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Abstract

The study of quantum Coulomb systems at equilibrium is important for understanding

properties of matter in many physical situations. Screening, recombination and van der

Waals forces are basic phenomena which result from the interplay of Coulomb interactions,

collective effects and quantum mechanics. Those phenomena are introduced in the first

part of this lecture, through various physical examples. Their treatment within mean-

field theories and phenomenological approaches is also exposed, while related predictions

are discussed. This sheds light on fundamental issues, which must be analyzed without

any a priori approximations or modelizations. The second part of this lecture is pre-

cisely devoted to the presentation of various exact results for the quantum proton-electron

hydrogen plasma. Such results are derived within the Screened Cluster Representation,

which is constructed by combining the path integral representation of the Coulomb gas

with Mayer-like diagrammatical techniques. They illustrate the breakdown of Debye ex-

ponential screening by quantum fluctuations, as well as the emergence of familiar chemical

species in suitable low-temperature and low-density limits. Also, the amplitude of van der

Waals forces is shown to be reduced by free charges.

PACS numbers: 05.30.-d, 05.70.Ce, 52.25.Kn
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I. INTRODUCTION

Under standard Earth conditions, and also in many astrophysical situations, the

properties of matter result from the interplay between non-relativistic quantum me-

chanics and Coulomb interactions. All relativistic effects, as well as the other non-

electromagnetic interactions can be safely omitted. A description of matter in terms

of quantum nuclei and quantum electrons interacting via the Coulomb potential is

then sufficient. In that context, the derivation of exact results for equilibrium prop-

erties of quantum Coulomb systems is of crucial importance.

The study of quantum Coulomb systems within statistical mechanics, requires to

face several difficult problems related to both short- and long-range specificities of

Coulomb potential, as well as to quantum mechanics itself, namely screening and

recombination. In the first introductory part of the present lecture, those problems

are successively adressed for various physical examples where free charges interacting

via the Coulomb potential are present. First, it is instructive to consider screen-

ing in classical systems where quantum effects can be omitted. According to the

pioneering Debye-like mean-field theories, Coulomb interactions are exponentially

screened at the classical level, a prediction confirmed by a large variety of rigorous

proofs and exact results. In the quantum case, similar mean-field theories also pre-

dict an exponential decay of equilibrium particle correlations. However, they do not

account for a very fundamental feature of quantum mechanics, namely the intrusion

of dynamical effects at equilibrium. Hence, there exist various arguments which sug-

gest a breakdown of exponential screening in quantum systems. In the literature,

recombination has been mainly dealt with in the framework of the chemical picture.

The corresponding phenomenological approaches are based on ad hoc modelizations

for preformed entities and their interactions.

As illustrated by the various considerations exposed in the introductory part of

this lecture, screening, recombination and van der Waals forces result from entangled

mechanisms combining Coulomb interactions and quantum mechanics. Although,

phenomenological treatments of such phenomena have been widely developped, there

still remain subtle effects, a deeper understanding of which requires a more funda-
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mental analysis in the framework of quantum Coulomb systems, namely the so-called

physical picture. The aim of the second part of this lecture is to present several exact

results relative to fundamental issues about screening and recombination. For the

sake of simplicity and pedagogy, we consider the quantum hydrogen plasma made

with point protons and point electrons interacting via the Coulomb potential. First,

we present rigorous proofs about thermodynamical stability on the one hand, and

the atomic limit on the other hand. Then, we introduce the Feynman-Kac path

integral representation, which turns out to be a quite efficient tool for our purpose.

Its application to a many-body quantum system provides an equivalent classical sys-

tem made with extended objects called loops. Standard Mayer-like diagrammatical

series for the gas of loops, are exactly transformed into the Screened Cluster Repre-

sentation for equilibrium quantities of the quantum system. That transformation,

based on suitable resummations and reorganizations, accounts simultaneously for

both screening and recombination. Quantum fluctuations, which play a crucial role

in screening, are merely embedded in loop shapes. Recombination, which cannot

be treated perturbatively in the Coulomb potential, is automatically ensured by

the presence of Boltzmann factors associated with loop interactions. The Screened

Cluster Representation is applied to hydrogen in the Saha regime, defined by both

low temperatures and low densities, where it behaves as a partially ionized atomic

gas. An exact asymptotic expansion for the equation of state is constructed, be-

yond familiar Saha theory. It sheds light on a suitable first-principles account of

contributions of usual chemical species, without any a priori modelizations. Also,

particle correlations are found to decay algebraically. Thus, ionized protons and

ionized electrons only reduce the amplitude of van der Waals interactions between

atoms. As a conclusion, we summarize the main answers to the above issues inspired

by those exact results.
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II. COULOMB INTERACTIONS AND QUANTUM MECHANICS AT

WORK

A. Examples and specific features

A description of matter in terms of Coulomb systems, also called plasmas, is

necessary as soon as free charges are present. There is a large variety of physical

examples where such situations occur. For instance, electrolytes involve ionic species

obtained by dissolution of salts into water. Also, in metals, the electrons of the

conduction band freely move across the samples. Other examples can be found in

astrophysical situations, where high temperatures or high pressures favor ionization

of matter, in general inside the cores of compact objects or stars.

Let us consider a plasma made with point charges. Two charges qi and qj located

at ri and rj interact via the instantaneous Coulomb potential

uC(ri, rj) =
qiqj

|ri − rj|
, (II.1)

while the full interaction potential of the system reduces to the sum of pairwise inter-

actions (II.1). Here, we dot not taken into account retardation effects or magnetic

forces, and we discard the coupling of charges to elecromagnetic radiation. That

purely Coulombic description is sufficient as far as the average speed of charges is

small compared to the speed of light c. Roughly speaking, for a classical charge with

mass m, this requires that the thermal energy kBT is small compared to the rest

energy mc2 [74]. This implies T ≪ 1010K for electrons and T ≪ 1013K for protons.

Such conditions are fullfilled in many physical systems!

Contrarily to interactions between neutral entities, Coulomb potential is long

ranged, namely it is not integrable at large distances
∫

r>D

dr
1

r
= ∞ , (II.2)

where D is some irrelevant cut-off length. That divergence might pollute thermo-

dynamical quantities, and usual extensivity properties might be lost. The underly-

ing physical picture is that charges with the same sign tend to repell together too

strongly at large distances, so the system might explode.
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In addition to above long-range problems, the 1/r-nature of the Coulomb poten-

tial causes also some trouble at short distances. If we consider two classical opposite

point charges ±q separated by a distance r, the corresponding Boltzmann factor is

not integrable at r = 0, i.e.

∫

r<D

dr exp

(

βq2

r

)

= ∞ (II.3)

with β = 1/(kBT ). Thus, a classical system with positive and negative point charges

collapses.

According to above considerations, the study of Coulomb systems in the frame-

work of statistical mechanics has to face two central difficulties related to the be-

haviours of the Coulomb potential at respectively large (r → ∞) and short (r → 0)

distances. In the following, we will describe the fundamental mechanisms which cure

the corresponding singularities, namely screening and recombination. Screening is

a collective effect which prevents explosion at large distances. Recombination is a

purely quantum mechanical effect, where the uncertainty principle smears out the

divergency of the Coulomb potential at r = 0, so collapse is avoided. Those mecha-

nisms are adressed successively, by considering physical systems for which simplified

models and/or phenomenological approaches can be introduced.

First, in Section IIB, we present Debye theory for a classical electrolyte. That

mean-field approach predicts an exponential screening of Coulomb interactions,

which is confirmed by rigorous results. A similar mean-field theory has been applied

to the quantum electron gas, as described in Section IIC. Again, an exponential

screening is found, but that prediction is shown to be quite doubtful according to

the unavoidable intrusion of dynamical effects in equilibrium quantities of quantum

systems. Recombination and van der Waals forces are considered in Section IID

through the example of hydrogen in the Sun, the state of which changes from a fully

ionized plasma in the core to an atomic gas in the photosphere. We present simple

arguments, as well as some standard phenomenological considerations, which intro-

duce the more sophisticated analysis presented in the second part of this lecture.
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B. Screening in classical systems

1. Primitive model for an electrolyte

Let us consider an ordinary solution of sodium chloride. For a concentration

C0 = 0.1 moles/l at room temperature T = 300 K, the salt is entirely dissociated,

so the solution reduces to a mixture of ions Na+, Cl− and water molecules H2O

(ions H3O
+ and OH− are omitted since their concentration is negligible compared

to C0). The mean interionic distance, a = (3/(4πρ))1/3 with the common ionic

number densities ρ = ρ+ = ρ−, is large compared to both the typical size d of ions

and the mean distance between water molecules. Therefore, a large number of water

molecules surrounds each ion, and water may be reasonably replaced by a continuous

medium with dielectric constant ǫw. Also the de Broglie thermal wavelengths λ± =

(β~2/M±)
1/2 are small compared to d, so ions can be treated classically.

According to the above hierarchy of length scales, the present electrolytic solu-

tion is well described by a classical two-component plasma made with hard spheres

carrying charges q± = ±e, also called the restrictive primitive model in the litera-

ture. Two ions of species α = ± and γ = ± separated by a distance r interact via

the potential

uαγ(r) = +∞ , r < dαγ

uαγ(r) =
qαqγ
ǫwr

, r > dαγ . (II.4)

The hard-core part of the potential is a phenomenological description of the short-

range repulsion between the electronic clouds of the two considered ions. Of course,

within that modelization, no collapse between oppositely charged ions occur. Also,

notice that the bare Coulomb potential is renormalized via the standard factor 1/ǫw

which accounts for the underlying presence of a continuous dielectric medium.

In order to adress the question of screening, we introduce the equilibrium charge

density Cα(r) surrounding an ion with species α fixed at the origin, which reads

Cα(r) =
∑

γ

qγ
ρ
(2)
αγ (0, r)

ρα
(II.5)
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FIG. 1: A typical ionic configuration C where two cations Na+ (α = γ = +) are fixed at

0 and r respectively.

where ρ
(2)
αγ is the two-point equilibrium distribution of species α and γ. Screening

can be easily understood within a mean-field calculation of Cα(r). The basic ideas

sustaining mean-field approach have been first introduced by Gouy [1] and Chap-

man [2] fot the study of electrical double layers near charged electrodes. They have

been extended to the calculation of polarization clouds in the bulk phase by Debye

and Huckel [3]. Here, we present the corresponding arguments which provide the

mean-field form of Cα(r).

2. Debye theory

Let C be a given spatial configuration of ions where one ion α is fixed at the

origin and one ion γ is fixed at r. In Fig. 1, we draw a typical configuration which

illustrates that ion α attracts oppositely charged ions and repells the other ones. Ion

γ feels the electrostatic potential ϕ(r|C) created at r by all the remaining ions, in

particular those which are far apart, because the Coulomb potential is long ranged.

