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Abstract: MUMPS is a parallel sparse direct solver, using message passing
(MPI) for parallelism. In this report we experiment how thread parallelism
can help taking advantage of recent multicore architectures. The work done
consists in testing multithreaded BLAS libraries and inserting OpenMP di-
rectives in the routines revealed to be costly by profiling, with the objective
to avoid any deep restructuring or rewriting of the code. We report on
various aspects of this work, present some of the benefits and difficulties,
and show that 4 threads per MPI process is generally a good compromise.
We then discuss various issues that appear to be critical in a mixed MPI-
OpenMP environment.
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Premières expériences pour l’exploitation d’un

parallélisme de type multi-cœurs dans un solveur
creux direct pour machines à mémoire distribuée

Résumé : MUMPS est un logiciel de résolution de systèmes linéaires creux
de grande taille, basé sur une méthode directe de factorisation. Il utilise
un parallélisme de type passage de messages basé sur MPI (Message Pass-
ing Interface). Dans ce rapport, nous montrons comment un parallélisme
de type multithread peut permettre de mieux tirer parti des architectures
multi-cœurs récentes. Le travail effectué consiste à utiliser des librairies
BLAS multithreadées et à insérer des directives OpenMP dans les routines
s’avérant être les plus coûteuses, avec comme objectif de fond d’éviter toute
restructuration profonde ou réécriture significative du code. Nous présentons
divers aspects de ce travail, les gains et les difficultés, et montrons qu’utiliser
4 threads par processus MPI est souvent un bon compromis. Nous insistons
pour finir sur les aspects qui nous semblent critiques pour une bonne ex-
ploitation d’un parallélisme mixte MPI-OpenMP.

Mots-clés : matrices creuses, solveur direct, MPI, OpenMP, multicœur,
multithread



Exploiting Multicore Parallelism in MUMPS 3

1 Introduction

MUMPS (MUltifrontal Massively Parallel sparse direct Solver) [3, 5] is a
parallelized sparse matrix solver which is widely used by many research and
commercial groups around the world. This software was originally developed
using MPI (Message Passing Interface) for distributed memory machines, al-
though the initial developments actually relied on a shared-memory code [2].
It uses the BLAS and ScaLAPACK [9] libraries for dense matrix computa-
tions and is written in Fortran 90 and C. In recent years, with the advent
of multicore machines, interest has shifted towards multithreading existing
software in order to maximize utilization of all the available cores. Some
researchers have reported development of multithreaded direct solvers - for
example Anshul Gupta in the IBM WSMP software [15] and Jonathan Hogg
in the HSL software [16]. This work is focused towards the multithreading of
existing MUMPS software without a deep restructuring of the existing code,
in other words, by adding an OpenMP layer on top of the already existing
MPI layer. While a pure MPI implementation can still be used to run par-
allel processes on the available cores, we will see that a purely threaded or
a mixed MPI-OpenMP strategy yields to significant gains in both memory
usage and speed.

This work is part of the SOLSTICE project which comprises a team of
academic institutions and industries interested in or heavily using sparse
solvers. It is also part of a French-Israeli Multicomputing project imply-
ing ENSEEIHT-IRIT, ENS Lyon and Tel Aviv University, whose aim is to
improve the scalability of state-of-the-art computational fluid dynamics cal-
culations by the use of state-of-the-art numerical linear algebra approaches.

MUMPS is used to solve large scale systems of the form

Ax = b, (1)

where A is a n× n symmetric positive-definite, symmetric indefinite or
unsymmetric sparse matrix. b can be single or multiple right hand sides.
The above forms the core of computations in many engineering applica-
tions ranging from finite-elements to modified nodal analysis. There are
three typical methods for solving these systems : (1) iterative methods such
as multigrid solvers, (2) direct methods (such as MUMPS) and (3) hybrid
methods that combine both direct and iterative techniques. Direct methods
consist of three phases - analysis, factorization and solve. MUMPS relies on
a multifrontal approach [11, 12]; the analysis phase uses ordering packages
like AMD, METIS, PORD and SCOTCH to build the assembly tree for the
subsequent factorization and solve phases. In the factorization phase, we
seek an LU factorization of the matrix A when it is unsymmetric, and an
LDLT factorization when it is symmetric. The solution phase consists of
sparse triangular solves to obtain the solution.

RR n° 7411



4 Chowdhury, L’Excellent

In this report, we are primarily concerned with the multithreading of
the factorization and the solve phases since most sparse solver applications
require single analysis phase and multiple factorization and solve phases.
OpenMP directives are used for multithreading as opposed to POSIX threads,
because of the ease of usage of OpenMP in structured codes. This report
is organized as follows. After describing our metholdology and experimen-
tal setup in Section 2, we show in Section 3 which parts of the code are
worth multithreading. Section 4 provides more experimental results of mul-
tithreading for different cases: symmetric positive definite, symmetric indef-
inite, and unsymmetric matrices. The solve phase is also considered. Then,
various issues are discussed in Section 5: thread affinity, memory consump-
tion, mix of MPI and OpenMP, minimum granularity to avoid speed-downs
in some regions, and control of the number of threads in multithreaded
BLAS libraries. We finally provide some concluding remarks and ideas for
future work in Section 6, and refer the reader to the appendix for advises
on experimenting this OpenMP version of MUMPS and description of the
MUMPS routines cited in this report. Some experiments of using MUMPS
with saddle-point problems are also given in the appendix.

