the MA(2) example are below 0.01. Thus, for this example, shrink-
age estimation is expected to reduce the number of model simulations required for estimating
the synthetic likelihood whilst not sacrificing much on posterior accuracy. We will describe
how to select the penalty parameter in our BSL package in Section 3.5. The following code
runs MCMC BSL with the graphical lasso and Warton’s shrinkage estimator.

R> resultMa2BSLasso <- bsl(y = ma2$data, n = 300, M = 100000,
+ model = ma2Model, covRandWalk = ma2$cov, method = "BSL",
+ shrinkage = "glasso", penalty = 0.027)
R> resultMa2BSLWarton <- bsl(y = ma2$data, n = 300, M = 100000,
+ model = ma2Model, covRandWalk = ma2$cov, method = "BSL",
+ shrinkage = "Warton", penalty = 0.75)

When there is significant correlation between summaries, the whitening transformation can
be effective in allowing a significant amount of shrinkage when employing the Warton’s es-
timator, while still maintaining a reasonable level of accuracy. Whitening is not currently
supported for semiBSL. If a whitening transformation is desired, a whitening matrix needs
to be estimated prior to running the bsl function. This can be done with the function
estimateWhiteningMatrix. The example code below estimates a whitening matrix using
the "PCA" method (as suggested in Section 2.5) with 20000 simulations at a parameter value
of θ = (0.6, 0.2)⊤.

R> W <- estimateWhiteningMatrix(20000, ma2Model, method = "PCA",
+ thetaPoint = c(0.6, 0.2))

Supplying the estimated whitening matrix into the bsl function under argument whitening
enables the whitening transformation. Alternatively, simply setting whitening = TRUE auto-
matically estimates a whitening matrix with 1000 model simulations at the parameter value
provided in model. The following code runs the standard BSL method with the Warton’s
shrinkage estimator and whitening transformation.

R> resultMa2BSLWhitening <- bsl(y = ma2$data, n = 300, M = 100000,
+ model = ma2Model, covRandWalk = ma2$cov, method = "BSL",
+ shrinkage = "Warton", penalty = 0.6, whitening = W)

Parameter transformation

If the prior distribution is bounded or the normal random walk cannot explore the parameter
space efficiently, parameter transformation is recommended. Recall p(θ) is the prior distri-
bution for θ ∈ Θ ⊆ Rp. Suppose the parameters are independent and bounded, the prior
function can be decomposed as

p(θ) =
p∏

i=1
pi(θi), for θi ∈ (ai, bi),

where ai and bi are the lower and upper bound for θi. A straightforward but fruitful 1–1 trans-
formation that maps the range of the parameter to the real line is the logit transformation,
which is given by

18 BSL: An R Package for Bayesian Synthetic Likelihood

θ̃i = log θi − ai

bi − θi
, for i = 1, . . . , p.

If the parameter is only bounded on one side, the transformation degenerates to a log trans-
formation, i.e., θ̃i = log(bi − θi) if ai is −∞ and θ̃i = log(θi − ai) if bi is ∞. The bsl function
provides an easy-to-use log/logit transformation for independent and bounded parameters.
The argument logitTransformBound is a p by 2 matrix containing the lower and upper
bounds for each parameter. The only argument that needs to be changed is covRandWalk.
There is no need to do any reparameterization of the prior or simulation functions.
It is also possible to code a customized parameter transformation by editing the simulation
function directly. In this case, the prior function should also be changed subject to the
reparameterization.

Parallel computation

As a simulation-based method, the computational cost of BSL is mostly driven by the speed
of the simulation process. Parallel computation is vital in complex applications where vec-
torization is not possible. In our BSL package, the n independent model simulations can
be distributed across workers on a multi-core machine. The R package doParallel (Microsoft
Corporation and Weston 2020a) provides a way to set up the CPU cores for parallel compu-
tation. For example, the following code determines all the available cores of a CPU and sets
up the clusters for parallel jobs as well as registers the backend for persistent reproducible
parallel loops.

R> ncores <- detectCores()
R> cl <- makeCluster(ncores - 1)
R> registerDoParallel(cl)
R> registerDoRNG(1)

This should be turned on prior to running the main bsl function if parallel computing is
desired. To enable parallel computing within BSL, set parallel to TRUE in the bsl function.
We utilize the function foreach of package foreach (Microsoft Corporation and Weston 2020b)
to run parallel simulations in our BSL package. All other arguments supported by foreach
can be passed with parallelArgs in the bsl and selectPenalty functions. For illustration,
the following code runs the standard MCMC BSL with parallel computing,

R> resultMa2BSLParallel <- bsl(y = ma2$data, n = 500, M = 100000,
+ model = ma2Model, covRandWalk = ma2$cov, method = "BSL",
+ parallel = TRUE, verbose = TRUE)

Note that parallel computing introduces additional communication time between workers. If
the model simulation process is straightforward, parallel computing might increase the overall
running time rather than reduce it. Thus this is not recommended in the MA(2) example.
Vectorization can be more effective in such cases. Once parallel computing is completed, the
following code shuts down the parallel cores.

R> stopCluster(cl)
R> registerDoSEQ()

Journal of Statistical Software 19

Figure 2: Trace plot of the synthetic log-likelihood estimates for the MA(2) example.