Since ϕ(r|C) is a sum of a large number of terms, fluctuations of the positions of

non-fixed ions should slightly modify its value. That statement is inspired by the

law of large numbers, and it can been applied to other many-body problems where
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long range interactions are present [75]. Thus, it is tempting to replace ϕ(r|C) by its

average value ϕα(r), which is nothing but the electrostatic potential created by ion

α plus its polarization cloud with charge distribution Cα(r). Within that mean-field

treatment, the density of ions γ at r is merely given by the Boltzmann distribution

of an ideal gas in the external potential qγϕα(r), i.e.

ρ
(2)
αγ (0, r)

ρα
= ργ exp(−βqγϕα(r)) . (II.6)

At this level, we have completely omitted short-range effects arising from the

hard-core part of ion-ion potential (II.4). Under diluted conditions for which d ≪ a,

this is legitimate since for most configurations C, ion γ only feels the Coulomb parts

of its interactions with other ions. At the same time, position fluctuations of neigh-

bours of fixed ion γ can be neglected, only if they generate variations of ϕ(r|C) which

do not exceed the thermal energy kBT . This implies that the corresponding typi-

cal value e2/(ǫwa) of Coulomb interactions is small compared to kBT , a condition

indeed fulfilled at low densities. According to previous considerations, the lineariza-

tion of the Boltzmann factor (II.6) is consistent with the mean-field treatment, and

it provides

Cα(r) = −β
∑

γ

q2γργϕα(r) , (II.7)

where we have used the neutrality condition

∑

γ

qγργ = 0 . (II.8)

The insertion of the linearized expression (II.7) of Cα(r) into Poisson equation for

ϕα(r), shows that ϕα(r) = qαφD(r), where φD is the solution of

(

−∆+ κ2D
)

φD(r) =
4π

ǫw
δ(r) (II.9)

with

κ2D =
4π

ǫw
β
∑

γ

q2γργ =
8π

ǫw
βe2ρ (II.10)

and boundary conditions

φD(r) → 0 when r → ∞ . (II.11)
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Such boundary conditions amount to impose that the ionic densities induced at r

tend to the bulk homogeneous value ρ when r → ∞, or in other words to make the

quite plausible assumption that polarization effects decay at large distances.

The Helmholtz equation (II.9) together with boundary conditions is easily solved

in Fourier space, and φD(r) is then readily obtained by applying Cauchy’s theorem

(see e.g. Ref. [6] for a detailed presentation of that standard calculation),

φD(r) = φD(r) =
exp(−κDr)

ǫwr
. (II.12)

Thus, the electrostatic potential qαφD(r) inside the electrolytic solution decays ex-

ponentially faster than the potential qα/(ǫwr) created by a single ion α immersed in

water. In the electrolyte, such an ion is screened by its induced polarization cloud

over the so-called Debye length λD = κ−1
D .

3. Reliability and limits of mean-field predictions

It is instructive to determine what are the physical conditions under which the

mean-field treatment is reliable at a quantitative level. The main argument for

neglecting fluctuations relies on the large value of the number of ions which con-

tribute to the electrostatic potential at r. In average, those ions are contained in a

sphere with radius r as a consequence of Gauss theorem, so their number is of order

8πρr3/3. That number must be large for r of order the typical length scale λD. This

implies aκD ≪ 1, or equivalently the weak-coupling condition e2/(ǫwakBT ) ≪ 1.

Within that condition, the linearization of Boltzmann factor (II.6) is also justified.

If that condition is fulfilled at high temperatures or low densities, hard-core effects

can be neglected only if d≪ a. The previous mean-field approach is then expected

to be valid, at least at a quantitative level, at sufficiently high temperatures and

low densities. Notice that in the present example, the weak-coupling condition is

ensured thanks to the large value of the water dielectric constant, ǫw ≃ 80, which

drastically reduces the strength of electrostatic interactions. As a consequence, De-

bye theory works reasonably well for most electrolytic solutions of ordinary salts

under standard conditions.
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Beyond its practical interest for a large variety of physical systems, Debye the-

ory suggests a fundamental result, namely the exponential decay of correlations in

classical charged systems, at least in fluid phases. In fact, that remarkable property

has been proved for various systems [7–9] at sufficiently high temperatures and suffi-

ciently low densities, i.e. in thermodynamical regimes where mean-field approach is

expected to work. The very difficult part of those proofs relies on the complete con-

trol of the contributions of all the effects omitted in Debye theory. It turns out that

such effects do not destroy the exponential clustering predicted by mean-field. In

other words, the essence of classical exponential screening is captured by mean-field

approach, which enlights its collective nature. Also, the harmonicity of the Coulomb

potential is a key ingredient, as illustrated by an analysis of the equilibrium BGY

hierarchy [10]. In general, the fast decay of particle correlations is proved to be

related to a perfect arrangment of polarization clouds, as exemplified through mul-

tipole sum rules [11]. Here, the total charge of the polarization cloud surrounding

α must exactly cancel out its charge, namely
∫

dr Cα(r) = −qα . (II.13)

That monopole sum rule is indeed satisfied by the mean-field expression

− qακ
2
D

exp(−κDr)

4πr
(II.14)

of Cα(r). Of course, the existence of positive and negative charges is crucial for

screening of Coulomb interactions [76]. The mean-field expression (II.14) diverges

when r → 0. Such divergency is unphysical, and it proceeds from the linearization

of Boltzmann factor (II.6) which is never valid at short distances. However, that

spurious short-range singularity does not affect integrated quantities, like the total

charge (II.13) or thermodynamical quantities.

At a quantitative level, corrections to Debye theory can be derived within Abe-

Meeron diagrammatical expansions [14, 15]. Debye theory is merely recovered by

keeping only the first graph in those series. Each of the remaining graphs provides an

exponentially decaying contribution to particle correlations, in agreement with above

proofs. The resulting screening length λS(ρ, T ) differs from its Debye expression λD,

and it might be approximately estimated by selecting suitable classes of Abe-Meeron
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graphs. Notice that short-range repulsion contributes to λS(ρ, T ) in a rather subtle

way, so a reliable description of the variations of λS(ρ, T ) when temperature is

decreased and/or density is increased is a challenging problem. At sufficiently low

temperatures and/or high densities, the occurence of phase transitions might lead

to divergencies of λS(ρ, T ). For instance, exponential screening might be lost in a

crystalline phase, or at the critical point of the liquid-gas transition as suggested in

Ref. [16].

Eventually, let us conclude that section by a very important remark about dy-

namical aspects. In a real sample, ions continuously move, and because of their finite

inertia, instantaneous perfect arrangments of the polarization clouds cannot be en-

sured. However, according to the somewhat magical recipe of statistical mechanics,

at equilibrium the time-average of any quantity can be equivalently computed as

a phase-space average with the Gibbs measure. Thanks to the remarkable fac-

torization of that measure into the Maxwellian distribution of momenta times the

Boltzmann factor associated with the interaction potential, dynamical features are

washed out by momenta integration. Then, the calculation of equilibrium correla-

tions in position space becomes a purely static problem, where only configurations

of particle positions must be considered without caring about particle velocities. In

other words, dynamical fluctuations no longer intervene, so above considerations

about particle inertia are not relevant. However, in a quantum system where above

factorization of the Gibbs measure is no longer valid, we can anticipate that dynam-

ical effects should contribute to equilibrium correlations.

C. Screening in quantum systems

1. Jellium model for conduction electrons

In ordinary metals, like Copper for instance, there exists a finite density ρ of

ionized electrons which ensure electrical conduction. Those electrons freely move

among the remaining ions, which can be considered as fixed at their lattice sites. A

further simplification is to replace the periodic ionic charge density by the constant

eρ. This provides a model for conduction electrons, called either jellium or one-
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component plasma, where such electrons are immersed in an uniform and rigid

neutralizing background.

Under standard conditions and for simple metals with one or two ionized electrons

per atom, the typical values for temperature and density are T = 300 K and ρ =

3.1028 m−3. The thermal de Broglie wavelength of electrons λe = (β~2/me) is then

large compared to the mean interelectronic distance a = (3/(4πρ))1/3, so electrons

must be described by quantum mechanics. Equivalently, thermal energy kBT is small

compared to Fermi energy εF = ~
2k2F/(2me) with Fermi wavenumber kF = (3π2ρ)1/3,

so electrons are strongly degenerate and their typical kinetic energy is of order εF.

Since εF is small compared to the rest energymec
2, relativistic effects can be omitted.

Therefore, we have to consider the non-relativistic quantum version of jellium, where

two electrons separated by a distance r interact via the instantaneous Coulomb

potential

uee(r) =
e2

r
. (II.15)

In addition, each electron is submitted to the electrostatic potential created by the

ionic background, while the constant background self-electrostatic energy is also

taken into account in the full interaction potential of the system. Electrons obey

to Fermi statistics since they carry an half-integer spin. Notice that the Coulomb

Hamiltonian of the present model do not depend on electron spins.

2. Thomas-Fermi theory

Similarly to the classical case described above, screening properties can be merely

illustrated through a mean-field calculation of the equilibrium charge density Ce(r)

surrounding an electron fixed at the origin,

Ce(r) = −e

(

ρ
(2)
ee (0, r)

ρ
− ρ

)

. (II.16)

In definition (II.16), ρ
(2)
ee is the two-point equilibrium distribution of electrons, while

the substracted term accounts for the ionic background density. The so-called

Thomas-Fermi theory [17, 18] was introduced for describing the electronic structure

of atoms, and it can be viewed as the source of further density functional methods.
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Its application to the study of screening properties [19] can be rephrased similarly to

the mean-field approach for the classical case. Namely, we assume that the electrons

close to a given point r constitute an ideal gas submitted to the external one-body

potential −eϕe(r), where ϕe(r) is nothing but the electrostatic potential created by

the electron fixed at the origin plus its polarization cloud with charge distribution

Ce(r). Now, according to the quantum nature of that ideal gas, its density is related

to the external potential via the Fermi-Dirac distribution instead of the Boltzmann

law, i.e.

ρ
(2)
ee (0, r)

ρ
=

2

(2π)3

∫

dk
1

exp[β(ε(k)− eϕe(r)− µ)] + 1
. (II.17)

In Fermi-Dirac expression (II.17), ε(k) = ~
2k2/(2me) is the non-relativistic kinetic

energy of a plane wave with wavenumber k, while the chemical potential µ, taken

constant across the system, is naturally determined by the bulk condition

ρ =
2

(2π)3

∫

dk
1

exp[β(ε(k)− µ)] + 1
. (II.18)

Assuming that polarization effects vanish at large distances, we set ρ
(2)
ee (0, r) → ρ2

when r → ∞. The corresponding limit form of equation (II.17) then implies the

boundary condition ϕe(r) → 0.

