
Enabling Connectors in Hierarchical Component Models

Julien Bigot, Christian Pérez

To cite this version:

Julien Bigot, Christian Pérez. Enabling Connectors in Hierarchical Component Models. [Re-
search Report] RR-7204, INRIA. 2010. <inria-00456608v3>

HAL Id: inria-00456608

https://hal.inria.fr/inria-00456608v3

Submitted on 25 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52320389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00456608v3

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
72

04
--

FR
+E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Un modèle de composants hiérarchiques
avec connecteurs

Julien Bigot — Christian Pérez

N° 7204 — version 3

version initiale Février 2010 — version révisée Août 2010

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Un modèle de composants hiérarchiques
avec connecteurs

Julien Bigot , Christian Pérez

Thème NUM — Systèmes numériques
Équipe-Projet GRAAL

Rapport de recherche n° 7204 — version 3 — version initiale Février 2010 —
version révisée Août 2010 — 22 pages

Résumé : La croissance continue des capacités de calcul et de stockage per-
met aux applications numériques d’intégrer un nombre croissant de phénomènes
dans leurs calculs au prix d’une complexité accrue. Les modèles de composants
hiérarchiques apparaissent comme une approche intéressante pour gérer cette
complexité. Cependant, définir et implémenter des interactions efficaces entre
composants hiérarchiques est une tâche difficile, d’autant plus dans le cas d’ap-
plications parallèles et distribuées. Les connecteurs issus des langages de descrip-
tion d’architecture (ADL) offrent une solution prometteuse à ce problème. Il y a
cependant des cas où une simple combinaison de la hiérarchie et des connecteurs
dans un modèle de composants unique oblige l’utilisateur à faire un choix entre
des mises en œuvres efficaces pour les composants et leur comportement � bôıte
noire �.

Ce papier décrit HLCM, un modèle avec connecteurs et hiérarchie qui fournit
le concept de connexions ouvertes pour decrire les interfaces de composants. Ce
méchanisme améliore l’encapsulation et facilite le remplacement des mises en
œuvre de composant tout en permettant des interactions efficaces. Des interac-
tions complexes telles que le partage de données ou les invocations de méthodes
parallèles sont gérées avec succès par HLCM. Une mise en œuvre basée sur une
transformation de modèle et sur CCM est utilisée pour illustrer sa faisabilité et
ses bénéfices.

Mots-clés : Composants logiciels, Connecteurs, Hiérarchie, Calcul parallèle et
distribué, Ingénierie dirigée par les modèles

Enabling Connectors in
Hierarchical Component Models

Abstract: The continual growth of computing and storage capabilities enables
scientific numerical applications to integrate more and more phenomena in their
computations at the price of increased complexity. Hierarchical component mod-
els appear as an interesting approach to handle such complexity. However defin-
ing and implementing efficient interactions between hierarchical components is
a difficult task, especially in the case of parallel and distributed applications.
Connectors originating from Architecture Description Languages (ADL) offer
a promising solution to this problem. There are however some cases where a
simple combination of hierarchy and connectors in a single component model
forces users to choose between an efficient implementation of components and
their black box behavior.

This paper describes HLCM, a model with connectors and hierarchy that
provides open connections as a mechanism to describe component interface that
enhances encapsulation and eases component implementation replacement while
supporting efficient interactions. Complex interactions such as data sharing and
parallel method calls are successfully supported by HLCM. An implementation,
based on model transformation and on CCM, illustrates its feasibility and ben-
efits.

Key-words: Software Components, Connectors, Hierarchy, Parallel/Distributed
Computing, Model-Driven Engineering

Enabling Connectors in Hierarchical Component Models 3

1 Introduction

Scientific numerical simulations offer interesting challenges from the soft-
ware engineering point of view. Their software architecture is becoming more
and more complex as the result of the coupling of multiple codes developed at
different times by different teams. Moreover these codes make use of parallel
constructs such as collective communications or parallel method calls. These
applications also require computing power provided by complex hardware ar-
chitectures such as highly parallel supercomputers or grids federating multiple
clusters. With respect to the amount of computation to perform and the cost
of the machine, efficiency is a very important criteria.

Component based software engineering (CBSE) [23] is an interesting ap-
proach to simplify the development of such complex applications. In this pa-
radigm, pieces of code are embedded into components whose interactions with
their environment are clearly identified, usually by a set of ports specifying
both the services used and offered. Assembly of component instances connected
through these ports are used to build larger grain components (composites) and
to describe a whole application. These clear identifications of code interactions
and dependencies improve code modularity and ease re-use.

The high efficiency required by scientific simulations does of course mean
that programming models should introduce as few overhead as possible. This
has been the goal of some specialized high performance component models such
as the Common Component Architecture (CCA) [2]. In order to achieve high
performance on a variety of hardware architecture it is however also highly
important to use the best suited version of computation algorithms and com-
munication patterns. That is why, porting an application to a new architecture
—usually every few years— is still a very expensive and long task,

The expression of communication requirements at a higher level of abstrac-
tion such as with collective communications in MPI [15] makes it possible for
the implementation to optimize their implementation depending on the avai-
lable hardware resources. Propositions to introduce a set of higher level form of
interactions between components have been made for example in the Grid Com-
ponent Model (GCM) [7] and as extensions to other component models [8]. They
include event passing, parallel method calls, master-worker relationships, col-
lective communications among components, workflow-type interactions or data
sharing between components for example.

The diversity of these extensions does however support the idea that there
is probably not a fixed set of interactions that fits the needs of all applications ;
thus leading to the need to define an infinite of models. The concept of connec-
tors as a first class entity originating from Architecture Description Languages
(ADL) makes it possible to introduce new forms of interactions in a way si-
milar to new components without needing new models. Connectors have been
introduced in component models with their implementation either generated or
chosen between various assembly of components [17]. As will be further explai-
ned in Section 2 however, in certain cases, to prevent performance penalties the
interface of composites has to expose their content thus reducing the black box
aspect of components and preventing their exchangeability.

