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Abstract

Linear transformation models, including the proportional hazards model and propor-
tional odds model, under right censoring were discussed by Chen, Jin, and Ying (2002).
The asymptotic variance of the estimator they proposed has a closed form and can be
obtained easily by plug-in rules, which improves the computational efficiency. We develop
an R package TransModel based on Chen’s approach. The detailed usage of the package
is discussed, and the function is applied to the Veterans’ Administration lung cancer data.
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1. Introduction
The proportional hazards (PH) model (Cox 1992) has been used extensively in many research
fields, such as biomedical applications, financial studies and epidemiological studies. However,
sometimes the proportional hazards assumption is violated and other models, such as the
proportional odds (PO) model (Dabrowska and Doksum 1988), should be used as alternatives.
More generally, the linear transformation model, which includes the PH model and the PO
model as special cases, is a broad family of regression models and has attracted considerable
attention in recent years due to its flexibility. For example, Chen et al. (2002) mentioned that
the results from the PO model for the Veterans’ Administration lung cancer data are more
similar to those reported in the literature compared with the results from the PH model.
Xu, Yang, and Ott (2005) claimed the analysis based on transformation models have better
prediction capabilities than those from the PH model for their microarray data set.
A general estimation method for the linear transformation model with censored data was
proposed in Cheng, Wei, and Ying (1995), and was further developed by Cai, Wei, and Wilcox
(2000); Fine, Ying, and Wei (1998); Cheng, Wei, and Ying (1997). A key assumption of their
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approach was the independence between the censoring variable and the covariates, which is
found to be restrictive in practice. Chen et al. (2002) proposed a unified procedure for the
analysis of the linear transformation model, which reduces to the partial likelihood approach
in the case of the PH model and its validity does not rely on that independence assumption.
Recently, Hothorn, Möst, and Bühlmann (2018) also proposed maximum likelihood estimators
in the class of conditional transformation models and developed the mlt package (Hothorn
2020).
Even though the linear transformation model has the attractive property, it has not been
widely used due to the lack of easy implemented functions in common statistical software,
such as R and SAS. The procedure proposed in Chen et al. (2002) was based on the estimating
equations and was easily implemented numerically and computationally efficient. Moreover,
the asymptotic variance has a closed form and can be obtained by plug-in rules. Therefore,
we develop the R package TransModel based on the procedure discussed in Chen et al. (2002),
and illustrate its usage in this paper. Package TransModel (Zhou, Zhang, and Lu 2022) is
available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=TransModel.
Let T denote the failure time, z denote a p-dimensional covariate vector and ε represent an
error term. The linear transformation model can be expressed as

H(T ) = −β⊤z + ε,

where H(·) is an unknown monotone transformation function. It links the failure time T
with a linear combination of a p-dimensional covariate vector z and an error term ε. Specific
distributions can be assumed for fε, which is the density function of ε, to obtain different
models. For example, if ε follows a standard extreme value distribution, that is, fε(s) =
exp(s) exp(− exp(s)), the density function and survival function of T are

fT (t | z) = Ḣ(t) · exp(H(t) + β⊤z) exp(− exp(H(t) + β⊤z))

and
ST (t | z) = exp(− exp(H(t) + β⊤z)),

where Ḣ(·) denotes the first derivative of function H(·). Therefore, the hazard function of T
can be written as

λT (t | z) = fT (t | z)
ST (t | z) = Ḣ(t) exp(H(t) + β⊤z) = λ0(t) · exp(β⊤z).

Taking λ0(t) = Ḣ(t) exp(H(t)) as an unspecified baseline hazard function, it reduces to the
PH model. Similarly, if ε follows a standard logistic distribution, it becomes a PO model. In
our package TransModel, we assume the hazard function of ε has the form

λε(s) = es/(1 + r × es), r ≥ 0.