As argued for the Boltzmann factor involved in Debye theory, the linearization of

Fermi-Dirac distribution (II.17) with respect to ϕe(r), is consistent with the present

mean-field treatment, which also requires that Coulomb interactions are small per-

turbations. If we set ϕe(r) = −eφTF(r), we then obtain an Hemholtz equation for

φTF(r) which is identical to its classical counterpart (II.9) for φD(r), except for the

replacements ǫw → 1 and κD → κTF where the Thomas-Fermi wavenumber κTF is

defined by

κ2TF = 4πe2
∂ρ

∂µ
(β, µ) . (II.19)

The resulting mean-field expression for charge distribution Ce(r) reads

− eκ2TF

exp(−κTFr)

4πr
. (II.20)

Thus, the mean-field approach again predicts an exponential screening. Now the

screening length λTF takes into account degeneracy effects controlled by dimension-

less parameter εF/kBT . In the limit of weak degeneracy, which can be obtained by

13



setting µ → −∞ at fixed β, the density vanishes as ρ ∼ 2 exp(βµ)/(2πλe)
3/2, so

λTF does reduce to its classical Debye form (4πβe2ρ)−1/2. In the opposite strong-

degeneracy limit, obtained by setting µ → +∞ at fixed β, the density diverges as

ρ ∼ (2meµ)
3/2/(3π2) and we find

λTF ∼

(

π2

144

)1/6(
~
2a

mee2

)1/2

. (II.21)

3. Expected validity regime

As quoted above, the validity of Thomas-Fermi theory requires weak-coupling

conditions. Of particular interest is the regime of strong degeneracy, where the

relevant kinetic energy is the Fermi energy εF. The corresponding weak-coupling

condition reads e2/(aεF) ≪ 1. That strongly-degenerate weakly-coupled regime is

reached at sufficiently high densities for a given temperature. Indeed, when ρ→ +∞

at fixed β, Fermi energy obviously becomes larger than classical thermal energy,

while Coulomb energy of order ρ1/3 grows slower than kinetic Fermi energy of order

ρ2/3. In that high-density limit, notice that λTF, given by expression (II.21), becomes

large compared to a, so the number of electrons inside the screening sphere with

radius λTF is indeed large.

In order to derive corrections to the mean-field approach, it is necessary to use the

formalism of many-body perturbation theory [20]. In that framework, the mean-field

ideas are recasted into the celebrated Random Phase Approximation (RPA), which is

close to Thomas-Fermi theory. In particular, RPA also predicts an exponential decay

of charge correlations. Systematic corrections to RPA can be derived by taking into

account suitable Feynman graphs. This leads to asymptotic high-density expansions

of thermodynamical quantities, like the pressure or the internal energy, beyond their

ideal strongly-degenerate forms.

For the strongly-degenerate electron gas described above, the Coulomb energy

is not small compared to the Fermi energy. Therefore the system is not weakly

coupled, and the application of Thomas-Fermi theory is rather questionable. In

particular, we find that λTF ≃ 0.1 nm is smaller than a ≃ 0.2 nm, in violation of

the mean-field validity condition λTF ≫ a [77].
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4. Doubts about mean-field predictions

If mean-field approaches like RPA may provide the leading behaviour of inte-

grated quantities involving Ce(r) in the high-density limit ρ → +∞ at fixed β,

their reliability for Ce(r) itself is not uniform with respect to distance r. At short

distances, the divergency of Thomas-Fermi expression (II.20) for Ce(r) is obviously

unphysical, like for its classical counterpart in the framework of Debye theory. This

is due first to the strong repulsion embedded in ϕe(r) when r → 0 which cannot be

treated perturbatively. Also TF theory does not account for the effective repulsion

induced by Pauli principle when both electrons located at 0 and r have the same

spin orientations. At large distances, and contrarily to the classical case, mean-field

predictions are also doubtful, as argued below.

In writing the Fermi-Dirac distribution (II.17), a very important implicit assump-

tion is made. Indeed, potential ϕe(r) is treated as a constant, so the energy levels

are merely shifted by that constant from their corresponding purely kinetic expres-

sion ε(k) = ~
2k2/(2me). This amounts to neglect the spatial variations of ϕe(r),

or in other words to omit diffraction effects arising from the non-commutativity

of the kinetic and potential parts of Hamiltonian −~
2∆/(2me) + ϕe(r). Then, we

are left with a purely configurational static problem, like in the classical case, and

not surprisingly this leads also to an exponential screening. However, that result

is rather questionable since an intrinsic specificity of quantum mechanics has been

erased from the start!

The occurence of quantum diffraction in equilibrium statistical weights is a signa-

ture of dynamical effects, which are consequently still present at equilibrium. Now,

and contrarily to the classical case, dynamical fluctuations combined to inertia effects

should prevent instantaneous perfect arrangments of equilibrium screening clouds.

Thus, the presence of partially screened multipolar interactions can be anticipated,

and this might lead to a breakdown of exponential screening in equilibrium correla-

tions. That quite plausible scenario has been first conjectured in Ref. [22], according

to the presence of algebraic tails in some imaginary-time Green functions. Notice

that an analogous scenario occurs for classical time-displaced correlations [23].
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D. Recombination and van der Waals interactions

1. Hydrogen in the Sun

The sun is mainly made of hydrogen and helium, while heavier elements like oxy-

gen, carbon, iron,...are less abundant and contribute to a small fraction of its total

mass. Here, we will focus our study on hydrogen, and we will discard its interac-

tions with all the other elements. Also, we do not consider complicated phenomena

at work inside the Sun, like radiation transfer or convection for instance. For our

purpose, it is sufficient to assume that some local thermodynamical equilibrium is

reached at any place, and then the central question is to determine the correspond-

ing chemical composition of an hydrogen plasma in terms of ionized and recombined

entities.

In the core of the Sun, temperature T is of the order of 106 K and density ρ

is of order 1 g/cc. Since kBT ≃ 90 eV is much larger than the Rydberg energy

of order 13.6 eV, atoms, molecules, as well as other recombined entities are then

fully ionized. The hydrogen gas is then mainly composed of free protons and of free

electrons. In intermediate layers, temperature and density decrease as the distance

to the core increases. This favors recombination of protons and electrons into atoms,

and hydrogen then behaves as a partially ionized atomic gas. In the photosphere, T

is of order 6.103 K while ρ is of order 10−7 g/cc. Under such cool (kBT ≃ 0.5 eV much

smaller than Rydberg energy) and diluted (the mass density of Earth atmosphere

is of order 10−3 g/cc) conditions, the full proton-electron recombination is achieved,

and hydrogen reduces to an atomic gas. That recombination process is schematically

represented in Fig. 2.

A proper description of above recombination process within statistical mechan-

ics requires to account for both quantum mechanics and Coulomb interactions as

detailed in the next Section. Here, we list several natural problems, and we present

simple preliminary arguments which are particularly useful for a better understand-

ing of more sophisticated analysis carried out in the framework of the many-body

problem.
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FIG. 2: A schematic view of the Sun. Signs + and − represent ionized protons and ionized

electrons respectively, while circles represent hydrogen atoms.

2. How to define an hydrogen atom?

In quantum mechanics, all particle positions are entangled in a global wavefunc-

tion describing the whole system. If we consider an eigenfunction of the total Hamil-

tonian, no two-body wavefunction describing an hydrogen atom can be factored out.

In that context, an unambiguous definition of such an atom is only possible in the

double limit ρ → 0 and T → 0. Indeed, the zero-density limit ensures that once a

proton has married an electron, all other neighbours are very far apart. Also, the

zero-temperature limit guarantees that the atom stays in its groudstate and no ther-

mal ionization occurs. Under such infinitely diluted and cold conditions, it can be

reasonably expected that a single hydrogen atom in the vacuum naturally emerges.

3. How protons and electrons recombine into atoms?

The formation of atoms in a gas of protons and electrons has been studied long

ago by Saha [24], in the framework of the chemical picture. He considered protons,
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electrons and atoms as three independent species with their own chemical potentials.

If all interactions are neglected and if each species is viewed as a classical ideal gas,

the mass action law associated with the recombination equation p + e ⇋ H, reads

in terms of species ideal densities

ρ
(id)
p ρ

(id)
e

ρ
(id)
at

=
exp(βEH)

(2πλ2pe)
3/2

, (II.22)

where EH is the groundstate energy of an hydrogen atom, EH = −me4/(2~2), with

reduced mass m = (mpme)/(mp +me) and associated de Broglie wavelength λpe =

(β~2/m)1/2. The temperature-dependent reaction constant in the r.h.s. of mass

action law (II.22), goes to zero when T vanishes, while it explodes when T diverges.

Therefore, and as expected, low temperatures favor atomic recombination, while

high temperatures favor ionization.

At given temperature and density, the chemical composition of the hydrogen gas

is determined by adding to mass action law (II.22) the neutrality rule, ρ
(id)
p = ρ

(id)
e ,

as well as the total density constraint, ρ
(id)
p +ρ

(id)
at = ρ. A straightforward calculation

then provides

ρ(id)p = ρ(id)e = ρ∗
(

√

1 + 2ρ/ρ∗ − 1
)

(II.23)

and

ρ
(id)
at = ρ∗

(

1 + ρ/ρ∗ −
√

1 + 2ρ/ρ∗
)

(II.24)

with temperature-dependent density

ρ∗ =
exp(βEH)

2(2πλ2pe)
3/2

. (II.25)

According to those simple formulae, hydrogen becomes fully ionized for ρ ≪ ρ∗,

while it reduces to an atomic gas for ρ ≫ ρ∗. This explains the behaviour of

hydrogen inside the Sun, since the corresponding ratio ρ/ρ∗ varies from 10−3 in the

core to 107 in the photosphere.

4. Why atoms and not molecules?

In Earth atmosphere, hydrogen is a molecular gas and no atoms are present.

This is oftenly explained by invoking that molecule H2 is more stable than atom H,
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FIG. 3: Phase diagram of hydrogen at low densities. Regions where either ionized charges,

atoms or molecules prevail, are separated by dashed (ρ∗(β)) and dash-dotted lines, in the

vicinity of which the respective dissociation/recombination processes take place.

namely EH2
< 2 EH, where EH2

is the molecule groundstate energy. However, we

stress that such an argument strictly applies at zero temperature, where only energy

U∗ intervene. At finite temperatures, T > 0, entropy S∗ must be also considered

in order to determine the chemical composition of the system. For a given number

N = Np = Ne of protons and electrons enclosed in a box with volume Λ at a given

temperature T , the entropy of the atomic gas is larger than that of its molecular

counterpart, because the atom number NH = N/2 is twice the molecule number

NH2
= N/4. Thus, in the minimization of the thermodynamic potential (U∗ − TS∗)

at fixed T , Λ and N , entropy contribution favors the formation of atoms [78]. That

effect becomes more important as T increases or ρ = N/Λ decreases. In Earth

atmosphere, temperature is rather low and density is rather high so only molecules

are formed. In the Sun, temperature is sufficiently large and density sufficiently low

so atoms prevail. The phase diagram of hydrogen at low densities is schematically

drawn in Fig. 3.
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5. What about the internal atomic partition function?