3.4. Interpret and visualize the BSL result

The output of the function bsl is saved as an S4 object ‘BSL’, which includes theta (ap-
proximate posterior samples), loglike (the MCMC chain of estimated log-likelihood values),
acceptanceRate (acceptance rate of MCMC) for inspection of the Markov chain, as well as
several other arguments which help to analyze the result. A full list of the returned values
can be checked with help(bsl, package = “BSL”). We provide the basic show, summary
and plot methods for the ‘BSL’ class.
The following code provides some common MCMC diagnostics for the MCMC BSL result
of the MA(2) example. The column title ESS in the summary result stands for the effec-
tive sample size of the approximate posterior samples, as estimated by the R package coda
(Plummer, Best, Cowles, and Vines 2006). Here we only show the trace plot of the synthetic
log-likelihood estimates (Figure 2), however we also recommend other specialized R packages
(such as coda, Plummer et al. 2006, and plotMCMC, Magnusson and Stewart 2020) for other
visualizations and quantitative diagnostics of MCMC convergence.

R> resultMa2BSL

Call:
bsl(y = ma2$data, n = 500, M = 1e+05, model = ma2Model, covRandWalk = ma2$cov,

method = "BSL", verbose = 0L)

Summary of theta:
theta[1] theta[2]

[1,] Min. :-0.01612 Min. :-0.57911
[2,] 1st Qu.: 0.47552 1st Qu.: 0.00946
[3,] Median : 0.58007 Median : 0.10854
[4,] Mean : 0.58050 Mean : 0.11086
[5,] 3rd Qu.: 0.68505 3rd Qu.: 0.21559
[6,] Max. : 1.17830 Max. : 0.65760
Summary of loglikelihood:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-82.61 -72.84 -71.59 -71.69 -70.37 -67.56

20 BSL: An R Package for Bayesian Synthetic Likelihood

Acceptance Rate:
[1] 0.1463
Early Rejection Rate:
[1] 0.00114

R> summary(resultMa2BSL)

n acc. rate (%) ESS theta[1] ESS theta[2]
500 15 1970 1686

R> plot.ts(getLoglike(resultMa2BSL))

The plot function for ‘BSL’ draws the approximate univariate posterior distribution for each
parameter with either the default R graphics (Figure 3) or ggplot2 (Figure 4, Wickham 2016).

R> plot(resultMa2BSL, which = 1, thetaTrue = c(0.6, 0.2), thin = 30)
R> mtext("Approximate Univariate Posteriors", line = 1, cex = 1.5)
R> plot(resultMa2BSL, which = 2, thetaTrue = c(0.6, 0.2), thin = 30,
+ options.density = list(color = "coral4", fill = "coral", alpha = 0.5),
+ options.theme = list(panel.background = element_rect(fill = "beige"),
+ plot.margin = grid::unit(rep(0.05, 4), "npc")))

It is often of interest to compare multiple bsl results at the same time, for example, the
following code summarizes the BSL, uBSL, semiBSL, BSL with graphical lasso and BSL with
Warton results.

R> ma2Results <- list(resultMa2BSL, resultMa2uBSL, resultMa2SemiBSL,
+ resultMa2rBSLM, resultMa2rBSLV, resultMa2BSLasso,
+ resultMa2BSLWarton, resultMa2BSLWhitening)
R> names(ma2Results) <- c("BSL", "uBSL", "semiBSL", "rBSLM", "rBSLV",
+ "BSLasso", "BSLWarton", "BSLWhitening")
R> t(sapply(ma2Results, summary))

n acc. rate (%) ESS theta[1] ESS theta[2]
BSL 500 15 1970 1686
uBSL 500 14 2129 1992
semiBSL 500 13 1437 1353
rBSLM 500 23 2158 1788
rBSLV 500 38 3632 3328
BSLasso 300 28 2556 2431
BSLWarton 300 30 3139 2226
BSLWhitening 300 25 3663 3025

It can be seen that BSL, uBSL and semiBSL have very similar acceptance rates and ESS
values, which indicates that their performance is very close. Both shrinkage methods increase
the acceptance rate and ESS with smaller n compared to BSL.

Journal of Statistical Software 21

Figure 3: Approximate posterior distributions using the BSL estimator for the MA(2)
example with graphics.

Figure 4: Approximate posterior distributions using the BSL estimator for the MA(2)
example with ggplot2.

The function combinePlotsBSL plots multiple approximate posterior distributions in the
same figure. The arguments are similar to the plot function of ‘BSL’, except the object to
be plotted should be a list of multiple ‘BSL’ objects. Figures 5 and 6 give an example of the
combinePlotsBSL function.

R> par(mar = c(5, 4, 1, 2), oma = c(0, 1, 2, 0))
R> combinePlotsBSL(ma2Results, which = 1, thetaTrue = c(0.6, 0.2),
+ thin = 30, lty = 1:8, lwd = rep(2, 8), legendNcol = 4)
R> mtext("Approximate Univariate Posteriors", outer = TRUE, cex = 1.5)

22 BSL: An R Package for Bayesian Synthetic Likelihood

Figure 5: Approximate posterior distributions using various BSL estimators for the MA(2)
example with graphics.

Figure 6: Approximate posterior distributions using various BSL estimators for the MA(2)
example with ggplot2.