Note that the PH model and PO model correspond to r = 0 and r = 1, respectively.
The rest of the paper is organized as follows. The estimation of both parameters and variances
in Chen et al. (2002) paper are summarized in Section 2. Details of the package are discussed
in Section 3. The package is illustrated using the Veterans’ Administration lung cancer data
set in Section 5. Some discussions are outlined in Section 6.
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2. Estimation procedure
Let O = {Tj , δj , zj ; j = 1, . . . , n} denote the observed right censored data set, where Tj =
min(Xj , Cj), δj = I(Xj ≤ Cj) and X and C are the nonactive failure time and censoring
time, respectively. Let Λε(·) be the cumulative hazard function for ε. Following the usual
counting process notation,

Y (t) = I(T ≥ t)
N(t) = δI(T ≤ t)

M(t) = N(t) −
∫ t

0
Y (s) dΛε(β⊤

0 z + H0(s)),

where (β0, H0) are the true values of (β, H). By using the fact that M(t) is a martingale
process, the estimating equations are

U(β, H) =
n∑

j=1

∫ ∞

0
zj [dNj(t) − Yj(t) dΛε(β⊤zj + H(t))] = 0

n∑
j=1

[dNj(t) − Yj(t) dΛε(β⊤zj + H(t))] = 0, (t ≥ 0), (1)

where H(·) is a non-decreasing function satisfying H(0) = −∞.

2.1. Parameter estimation

Follow Chen et al. (2002), the iterative algorithm for computing the β coefficients and H is
as follows:

Step 0 : Give initial values for β, say β̂(0) = 0.

Step 1 : In the i-th iteration, with β̂(i), obtain Ĥ(i) as follows: solving equation
n∑

j=1
Yj(t1)Λε(β̂(i)⊤zj + H(t(1))) = 1

to get Ĥ(i)(t(1)); then calculate

Ĥ(i)(t(k)) = Ĥ(i)(t(k−1)) + 1∑n
j=1 Yj(t(k))λε

(
β̂(i)⊤zj + Ĥ(i)(t(k−1))

)
where 0 < t(1) < t(2) < · · · < t(K) < ∞ are the K failure times among the n observations.

Step 2 : Update β estimates in (i + 1)-th iteration by solving Equation (1) with H = Ĥ(i)

for k = 2, . . . , K.

Step 3 : Repeat Step 1 and Step 2 until convergence.

Based on parameter estimates (β̂, Ĥ), the survival function for patient with covariate zj can
be estimated as

Ŝ(t | zj) = Sε(Ĥ(t) + β̂⊤zj).
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Specifically, in the package TransModel, the survival function is defined as

Ŝ(t | zj) =
{

exp{− exp(Ĥ(t) + β̂⊤zj)} r = 0
exp{−1

r log[1 + r · exp(Ĥ(t) + β̂⊤zj)]} r > 0.

2.2. Variance estimation of parameters

It is proved in Chen et al. (2002) that, under suitable regularity conditions, the derived
estimator β̂ in Section 2.1 is consistent and asymptotic normally distributed. That is,

√
n(β̂ − β0) D−→ N{0, Σ−1

∗ Σ∗(Σ−1
∗ )⊤}, as n → ∞.

where Σ∗ and Σ∗ have closed form solutions

Σ̂∗ = 1
n

n∑
j=1

∫ τ

0
[zj − z̄(t)]

⊗
2λ{β̂⊤zj + Ĥ(t)}Yj(t) dĤ(t)

Σ̂∗ = 1
n

n∑
j=1

∫ τ

0
[zj − z̄(t)]z⊤

j λ̇{β̂⊤zj + Ĥ(t)}Yj(t) dĤ(t)

respectively. Here we define b
⊗

2 = bb⊤ for any vector b. We also have

z̄(t) =
∑n

j=1 zjλ{β̂⊤zj + Ĥ(Yj)}Yj(t)B̂(t, Tj)∑n
j=1 λ{β̂⊤zj + Ĥ(t)}Yj(t)

B̂(t, s) = exp
(∫ t

s

∑n
j=1 λ̇{β̂⊤zj + Ĥ(x)}Yj(x)∑n
j=1 λ{β̂⊤zj + Ĥ(x)}Yj(x)

dĤ(x)
)

for t, s ∈ [0, τ ].

2.3. Confidence interval and confidence band of survival function

Since the variance of H(t) does not have a closed form solution, the confidence interval and
confidence band for the survival curve are derived through the perturbation techniques. Let
ε̂k(z) = Ĥ(t(k))+β̂⊤z be the estimate of the error term at time t(k) with covariate z. Survival
probability for subjects with covariate z at time t(k) is then estimated as

Ŝ(t(k) | z) =
{

exp{− exp(ε̂k(z))} r = 0
exp{−1

r log[1 + r · exp(ε̂k(z))]} r > 0.