At finite temperatures, not only the atomic groundstate contributes to thermo-

dynamic quantities, but also excited states. When T vanishes, an atom can be

considered as frozen in its groundstate because of the finite gap between EH and the

first excited level EH/4. The corresponding contribution to equilibrium quantities

merely involves Boltzmann factor exp(−βEH). At finite temperatures, contributions

of excited states must also be taken into account. For that purpose, it is natural to

introduce the internal atomic partition function in the vacuum

Z
(vac)
H = 4

∞
∑

n=1

n2 exp(−βEH/n
2) . (II.26)

In that definition, factor 4 arises from proton and electron spins degeneracy, factor

n2 accounts for orbital degeneracy of the level n with energy EH/n
2, and summation

extends over all boundstates up to n = ∞.

Obviously Z
(vac)
H diverges because of the contributions of Rydberg states with n→

∞. In the framework of the many-body problem, that divergency is usually expected

to be cured thanks to screening effects, according to the following rough argument.

At finite T and ρ, there is a finite amount of free charges, so the proton-electron

potential inside an hydrogen atom decays faster than 1/r at distances r larger than

screening length λS. Thus, there is no accumulation of atomic boundstates near

the continuum edge at E = 0, and all Rydberg states with n sufficiently large

are suppressed. Since the spatial extension of such states is of order n2aB with

Bohr radius aB = ~
2/(me2), the infinite sum (II.26) has to be truncated up to

pS ∼ (λS/aB)
1/2. This provides a non-divergent atomic partition function,

Z
(scr)
H = 4

pS
∑

n=1

n2 exp(−βEH/n
2) , (II.27)

which accounts for screening effects.

6. Are van der Waals interactions screened?

As guessed by van der Waals in his thesis, atoms or molecules attract themselves

at large distances. For atoms with no permanent dipole, that interaction is due to
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quantum fluctuations as first shown by London [25]. Let us sketch the corresponding

calculation for two hydrogen atoms in their groundstate. Each atom i (i = 1, 2) is

described by an Hamiltonian H
(i)
at , and the full Hamiltonian of both atoms reads

H = H
(1)
at + Vat,at +H

(2)
at (II.28)

where Vat,at is the electrostatic interaction between the two atoms. For large sep-

arations R between such atoms, namely R ≫ aB, that potential becomes dipolar

because of atom charge neutrality, i.e.

Vat,at ∼ (p1 · ∇∇∇) (p2 · ∇∇∇)
1

R
when R → ∞ , (II.29)

where pi is the instantaneous electrical dipole carried by atom i. At such distances,

when determining the groundstate energy of the whole two-atoms system, Vat,at

can be treated as a small perturbation with respect to H
(1)
at + H

(2)
at . The first-

order correction vanishes because the quantum average of pi in the unperturbed

groundstate is zero. The second-order correction can be reinterpreted as an atom-

atom effective potential which reads [26]

UvdW(R) = −
CvdW

|EH|

e4a4B
R6

. (II.30)

In that expression, CvdW is a pure numerical constant which is positive, so van

der Waals potential UvdW(R) is attractive. That potential appears to be generated

by quantum fluctuations of the instantaneous 1/R3-dipolar interaction between two

atoms : this explains the 1/R6-decay of UvdW(R) at large distances, which merely

follows by taking the square of 1/R3. Eventually, we check a posteriori that use of

perturbation theory for deriving formula (II.30) is indeed justified if R ≫ aB, since

|UvdW(R)|/|EH | is proportional to (aB/R)
6.

Above derivation is performed for two isolated atoms at zero temperature in the

vacuum. In the framework of the many-body system at finite T and ρ, besides the

above difficulties in defining properly atoms, an interesting question concerns the

effects of free charges on van der Waals interactions. Since the instantaneous atom-

atom potential Vat,at is of purely Coulombic origin, screening mechanisms should

modify UvdW(R) at distances R larger than screening length λS. A very crude and

naive application of the classical recipe would lead to an exponential decay of the
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effective atom-atom interactions. Nevertheless, and as it has been anticipated in

the construction of the phenomenological Derjaguin-Landau-Verwey-Overbeek the-

ory for mixtures of charged and neutral fluids [27–29], screening of van der Waals

interactions should be less efficient than that prediction because of their underlying

dynamical character. Hence, it is argued that the fast electronic motion embedded

in quantum fluctuations of atom dipoles cannot be instantaneously followed by free

charges because of inertia. According to that heuristic argument, it is oftenly as-

sumed that UvdW(R) is not screened at all. Notice that such argument is close to

the one presented previously which suggests a breakdown of exponential screening

in the quantum case.

III. SOME EXACT RESULTS WITHIN THE SCREENED CLUSTER

REPRESENTATION

A. Fundamental issues and the hydrogen quantum plasma

In the previous introductory part of that lecture, various fundamental issues have

been raised, namely

• Nature of screening in quantum systems

• Introduction of recombined entities in the many-body problem

• Modification of van der Waals interactions due to free charges

According to the preliminary analysis and discussions, it clearly appeared that a

proper and reliable account of the relevant mechanisms requires the introduction of

an elementary description of matter in terms of a quantum Coulomb system made

with point nuclei and point electrons. For the sake of simplicity, and also because

of its wide interest for both conceptual purposes and practical applications, here we

will restrict ourselves to the hydrogen plasma viewed as a system of quantum point

particles which are either protons or electrons, interacting via the instantaneous

Coulomb potential. Protons and electrons have respective charges, masses, and
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spins, ep = e and ee = −e, mp and me, σp = σe = 1/2. In the present non-

relativistic limit, the corresponding Hamiltonian for N = Np +Ne particles reads

HNp,Ne
= −

N
∑

i=1

~
2

2mαi

∆i +
1

2

∑

i 6=j

eαi
eαj

v(|xi − xj|) (III.1)

with v(r) = 1/r, (αi = p, e) the species of the ith particle, and ∆i the Laplacian

with respect to its position xi. In the following, we present several exact results

for the equilibrium properties of that system, in relation with above fundamental

issues.

First, in Section IIIB, we recall various rigorous results about the existence of

the thermodynamic limit, as well as about the partially ionized atomic regime.

Then, in Section IIIC, we introduce the path integral representation, in the simple

case of a single particle submitted to an external potential for the sake of pedagogy.

Application of that tool to the many-body quantum system leads to the introduction

of an equivalent classical system made with extended objects called loops, which

interact via a two-body potential equal to some average along their shapes of the

genuine two-body particle interaction. The equilibrium quantities of the quantum

plasma can then be represented by Mayer-like diagrammatical series in the loops

world. In Section IIID, we describe the resummation machinery which exactly

transforms the sum of divergent Mayer graphs into a sum of convergent graphs with

a similar structure, the so-called screened cluster representation (SCR). Long-range

Coulomb divergences are removed via systematic chain resummations, which amount

to introduce a screened effective potential between loops. Further reorganizations

lead to the introduction of particle clusters with finite statistical weights, which

include the contributions of familiar chemical species. Exact asymptotic expansions

in the partially ionized atomic regime can be derived within that SCR, for both the

equation of state and particle correlations, as decribed in Section III E. Eventually,

we summarize in Section III F the main answers to the fundamental issues quoted

above, which can be inferred from the present analysis of the hydrogen plasma.
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B. Rigorous results

1. Thermodynamic limit

Let us consider the hydrogen plasma in the framework of the grand-canonical

ensemble. The system is enclosed in a box with volume Λ, in contact with a ther-

mostat at temperature T and a reservoir of particles that fixes the chemical poten-

tials equal to µp and µe for protons and electrons respectively. The corresponding

grand-partition function reads

ΞΛ = TrΛ exp
(

−β(HNp,Ne
− µpNp − µeNe)

)

. (III.2)

The trace TrΛ is taken over a complete basis of N-body wavefunctions, which are

symmetrized according to Fermi statistics and satisfy Dirichlet boundary conditions

at the surface of the box, while particle numbers Np and Ne vary from 0 to ∞ [79].

The thermodynamic limit (TL) is defined by the limit Λ → ∞ at fixed tempera-

ture and fixed chemical potentials. In that limit, Lieb and Lebowitz [30] proved the

existence of a well-defined bulk equilibrium state with the right extensive properties

expected from macroscopic thermodynamics. That state is overall neutral, namely

the average particle densities ρp,Λ = 〈Np〉/Λ and ρe,Λ = 〈Ne〉/Λ become identical in

the TL,

lim
TL

ρp,Λ = lim
TL

ρe,Λ = ρ . (III.3)

That common particle density depends only on temperature T and on the mean

chemical potential

µ =
µp + µe

2
, (III.4)

while the difference ν = (µe − µp)/2 is not relevant. Pressure P defined by the

standard formula

P = kBT lim
TL

ln ΞΛ

Λ
(III.5)

is also a function of the two parameters T and µ, as well as all the other intensive

thermodynamical quantities. Moreover, bulk properties no longer depend on the

choosen boundary conditions, and all statistical ensembles become equivalent in

the TL. In particular, grand-canonical expression (III.5) for pressure P (T, µ) does

coincide with its canonical counterpart P (T, ρ) evaluated at density ρ = ρ(T, µ).
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Lieb and Lebowitz proof involves sophisticated mathematical analysis which will

not be detailed here, of course! However, it is instructive to present the main

ideas underlying the derivations. In fact, the central difficulties are related to the

singular behaviours of the Coulomb potential at both short and large distances,

as already quoted in Section IIA. The short-distance collapse is avoided thanks

to a combination of the Heisenberg uncertainty principle and of Fermi statistics.

According to that principle, the 1/r-singularity is smeared out, so the groundstate

energy of N particles is finite, instead of −∞ when opposite charges are present.

Fermi statistics prevent the modulus of negative groundstate energies to grow faster

than N . At a mathematical level, this is rephrased in the celebrated H-stability

theorem [31],

HNp,Ne
> −B (Np +Ne) (III.6)

where B is a strictly positive constant. The large-distance explosion is prevented

by screening mechanisms, the mathematical formulation of which is embedded in

the cheese theorem. That theorem relies on a suitable partition of space in neutral

spheres surrounding the charges, which applies for most probable configurations.

Indeed, such configurations are overall neutral in the bulk while excess charges

are repelled on the boundaries, as suggested by macroscopic electrostatics. The

harmonicity of Coulomb potential then plays a crucial role, since according to Gauss

theorem, two non-overlapping neutral spheres do not interact. This implies that

dangerous long-range contributions do not intervene in the TL. Both cheese and

H-stability theorems are the key ingredients of the proof.