This paper introduces a component model named HLCM that supports
connectors, genericity and hierarchy. It avoids the limitations of existing mo-
dels with connectors and hierarchy by expressing component interfaces with the

RR n° 7204

4 Bigot & Pérez

novel concept of open connections. This enhance encapsulation and thus ease
the replacement of component implementation while supporting efficient imple-
mentations of components and interactions between them. Moreover, HLCM
provides bundle ports and connection transformers that support polymorphism
for open connections further increasing exchangeability of implementations. A
prototype implementation as well as the analysis of the model on two use cases
show the feasibility of the model.

The remainder of this paper is organized as follow. Section 2 introduces
a synthetic application example that motivates our work and it analyzes the
related work in light of this example. HLCM is described in Section 3. Section 4
describes the implementation of the motivating example using HLCM and uses
it to evaluate HLCM. Section 5 draws some conclusions and presents some future
works.

2 Context

This section presents two variations of a synthetic code coupling application
that motivates this work that will be used through the paper. It is in particular
used in this section to discuss the advantages and limitations of related work :
component models with hierarchy, dedicated HPC interactions and connectors.

2.1 Motivating examples

The synthetic application described in this section is inspired by tight code
coupling applications [22] found for example in image rendering [4], hydro-
logy [14], quantum molecular dynamics [11], etc.

These applications are constituted by the coupling of multiple codes deve-
loped by different teams with different domain of expertise. The coupled codes
may be sequential but they are often SPMD parallel codes. It is even possible
for a single code to have multiple versions, some sequential, other parallel with
distinct properties when it comes to memory, processing power or Input/Output
requirements for example. In this case, the choice of the best suited version of
each code for a given execution depends on available hardware resources.

To mirror these properties, the synthetic example application is the result
of the coupling of two codes with a parallel and a sequential version each.

The interactions used to couple the codes of such an application can take va-
rious forms. We focus on two kinds of interactions that will lead to two variations
of the synthetic example application.

The first example is a coupling by method calls between the codes. This is
typical of applications [14, 11] where the codes alternate between a computing
phase where a step of time is simulated and a communication phase where the
modifications of the global state of the simulated space are exchanged. This
information exchange is achieved through method calls between the parts of the
application that describe change of the state in their parameters. In the case
where some codes are parallel, this requires parallel to parallel method calls
known as M ×N method calls.

The second example is a coupling by shared memory between the codes. This
is typical of applications [4] with irregular interaction patterns where the various
codes access and modify portions of a single global state shared amongst them.

INRIA

Enabling Connectors in Hierarchical Component Models 5

This can be achieved by providing a logically shared global memory with proper
lock mechanism to ensure data integrity.

The most common approach used to develop these code (especially parallel
codes) is to take advantage of programming environments such as MPI [15].
These environments are however usually targeted at specific kind of interactions
(message passing in the case of MPI) that might not be what the other codes
use. In addition these environments are not well suited to code coupling as they
tend to favor hard coded and deeply hidden interactions between application
parts that are very complex to modify.

2.2 Related work

The remaining of this section analyzes the answers provided to these chal-
lenges by various models that build on each other : component models, com-
ponent models with hierarchy, with dedicated interactions and with connectors.

Component models The main element in component models are compo-
nents with an external interface and an internal implementation. Component
implementations are developed in an external programming models usually
object-oriented or imperative. Component interfaces describe their interactions
with the environment as a set of named ports that describe both the services
they provide and use. These services take the form of an object interface that
can be connected point to point to provide a method call semantic. Applications
are build as sets of components interconnected through these ports. Examples
of such models include the CCA [2], a process-local model designed for high
performance applications and the Corba Component Model (CCM)[19] based
on Corba to support distributed computing.

In the case of our motivating examples, each of the two coupled codes could
be described as a component. By clearly identifying their interaction points,
this ease the coupling of these components as well as their replacement by
a different versions. The limitations of interactions to one-to-one use/provide
interactions does however force the components to expose the way the higher
level interactions (shared memory and parallel use/provide) are implemented,
thus making complex the replacement of components.

Hierarchy Hierarchical assembling has been introduced in component models
such as Fractal [13] or SCA [20]. This is achieved thanks to the concept of
composites : components whose implementations are assemblies of interconnec-
ted component instances exposing some of their ports as ports of the composite.
Hierarchy makes it possible to use components at multiple level of granularity.

In the case of our motivating examples hierarchy makes it possible to use
components to describe both the whole application and the parallel parts of
the application. At the whole application level, the application is seen as two
components instances connected together. Each of these components can then
be implemented as a composite containing a set of interconnected instances of
a sequential part of the implementations.

However it does not make possible for interactions to be described at a
higher level of abstraction ; it rather makes the problem worse as new kind of
interactions might be required inside composites such as for example MPI-like
interactions between the sequential parts of the parallel components.

RR n° 7204

6 Bigot & Pérez

Dedicated HPC interactions Dedicated HPC interactions have been in-
troduced in some component models such as the scattercast and gathercast in
GCM [7] (based on Fractal). Other interactions have been introduces as exten-
sions to existing component models. For example, M ×N (parallel-to-parallel)
method calls from, to and between parallel components have been introduced
as extensions to CCA in Scirun2 [2] and to CCM in GridCCM [21]. MPI-like
collective communications have been introduced as an extension to CCM [9].
Data sharing between components has been proposed as an extension to CCA
and CCM [5]. Finally, some interactions are supported as part of more gene-
ric extensions such as the master/workers paradigm [12], and more generally
(parallel) algorithmic skeletons [1].