The confidence interval of Ŝ(t(k) | z) can be constructed based on the Wald confidence interval
of εk(z), where the variance of εk(z) is derived by perturbation. In the l-th perturbation,
l = 1, 2, . . . , N , a sequence of random values α

(l)
1 , α

(l)
2 , . . . , α

(l)
n ∼ Exp(1) is generated, where

Exp(1) is the exponential distribution with scale parameter 1. Then the iterative estimating
procedure in Section 2.1 with Step 1 and Step 2 are replaced by the following Step 1* and
Step 2*, respectively.
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Step 1* : Obtain Ĥ
(i)
(l) (t(1)) by solving

n∑
j=1

Yj(t1)Λε

(
β̂

(i)⊤
(l) zj + H(t(1))

)
α

(l)
j = 1,

and for k ≥ 2

Ĥ
(i)
(l) (t(k)) = Ĥ

(i)
(l) (t(k−1)) + 1∑n

j=1 Yj(t(k))λε

(
β̂

(i)⊤
(l) zj + Ĥ

(i)
(l) (t(k−1))

)
α

(l)
j

·

Step 2* : Update estimates β̂
(i+1)
(l) by solving the following estimation equation,

n∑
j=1

[
dNj(t) − Yj(t)dΛε

(
β⊤zj + Ĥ

(i)
(l) (t)

)]
α

(l)
j = 0, t ≥ 0.

After convergence, estimates
(
β̂(l), Ĥ(l)(t)

)
are obtained and ε̂

(l)
k (z) = Ĥ(l)(t(k)) + β̂⊤

(l)z, l =
1, 2, . . . , N . The variance of (ε̂(1)

k (z), ε̂
(2)
k (z), . . . , ε̂

(N)
k (z)) can be used as a consistent estimate

of Var(ε̂k(z)). A (1−α)% point-wise confidence interval for the survival curve can be obtained
by transforming the interval ε̂k(z) ± Zα/2

√
V̂ar(ε̂k(z)), k = 1, 2, . . . , K, where Zα/2 is the

100(1 − α/2)-th percentile of the standard normal distribution.
To obtain a critical value for the confidence band, let ε̃

(l)
k (z) be the absolute value of the

standardized version of ε̂
(l)
k (z), that is

ε̃
(l)
k (z) = |ε̂(l)

k (z) − ε̄k(z)|√
V̂ar (ε̂k(z))

, where ε̄k(z) = 1
N

N∑
l=1

ε̂
(l)
k (z).

Let ε̆(l) denote the maximum value of (ε̃(l)
1 (z), ε̃

(l)
2 (z), . . . , ε̃

(l)
K (z)), l = 1, . . . , N , and Qα denote

the (1−α)%-th quantile of (ε̆(1), . . . , ε̆(N)). A (1−α)% confidence band for the survival curve
can be obtained by transforming the interval ε̂k(z) ± Qα

√
V̂ar(ε̂k(z)), k = 1, 2, . . . , K.

3. Package description
The contributed R package TransModel is used to fit linear transformation models for right
censored data using the estimation approach discussed in Section 2. In this section, we list
the main functions in this package. The main function in this package is TransModel, which
can be called with the following syntax:

TransModel(formula, data, r, CICB.st = FALSE, subset, dx = 0.001,
iter.max = 100, num.sim = 200)

The required arguments include:

• formula: A survival formula based on the Surv() function, containing survival time,
right censoring indicator and covariates.
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• data: The data set with all the variables needed in the formula.

• r: Parameter in the hazard function of the error term, described in Equation 1.

• CICB.st: Whether or not the perturbation for the confidence interval and confidence
bands of survival estimates will be done. The default value is FALSE.

• subset: The conditions used to select a subset of the data.

• dx: The tolerance limit of convergence. Default is 0.001.

• iter.max: The maximum number of iterations before convergence. Default is 100.

• num.sim: The number of perturbations used, only works when CICB.st = TRUE. Default
is 200.

Returned values are:

• coefficients: Estimated β coefficients in the transformation model.

• vcov: Estimated covariance matrix for the coefficients.

• converged: Convergence status and the number of iterations used for convergence. The
value 0 indicates that the algorithm converged.

The print command gives the coefficient estimate for each covariate specified in the formula
as well as the variance-covariance matrix. Further inference about the coefficients can be
obtained by using the summary method, where the parameter estimates, standard deviation,
test statistics and p values based on the Wald-test are presented in a summary table.
The predicted survival probabilities at given time points for a specific covariates vector can be
obtained using the predict command for the object from the function TransModel. Syntax
for the function is:

predict(object, newdata, new.time, alpha)

The required arguments include:

• object: An object returned from function TransModel.