2. Partially ionized atomic regime

In Section IID, we showed how, according to phenomenological Saha theory,

a finite fraction of protons and electrons might recombine into hydrogen atoms,

forming a partially ionized atomic gas. Also, we argued that such a regime should be

attained when both temperature and density are sufficiently low so that individual

atoms in their groundstate can form, namely kT ≪ |EH | and a ≫ aB with a =

(3/(4πρ))1/3 the mean inter-particle distance.

The above Saha prediction has been rigorously proved within a suitable scaling
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limit where both temperature and density vanish in a related way. That scaling

limit is introduced in the framework of the grand-canonical ensemble : temperature

T goes to zero while average chemical potential µ approaches the value EH with a

definite slope, according to parametrization [32]

µ = EH + kBT [ln(γ) + ln((m/M)3/4/4)] (III.7)

with fixed dimensionless parameter γ and M = mp + me. Then density ρ indeed

vanishes with T , and it behaves as

ρ = ρ∗γ(1 +
γ

2
)
(

1 +O(e−cβ)
)

, (III.8)

with c a postive constant and temperature-dependent density ρ∗ given by formula

(II.25). The corresponding asymptotic behaviour of pressure P reads

βP = ρ∗γ(2 +
γ

2
)
(

1 +O(e−cβ)
)

. (III.9)

Thus, if we discard the exponentially small corrections embedded in the O(e−cβ)-

terms, the corresponding leading behaviours of density and pressure can be reinter-

preted in terms of ideal densities of protons, electrons and atoms, identified to

ρ(id)p = ρ(id)e = ρ∗γ (III.10)

and

ρ
(id)
at = ρ∗

γ2

2
. (III.11)

Such expressions do coincide with their Saha counterparts (II.23) and (II.24), as it

can easily checked by eliminating γ in favor of ρ. Also, the pressure indeed reduces

to that of an ideal mixture of protons, electrons and atoms, and it eventually reads

βPSaha = ρ∗
(

ρ/ρ∗ +
√

1 + 2ρ/ρ∗ − 1
)

. (III.12)

That rigorous derivation constitute another tour de force in mathematical physics,

which has been implemented through successive works [32, 33] after the pionneering

paper about the purely atomic limit by Fefferman [34]. Below, we sketch various

estimations and arguments which provide a simple physical understanding of the

result.
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First, the above scaling limit defines the proper energy-entropy balance which

ensures the emergence of the contributions of ionized protons, ionized electrons and

hydrogen atoms in grand-partition function (III.2). That balance results from the

competition between the fugacity factors exp(βµ) which decay exponentially fast as

exp(βEH), and the groundstate Boltzmann factors which may explode exponentially

fast. The relevant ideal contributions of ionized protons and ionized electrons are

merely given by terms (Np = 1, Ne = 0) and (Np = 0, Ne = 1), and they are of

order exp(βEH). The corresponding atomic contribution, easily picked out in term

(Np = 1, Ne = 1), is also of order exp(βEH) since it involves the product of entropy

factor exp(2βµ) times the atomic Boltzmann factor exp(−βEH). Thanks to remark-

able inequalities [80] satisfied by the groundstate energies of Coulomb Hamiltonians

HNp,Ne
for Np + Ne ≥ 3, all the other contributions of more complex recombined

entities decay faster than exp(βEH). For instance, the molecular contribution em-

bedded in term (Np = 2, Ne = 2) is of order exp(4βEH) exp(−βEH2
), and it decays

faster than exp(βEH) by virtue of inequality [81]

3EH < EH2
. (III.13)

Once, the contributions of molecules and other complex recombined entities have

been discarded, it remains to estimate exchange and interaction contributions of

ionized charges and atoms. In fact, since density vanishes exponentially fast, typ-

ically as exp(βEH), the mean-interparticle distance a = (3/(4πρ))1/3 grows much

faster, when T → 0, than all thermal de Broglie wavelengths λp, λe, λat of ionized

charges and atoms. Also, the average interactions between those entities, which are

proportional to inverse powers of a, vanish exponentially fast when T → 0, so they

become negligible compared to thermal energy kBT . Thus exchange and interaction

contributions can be also dropped out in the scaling limit of interest. According to

the previous simple estimations and rough arguments, it is not surprising that the

system behaves as an ideal Maxwell-Boltzmann mixture of ionized protons, ionized

electrons and atoms, in the considered scaling limit.

Let us define the so-called Saha regime by low but finite temperatures T , and

very low but finite densities ρ of order exp(βEH). According to the previous rigor-

ous result, hydrogen should behave as a partially ionized atomic gas, weakly coupled
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and weakly degenerate, including also small fractions of other complex entities, like

molecules H2 or ions H+
2 and H− for instance. As illustrated further, it is particu-

larly interesting, at both practical and conceptual levels, to derive the corresponding

corrections to the ideal terms obtained within Saha theory. For that purpose, it is

convenient to combine the path integral representation to diagrammatical tools.

Notice that the mathematical techniques involved in previous proof do not pro-

vide explicit expressions for the exponentially small corrections beyond ideal Saha

formulas.

C. Path integral representation

1. Feynman-Kac formula

For the sake of pedagogy, we introduce the path integral representation in the

simple case of a single particle with mass m submitted to a potential V (r). Its

Hamiltonian reads

H = −
~
2

2m
∆+ V (r) . (III.14)

The corresponding density matrix at a given temperature T , namely the matrix

element of Gibbs operator exp(−βH), is exactly given by Feynman-Kac formula [35–

38]

〈rb| exp(−βH)|ra〉 =
exp[−(rb − ra)

2/(2λ2)]

(2πλ2)3/2

∫

D(ξ)

× exp[−β

∫ 1

0

ds V ((1− s) ra + s rb + λ ξ(s))] , (III.15)

with thermal de Broglie wavelength λ = (β~2/m)1/2. In the r.h.s. of (III.15), ξ(s) is

a dimensionless Brownian bridge which starts from the origin at dimensionless time

s = 0 and comes back at the origin at dimensionless time s = 1, i.e. ξ(0) = ξ(1) =

0. Functional measure D(ξ) is the normalized Gaussian Wiener measure which

characterizes the Brownian process, and it is entirely defined by its covariance
∫

D(ξ) ξµ(s) ξν(t) = δµν inf(s, t) (1− sup(s, t)) . (III.16)

The corresponding functional integration is performed over all Brownian bridges

ξ(s). Representation (III.15) is the proper mathematical formulation of genuine
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Feynman’s idea, which amounts to express the density matrix as a sum over all

possible paths going from ra to rb in a time β~, of weighting factors exp(−S/~)

where S is the classical action of a given path computed in potential −V . Here,

such paths are parametrized according to

ωab(sβ~) = (1− s) ra + s rb + λ ξ(s) , (III.17)

where (1− s) ra + s rb describes the straight uniform path connecting ra to rb (see

Fig 4.). Also, weighting factor exp(−S/~) is splitted into the product of three terms.

The first term, which arises from the kinetic energy of the straight uniform path,

reduces to the Gaussian prefactor in front of the functional integral. The second

term, associated with the kinetic contribution of the Brownian part of the path, is a

Gaussian functional of ξ(s) embedded in Wiener measure D(ξ). The third and last

term is rewritten as the Boltzmann-like factor associated with time average
∫ 1

0

ds V (ωab(sβ~)) (III.18)

of potential V along the considered path ωab. We stress that, independently of

the rather poetic introduction of path integrals by Feynman [39], representation

(III.15) can be derived in a straightforward way by starting from the obvious identity

exp(−βH) = [exp(−βH/N)]N combined with a suitable insertion of (N −1) closure

relations in position-space (see e.g. Ref. [6]). Feynman-Kac formula (III.15) then

follows by taking the limit N → ∞, as it has been proved for a wide class of

potentials [35].

Feynman-Kac (FK) representation (III.15) perfectly illustrates the intrusion of

dynamical features in equilibrium static quantities for quantum systems, which

has been quoted in Section IIC. Let us consider the diagonal density matrix

〈ra| exp(−βH)|ra〉. Because of the non-commutativity of the kinetic and potential

parts of H , that matrix element does not reduce to its classical counterpart

exp(−βV (ra))

(2πλ2)3/2
, (III.19)

so it is not entirely determined by V (ra). In fact, according to formula (III.15) spec-

ified to rb = ra, 〈ra| exp(−βH)|ra〉 now depends on the potential landscape in some

neigbourhood of ra with size λ, which is explored in time-average (III.18) thanks to
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0
ra

rb

ωab(sβ~)

FIG. 4: A brownian path ωab(sβ~). The dashed straight line is the uniform path connect-

ing ra to rb.

Brownian motion. Therefore, 〈ra| exp(−βH)|ra〉 appears to be indeed generated by

a dynamical process. Not surprisingly, particle mass m controls the importance of

the corresponding dynamical effects. In particular, in the limit of an infinitely heavy

particle m → ∞, λ = (β~2/m)1/2 vanishes and 〈ra| exp(−βH)|ra〉 obviously tends

to its classical counterpart (III.19) : dynamical effects do not intervene anymore in

the potential contribution which takes its purely static form [82]. Notice that the

present dynamical considerations are the manifestation, in the framework of path

integrals, of the Heisenberg uncertainty principle which prevents the particle to stay

at ra. Hence, Brownian paths can be interpreted as describing intrinsic quantum

fluctuations of position.

Remarkably, FK representation (III.15) involves only classical objects and c-

numbers, so the operatorial structure of quantum mechanics is, in some sense, erased.

That feature turns out to be particularly useful in the framework of the many-body

problem, as described further. However, the intrinsic complexity of quantum me-

chanics is now hidden in the functional integration over all Brownian bridges, which

remains a formidable task. In fact, explicit calculations can be performed in a

few number of cases, as reviewed in Ref. [38]. Also, aymptotic Wigner-Kirkwood

expansions of 〈ra| exp(−βH)|ra〉 around the classical formula (III.19), can be de-
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rived for situations where λ becomes small compared to the characteristic length

[|∇∇∇V (ra)|/|V (ra)|]
−1 of variation of V (r) in the neighbourhood of ra. Such situations

occur for very heavy particles or for high temperatures, and also at large distances

for potentials which decay as power laws at infinity. In the opposite limit where λ

diverges, direct estimations of FK functional integral become rather cumbersome.

Notice that, if H has a single isolated boundstate with energy E0 and wavefunction

ψ0, in the zero-temperature limit, the asymptotic behaviour of 〈ra| exp(−βH)|ra〉 is

merely extracted from its spectral representation, i.e.