R> combinePlotsBSL(ma2Results, which = 2, thetaTrue = c(0.6, 0.2),
+ thin = 30, options.linetype = list(values = 1:8),
+ options.size = list(values = rep(1, 8)),
+ options.theme = list(plot.margin = grid::unit(rep(0.03, 4), "npc"),
+ axis.title = ggplot2::element_text(size = 12),
+ axis.text = ggplot2::element_text(size = 8),
+ legend.text = ggplot2::element_text(size = 12)))

Journal of Statistical Software 23

Figure 7: Penalty selecting result for BSL with graphical lasso for the MA(2) example.

3.5. Selecting the penalty parameter for shrinkage
If shrinkage is desired in estimating the SL, the corresponding penalty parameter value must
be selected prior to running the bsl function. This can be done via the selectPenalty
function. Multiple choices for the number of simulations n can be tested at the same time;
simulations from the largest value of n are re-used for smaller values of n by subsampling. The
basic arguments of selectPenalty include the summary statistic of the observed data ssy; a
vector of the number of simulations n to test; a list of the candidate penalty values lambda_all
corresponding to each n; a point estimate of the parameter theta; the number of repeats M;
the target standard deviation sigma; the model of interest model; the SL estimator method
and the shrinkage estimation method shrinkage. Example code is given below (Figure 7) for
selecting the λ of glasso with the standard BSL estimator for the MA(2) example.

R> ssy <- ma2_sum(ma2$data)
R> lambda_all <- list(exp(seq(-3, 0.5, length.out = 20)),
+ exp(seq(-4, -0.5, length.out = 20)),
+ exp(seq(-5.5, -1.5, length.out = 20)),
+ exp(seq(-7, -2, length.out = 20)))
R> set.seed(100)
R> selectPenaltyMA2 <- selectPenalty(ssy = ssy, n = c(50, 150, 300, 500),
+ lambda_all, theta = c(0.6, 0.2), M = 100, sigma = 1.5,
+ model = ma2Model, method = "BSL", shrinkage = "glasso")

The result is of S3 class ‘penbsl’. This class has support for print and plot functions.

R> selectPenaltyMA2

Call:
selectPenalty(ssy = ssy, n = c(50, 150, 300, 500), lambda = lambda_all,

24 BSL: An R Package for Bayesian Synthetic Likelihood

M = 100, sigma = 1.5, model = ma2Model, theta = c(0.6, 0.2),
method = "BSL", shrinkage = "glasso", verbose = 0L)

Penalty selected based on the standard deviation of the loglikelihood:
n penalty stdLoglike

11 50 0.31415 1.44
29 150 0.07995 1.53
50 300 0.02718 1.45
70 500 0.00974 1.49

R> plot(selectPenaltyMA2)

4. Toad example
In this section, we use the BSL package to find posterior distributions for a complex model
fitted to a real dataset. The model is proposed by Marchand, Boenke, and Green (2017) to
simulate the movements of an amphibian called Fowler’s Toads. Marchand et al. (2017) also
used ABC for parameter inference to bypass the evaluation of the intractable likelihood. Real
data are available from the supplementary material of Marchand et al. (2017).

4.1. Model description

The model generally assumes that the toads hide in their refuge sites during the day, and
only move around for foraging at night. At the end of the foraging period, the location
of a toad is ∆x away from the previous refuge site. Here, ∆x, also called the overnight
displacement, follows a Lévy-alpha stable distribution with stability parameter 0 < α ≤ 2
and scale parameter γ > 0. The distribution is known to be increasingly heavy-tailed when
α is less than 2. Upon the end of nighttime foraging, the toad either returns to one of the
previous refuge sites or builds a new one at the current location.
The probability of return is given by p0. Marchand et al. (2017) develop three different
return models (random return, nearest return and distance-based return) to describe the
return strategy. Here for illustrative purposes, we use the random return model where the
refuge site is selected at random from all the previous sites. Multiple visits increase the chance
of being selected.
We use the real data provided in the supplementary material of Marchand et al. (2017).
The GPS locations are collected in the daytime when the toads are assumed to rest in the
refuge sites. For simplicity, the 2D locations are projected to a straight line, so that locations
can be represented by scalar values. The observation matrix Y contains the locations of
nt = 66 toads over nd = 63 days, i.e., Y is of dimension nt × nd. Roughly 81% of the real
observation matrix Y is made up of missing entries. We also set the same entries as NA for
new simulations. The parameter of interest is θ = (α, γ, p0)⊤. We place a uniform prior over
(1, 2) × (0, 100) × (0, 0.9) in this example.
We reduce the observation matrix down to four sets of displacements of lags 1, 2, 4 and 8
days. For instance, the displacements for a lag of one day can be written as y1 = {|∆y| =
|Y i,j − Y i+1,j |; 1 ≤ i ≤ nd − 1, 1 ≤ j ≤ nt}. Following Marchand et al. (2017), we classify the

Journal of Statistical Software 25

displacements as returns and non-returns by whether the absolute distance of a displacement
is less than 10 meters or not. We consider a summary statistic that contains the frequency of
returns, the median of the non-returns, and the log differences of adjacent p quantiles, where
p = 0, 0.1, . . . , 1.

4.2. Approximate the posterior with BSL

As usual, we need to set up the ‘MODEL’ object for the toad example. The simulation function
toad_sim calls an Rcpp function that uses C++ in the backend. The summary statistic
function toad_sum computes the quantile summary statistic just described in Section 4.1.