These models and extensions support the various interactions required in our
motivating examples. The support of M ×N method calls by GridCCM makes
it possible to replace a sequential version of a component by a parallel version
without change of interface. Similarly the extensions providing shared data bet-
ween components works whatever the number of components taking part in the
interaction is. There is not however a single component model that supports
all these interactions. Some more application-specific interactions might not be
available in any model at all.

Component models with connectors The concept of connector originates
from ADLs and have been introduced in component models such as the Sofa
component model [6] and in [17]. Connectors are first class entities similarly
to components that contain roles (or plugs) fulfilled by ports of component
instances so as to describe their interactions [18]. Unlike components, connectors
are intrinsically generic and their implementation can vary in function of the
quantity, type and locality of the ports taking part in the connection.

In the case of our motivating examples, connectors make it possible to add
support for the various interactions required in the same way as new compo-
nents. A connector with two roles, user and provider could support M × N
method calls and connectors with a single role each could support shared me-
mory and MPI-like communications.

In the case of the parallel version of the codes however some problems arise.
For example, in the case of the coupling by shared memory, two approaches
for the implementation of the parallel version of the codes can be taken, none
of which is satisfactory. The first approach consists in letting the composite to
expose the ports of their inner instances in their interface as shown in Figure 1.
This solution breaks the black box behavior of the components and prevents
their easy replacement as it leads to a distinct interface for the parallel and
sequential versions of components.

The second approach prevents this problem by inserting a component res-
ponsible for interface adaptation inside the composite as shown in Figure 2. This
second option can however lead to severe performance degradation as it implies
that interactions between the two parallel components have to go through a
single process that can present a bottleneck.

2.3 Discussion

Software component models provide an interesting approach for the deve-
lopment of code coupling application thanks to the black box behavior of com-

INRIA

Enabling Connectors in Hierarchical Component Models 7

Figure 1 – A first approach
for the coupling of two pa-
rallel codes in models with
connectors.

Figure 2 – A second approach for the cou-
pling of two parallel codes in models with
connectors.

ponents that eases their replacement. Hierarchy is interesting as it makes it
possible to describe reusable composition of component instances such as pa-
rallel components. Dedicated interactions provided either as a fixed set or more
interestingly through connectors additionally allow to change the implementa-
tion of not only components but also interaction implementations allowing for
better performance on various hardware resources.

There are however some cases where a simple combination of hierarchy and
connectors in a single component model forces users to choose between efficient
implementation of component and the black box behavior that makes exchan-
geability possible. The next section will focus on the description of a component
model supporting both aspects thanks to a novel way of expressing component
interface.

3 HLCM : a High Level Component Model

This section introduces HLCM, an abstract component model that supports
hierarchy, genericity and connectors. HLCM provides a new way of describing
component interface that enhances encapsulation and thus eases the replacement
of their implementation while supporting efficient component implementations
and interactions.

HLCM is abstract : it does not specify the primitive elements of the model
(primitive component implementations, generators and port types which are
introduced hereafter) ; primitive elements are instead specified by specializations
of HLCM. This makes it possible to take advantage of HLCM using various
underlying execution models or backends.

This paper takes the example of HLCM/CCM, a specialization that uses
the elements of the Corba Component Model (CCM) as its primitive elements.
Other specializations for Java, C++ and charm++ [16] exist but are not des-
cribed in this paper.

This section first describes the structural elements of HLCM and then the
elements specific to the HLCM/CCM specialization. The behavior of HLCM ap-
plications is specified through an equivalence with applications of the underlying
execution model.

RR n° 7204

8 Bigot & Pérez

connector UseProvide<role user, role provider>;

Figure 3 – Declaration of a connector UseProvide with two roles —user and
provider— to support Use/Provide interactions.

3.1 Structural elements of HLCM

The basis of HLCM is a generic hierarchical component model with connec-
tors. The main elements of HLCM are components, connectors, port types,
bundles and connection adaptors. Components and connectors are implemen-
ted respectively by component implementations and generators The specifici-
ties of HLCM are open connections used to specify component interfaces and
connection adaptors that support connection polymorphism.

The meta-model of HLCM has been described in the Ecore language of the
Eclipse Modeling Platform (EMF). As for instances of any Ecore meta-models,
HLCM applications can be described in the OMG XML Metadata Interchange
(XMI) dialect. This syntax is however not human-friendly : examples in this
section are described in a dedicated HLCM textual syntax as well as in an
informal graphical syntax.

Genericity has been introduced in HLCM using the approach described
in [10]. All types of the model are generic (i.e. accept other types as para-
meter). The implementations of these types can either implement the whole
generic type or be restricted to a given set of generic parameters. HLCM sup-
ports meta-programming with constructs such as static conditionals and loops
evaluated at compilation time.

Components As usual in component models, a component in HLCM is a
black-box, locus of computation. It exposes a set of named interaction points
and has one (or more) implementation(s). Unlike in other component models
however, these points of interactions are not ports but open connections that
will be further discussed.

There are two kinds of component implementations : primitive implementa-
tions and composite implementations. Primitive implementations are spe-
cific to each HLCM specialization ; those of HLCM/CCM will be presented
in Section 3.2. Composite component implementations are assemblies of
component instances.

Connectors As in other models supporting connectors as first class entities,
a connector in HLCM represents a kind of interactions. It exposes a set of
named roles and has one (or more) implementation(s). Following the nomencla-
ture defined in [17], connector instances are called connections and connector
implementations are called generators. An examples of connector is shown in
Figure 3.

Port types Ports in HLCM are instances of port types that are internal to
primitive component implementations and which fulfill roles of connections. Port
types are primitive and thus specific to each HLCM specialization ; those of
HLCM/CCM will be presented in 3.2.

INRIA

Enabling Connectors in Hierarchical Component Models 9

component MyHlcmComponent exposes {
UseProvide<provider={Facet<A>}, user={}> ocA;

}

Figure 4 – Example of a component exposing a connection ocA of type
UseProvide whose role provider is fulfilled by a single port and whose role
user is not fulfilled.