• newdata: A vector with values for each covariate variable. If not specified, 0 will be
used for all variables.

• new.time: A vector of ordered time points to be used for survival probability calculation.
If null, the time points in the original data set will be used.

• alpha: Confidence level for calculating the confidence intervals and confidence bands of
the survival estimate. Default value is 0.05.

Possible values returned are:

• time: Ordered time points on which survival probabilities are calculated.
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• survival: Predicted survival probabilities.

• low.ci: The lower limit of the confidence interval.

• up.ci: The upper limit of the confidence interval.

• low.cb: The lower limit of the confidence band.

• up.cb: The upper limit of the confidence band.

If new time points are not specified in new.time, the ordered event time points in the original
data will be used. The predicted survival probabilities at each time point and with the
covariate values specified in newdata will be returned. Only when CICB.st = TRUE is specified
in the object, the lower and upper limits for the confidence interval and confidence bands will
be returned as well. The plot command can be applied to the returned object to get a
predicted survival curve, and if the confidence limits or the confidence bands were calculated
in the prediction step, they can be shown by specifying CI = TRUE, CB = TRUE or both.

4. Simulation studies
We design a simulation study to evaluate the performance of the proposed method. We
assume the transformation function has the form H(t) = log(1 + t) + t3/2. A two-dimensional
covariate z = (z1, z2)⊤ is considered, where z1 ∼ N(0, 1) and z2 ∼ U(−1, 1). The coefficients
are set to be β = (1, −1). Different models with r = 0, 0.5, 1, 2 are considered. The sample
size is chosen as n = 200 and 500. The right censoring proportions of 15% and 40% are
considered.
We conduct 1000 replications for each setting, and report the bias and average estimated
standard deviation (StErr, or SE), empirical standard deviation (StDev, or SD) and empir-
ical coverage probability (CP) of 95% Wald-type confidence intervals. From the result in
Table 4, we can see the package gives unbiased estimates, comparable StErrs and StDevs,
and reasonable CPs that are close to the nominal level of 0.95.

5. Veterans’ Administration lung cancer data
We use the Veterans’ Administration lung cancer data as an example to illustrate the usage
of the package TransModel. The data has been analyzed in Prentice (1973), Bennett (1983),
Pettitt (1984) and Cheng et al. (1995), and is available in the current survival package (Th-
erneau 2021). Following Chen et al. (2002), we use the subgroup of 97 patients who had no
prior therapy usage. The covariates of interest include one categorical variable tumor type
(large, adeno, small or squamous) and one continuous variable performance status.
Following Bennett (1983), Murphy, Rossini, and van der Vaart (1997) and Chen et al. (2002),
we first fit a PO model using the main function TransModel in the package with r = 1.

R> set.seed(100)
R> veteran$celltype <- relevel(veteran$celltype, ref = "squamous")
R> fit <- TransModel(Surv(time, status) ~ karno + factor(celltype),
+ data = veteran, r = 1, CICB.st = TRUE, subset = (prior == 0))
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r = 0 r = 0.5
n Cens Pars Est. StdErr SD CP Est. StdErr SD CP
200 15% β1 1.021 0.102 0.108 0.925 1.016 0.119 0.134 0.914

β2 −1.005 0.149 0.155 0.944 −0.996 0.195 0.204 0.944
40% β1 1.023 0.117 0.121 0.946 1.024 0.130 0.145 0.906

β2 −1.006 0.176 0.182 0.947 −1.001 0.213 0.227 0.936
500 15% β1 1.006 0.063 0.066 0.947 1.004 0.075 0.084 0.928

β2 −1.008 0.093 0.094 0.950 −1.005 0.122 0.127 0.933
40% β1 1.008 0.072 0.075 0.944 1.007 0.081 0.092 0.922

β2 −1.005 0.110 0.112 0.939 −1.004 0.133 0.139 0.936
r = 1 r = 2

200 15% β1 1.014 0.151 0.161 0.938 1.016 0.214 0.217 0.945
β2 −0.989 0.249 0.254 0.948 −0.973 0.357 0.360 0.951

40% β1 1.028 0.159 0.169 0.925 1.036 0.210 0.216 0.949
β2 −1.002 0.258 0.271 0.937 −1.005 0.343 0.356 0.941

500 15% β1 1.003 0.095 0.103 0.930 1.002 0.134 0.140 0.941
β2 −1.005 0.157 0.160 0.945 −1.006 0.224 0.226 0.949

40% β1 1.007 0.099 0.107 0.927 1.009 0.130 0.136 0.946
β2 −1.002 0.161 0.165 0.942 −1.003 0.214 0.214 0.954

Table 1: Simulation results.