R> data("toad", package = "BSL")
R> toadModel <- newModel(fnSim = toad_sim, fnSum = toad_sum,
+ theta0 = toad$theta0, fnLogPrior = toad_prior,
+ simArgs = toad$sim_args_real,
+ thetaNames = expression(alpha, gamma, p[0]))

*** initialize "MODEL" ***
has simulation function: TRUE
has summary statistics function: TRUE
has initial guess / point estimate of the parameter: TRUE
running a short simulation test ... success
*** end initialize ***

The printed messages indicate that model is a valid ‘MODEL’ object for BSL. However, it is
also recommended to look at the density distributions of the summary statistic to detect any
possible problems or malfunctions associated with the model. Figure 8 plots the marginal
KDE distributions of 1000 simulated summary statistics. We will utilize parallel computation
when possible in the toad example. Suppose we have set up the CPU cores for parallel
computing as described in the section on parallel computing of Section 3.2.

R> sim <- simulation(toadModel, n = 1000, theta = toad$theta0, seed = 10,
+ parallel = TRUE)
R> par(mfrow = c(6, 8), mar = c(3, 1.5, 0.5, 0.5))
R> for (i in 1:48) plot(density(sim$ssx[, i]), main = "", xlab = "")

Figure 8 implies that the marginal summary statistics are roughly normal. Before running
the bsl function, we also need to define the following: covWalk, the covariance matrix for
normal random walk, and paraBound, the matrix of the upper and lower bounds for a logit
transformation (as described in the section on parameter transformation in Section 3.3).

R> covWalk <- toad$cov
R> paraBound <- matrix(c(1, 2, 0, 100, 0, 0.9), 3, 2, byrow = TRUE)

Now we can run standard BSL, uBSL, semiBSL, rBSL-M and rBSL-V with the following
code.

26 BSL: An R Package for Bayesian Synthetic Likelihood

Figure 8: Marginal distributions of the summary statistic for the toad example.

R> resultToadBSL <- bsl(toad$data_real, n = 500, M = 50000,
+ model = toadModel, method = "BSL", covRandWalk = covWalk,
+ logitTransformBound = paraBound, parallel = TRUE)
R> resultToaduBSL <- bsl(toad$data_real, n = 500, M = 50000,
+ model = toadModel, method = "uBSL", covRandWalk = covWalk,
+ logitTransformBound = paraBound, parallel = TRUE)
R> resultToadSemiBSL <- bsl(toad$data_real, n = 500, M = 50000,
+ model = toadModel, method = "semiBSL", covRandWalk = covWalk,
+ logitTransformBound = paraBound, parallel = TRUE)
R> resultToadrBSLM <- bsl(toad$data_real, n = 500, M = 50000,
+ model = toadModel, method = "BSLmisspec", misspecType = "mean",
+ tau = 0.5, covRandWalk = covWalk, logitTransformBound = paraBound,
+ parallel = TRUE)
R> resultToadrBSLV <- bsl(toad$data_real, n = 500, M = 50000,
+ model = toadModel, method = "BSLmisspec", misspecType = "variance",
+ tau = 0.5, covRandWalk = covWalk, logitTransformBound = paraBound,
+ parallel = TRUE)
R> resultToadBSLWhitening <- bsl(toad$data_real, n = 500, M = 50000,
+ model = toadModel, method = "BSL", shrinkage = "Warton",
+ penalty = 0.12, whitening = TRUE, covRandWalk = covWalk,
+ logitTransformBound = paraBound, parallel = TRUE)

Journal of Statistical Software 27

Figure 9: Approximate marginal posterior distributions using various BSL methods for the
toad example.

We may summarize the above BSL results into a matrix.

R> toadResults <- list(resultToadBSL, resultToaduBSL, resultToadSemiBSL,
+ resultToadBSLWhitening, resultToadrBSLM, resultToadrBSLV)
R> names(toadResults) <- c("BSL", "uBSL", "semiBSL", "BSLWhitening",
+ "rBSLM", "rBSLV")
R> t(sapply(toadResults, summary))

n acc. rate (%) ESS alpha ESS gamma ESS p[0]
BSL 500 33 1411 941 604
uBSL 500 33 1427 955 533
semiBSL 500 29 1075 775 417
BSLWhitening 500 60 2409 1794 976
rBSLM 500 32 1068 645 476
rBSLV 500 50 1983 1066 791

The overlaid marginal posteriors plot is shown in Figure 9.

R> combinePlotsBSL(toadResults, which = 1, thin = 30, burnin = 5000)

We also compare our results from vanilla BSL with the ABC approach of Marchand et al.
(2017). We obtain similar posterior medians for all three parameters, with the following BSL
results (with ABC results shown in parentheses) for α, γ and p0, respectively: 1.67 (1.70),
34 (34) and 0.61 (0.60). The 95% credible interval results are 1.46–1.85 (1.41–1.94), 29–39
(26–42) and 0.55–0.67 (0.53–0.65). It can be seen that the intervals are similar for p0, but
BSL leads to more precise estimates for α and γ based on the tighter credible intervals. The
ABC approach of Marchand et al. (2017) uses a lower dimensional summary statistic as often

28 BSL: An R Package for Bayesian Synthetic Likelihood

demanded by ABC, which can incur information loss. In contrast, BSL can be run feasibly
for the higher dimensional summary statistic, and thus capturing more information contained
in the full dataset, reducing uncertainty in the parameter estimates.