Connections Interactions between component instances in assemblies are
described by connections. A connection is an instance of a connector having
each of its roles fulfilled by a set of ports. The types of these ports are implicit
generic arguments of the generator implementing the connection.

Potential interactions of components are described by exposing (partially
fulfilled) connections. An example of such exposition is illustrated in Figure 4.

Interactions in assemblies are described by merging two or more connections
of the same type (connector). The result of a merge is a new connection. Each
role of this new connection is fulfilled by the union of the sets of ports fulfilling
this same role in the merged connections. An example of merge is illustrated by
the composite component implementation described in Figure 5.

There are two kinds of connections in HLCM : closed and open connections.
Closed connections are connections that can not be merged anymore : i.e.
connections internal to an assembly. In order for a closed connection to be valid,
there should exist at least one generator that can be used to implement it. Open
connections are connections that are or can be further merged : i.e. connections
exposed in the interface of components. In order for an open connection to be
valid, it should be possible to construct another connection with which it can
be merged to form a valid closed connection.

Generators A generator is an implementation of a connector. Multiple ge-
nerators can implement the same connector. Generator can impose constraints
on the generic parameters of the connector it implements (i.e. the type of the
ports) as any implementation of a generic type. In addition, it can also impose
constraints amongst a set specific to the specialization. This can for example
be used to impose locality constraints on the component instances exposing the
ports.

There are two kinds of generators : primitive generators and composite gene-
rators. Primitive generators are specific to each HLCM specialization ; those
of HLCM/CCM will be presented in Section 3.2.

A composite generator implements a connector with an assembly as
shown in Figure 6. An assembly contains a set of component instance and
connection merges. In addition, a composite generator can use ports fulfilling
the roles of the connection it implements as fulfillments to roles of internal
connections.

Bundle types Bundles are instances of bundle types that can be used simi-
larly to ports to fulfill the roles of a connection. A bundle type is a set of named
open connections that specifies the types of the connections of a bundle as shown
in Figure 7. Bundle are instantiated in assemblies to logically group multiple

RR n° 7204

10 Bigot & Pérez

i) Textual representation

composite MyCompositeImplementation

implements MyHlcmComponent {
AnotherComponent c1;

AThirdComponent c2;

merge (c1.ocB, c2.ocC);

merge (this.ocA, c1.ocA);

}

ii) Expanded representation (connections have not been merged)

c1c2

merge

ocC ocA

expose

ocB ocA

iii) Compact representation (connections have been merged)

ocA

Merged
connection
(closed)

Exposed
connection
(open)

Figure 5 – Three representations of a composite implementation of the com-
ponent MyHlcmComponent of Figure 4. It contains two internal component ins-
tances c1 and c2, that interacts by merging the two open connections c1.ocB

and c2.ocC and exposes the open connection c1.ocA as its own ocA.

connections of the underlying execution model that can not be independently
connected. An example of a bundle instantiated in an assembly is illustrated in
Figure 8.

A generator implementing a connection with a bundle port taking part in role
fulfillments can use this ports as fulfillment of a role of some inner connections
as with primitive ports. It can also explode the bundle and it can use its internal
open connections like any other open connection, for example by merging it.

Connection Adaptors Connection adaptors enable (open) connection poly-
morphism. A connection adaptor can adapt an (open) connection exposed by
a component whose actual type does not match the type declared in the com-
ponent interface. The definition of a connection adaptor is an assembly that uses
the available connection and exposes a new connection of the expected type. An
example is given in Figure 9.

The exposition by a composite of an connection whose actual type does not
match the type declared in the component interface is only valid if there is an
adaptor that supports it. The adaptor might however not be used in the case
where a generator implements the connection without adaptation.

INRIA

Enabling Connectors in Hierarchical Component Models 11

generator LoggingUP<UI,PI> implements

UseProvide<provider={Facet<PI>},
user={Receptacle<UI>}>

when (UI super PI) {
LoggerComponent<UI> proxy;

proxy.clientSide.user += this.user[0];

proxy.serverSide.provider += this.provider[0];

}

proxyuser provider user provider

Figure 6 – Example of a generator implementing the UseProvide connector
when its role are fulfilled by CCM ports by inserting a proxy component for
logging purposes. Ports fulfilling the roles of the UseProvide connections are
used to fulfill roles of the clientSide and serverSide exposed connections
using the += operator.

bundletype CcmPeer<I> {
UseProvide<provider={Facet<I>},user={}> pc;

UseProvide<user={Receptacle<I>},provider={}> uc;

}

Figure 7 – Example of a bundle type. The CcmPeer bundle type contains two
open connections : pc and uc. This makes it possible to implement a kind of
peer-to-peer connection where each peer is both a provider and a potential user
of a service.

composite Example implements AComponent {
AnotherComponent cmp;

this.peerConn.peer += CcmPeer<AnInterface> {
pc = cmp.provide;

us = cmp.use;

}
}

Figure 8 – The CcmPeer bundle type of Figure 7 is instantiated to fill the peer

role of the peerConn connection exposed by the composite. Its internal open
connections are set to those exposed by the cmp component instance.

3.2 Specific elements of HLCM/CCM

Each specialization of HLCM has to specify the three primitive elements of
the model : primitive component implementations, generators and port types.
These elements can be defined by an equivalent element of the backend such as

RR n° 7204

12 Bigot & Pérez

adaptor PushPull supports

UseProvide<user={Receptacle<Push>},provider={}>
as UseProvide<user={}, provider={Facet<Pull>}>
{
BufferComponent buffer;

merge (buffer.pushSide, supported);

merge (this , buffer.pullSide);

}

buffer

supported this

merge

Figure 9 – Example of connection adaptor describing how to adapt
a UseProvide connection (supported) whose user role is filled by a
Receptacle<Push> port as a UseProvide connection (this) whose provider

role is filled with a Facet<Pull> port.