〈ra| exp(−βH)|ra〉 ∼ |ψ0(ra)|
2 exp(−βE0) when T → 0 . (III.20)

As argued in Ref. [43], the relevant paths which provide the low-temperature be-

haviour (III.20) occupy a small piece of the whole functional phase space, and they

are quite different from the typical paths with divergent size λ. Consequently, an

exact direct estimation of their contribution remains an open problem in general.

2. Gas of loops

Let us come back now to the hydrogen plasma in the framework of the grand-

canonical ensemble described in Section IIIB. The trace in the grand-partition func-

tion (III.2) can be expressed in the basis of positions and spins, where a given state

is the antisymmetrized Slater product of one-body states |x σ
(z)
α 〉. This provides a

sum of diagonal and off-diagonal matrix elements of exp(−βHNp,Ne
). An example

of such matrix element with (Np = 3, Ne = 4) is

〈R1R3R2r2r3r1r4| exp(−βH3,4)|R1R2R3r1r2r3r4〉 , (III.21)

where the positions of two protons are exchanged, as well as those of three electrons.

Contributions of spins are factored out in simple degeneracy factors because the

Coulomb Hamiltonian HNp,Ne
does not depend on the spins. For matrix element

(III.21), that multipliyng degeneracy factor is 24, because the spin-states of the

exchanged particles are necessarily identical.

The FK representation for each of the matrix elements of exp(−βHNp,Ne
) takes

a form similar to formula (III.15), with Np protonic paths ω(p) and Ne electronic
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FIG. 5: A set of four loops constructed from matrix element (III.21).

paths ω(e), as well as a Boltzmann-like factor associated with the time average of the

potential part VNp,Ne
of HNp,Ne

. The paths associated with matrix element (III.21)

are drawn in Fig. 5. We see that all those paths can be collected in loops. In

fact, that property holds for any matrix element of exp(−βHNp,Ne
), because any

permutation can always be decomposed as a product of cyclic permutations. A loop

L is constructed by collecting q paths associated with q particles exchanged in a

cyclic permutation. Accordingly, L is characterized by its position X, which can be

arbitrarily chosen among the extremities of paths ω, and several internal degrees of

freedom which are particle species (α = p, e), number q of exchanged particles, and

shape λα η obtained as the union of the q paths ω. It turns out that η(s) is itself

a Brownian bridge with flight time q, i.e. η(0) = η(q) = 0, distributed with the

corresponding Wiener measure D(η).

In the FK representation, the time-average of potential VNp,Ne
can be obviously

rewritten as a sum of two-body interactions V between loops, plus a sum of loop

self-energies U , namely

1

2

∑

i 6=j

V(Li,Lj) +
∑

i

U(Li) , (III.22)

where loops associated with the considered matrix element are labelled as Li with

index i running from 1 to their total number N . For instance, four loops can be

identified in the FK representation of matrix element (III.21). Two-body potential
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V(Li,Lj) between loops Li and Lj reduces to a time-average along their respective

shapes of the genuine two-body particle interaction v(|Xi+λαi
ηi(s)−Xj−λαj

ηj(t)|)

evaluated at times which differ by an integer value. Self-energy U(Li) for loop Li is

given by a similar average along its own shape of v(|λαi
ηi(s)− λαi

ηi(t)|) evaluated

at times which differ by a non-zero integer value, with a prefactor 1/2 which avoids

double counting of genuine interactions between two exchanged particles.

At this stage, grand-partition function (III.2) is rewritten as a sum of Boltzmann-

like factors associated with energies (III.22) multiplied by combinatorial factors and

particle fugacities zα/(2πλ
2
α)

3/2 with zα = exp(βµα), which have to be integrated

over positions and shapes of the involved loops. It turns out that the whole sum can

be rewritten as the grand-partition function of a classical gas of undistinguishable

loops with suitable activities z(L), namely

ΞΛ = Ξ
(loop)
Λ =

∞
∑

N=0

1

N !

∫ N
∏

i=1

dLi z(Li)
∏

i<j

exp(−βV(Li,Lj)) . (III.23)

Phase space measure dL in the world of loops, involves discrete summations over

species index α and exchanged-particle number q, spatial integration over position

X inside Λ, and functional integration over shapes η with Wiener measure D(η)

restricted to shapes such that X+ λαη(s) remains inside Λ. Loop fugacity reads

z(L) = (−1)q−1 2zqα
q(2πqλ2α)

3/2
exp(−βU(L)) , (III.24)

the structure of which is easily intepreted as follows. Factor (−1)q−1 is the signature

of a cyclic permutation of q objects. In front of the obvious particle-activity con-

tribution zqα, factor 2 is the number of configurations of exchanged-particles spins

which are all identical. Factor q in front of (2πqλ2α)
3/2 is related to the q possible

choices of position X among that of the q exchanged particles. The other factor

q in front of λ2α, arises from the absorption of the remaining (q − 1) integrations

over particle positions together with the q functional integrations over Brownian

bridges into the single measure D(η). Notice that qλ2α is nothing but the square of

de Broglie wavelength for inverse temperature qβ.

We stress that identity (III.23) proceeds from remarkable combinatorial prop-

erties. For instance, in Ξ
(loop)
Λ , there are various contributions in term N = 4,
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which are identical to that of matrix element (III.21) in the Slater expansion of ΞΛ.

Such contributions arise from the explicitation of the 4 phase-space measures dLi

(i = 1, 2, 3, 4) where 2 protonic loops and 2 electronic loops, carrying respectively 2

or 1 protons and 3 or 1 electrons, have to be chosen among 4 labelled loops. Also,

there are several matrix elements in the Slater expansion of ΞΛ, involving 3 protons

and 4 electrons, which provide identical contributions to that of matrix element

(III.21). Thanks to a rather fortunate arrangment between both counting factors,

the full respective contributions in both Ξ
(loop)
Λ and ΞΛ are indeed identical! Accord-

ing to those considerations, and also because of its synthetical form, identity (III.23)

is oftenly called the magic formula.

Historically, Ginibre [44] was the first to introduce the notion of loops when

studying the convergence of Mayer series for quantum gases with short-range forces.

However, he did not write explicitely formula (III.23), which has been derived later

by Cornu [45]. Recently, Martin [46] proposed an elegant and shorter derivation

of that formula. Notice that identity (III.23) is valid for any kind of two-body

interactions, and an arbitrary number of species with Fermi or Bose statistics. For a

bosonic species, factor (−1)q−1 is merely replaced by 1 in loop fugacity (III.24), while

all the other factors are unchanged. Magic formula (III.23) has been applied to a

Bose gas with short-range interactions for studying Bose-Einstein condensation [47].

Of course, and as quoted in the simple case of a single particle in an external

potential, the intrinsic difficulty of quantum mechanics is now hidden in the func-

tional integrations over loop shapes, so an exact calculation of loop grand-partition

function remains far beyond human abilities...Nevertheless, magic formula (III.23)

is quite useful because standard tools of classical statistical mechanics can be ap-

plied, as well as various transformations relying on simple properties of classical

Boltzmann factors.

D. Screened cluster representation

From now on, we assume that the thermodynamic limit has been taken once

for all. Since, according to Lieb and Lebowitz theorems, boundary effects do not
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intervene anymore in the TL, we proceed to formal calculations in the infinite system

where some quantities are infinite. Nonetheless, after suitable resummations and

reorganizations, such divergences are removed, and it is quite reasonable to believe

that the final results are indeed relevant, as far as they are finite, and they do

describe the considered bulk quantities. That strategy is adopted for the calculation

of particle densities and particle correlations. Also we work in the world of loops.

According to magic formula (III.23), those particle quantities are merely related to

their loop counterparts. For instance, proton density ρp is given in terms of loop

density ρ(La) by

ρp =

∞
∑

qa=1

∫

D(ηa) qa ρ(La) , (III.25)

where loop species index is αa = p.

1. Mayer graphs

The structure of loop grand-partition (III.23) is identical to that of an ordinary

classical system made of point particles with two-body interactions. Therefore,

equilibrium quantities of loops can be represented by Mayer-like diagrammatical

series, where points are replaced by loops. This provides Mayer series for particle

quantities, like proton density ρp which reads

ρp =
∑

G

1

S(G)

∞
∑

qa=1

∫

D(ηa) qa z(La)

∫ n
∏

i=1

dLi z(Li)
[

∏

f
]

G
. (III.26)

Each graph G is constructed according to the standard Mayer rules [48, 49]. It

is made with (n + 1) loops Li, i = 0, ..., n and L0 = La. Two loops i and j are

connected at most by a single bond

fij = exp(−βV(Li,Lj))− 1 , (III.27)

and [
∏

f ]G denotes the product of such bonds. Also, graph G is simply connected,

namely it cannot be separated into two parts which are not connected by at least

one bond f . Symmetry factor S(G) is the number of permutations of black loops Li

with i ≥ 1, which leave
∏

G f unchanged. Each loop is weighted by its fugacity z(Li).

The contribution of graph G is obtained by integrating over all degrees of freedom
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FIG. 6: A graph G made with root loop La and two field loops L1 and L2.

of black loops embedded in measure dLi, while the position and species index of

root loop La are fixed and only its shape and particle number are integrated over.

Eventually,
∑

G is performed over all topologically different unlabelled graphs G. An

example of graph G is shown in Fig. 6, while its contribution reads

1

2

∞
∑

qa=1

∫

D(ηa) qa z(La)

∫

dL1dL2 z(L1)z(L2)fa1fa2 . (III.28)

The loop-loop interaction is long ranged, like the genuine Coulomb potential

itself, as illustrated by the large distance behaviour

V(Li,Lj) ∼
qieαi

qjeαj

|Xi −Xj|
when |Xi −Xj| → ∞ . (III.29)

Indeed, at large distances, loops can be shrinked to point charges, and further correc-

tions to the monopolar form (III.29) can be expanded in multipolar power series of

λαi
/|Xi−Xj | and λαj

/|Xi−Xj |. Like in the case of purely Coulombic interactions,

the long-range nature of V(Li,Lj) induces divergences as explained in Section IIA

for purely Coulombic interactions. Here, in Mayer series (III.26), such divergences

pollute every graph because Mayer bonds behave as −βV(Li,Lj) at large distances.