5. Discussion
This paper has presented the first comprehensive software package for Bayesian synthetic
likelihood methods. The package implements four different types of synthetic likelihood
estimators (standard, unbiased, semi-parametric and “robust”) and includes functionality for
two different types of shrinkage covariance estimators to reduce the number of required model
simulations. The package includes functions for extracting useful statistics and visualizations
of the results after running bsl. It also includes four built-in examples to illustrate the
functionality of the package.
Apart from the MA(2) and toad example described in Sections 3 and 4, respectively, the
package also include two other examples: a discrete-time stochastic cell biology model, cell;
and the multivariate g-and-k quantile distribution mgnk (Drovandi and Pettitt 2011). The
former example features a high dimensional summary statistic, while the latter example can
involve a large number of parameters. Additional descriptions and example code can be found
in the package documentation.
We use multivariate normal random walk MCMC as the sampling method to explore the pa-
rameter space for all the current BSL methods in the package, which means that sampling with
BSL can be slow when model simulation is computationally intensive and potentially ineffi-
cient when there are a large number of parameters. More sophisticated proposal distributions
for MCMC BSL would be an interesting research direction for future work. Unfortunately, al-
ternative Monte Carlo schemes like rejection sampling and sequential Monte Carlo (Del Moral
et al. 2006) are less appealing in BSL than in ABC because BSL’s normality assumption can
fail in regions with very low posterior support. Considering a BSL analogue of the Hamil-
tonian Monte Carlo (HMC) ABC algorithm of Meeds, Leenders, and Welling (2015) may be
an interesting direction for future work. The downside of HMC in the likelihood-free context
is that efficiency is reduced by the requirement to estimate rather than directly evaluate the
gradient of the log-likelihood. Future research for this package could consider incorporating
the variational Bayesian synthetic likelihood methods (Ong et al. 2018a; Ong, Nott, Tran,
Sisson, and Drovandi 2018b), which scale to a large number of summary statistics and/or
parameters at the expense of assuming a multivariate normal approximation of the posterior.
We believe that our package complements other likelihood-free packages in the literature.
BSL has some appealing features relative to ABC, however there are applications where the
distribution of the summary statistic will not be regular enough for BSL to be effective, and
ABC (and its corresponding packages) may be preferred in these cases.
The focus of this paper is parameter estimation in the intractable likelihood setting. Because
BSL uses summary statistics, it can suffer from the same issues as ABC in the model section
setting (Robert, Cornuet, Marin, and Pillai 2011). In particular, it can be difficult to find
statistics informative about discriminating between competing models. In order to increase
the chance of identifying useful statistics, the ABC approaches of Prangle, Fearnhead, Cox,
Biggs, and French (2014) and Pudlo, Marin, Estoup, Cornuet, Gautier, and Robert (2016)
consider an initial large number of summary statistics. To reduce the dimension, they use

Journal of Statistical Software 29

classification methods estimated from a large number of (model indicator, parameter, statis-
tic) triples simulated from a reference distribution. Then, ABC model choice proceeds using
the lower dimensional summary statistic produced by the classification method. Extending
BSL to the model selection setting requires further research.
We welcome R developers worldwide to help contribute to the BSL package. We have made
the source code available at https://github.com/LeahPrice/BSL to allow other researchers
to contribute to the BSL package.

Computational details
The results in this paper were obtained using R 4.0.3 with the BSL 3.2.3 package. R itself
and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/.

Acknowledgments
CD was supported by the Australian Research Council. LFS would like to acknowledge sup-
port from EPSRC grant EP/S00159X/1. The authors are also affiliated with the QUT Centre
for Data Science and the Australian Research Council Centre of Excellence for Mathemat-
ical and Statistics Frontiers (ACEMS). Computational resources and services used in this
work were provided by the HPC and Research Support Group, Queensland University of
Technology, Brisbane, Australia.

References

An Z, Nott DJ, Drovandi C (2020). “Robust Bayesian Synthetic Likelihood via a Semi-
Parametric Approach.” Statistics and Computing, 30(3), 543–557. doi:10.1007/
s11222-019-09904-x.

An Z, South LF, Drovandi CC (2022). BSL: Bayesian Synthetic Likelihood. R package version
3.2.3, URL https://CRAN.R-project.org/package=BSL.

An Z, South LF, Nott DJ, Drovandi CC (2019). “Accelerating Bayesian Synthetic Likelihood
with the Graphical Lasso.” Journal of Computational and Graphical Statistics, 28(2), 471–
475. doi:10.1080/10618600.2018.1537928.

Andrieu C, Doucet A, Holenstein R (2010). “Particle Markov Chain Monte Carlo Methods.”
Journal of the Royal Statistical Society B, 72(3), 269–342. doi:10.1111/j.1467-9868.
2009.00736.x.

Andrieu C, Roberts GO (2009). “The Pseudo-Marginal Approach for Efficient Monte Carlo
Computations.” The Annals of Statistics, 37(2), 697–725. doi:10.1214/07-aos574.

Barbu CM, Sethuraman K, Billig EMW, Levy MZ (2018). “Two-Scale Dispersal Estimation
for Biological Invasions via Synthetic Likelihood.” Ecography, 41(4), 661–672. doi:10.
1111/ecog.02575.

https://github.com/LeahPrice/BSL
https://CRAN.R-project.org/
https://doi.org/10.1007/s11222-019-09904-x
https://doi.org/10.1007/s11222-019-09904-x
https://CRAN.R-project.org/package=BSL
https://doi.org/10.1080/10618600.2018.1537928
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1214/07-aos574
https://doi.org/10.1111/ecog.02575
https://doi.org/10.1111/ecog.02575

30 BSL: An R Package for Bayesian Synthetic Likelihood

Blum MGB (2010). “Approximate Bayesian Computation: A Nonparametric Perspective.”
Journal of the American Statistical Association, 105(491), 1178–1187. doi:10.1198/jasa.
2010.tm09448.