//OMG IDL3 annotated for HLCM/CCM

//@implements MyHlcmComponent

component MyCcmImplementation {
//@fulfills ocA.provider

provides A a_port;

}

Figure 10 – Example in extended OMG IDL of a (primitive) CCM implemen-
tation of the component MyHlcmComponent of Figure 4. The port a port fulfills
the role provider of the open connection ocA.

for components in HLCM/CCM. Otherwise, a finite set of primitive elements
can be defined such as for connectors and port types in HLCM/CCM.

Primitive Component Implementations HLCM/CCM primitive component
implementations are CCM components whose ports are used to fulfill the roles of
the connections exposed by the HLCM component. These primitives component
implementations can be for example defined in the OMG Interface Definition
Language of CCM annotated to specify the component implemented and the
roles fulfilled by ports as shown in Figure 10.

Primitive Port Type HLCM/CCM primitive port types are CCM port
types. Port types are however not a first class entity in CCM ; there is a fi-
nite set of types that can not be extended : facets, receptacles, event publishers,
emitters and sinks. There is therefore only a fixed set of primitive port types in
HLCM/CCM that match these types and that can not be extended by the user.
These types are however generic and can be parameterized by Corba object
interfaces or event types.

INRIA

Enabling Connectors in Hierarchical Component Models 13

Primitive Generators HLCM/CCM primitive generators support the allo-
wed connections between CCM ports : Use/Provide interactions between facets
and receptacles and event passing between event publishers or emitters and
sinks. Similarly with port types there is therefore only a fixed set of primi-
tive generators in HLCM/CCM. These connectors simply model connections
directly supported by the backend that do not require anymore information to
be implemented.

3.3 Behavior of HLCM Elements

As previously explained, the specification of HLCM is based on a MDE ap-
proach and the behavior of HLCM applications is based on the specification
of a model transformation that puts HLCM applications in equivalence with
applications of the underlying execution model. The behavior of an HLCM ap-
plication is defined as being that of the equivalent application of the underlying
model.

An HLCM application is defined by the set of HLCM elements it contains :
components, connectors, generators, port types and connection adaptors and by
the component used as the root of the application. To map it into a primitive
application, it should be transformed into an assembly which only contains
primitive components, primitive ports, and primitive connections. In the case
of HLCM/CCM for example, this means that HLCM/CCM applications are
mapped to plain CCM applications.

As a first step of the transformation, the transformation required to sup-
port genericity and the approach described in [10] is applied. The rest of the
transformation is straight forward :

– the implementations of the various component instances and connectors
are chosen amongst the available choices ;

– in the case of composite implementations, their content is exposed so as
to form a flat assembly.

The process is repeated until all elements are implemented. Since composite
implementations are opened and only their content is used, all elements have
primitive implementations and thus form an application of the underlying exe-
cution model.

This transformation is however non deterministic as it does not specify how
the choice of connection implementations is made. There can therefore be mul-
tiple distinct applications of the underlying execution model in equivalence with
a single HLCM application. In this case, each of these primitive applications de-
fine a valid behavior of the HLCM application.

The difficult part when implementing this algorithm lies in the choice of im-
plementations for components and connections. It is possible for a choice made
at one step of the transformation to lead to a state where no valid implementa-
tion is available for a given instance. This does not mean however that different
choice could not have lead to a valid application as a result.

Various answers can be given to this problem, such as enforcing stronger
constraints on the validity of implementations or supporting a rollback mecha-
nism during the transformation for examples. Until now this has not been a real
problem in the examples we have worked with ; however it is an issue that we
are working on.

RR n° 7204

14 Bigot & Pérez

3.4 Discussion

This section has presented HLCM, an abstract component model, and HLCM/CCM,
a specialization of HLCM that uses CCM as a backend. HLCM introduces a
novel way of expressing component interfaces based on the concept of open
connections. It also introduces bundles and connection adaptors that support
polymorphism of open connections. The behavior of HLCM applications has
been defined by equivalence with applications of the underlying execution mo-
del obtained with a straightforward transformation.

The approach based on an abstract model and a transformation to an un-
derlying execution model makes it possible to easily support multiple backends.
As a matter of fact, only the primitive elements of the backend have to be des-
cribed ; the transformation is backend independent and the execution is directly
handled by the backend. A limitation of the choice of a model transformation
however is that it limits HLCM to the expression of static assemblies that do not
evolve during their execution. This does for example prevent the use of HLCM
in its actual state for the implementations of dataflows and workflows.

The concept of open connection makes it possible for connections to cross
the frontier of composites. It is possible in HLCM for a single connection to
have multiple roles fulfilled inside a given composite and other roles fulfilled in
another composite. The next section will show how this and open connection
polymorphism make it possible to elegantly support the motivating examples
described in Section 2.1 easing the replacement of their implementation while
supporting efficient implementations and interactions.

4 Evaluation

This section evaluates HLCM by using HLCM/CCM to implement the two
motivating examples introduced in Section 2. It starts by presenting HLCMi, a
framework supporting the implementation of HLCM specializations and HLCMi/CCM,
a prototype implementation of HLCM/CCM based on this framework. Then it
describes the implementation in HLCM/CCM of our two motivating examples :
the coupling of parallel codes through shared memory and through parallel me-
thod calls. Finally it analyzes these two implementations and compares their
behavior to implementations that do not take advantage of HLCM.

4.1 HLCMi/CCM : an HLCM/CCM implementation

In order to evaluate HLCM and its various specializations, a set of proof-
of-concept implementations have been developed. These implementations are
themselves build as assemblies of the Low Level Component Model Java (LLCMj),
a plain Java backend for HLCM. In order to solve the bootstrap problem, these
assemblies are hard-coded in Java and do not take advantage of the HLCM as-
sembly language. The components shared by the various implementations form
a framework known as HLCMi.