The estimated coefficients and covariance matrix estimates can be extracted by using
fit$coefficient and fit$vcov, respectively. Further inference about the coefficients can
be obtained by the summary method:

R> summary(fit)

Call:
TransModel.default(formula = Surv(time, status) ~ karno + factor(celltype),

data = veteran, r = 1, CICB.st = TRUE, subset = (prior == 0))

Estimate StdErr z.value p.value
karno -0.043716 0.010691 -4.0891 4.331e-05 ***
factor(celltype)adeno 1.874020 0.623932 3.0036 0.002668 **
factor(celltype)large 0.409877 0.665074 0.6163 0.537705
factor(celltype)smallcell 1.621423 0.604667 2.6815 0.007329 **

Other values can also be specified for r, such as 0, 0.5 and 2, the results are listed in Table 2,
where r = 0 corresponds to the PH model.
In addition to the β coefficients, sometimes comparing survival probabilities among different
groups is also an interest. In the lung cancer data, for illustration, we compare survival curves
among the four tumor types at median level of the performance status 60. The codes are
listed below and the predict survival curves for each tumor type are in Figure 1.

R> pred1 <- predict(fit, newdata = c(60, 0, 0, 0))
R> pred2 <- predict(fit, newdata = c(60, 1, 0, 0))
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r = 0 r = 0.5 r = 2
Coefficients Est. StdErr p value Est. StdErr p value Est. StdErr p value
Karno −0.024 0.006 < 0.001 −0.034 0.008 < 0.001 −0.063 0.016 < 0.001
Adeno vs. Squamous 1.069 0.341 0.002 1.485 0.472 0.002 2.610 0.938 0.005
Large vs. Squamous 0.210 0.347 0.545 0.315 0.502 0.531 0.570 0.994 0.566
Small vs. Squamous 0.769 0.302 0.011 1.228 0.456 0.007 2.316 0.895 0.010

Table 2: Estimated regression coefficients for the Veterans’ Administration lung cancer data.
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Figure 1: Estimated survival curves for different tumor types.

R> pred3 <- predict(fit, newdata = c(60, 0, 1, 0))
R> pred4 <- predict(fit, newdata = c(60, 0, 0, 1))
R> plot(pred1, lty = 1, lwd = 2, cex.axis = 1.5, cex.lab = 1.5)
R> lines(pred2$time, pred2$survival, type = "s", lty = 2, lwd = 2)
R> lines(pred3$time, pred3$survival, type = "s", lty = 3, lwd = 2)
R> lines(pred4$time, pred4$survival, type = "s", lty = 4, lwd = 2)
R> legend("topright", c("squamous", "adeno", "large", "smallcell"),
+ title = "Tumor Type", lty = 1:4, bty = "n")

The perturbed variance is used to obtain the 95% confidence interval and confidence bands,
which can be presented along with the estimated survival curves. The confidence level can be
changed by specifying different values for the argument alpha in the predict function. For
example, the estimated survival curves and 95% confidence interval and confidence bands for
patient with performance status at 60 and Squamous type of tumor size can be plotted using
the following code and the resulting plot is in Figure 2.
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Figure 2: Estimated survival curve for patients with squamous tumor type, with 95% confidence
interval and 95% confidence band.

R> plot(pred1)
R> lines(pred1$time, pred1$low.ci, lty = 2)
R> lines(pred1$time, pred1$up.ci, lty = 2)
R> lines(pred1$time, pred1$low.cb, lty = 3)
R> lines(pred1$time, pred1$up.cb, lty = 3)
R> legend("topright", c("Survival estimates", "95% CI", "95% CB"),
+ lty = 1:3, lwd = 1, bty = "n")

6. Discussion
We develop the package TransModel in R to fit linear transformation models with right
censored data. The commonly used PH model and PO model are included as special cases
with r = 0 and 1. The package can provide coefficients, standard deviation, and p value.
Furthermore, it can predict survival curves with its confidence interval and confidence band
through perturbation.
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