Boudt K, Cornelissen J, Croux C (2012). “The Gaussian Rank Correlation Estima-
tor: Robustness Properties.” Statistics and Computing, 22(2), 471–483. doi:10.1007/
s11222-011-9237-0.

Chen P, Ye ZS, Zhai Q (2020). “Parametric Analysis of Time-Censored Aggregate Lifetime
Data.” IISE Transactions, 52(5), 516–527. doi:10.1080/24725854.2019.1628374.

Csillery K, Francois O, Blum MGB (2012). “abc: An R Package for Approximate Bayesian
Computation (ABC).” Methods in Ecology and Evolution, 3(3), 475–479. doi:10.1111/j.
2041-210x.2011.00179.x.

Del Moral P, Doucet A, Jasra A (2006). “Sequential Monte Carlo Samplers.” Journal of the
Royal Statistical Society B, 68(3), 411–436. doi:10.1111/j.1467-9868.2006.00553.x.

Doucet A, Pitt MK, Deligiannidis G, Kohn R (2015). “Efficient Implementation of Markov
Chain Monte Carlo When Using an Unbiased Likelihood Estimator.” Biometrika, 102(2),
295–313. doi:10.1093/biomet/asu075.

Drovandi CC, Grazian C, Mengersen K, Robert C (2018). “Approximating the Like-
lihood in Approximate Bayesian Computation.” In SA Sisson, Y Fan, M Beaumont
(eds.), Handbook of Approximate Bayesian Computation. Chapman & Hall/CRC. doi:
10.1201/9781315117195.

Drovandi CC, Pettitt AN (2011). “Likelihood-Free Bayesian Estimation of Multivariate Quan-
tile Distributions.” Computational Statistics & Data Analysis, 55(9), 2541–2556. doi:
10.1016/j.csda.2011.03.019.

Drovandi CC, Pettitt AN, Lee A (2015). “Bayesian Indirect Inference Using a Parametric
Auxiliary Model.” Statistical Science, 30(1), 72–95. doi:10.1214/14-sts498.

Dutta R, Schoengens M, Pacchiardi L, Ummadisingu A, Widmer N, Künzli P, Onnela JP,
Mira A (2021). “ABCpy: A High-Performance Computing Perspective to Approximate
Bayesian Computation.” Journal of Statistical Software, 100(7), 1–38. doi:10.18637/
jss.v100.i07.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer-Verlag.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Everitt RG (2017). “Bootstrapped Synthetic Likelihood.” arXiv:1711.05825 [stat.CO], URL
https://arxiv.org/abs/1711.05825.

Fasiolo M, Wood S (2021). synlik: Synthetic Likelihood Methods for Intractable Likelihoods.
R package version 0.1.4, URL https://CRAN.R-project.org/package=synlik.

Frazier DT, Drovandi C (2021). “Robust Approximate Bayesian Inference with Synthetic
Likelihood.” Journal of Computational and Graphical Statistics, 30(4), 958–976. doi:
10.1080/10618600.2021.1875839.

https://doi.org/10.1198/jasa.2010.tm09448
https://doi.org/10.1198/jasa.2010.tm09448
https://doi.org/10.1007/s11222-011-9237-0
https://doi.org/10.1007/s11222-011-9237-0
https://doi.org/10.1080/24725854.2019.1628374
https://doi.org/10.1111/j.2041-210x.2011.00179.x
https://doi.org/10.1111/j.2041-210x.2011.00179.x
https://doi.org/10.1111/j.1467-9868.2006.00553.x
https://doi.org/10.1093/biomet/asu075
https://doi.org/10.1201/9781315117195
https://doi.org/10.1201/9781315117195
https://doi.org/10.1016/j.csda.2011.03.019
https://doi.org/10.1016/j.csda.2011.03.019
https://doi.org/10.1214/14-sts498
https://doi.org/10.18637/jss.v100.i07
https://doi.org/10.18637/jss.v100.i07
https://doi.org/10.18637/jss.v040.i08
https://arxiv.org/abs/1711.05825
https://CRAN.R-project.org/package=synlik
https://doi.org/10.1080/10618600.2021.1875839
https://doi.org/10.1080/10618600.2021.1875839

Journal of Statistical Software 31

Frazier DT, Nott DJ, Drovandi C, Kohn R (2021). “Bayesian Inference Using Synthetic
Likelihood: Asymptotics and Adjustments.” arXiv:1902.04827 [stat.CO], URL https://
arxiv.org/abs/1902.04827/v4.

Frazier DT, Robert CP, Rousseau J (2020). “Model Misspecification in Approximate Bayesian
Computation: Consequences and Diagnostics.” Journal of the Royal Statistical Society B,
82(2), 421–444. doi:10.1111/rssb.12356.

Friedman J, Hastie T, Tibshirani R (2008). “Sparse Inverse Covariance Estimation with the
Graphical Lasso.” Biostatistics, 9(3), 432–441. doi:10.1093/biostatistics/kxm045.