HLCMi relies on the tools provided as part of the Eclipse Modeling Fra-
mework (EMF). It is build around two models described in the Ecore using
the Emfatic syntax. The HLCM Platform Independent Model (PIM) models
HLCM assemblies as described by the user ; it contains 59 classes described in

INRIA

Enabling Connectors in Hierarchical Component Models 15

Transformer BackendPIM PSM

Chooser

HLCM

Parser

Figure 11 – Architecture of typical HLCMi based compiler.

around 300 lines in Emfatic. The HLCM Platform Specific Model (PSM) mo-
dels concrete assemblies where all choice have been made with only primitive
components or connectors remaining ; it contains 33 classes described in around
150 lines in Emfatic. Specializations that introduce primitive elements that
can be described by the user such as primitive components in HLCM/CCM
must extend these models ; the modeling of HLCM/CCM primitive components
requires 6 classes and 30 lines of Emfatic.

The architecture of a typical HLCMi specialization is described in Figure 11.
A parser stage takes as input the user-provided files and generates an instance
of the PIM. The transformer stage takes this instance as input and generates
an instance of the PSM according to the algorithm described in Section 3.3.
This transformer also relies on a chooser to make the choices required when
multiple implementations of an element are available. Finally the PSM instance
is used by a backend that can either generate files or directly execute the appli-
cation.

In HLCMi/CCM, the parser stage is made of two components implemented
using the Xtext framework. The first component parses the HLCM assembly
files ; the second —specific to HLCMi/CCM— parses the extended CCM IDL.

The transformer stage is not specific to HLCMi/CCM ; it is implemented
in pure Java and requires around 2000 lines of code. Languages dedicated to
model transformations are available in EMF ; however they were not mature
enough when this code has been written.

For the chooser stage, various kinds of heuristics can be implemented. For
the experiences of this paper however, a very simple chooser that is limited to
making choice dictated by the user or random choice otherwise has been used.

The backend stage is made of an HLCMi/CCM specific component that
dumps the HLCM/CCM PSM instance as a CCM Component Assembly Des-
criptor (CAD) file.

This implementation makes it possible to easily experiment with HLCM/CCM.
It can be seen as a black box that takes as input a set of CCM components and
HLCM files and generates a CCM CAD as output. As of now this implementa-
tion does not automatically take resources into account. It does however make
it very easy to change the implementation chosen for one of the HLCM compo-
nents to obtain a completely different CCM CAD as a result as will be seen in
the remaining of this section.

RR n° 7204

16 Bigot & Pérez

connector SharedMem<role access>;

Figure 12 – Declaration of the SharedMem connector with a single role access.

interface DataAccess {
DataPointer get_data();

long get_size();

...

}

Figure 13 – Declaration in OMG IDL of the DataAccess interface.

component MemoryAccessor exposes {
SharedMem<access={LocalReceptacle<DataAccess>}>

memory;

}

Figure 14 – Declaration of a component MemoryAccessor exposing a connec-
tion memory that can be used to access the shared memory.

4.2 Implementation of the motivating examples in HLCM/CCM

In order to evaluate HLCM, the motivating examples described in Section 2.1
has been implemented in HLCM/CCM. This section focusses on the implemen-
tations of the two kinds of interaction used in this examples : interaction by
shared memory and by (parallel) method call.

Shared memory interaction The shared memory interaction has been im-
plemented using an approach inspired by [5]. It is supported by SharedMem, a
connector with a single role : access described in Figure 12.

An object interface DataAccess whose IDL specification is shown in Fi-
gure 13 is dedicated to the access to the shared memory. This interface is not
aimed to be remotely accessed as the opaque valuetype DataPointer is used to
manipulate a pointer to the actual data. As a result this interface can correctly
be used only by components located in the same address space (process).

The HLCM/CCM backend has been extended with two additional primitive
ports : LocalReceptacle and LocalFacet to support this use case. These two
port types behave exactly like the usual CCM Receptacle and Facet except
that they impose a process collocation constraint between the involved com-
ponent instances in the resulting CAD.

A component can therefore safely access the shared memory through a port
of type LocalReceptacle<DataAccess> used to fulfill the access role of a
SharedMem connection as shown in Figure 14.

A composite component implementation containing multiple instances of the
MemoryAccessor component as shown in Figure 15 can both specify that i) its
internal instances access the same shared memory and ii) external members to
the composite can access the same shared memory by exposing the connection.

INRIA

Enabling Connectors in Hierarchical Component Models 17

i) Textual representation

composite CompositeAccessorImpl

implements MultiAccessor {
MemoryAccessor c1;

MemoryAccessor c2;

merge (this.memory, c1.memory, c2.memory);

}

ii) Graphical representation

c1

c2

memory

Figure 15 – The CompositeAccessorImpl composite merges the c1.memory

and c2.memory into a single connection exposed as this.memory.

generator LocalSharedMem<Integer N>

implements SharedMem<access=each (i:[1..N]){
LocalReceptacle<DataAccess>}>

{
LocalMemoryStore<N> store;

each (i:[1..N]){store.access[i].user+=access[i];}
}

Figure 16 – Definition of the LocalSharedMem generator supporting lo-
cal SharedMem connections. Its implementation relies on an instance of a
LocalMemoryStore component that embeds the data accessed by all compo-
nents.

Two generators implementing this connector have been developed. A first ge-
nerator simply inserts an internal component in charge of the memory is descri-
bed in Figure 16. This implementation imposes a process collocation constraint
between each component instance accessing the connector and the store ins-
tance, effectively requiring all accessors to be in the same process.

A second generator supports distributed shared memory by inserting for
each accessor an instance of a component delegating the calls to JuxMem [3],
a distributed shared memory implementation. It is not shown by lack of space
but it does not contain any originality.