In addition to previous long-range pollution, another drawback of Mayer series

relies on the difficulty to identify immediately the contributions of a given chemical
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Resummation Machinery

Expand all Mayer bonds f in Taylor series with respect to (−βV)

Resum all convolution chains of bonds (−βV) connecting Li to Lj
in terms of an effective potential eαi

eαj
φ(Li,Lj)

Introduce Boltzmann factors exp(−βeαi
eαj

φ(Li,Lj)) and renormalized
fugacities zφ(Li) via suitable reexponentiations

Identify sets of loops EL = {Li} such that all the effective interactions between loops
inside EL are present in the product of Boltzmann factors exp(−βeαi

eαj
φ(Li,Lj))

Identify particle clusters C(Np, Ne) in a given set EL
by expliciting dLi as sums over species index and particle numbers

Introduce statistical weights ZT
φ (C) for particle clusters and bonds Fφ

via suitable truncations of Boltzmann factors exp(−βeαi
eαj

φ(Li,Lj))

FIG. 7: Main steps of the resummatiom machinery.

species. For instance, if we are interested in contribution of ion H+
2 to series (III.26),

we can pick out in contribution (III.28) of graph drawn in Fig. 6, the term (qa =

1, αa = p ; q1 = 1, α1 = p ; q2 = 1, α2 = e), which involves 2 protons and 1

electron. However, because of the absence of bond f12 in that graph, a proton-

electron interaction is missing. The full interaction between the two protons and

the single electron is recovered by summing contributions from all graphs G made

with three loops.

2. Resummation machinery

The resummation machinery amounts to perform an exact transformation of the

whole series (III.26), which takes care of drawbacks of Mayer grahs quoted above.

The main steps are sketched in Fig. 7. Of course, all the transformations involve

tricky counting calculations based on combinatorial identities, which are detailed in

Ref. [50]. The final result can be expressed as the Screened Cluster Representation
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Ca(1, 1)
C1(1, 1)

β2Φ2

2

p
p

e

e

FIG. 8: A graph G made with root cluster Ca(1, 1) and one field cluster C1(1, 1). Each

cluster contains one proton and one electron denoted by symbols p and e respectively.

(SCR),

ρp =
∑

G

1

S(G)

∫

dCa qa Z
T
φ (Ca)

∫ n
∏

i=1

dCi Z
T
φ (Ci)

[

∏

Fφ

]

G
, (III.30)

where graphs G have the same topological structure as usual Mayer graphs. Now,

ordinary points are replaced by particle clusters Ci, weighted by factors ZT
φ (Ci). Two

clusters are connected by at most one bond Fφ which can be either −βΦ, β2Φ2/2!

or −β3Φ3/3! with Φ the total effective potential between both clusters. Graphs G

are simply connected, and symmetry factor S(G) is computed as usual. Phase-space

measure dCi reduces to integrations over positions and shapes of loops belonging

to set EL associated with cluster Ci, whereas in dCa position of root proton is not

integrated over. Eventually,
∑

G is performed over all topologically different graphs

with some simple restrictions, in part avoiding double-counting of genuine particle

interactions [50]. In Fig. 8, we give an example of graph G, made with two clusters

Ca = Ca(1, 1) and C1 = C1(1, 1). Its contribution reads

∫

dCa Z
T
φ (Ca)

∫

dC1 Z
T
φ (C1)

β2Φ2(Ca, C1)

2
, (III.31)

since S(G) = 1 and qa = 1. Notice that part of graph G shown in Fig. 6 contributes

to previous graph G under the action of the resummation machinery.

Remarkably, not only the genuine structure of Mayer graphs is conserved through

the resummation machinery, but both statistical weights ZT
φ (C) and bonds Fφ de-

pend on the sole effective potential φ. Thanks to the sufficient fast decay of φ,

all large-distances divergences are removed in every graph G, which does provide

a finite contribution. The presence of complete interactions inside a given cluster
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C(Np, Ne) ensures that chemical species made with Np protons and Ne electrons do

emerge at low densities. Both features are detailed below. Notice that the physical

ideas underlying the SCR, are close to those involved in the construction of the

so-called ACTEX approach by Rogers [51]. Also, contrarily to Feynman graphs in-

volved in standard many-body perturbation theory [20], graphs G in SCR account

for non-perturbative effects in the Coulomb potential which are essential for a proper

description of recombination.

3. Screened effective potential

Effective potential eαa
eαb

φ(La,Lb) is defined by the sum of all convolution chains

of bonds (−βV) connecting La to Lb, namely

eαa
eαb

φ(La,Lb) = V(La,Lb) +
∞
∑

n=1

(−1)nβn

∫ n
∏

i=1

dLi z(Li) V(Li−1,Li) V(Ln,Lb) ,

(III.32)

with L0 = La. That potential accounts for collective effects, because it involves

contributions of an infinite number of loops. Interestingly, chain sum (III.32) can

be reinterpreted as the complete perturbative expansion of the solution of integral

equation

eαa
eαb

φ(La,Lb) = V(La,Lb)− β

∫

dL z(L) eαa
eαφ(La,L)V(L,Lb) . (III.33)

Therefore, eαa
eαb

φ(La,Lb) is the total potential acting on loop Lb, created by loop

La plus a cloud of loops L distributed with density −βz(L) eαa
eαφ(La,L). Its

physical content is then quite similar to that of the Debye potential introduced in

Section IIB. In the classical limit ~ → 0, loops shrink to point charges so equation

(III.33) is nothing but the integral version of linearized Poisson-Boltzmann equation

(II.9) with ǫw = 1. Thus, the effective potential eαa
eαb

φ(La,Lb) can be viewed as

the quantum analogue of the Debye potential [52].

Similarly to what happens in the classical case, collective effects embedded in the

effective potential are expected to screen the bare loop-loop interaction. In fact, the

static part qaeαa
qbeαb

/|Xa−Xb| of V(La,Lb), which does not depend on loop shapes,

is exponentially screened [83]. On the contrary, the multipolar parts of V(La,Lb)
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which depend on loop shapes, are not exponentially screened. The resulting effective

potential decays only as a dipolar interaction at large distances, namely [52]

φ(La,Lb) ∼
Aαaαb

(ηa,ηb)

|Xa −Xb|3
when |Xa −Xb| → ∞ , (III.34)

where Aαaαb
(ηa,ηb) is an amplitude which depends only on loop species and shapes.

Consequently, bonds Fφ = −βΦ are at the border line for integrability at large

distances. However, if loop shapes are first integrated over, all dangerous 1/R3-

terms vanish. Thus, within that prescription for the order of integrations involved

in measures dCi, each graph G in SCR (III.30) indeed provides a finite contribution.

The slow algebraic decay of φ can be understood as follows. As mentionned in Sec-

tion IIIC, paths defining loop shapes account for intrinsic quantum fluctuations of

particle positions. Such fluctuations, which are dynamical in origin, generate 1/R3-

dipolar interactions. In agreement with heuristic findings argued in Section IIC,

such dynamical interactions cannot be perfectly screened trough collective effects,

so it remains a 1/R3-tail in the large-distance behaviour of φ.

4. Emergence of chemical species

As quoted in Section IID, familiar chemical species may emerge, strictly speaking,

in a zero-density limit only. Not surprisingly, in such a limit, effective potential

eαa
eαb

φ(La,Lb) reduces to the bare loop-loop interaction V(La,Lb) as shown in

Ref. [52]. Let us consider the contribution of the simple graph G made with the

single root cluster Ca(Np, Ne). Functional integrations over loop shapes of products

of Boltzmann factors exp(−βV(Li,Lj)) embedded in ZT
φ (Ca), can be expressed in

terms of matrix elements of Gibbs operators associated with Coulomb Hamiltonians,

by applying backwards FK formula. Then, the contribution of the considered graph

G is proportional to

Z(Np, Ne) =
(2πλ2NpNe

)3/2

Λ
Tr
[

exp(−βHNp,Ne
)− ...

]

(III.35)

with λ2NpNe
= β~2/(Npmp + Neme). Terms ... left over in the r.h.s. of definition

(III.35) indicate a suitable truncation of Gibbs operator exp(−βHNp,Ne
), which en-

sures the finiteness of the trace. Thus, we see that SCR leads to a natural definition
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of the partition function Z(Np, Ne) for Np protons and Ne electrons in the vacuum.

That partition function includes the contribution of possible recombined species in

their groundstate, as well as those of thermal excitations.

At finite densities, ZT
φ (Ca) accounts for many-body effects on cluster Ca, like the

broadening and shift of energy levels of recombined species made with Np protons

and Ne electrons. Also, graphs G with several clusters describe interactions between

such clusters which are screened by ionized charges. For instance graph shown in

Fig. 8, involves contributions from interactions between two atoms. In fact, all

phenomena at work can be identified in specific graphs, as argued in Ref. [50].

E. Asymptotic expansions in the Saha regime

1. Equation of state

Now, we consider again the Saha regime, where hydrogen behaves as a partially

ionized atomic gas. We start with a grand-canonical description, where the given

thermodynamic parameters are µ and T , and common particle density ρ = ρp = ρe

is a function ρ(µ, T ). Making the variable change (µ, T ) → (γ, T ) defined through

parametrization (III.7), we see that density can also be viewed as a function of γ

and T . Then, we proceed to the expansion of ρ(γ, T )/ρ∗ when T → 0 at fixed γ,

by investigating the corresponding behaviour of graphs G in SCR (III.30). Roughly

speaking, that behaviour results from the competition between three kind of contri-

butions, which vanish or explode exponentially fast when T → 0, namely

(i) γN exp(βNEH) with N = Np + Ne arising from entropy factor exp(βµN) in

ZT
φ (C)

(ii) exp(−βE
(0)
Np,Ne

) arising from a recombined entity with groundstate energy E
(0)
Np,Ne

in ZT
φ (C)

(iii) γp/2 exp(βpEH/2) with p relative integer, arising from interactions screened over

Debye length λD = (4πβe2(ρ
(id)
p + ρ

(id)
e ))−1/2 with ρ

(id)
p = ρ

(id)
e = ρ∗γ in bonds Fφ

between charged clusters [84]
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Previous analysis provides the Scaled Low Temperature expansion of ρ(γ, T )/ρ∗,

where leading terms

γ +
γ2

2
(III.36)

are indeed those predicted by Saha theory. Each correction reduces to some power

of γ multiplied by a temperature-dependent function which decays exponentially

fast when T → 0, in agreement with the rigorous behaviour (III.8) presented in

Section IIIB.

The SLT expansion of βP/ρ∗ is readily obtained from that of ρ(γ, T )/ρ∗, by

integrating identity
∂βP

∂γ
(β, γ) =

2ρ

γ
(III.37)

whichs follows from the standard thermodynamical relation between ρ, P and µ. A

further elimination of γ between both SLT expansions of βP (γ, T )/ρ∗ and ρ(γ, T )/ρ∗

provides the SLT expansion of the equation of state, i.e. the asymptotic expansion

of pressure in units of ρ∗kBT when T → 0 at fixed ratio ρ/ρ∗,

βP/ρ∗ = βPSaha/ρ
∗ +

∞
∑

k=1

bk(ρ/ρ
∗)αk(β) . (III.38)

The leading term is indeed given by Saha formula (III.12). Coefficients bk(ρ/ρ
∗)

are algebraic functions of ratio ρ/ρ∗, while temperature-dependent functions αk(β)

decay exponentially fast when T vanishes, αk(β) ∼ exp(−βδk) except for possible

multiplicative powers of β. Expansion (III.38) is ordered with respect to increasing

decay rates, 0 < δ1 < δ2 < .... The first five corrections have been computed in

Ref. [53] (see Ref. [54] for a pedagogical presentation of the calculations). In the

following table, we summarize their physical content, as well as the expressions and

values of the corresponding decay rates which are merely obtained by taking the

products of above exponential factors (i), (ii) and (iii).