Friedman J, Hastie T, Tibshirani R (2019). glasso: Graphical Lasso: Estimation of Gaussian
Graphical Models. R package version 1.11, URL https://CRAN.R-project.org/package=
glasso.

Ghurye SG, Olkin I (1969). “Unbiased Estimation of Some Multivariate Probability Densities
and Related Functions.” The Annals of Mathematical Statistics, 40(4), 1261–1271. doi:
10.1214/aoms/1177697501.

Gutmann MU, Corander J (2016). “Bayesian Optimization for Likelihood-Free Inference of
Simulator-Based Statistical Models.” Journal of Machine Learning Research, 17(1), 4256–
4302.

Hartig F, Dislich C, Wiegand T, Huth A (2014). “Technical Note: Approximate Bayesian
Parameterization of a Process-Based Tropical Forest Model.” Biogeosciences, 11, 1261–
1272. doi:10.5194/bg-11-1261-2014.

Izenman AJ (1991). “Recent Developments in Nonparametric Density Estimation.” Journal
of the American Statistical Association, 86(413), 205–224. doi:10.1080/01621459.1991.
10475021.

Jabot F, Faure T, Dumoulin N (2013). “EasyABC: Performing Efficient Approximate
Bayesian Computation Sampling Schemes Using R.” Methods in Ecology and Evolution,
4(7), 684–687. doi:10.1111/2041-210x.12050.

Kane MJ, Emerson J, Weston S (2013). “Scalable Strategies for Computing with Massive
Data.” Journal of Statistical Software, 55(14), 1–19. doi:10.18637/jss.v055.i14.

Karabatsos G (2018). “On Bayesian Testing of Additive Conjoint Measurement Axioms Using
Synthetic Likelihood.” Psychometrika, 83(2), 321–332. doi:10.1007/s11336-017-9581-x.

Kassambara A (2019). ggcorrplot: Visualization of a Correlation Matrix Using ggplot2. R
package version 0.1.3, URL https://CRAN.R-project.org/package=ggcorrplot.

Kessy A, Lewin A, Strimmer K (2018). “Optimal Whitening and Decorrelation.” The Amer-
ican Statistician, 72(4), 309–314. doi:10.1080/00031305.2016.1277159.

Leclercq F (2018). “Bayesian Optimization for Likelihood-Free Cosmological Inference.” Phys-
ical Review D, 98(6), 063511. doi:10.1103/physrevd.98.063511.

Lintusaari J, Vuollekoski H, Kangasrääsiö A, Skytén K, Järvenpää M, Marttinen P, Gutmann
MU, Vehtari A, Corander J, Kaski S (2018). “ELFI: Engine for Likelihood-Free Inference.”
Journal of Machine Learning Research, 19(16), 1–7.

https://arxiv.org/abs/1902.04827/v4
https://arxiv.org/abs/1902.04827/v4
https://doi.org/10.1111/rssb.12356
https://doi.org/10.1093/biostatistics/kxm045
https://CRAN.R-project.org/package=glasso
https://CRAN.R-project.org/package=glasso
https://doi.org/10.1214/aoms/1177697501
https://doi.org/10.1214/aoms/1177697501
https://doi.org/10.5194/bg-11-1261-2014
https://doi.org/10.1080/01621459.1991.10475021
https://doi.org/10.1080/01621459.1991.10475021
https://doi.org/10.1111/2041-210x.12050
https://doi.org/10.18637/jss.v055.i14
https://doi.org/10.1007/s11336-017-9581-x
https://CRAN.R-project.org/package=ggcorrplot
https://doi.org/10.1080/00031305.2016.1277159
https://doi.org/10.1103/physrevd.98.063511

32 BSL: An R Package for Bayesian Synthetic Likelihood

Magnusson A, Stewart I (2020). plotMCMC: MCMC Diagnostic Plots. R package version
2.0-1, URL https://CRAN.R-project.org/package=plotMCMC.

Marchand P, Boenke M, Green DM (2017). “A Stochastic Movement Model Reproduces
Patterns of Site Fidelity and Long-Distance Dispersal in a Population of Fowler’s Toads
(Anaxyrus Fowleri).” Ecological Modelling, 360, 63–69. doi:10.1016/j.ecolmodel.2017.
06.025.

Meeds E, Leenders R, Welling M (2015). “Hamiltonian ABC.” In Proceedings of the Thirty-
First Conference on Uncertainty in Artificial Intelligence, pp. 582–591.

Microsoft Corporation, Weston S (2020a). doParallel: Foreach Parallel Adaptor for the par-
allel Package. R package version 1.0.16, URL https://CRAN.R-project.org/package=
doParallel.

Microsoft Corporation, Weston S (2020b). foreach: Provides Foreach Looping Construct for
R. R package version 1.5.1, URL https://CRAN.R-project.org/package=foreach.

Neal RM (2003). “Slice Sampling.” The Annals of Statistics, 31(3), 705–767. doi:10.1214/
aos/1056562461.

Ong VMH, Nott DJ, Tran MN, Sisson SA, Drovandi CC (2018a). “Likelihood-Free Inference
in High Dimensions with Synthetic Likelihood.” Computational Statistics & Data Analysis,
128, 271–291. doi:10.1016/j.csda.2018.07.008.

Ong VMH, Nott DJ, Tran MN, Sisson SA, Drovandi CC (2018b). “Variational Bayes
with Synthetic Likelihood.” Statistics and Computing, 28(4), 971–988. doi:10.1007/
s11222-017-9773-3.