Parallel method call interaction Unlike shared memory, the support for
parallel method calls [21] does not require the introduction of a new connector :
the UseProvide connector already supports method calls. Two new bundles are
however introduced : ParallelFacet whose definition is presented in Figure 17

RR n° 7204

18 Bigot & Pérez

bundle ParallelFacet<Integer N, interface I> {
each(i:[1..N]){
UseProvide<provider={Facet<I>}> part[i];}

}

Figure 17 – Definition of the ParallelFacet bundle port type. It contains
N UseProvide connections called part whose provider role if fulfilled by a
Facet<I> port.

U1

U2

P1

P2

UDist

PDist

UDist

PDist

U3 UDist

Figure 18 – A parallel UseProvide connection implemented by the MxN gene-
rator. A proxy instance is inserted for each participant. Each proxy instance is
connected to all those of the opposite side.

and the symmetrical ParallelReceptacle. We make the choice that supporting
parallel method calls means supporting the cases where these bundles fulfill the
user or provider roles of a UseProvide connection.

A MxN generator that implements UseProvide connections whose roles are
fulfilled by a ParallelFacet and a ParallelReceptacle has been implemen-
ted. An example of connection implemented by this generator is presented in
Figure 18. This enables an efficient support of M ×N connections — as shown
in Section 4.3— with data redistribution on the user side, the provider side or
even both.

The support for UseProvide connections with only one of the role filled by
a parallel port is supported by two connection adaptors. The Scatter trans-
former whose definition is presented in Figure 19 supports a connection whose
user role is filled by a ParallelReceptacle as if they was filled by a sequen-
tial Receptacle. It contains a component in charge of distributing the data
connected to all the part sub-connections of the bundle and exposing an open
connection with a sequential Receptacle used as result of the transformer. A
Gather transformer supports the symmetrical case.

4.3 Analysis

Both connectors have been used to compile versions of the motivating ap-
plication with a degree of parallelism varying from 1 to 1000 components. The
compilation time varies between three and seven seconds. This is completely ac-
ceptable when compared with the 50 seconds required to compile the primitive
components on the same machine or the deployment time of a distributed CCM
application that is usually in tens of seconds.

INRIA

Enabling Connectors in Hierarchical Component Models 19

adaptor Scatter<Integer N> supports

UseProvide<user={ParallelReceptacle<N, MatrixPart>}>
as UseProvide<user={Receptacle<Matrix>}> {
Distributor<N> dist;

each (i:[1..N]){
merge (dist.in[i], supported.user.part[i]);}

merge (this , dist.out);

}

Figure 19 – Definition of the Scatter transformer.

In the case of shared memory interactions, we have seen that HLCM makes it
possible to expose a single open connection whether the component is sequential
or a composite containing multiple instances participating in the connection as
shown in Figure 15.

Similarly, for parallel method call interactions, a component exposing a
UseProvide<user={Receptacle<Matrix>}> open connection can be sequential.
Thanks to the mechanism of connection adaptors, the component can also have
a parallel implementation exposing an open connection whose actual type is
UseProvide<user={ParallelReceptacle<N, MatrixPart>}>. In this case, a
component sequentializing the interaction is automatically inserted if required
by the adaptor.

This means that the implementations of the components in HLCM/CCM
presents the same characteristics as the second version of the motivating example
presented in Figure 2 in terms of implementation exchangeability. This is an
advantage over the first version that does not support the replacement of com-
ponents.

In terms of performance however, the HLCM/CCM versions of these examples
contain a single connection. Hence, it is possible to choose the best implemen-
tation of the connection with no bottleneck introduced similarly with the first
version of the motivating example presented in Figure 1. In the parallel me-
thod calls for examples, if both components are parallel, the MxN generator is
used rather than using the two connection adaptors that would sequentialize
the interactions

This is an important advantage over the second version of the motivating
example in term of performance as can be seen in Figure 20. This figure shows
the time required to execute a M ×N interaction with a degree of parallelism
of three on the client side and four on the server side in function of the size
of the parameters. This experiment has been conducted on a cluster of the
Grid5000 french experimental platform. As can be seen, the HLCM version is
very close to the Paco++ version —a specialized M ×N environment— while
the version that sequentializes communications is between two and six times
slower depending on the size of the data.

5 Conclusion

Component models appear very interesting for complex numerical scienti-
fic applications targeted to be run on complex parallel and distributed infra-

RR n° 7204

20 Bigot & Pérez

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

D
u
ra

ti
o
n
 (

se
co

n
d
s)

Total data size of one method call (bytes)

HLCM
Serialized

Paco++

Figure 20 – Comparison of three implementations of the parallel method call
interactions : the version described in this section (HLCM), the version that se-
quentializes interactions to support implementation exchangeability of Figure 2
(Serialized) and a version of a dedicated environment (Paco++).

structures. While advanced component models have been proposed to ease the
description of applications, their implementation and the possibility to support
many interaction kinds and to optimize them to a particular situation was still
difficult tasks.

This paper has studied the feasibility and the benefit of using connectors in
hierarchical component models. It first shows that it is feasible based on the
definition of HLCM, that proposed the concept of open connections, and on a
proof-of-concept implementation based on model transformation. Moreover, it
shows that simple and efficient implementations of parallel interactions (shared
data and parallel method calls) can be defined. Moreover, multiple implementa-
tions are supported without impacting the component interface while enabling
optimized implementations.

There are two main future works. First, the transformation phase needs fur-
ther research. The issue seems to find a right tradeoff between the expressiveness
of HLCM and the complexity of computing a transformation (the problem is
probably NP-hard with high expressiveness). Second, as workflows and dataflows
are important interactions in scientific applications, HLCM has to support them.
Though HLCM may support dynamicity, an (efficient) implementation suppor-
ting it remains to be done. Centralizing the transformation phase will probably
not be compatible with the very large scale required by upcoming exascale ap-
plications.