Correction (k) Physical content δk (in eV)

1 plasma polarization around ionized charges |EH|/2 ≃ 6.8

2 formation of molecules, atom-atom interactions |3EH − EH2
| ≃ 9.1

3 atomic excitations, charge-charge interactions 3|EH|/4 ≃ 10.2

4 formation of ions, atom-charge interactions |2EH −EH+
2
| ≃ 11.0

5 fluctuations of plasma polarization |EH| ≃ 13.6
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Remarkably, all non-ideal corrections to Saha equation of state evocated in Sec-

tion IIIB are properly identified and ordered in exact SLT expansion (III.38). Con-

tributions of usual chemical species do emerge in the present double low-temperature

and low-density limit, in agreement with heuristic findings presented in Section IID.

Their relative importance, determined by the ordering of decay rates δk, results from

subtle inequalities between groundstate energies E
(0)
Np,Ne

and EH in the vacuum. For

instance, formation of molecules H2 dominate that of ions H+
2 or H−, while contri-

butions of more complex entitites, like H−
2 , H

+
3 or H3, decay exponentially faster

than exp(−β|EH|) as detailed in Ref. [53]. Thermal excitations of atoms, molecules

and ions are accounted for in functions αk(β) via the corresponding cluster parti-

tion functions Z(1, 1), Z(2, 2), Z(2, 1) and Z(1, 2). However, we stress that such

contributions of recombined entities are entangled to that of their dissociation prod-

ucts. For instance, in Z(1, 1), contributions from excited atomic states cannot be

separated from that of ionized protons and ionized electrons. Also, those cluster

partition functions, built with bare Coulomb Hamiltonians, are indeed finite thanks

to the substraction of non-integrable long-range parts, which are ultimately screened

by ionized charges. Thus, only the full contribution of those species partition func-

tions and of their screened long-range parts, makes physical sense. For instance,

term k = 3 involves both contributions of Z(1, 1) and of screened proton-electron

interactions. In that context, the extraction from α3(β) of a purely atomic contri-

bution, for instance given by the phenomenological expression (II.27) of Z
(scr)
H or by

the Planck-Larkin formula [55], remains arbitrary. We stress that such arbitrariness

does not cause any trouble here, since only the full contribution embedded in α3(β)

is relevant for thermodynamics.

Eventually, notice that ordinary virial expansions in powers of ρ at fixed T [56–

59], can be easily recovered from SLT expansion (III.38) by expanding coefficients

bk(ρ/ρ
∗) in powers of ρ/ρ∗. This has been explicitely checked up to order ρ2, by

noting that partition functions Z(1, 1), Z(2, 0) and Z(0, 2) are merely related to

two-body quantum virial functions first introduced by Ebeling [56].

43



2. Particle correlations

The SCR also provides diagrammatical series for equilibrium particle correlations,

ρ
(T)
αaαb(ra, rb) = ρ

(2)
αaαb(ra, rb)− ραa

ραb
, where graphs are similar to those introduced

above for particle densities [50]. Not surprisingly, the asymptotical behaviour of

ρ
(T)
αaαb

(ra, rb) when R = |ra − rb| → ∞, is determined by the large-distance be-

haviour of bonds Fφ. It turns out that bonds −βΦ, which might give a priori

1/R3-contributions, ultimately provide short-range terms thanks to the rotational

invariance of statistical weights of particle clusters combined to the harmonicity of

Coulomb potential [60]. On the contrary, bonds β2Φ2/2! provide 1/R6-contributions

which do not cancel out. Thus, according to that graph by graph analysis [60], all

particle correlations are expected to decay as 1/R6 when R → ∞, namely

ρ(T)
αaαb

(ra, rb) ∼
Aαaαb

(β, ρ)

R6
, (III.39)

whith temperature- and density-dependent amplitudes Aαaαb
(β, ρ).

In the Saha regime, amplitudes Aαaαb
(β, ρ) can be determined within the method

used for deriving the SLT expansion of the pressure (III.38). Here, it is important to

select first the graphs which contribute to the 1/R6-tails, and afterwards to take the

scaled low-density and low-temperature limit of the corresponding contributions.

That order of limits ensures that collective screening effects arising from ionized

protons and ionized electrons are indeed taken into account. Notice that Debye

screening length λD associated with those almost classical ionized charges diverges

in the SLT limit.

Within above procedure, SLT expansions of Aαaαb
(β, ρ) can be derived [60]. At

leading order, App(β, ρ) reduces to a quadratic form in the ideal densities (III.10) of

(III.11) of ionized protons and hydrogen atoms respectively,

App(β, ρ) = ρ
(id)
at ρ

(id)
at Cat−at(T ) + ρ(id)p ρ

(id)
at Cp−at(T ) + ρ

(id)
at ρ

(id)
p Cat−p(T ) + ... (III.40)

where terms left over decay exponentially faster than (ρ∗)2. That structure is easily

interpreted by noting that each proton in correlation ρ
(T)
pp may be either ionized or

recombined into an atom. Then, the insertion of that leading quadratic structure
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of amplitudes in asymptotical behaviour (III.39) provides a natural definition of

effective potentials between ionized charges and atoms. In particular, the atom-

atom effective interaction is

U
(eff)
at−at(R) = −

kBT Cat−at(T )

R6
. (III.41)

Taking into account the expression of Cat−at(T ) derived in Ref. [60], and definition

(II.30) of van der Waals potential, that effective interaction can be rewritten as

U
(eff)
at−at(R) =

(

1− cat
kBT

|EH|

)

UvdW(R) (III.42)

where cat is a numerical positive constant. Thus, atom-atom van der Waals interac-

tions are not perfectly screened by free charges, which only reduce their amplitude,

in qualitative agreement with heuristic arguments presented in Section IID. Re-

markably, reduction factor (1 − catkBT/|EH|) does not depend on the proportion

of free charges, since positive constant cat can be expressed in terms of the sole

atomic spectrum [60]. The density of free charges only intervenes in Debye screen-

ing length λD, while formula (III.42) holds for R ≫ λD. Notice that, in the window

aB ≪ R ≪ λD, U
(eff)
at−at(R) does reduce to UvdW(R) apart from exponentially small

corrections with T arising from atomic excited states [60].

F. Conclusion

According to the exact results described here, and also to other works in the liter-

ature, the present state of the art for the various issues about screening, recombina-

tion and van der Waals forces is summarized below, together with some comments

about related open problems. Part of those results are described in Ref. [61] where

exact results for Coulomb systems at low density are reviewed.

• Debye exponential screening is destroyed by quantum fluctuations

Quantum fluctuations of positions generate instantaneous electrical dipoles which

cannot be perfectly screened by the surrounding plasma because of their dynami-

cal character. Fluctuations of the resulting 1/R3-dipolar effective interactions ulti-

mately pollute equilibrium particle correlations with 1/R6-algebraic tails. Such fluc-

tuations are not taken into account in usual mean-field theories, like Thomas-Fermi
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or RPA, which erroneously predict an exponential decay [62, 63]. Previous mecha-

nism, intrinsic to quantum mechanics, is present in any thermodynamical state. Ex-

plicit perturbative calculations of 1/R6-tails have been performed in regimes where

free charges behave almost classically [60, 64], for which such tails appear at dis-

tances R ≫ λD. Also, it has been shown [65], through a non-perturbative analysis,

that the effective potential between two quantum charges immersed in a classical

plasma does decay as 1/R6. Thus, all those results strongly suggest the breakdown

of exponential screening, although a rigorous derivation is not yet available.

Besides a proof of algebraic screening, explicit calculations of algebraic tails in

strongly degenerate plasmas remain to be done. In particular, such calculations

might be quite useful in condensed matter, where effective electron-electron in-

teractions are oftenly modelized as Dirac delta functions in order to account for

screening [85].

• Recombined entities must be defined in a double zero-density and zero-temperature

limit

In agreement with simple findings, contributions to thermodynamical quantities of

familiar chemical species, emerge unambiguously when both density and temper-

ature vanish. The Screened Cluster Representation, which can be devised for any

mixture of nuclei and electrons [50], is a suitable theoretical framework for evaluating

such contributions. As it can be naively expected, when T → 0, the leading contri-

bution of a given recombined entity is controlled by the Boltzmann factor associated

with its groundstate energy in the vacuum. At finite temperatures, contributions

from thermal excitations of that entity, and from its dissociation products and their

screened interactions, are all mixed together. This is well illustrated by the analysis

of the equation of state of hydrogen in the Saha regime [53].

In approaches based on the chemical picture, the choice of a suitable internal

partition function for recombined species is a central question, which has been the

source of many controversies since the introduction of Planck-Larkin formula (see

e.g. Refs. [66–68]). As far as thermodynamical quantities are concerned, the analysis

of the various contributions in their SCR confirms the arbitrariness of such a choice.
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More interesting, that analysis shows that, in phenomenological theories, the internal

partition function of a given chemical species, should be defined simultaneously

with the related contributions of its elementary components. The SCR itself might

serve as an useful guide for introducing suitable modelized ingredients in chemical

approaches.

• Free charges reduce the amplitude of van der Waals interactions

In the framework of the many-body problem, it is natural to define effective po-

tentials between recombined entities from the asymptotic large-distance behaviour

of equilibrium correlations between their elementary components. Since all particle

correlations decay as 1/R6, effective interactions between neutral or charged entities

also decay à la van der Waals as 1/R6. The corresponding amplitudes are con-

trolled by quantum fluctuations of electrical dipoles, the size of which is typically

of order either the Bohr radius aB for recombined charges or thermal de Broglie

wavelengths for free charges. Thus, genuine van der Waals interactions between

atoms or molecules are not perfectly screened by free charges, as a consequence of

the breakdown of Debye exponential screening.

Free charges should reduce the amplitude of van der Waals interactions, as sug-

gested by the exact calculation for hydrogen in the Saha regime. At sufficiently low

temperatures and low densities, the corresponding renormalization factor does not

depend on ρ, and is linear in T . It should be quite instructive to compare that

first-principles prediction to that of phenomenological approaches like Lifchitz the-

ory [69–72]. Also, the SCR of particle correlations should provide some insights for

reliable estimations of previous reduction factor at higher temperatures and densi-

ties. The reduction of the amplitude of van der Waals interactions by free charges

might have important consequences on the phase diagrams, as quoted in Ref.[73] for

a system of biological macromolecules immersed in an highly concentrated salt.
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