Picchini U, Forman JL (2019). “Bayesian Inference for Stochastic Differential Equation Mixed
Effects Models of a Tumour Xenography Study.” Journal of the Royal Statistical Society
C, 68(4), 887–913. doi:10.1111/rssc.12347.

Plummer M, Best N, Cowles K, Vines K (2006). “coda: Convergence Diagnosis and Output
Analysis for MCMC.” R News, 6(1), 7–11. URL https://CRAN.R-project.org/doc/
Rnews/.

Prangle D, Fearnhead P, Cox MP, Biggs PJ, French NP (2014). “Semi-Automatic Selection
of Summary Statistics for ABC Model Choice.” Statistical Applications in Genetics and
Molecular Biology, 13(1), 67–82. doi:10.1515/sagmb-2013-0012.

Price LF, Drovandi CC, Lee A, Nott DJ (2018). “Bayesian Synthetic Likelihood.” Journal
of Computational and Graphical Statistics, 27(1), 1–11. doi:10.1080/10618600.2017.
1302882.

Priddle J, Sisson S, Drovandi C (in press). “Efficient Bayesian Synthetic Likelihood with
Whitening Transformations.” Journal of Computational and Graphical Statistics. doi:
10.1080/10618600.2021.1979012.

Pudlo P, Marin JM, Estoup A, Cornuet JM, Gautier M, Robert CP (2016). “Reli-
able ABC Model Choice via Random Forests.” Bioinformatics, 32(6), 859–866. doi:
10.1093/bioinformatics/btv684.

https://CRAN.R-project.org/package=plotMCMC
https://doi.org/10.1016/j.ecolmodel.2017.06.025
https://doi.org/10.1016/j.ecolmodel.2017.06.025
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=foreach
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1016/j.csda.2018.07.008
https://doi.org/10.1007/s11222-017-9773-3
https://doi.org/10.1007/s11222-017-9773-3
https://doi.org/10.1111/rssc.12347
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.1515/sagmb-2013-0012
https://doi.org/10.1080/10618600.2017.1302882
https://doi.org/10.1080/10618600.2017.1302882
https://doi.org/10.1080/10618600.2021.1979012
https://doi.org/10.1080/10618600.2021.1979012
https://doi.org/10.1093/bioinformatics/btv684
https://doi.org/10.1093/bioinformatics/btv684

Journal of Statistical Software 33

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Robert CP, Cornuet JM, Marin JM, Pillai NS (2011). “Lack of Confidence in Approximate
Bayesian Computation Model Choice.” Proceedings of the National Academy of Sciences of
the United States of America, 108(37), 15112–15117. doi:10.1073/pnas.1102900108.

Sisson SA, Fan Y, Beaumont M (2018). Handbook of Approximate Bayesian Computation.
1st edition. Chapman & Hall/CRC. doi:10.1201/9781315117195.

Strimmer K, Jendoubi T, Kessy A, Lewin A (2019). whitening: Whitening and High-
Dimensional Canonical Correlation Analysis. R package version 1.1.1, URL https:
//CRAN.R-project.org/package=whitening.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

Warton DI (2008). “Penalized Normal Likelihood and Ridge Regularization of Correlation and
Covariance Matrices.” Journal of the American Statistical Association, 103(481), 340–349.
doi:10.1198/016214508000000021.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
doi:10.1007/978-0-387-98141-3.

Wood SN (2010). “Statistical Inference for Noisy Nonlinear Ecological Dynamic Systems.”
Nature, 466(7310), 1102–1107. doi:10.1038/nature09319.

Affiliation:
Christopher Drovandi
School of Mathematical Sciences
Faculty of Science
Queensland University of Technology
Brisbane Queensland 4000, Australia
E-mail: c.drovandi@qut.edu.au
URL: https://chrisdrovandi.weebly.com/

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

January 2022, Volume 101, Issue 11 Submitted: 2019-06-30
doi:10.18637/jss.v101.i11 Accepted: 2021-02-08

https://www.R-project.org/
https://doi.org/10.1073/pnas.1102900108
https://doi.org/10.1201/9781315117195
https://CRAN.R-project.org/package=whitening
https://CRAN.R-project.org/package=whitening
https://www.python.org/
https://www.python.org/
https://doi.org/10.1198/016214508000000021
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1038/nature09319
mailto:c.drovandi@qut.edu.au
https://chrisdrovandi.weebly.com/
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v101.i11

	Introduction
	Bayesian synthetic likelihood
	The standard BSL likelihood estimator
	An unbiased BSL likelihood estimator
	A semi-parametric BSL likelihood estimator
	A robust BSL likelihood estimator for model misspecification
	Mean adjustment
	Variance inflation

	An accelerated likelihood estimator with shrinkage estimation
	Graphical lasso
	Warton's estimator
	Warton's estimation with whitening transformations
	Penalty selection

	Other implementation details
	Incorporating BSL with MCMC

	Using the BSL package
	Description of the MA(2) example
	The model object
	The simulation function
	The summary statistic function
	The prior function

	The main function
	Shrinkage of the likelihood estimator
	Parameter transformation
	Parallel computation

	Interpret and visualize the BSL result
	Selecting the penalty parameter for shrinkage

	Toad example
	Model description
	Approximate the posterior with BSL

	Discussion