INRIA

Enabling Connectors in Hierarchical Component Models 21

Références

[1] M. Aldinucci, H. L. Bouziane, M. Danelutto, and C. Pérez. STKM on
SCA : a unified framework with components, workflows and algorthmic
skeletons. In 15th Intl European Conference on Parallel and Distributed
Computing (Euro-Par 2009), volume 5704 of LNCS, pages 678 – 690, Delft,
Netherlands, August 2009. Springer.

[2] B. A. Allan et al. A component architecture for high-performance scien-
tific computing. International. Journal of High Performance Computing
Applications, 20(2) :163–202, 2006.

[3] G. Antoniu, L. Bougé, and M. Jan. Juxmem : An adaptive supportive
platform for data sharing on the grid. Scalable Computing : Practice and
Experience, 6 :45–55, Nov. 2005.

[4] G. Antoniu, H. Bouziane, M. Jan, C. Pérez, and T. Priol. Combining
data sharing with the master-worker paradigm in the common component
architecture. Cluster Computing, 10 :265 – 276, 2007.

[5] G. Antoniu, H. L. Bouziane, L. Breuil, M. Jan, and C. Pérez. Enabling
transparent data sharing in component models. In 6th IEEE International
Symposium on Cluster Computing and the Grid (CCGRID), pages 430–433,
Singapore, May 2006.

[6] D. Bálek and F. Plasil. Software connectors and their role in component
deployment. In Proceedings of the IFIP TC6 / WG6.1 Third Internatio-
nal Working Conference on New Developments in Distributed Applications
and Interoperable Systems, pages 69–84, Deventer, The Netherlands, The
Netherlands, 2001. Kluwer, B.V.

[7] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio,
and C. Pérez. Gcm : A grid extension to fractal for autonomous distributed
components. Special Issue of Annals of Telecommunications : Software
Components – The Fractal Initiative, 64(1) :5–24, 2009.

[8] J. Bigot, H. L. Bouziane, C. Pérez, and T. Priol. On abstractions of software
component models for scientific applications. In Euro-Par 2008 Workshops
- Parallel Processing, pages 438–449, Berlin, Heidelberg, apr 2009. Springer-
Verlag.

[9] J. Bigot and C. Pérez. Enabling collective communications between com-
ponents. In CompFrame ’07 : Proceedings of the 2007 Symposium on
Component and Framework Technology in High-Performance and Scien-
tific Computing, pages 121–130, New York, NY, USA, 2007. ACM Press.

[10] J. Bigot and C. Pérez. Increasing reuse in component models through
genericity. In Proceedings of the 11th International Conference on Soft-
ware Reuse, ICSR ’09, LNCS, pages 21–30, Berlin, Heidelberg, oct 2009.
Springer-Verlag.

[11] E. Bohm, A. Bhatele, L. V. Kale, M. E. Tuckerman, S. Kumar, J. A. Gun-
nels, and G. J. Martyna. Fine grained parallelization of the car-parrinello
ab initio md method on blue gene/l. IBM Journal of Research and Deve-
lopment, 52(1/2), 2007.

[12] H. L. Bouziane, C. Pérez, and T. Priol. Extending software component
models with the master-worker paradigm. Parallel Comput., 36(2-3) :86–
103, 2010.

RR n° 7204

22 Bigot & Pérez

[13] E. Bruneton, T. Coupaye, and J-B. Stefani. The Fractal Component Model,
version 2.0.3 draft. The ObjectWeb Consortium, Feb. 2004.

[14] É. Canot, C. de Dieuleveult, and J. Erhel. A parallel software for a saltwater
intrusion problem. In G. Joubert, W. Nagel, F. Peters, O. Plata, P. Tirado,
and E. Zapata, editors, Parallel Computing : Current and Future Issues of
High-End Computing, volume 33 of NIC, pages 399–406, 2006.

[15] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk,
Bill Nitzberg, William Saphir, and Marc Snir. MPI : The Complete Re-
ference – The MPI-2 Extensions, volume 2. The MIT Press, 2 edition,
September 1998. ISBN 0-262-57123-4.

[16] L. V. Kale and S. Krishnan. Parallel Programming using C++, chapter
Charm++ : Parallel Programming with Message-Driven Objects, by Gre-
gory V. Wilson and Paul Lu, pages 175–213. MIT Press, 1996.

[17] S. Matougui and A. Beugnard. Two ways of implementing software connec-
tions among distributed components. In OTM Conferences (2), pages 997–
1014, 2005.

[18] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of
software connectors. In Proceedings of the 22nd international conference
on Software engineering, pages 178–187, New York, NY, USA, 2000. ACM.

[19] Object Management Group. Common Object Request Broker Architecture
Specification, Version 3.1, Part 3 : CORBA Component Model, Jan. 2008.

[20] Open Service Oriented Architecture. SCA Service Component Architec-
ture : Assembly Model Specification Version 1.00, Mar. 2007.

[21] C. Pérez, T. Priol, and A. Ribes. A parallel corba component model for
numerical code coupling. In M. Parashar, editor, Proc. 3rd International
Workshop on Grid Computing, volume 17 of Lect. Notes in Comp. Science,
pages 88–99, Baltimore, Maryland, Nov. 2002. Springer-Verlag. Special
issue Best Applications Papers from the 3rd Intl. Workshop on Grid Com-
puting.

[22] C. Pérez, T. Priol, and A. Ribes. A parallel corba component model for
numerical code coupling. The International Journal of High Performance
Computing Applications, 17 :417–429, 2003.

[23] C. Szyperski. Component Software : Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

INRIA

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Context
	Motivating examples
	Related work
	Discussion

	HLCM: a High Level Component Model
	Structural elements of HLCM
	Specific elements of HLCM/CCM
	Behavior of HLCM Elements
	Discussion

	Evaluation
	HLCMi/CCM: an HLCM/CCM implementation
	Implementation of the motivating examples in HLCM/CCM
	Analysis

	Conclusion