2 Methodology and experimental setup

Borderline Dunja
Opteron Nehalem

Location LaBRI, Bordeaux LIP, ENS Lyon
Processor AMD Opteron 2218 Intel Xeon Nehalem E5520
Frequency 2.6 GHz 2.27 GHz
One node 4 dual-core processors 2 quadri-core processors
Memory per node 32 GB PC2-5300 DDR2-667 32 GB
Cache 2 MB (L2) 8 MB (L3)
Compiler Intel v.10 Intel v.11

Table 1: Test machines used in this study.

The experiments were conducted on 8 cores of two different platforms -
Opteron (machine named Borderline) and Nehalem (machine named Dunja).
The characteristics of those two machines are given in Table 1. Intel compil-
ers were used for all the experiments reported here: version 10 was available
on Borderline/Opteron, whereas version 11 was available on Dunja/Nehalem.
The Intel compilers were used as opposed to GNU because with the versions
used, we had better results and less surprises with them than with GNU
when using OpenMP. With those compilers, thread affinity (which describes
how likely a thread is to run on a particular core), can be set thanks to an
environment variable. Thread affinity will be discussed later in this report

INRIA
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Symmetric matrices
Name Order nonzeroes Origin

APACHE2 715176 4 817 870 Univ. Florida collection
THREAD 29736 4 444 880 PARASOL collection
BOXCAV 544932 3 661 960 SOLSTICE project
FDTD 343000 3 704 680 11-point finite differ-

ence (70x70x70 grid)
HALTERE 1288825 10476775 SOLSTICE project

Unsymmetric matrices
Name Order nonzeroes Origin
DIMES2 (complex) 55640 13 929 296 Sparse direct multipole

solver [14]
AMAT30 134335 975205 Multicomputing project
AMAT60 965215 7458355 Multicomputing project
AMAT90 3140695 24795505 Multicomputing project
A1M 738235 4756918 part of AMAT60 ex-

cluding the rows and
columns corresponding
to the bottom-right zero
block

Table 2: Test matrices used in this study. Matrices are ordered with METIS.
HALTERE is complex but treated as if it was real (imaginary part ignored).

RR n° 7411



6 Chowdhury, L’Excellent

Figure 1: Multinodal Profiles generated by the TAU Paraprof tool.

(Section 5.1). Various symmetric and unsymmetric matrices were tested
mainly from the SOLSTICE group of the GridTLSE website [19], Israeli
project and Tim Davis collection [10]. The matrices used in this report are
listed in Table 2. The bottlenecks to the code were identified by performing
single node experiments on Borderline/Opteron and Dunja/Nehalem, with
an open-source profiler called TAU1 [18]. This tool was used to profile the
performance of the code in a mixed MPI/OpenMP environment. Some fea-
tures of TAU are mentioned here. Firstly, TAU has various functionalities
for a number of performance or monitoring aspects that may be of interest
in such code tuning and optimization. Some of them are – a) accurate pro-
filing of all the parts of MUMPS to understand the intensive portions of the
code, b) performance measures and optimizing the number of threads for
each profiled OpenMP region (which can actually be a subportion of some
routine), c) profiling hybrid OpenMP / MPI performance and d) call paths
and dependencies. Memory profiling (leak detection), event tracing (com-
patible with the commercial tool Vampir2) and studying cache-hit rates can
also be done, but at the expense of significantly increasing the runtime and
diskspace. Textual and graphical profiles of all the subroutines can be gen-
erated after MUMPS execution once it is compiled using the TAU wrappers.
In parallel, both thread-by-thread and averaged statistics are available. An
example of a textual report is given in Table 3. Graphical visualization
is also possible, an example of a multinodal profile generated by the TAU
Paraprof tool is shown in Figure 1. In this figure, the surface of each colored
bar represents the cost of a given subroutine.

3 Multithreading costly portions of MUMPS

The following assumes some familiarity with the multifrontal method and
with MUMPS. Therefore, some basic explanations are available in Section C

1Available from www.cs.uoregon.edu/research/tau.
2now called Intel trace analyzer.

INRIA
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Time Exclusive Inclusive Num Num Inclusive RoutineName
percentage msec msec Calls Subrs usec/Call

100.0 26,258 55,164 1 8 55164302 MAIN
52.4 0.217 28,905 3 24 9635259 mumps

49.8 7 27,457 1 55 27457075 factodriver

38.1 0.07 21,007 1 8 21007612 facb

38.1 105 21,000 1 335974 21000004 facpar

33.3 36 18,366 29430 112617 624 factoniv1

24.3 13,426 13,426 309 0 43452 facp

11.2 6,158 6,184 1 299 6184717 factosendarrowheads

8.2 4,510 4,510 1028 0 4388 facq

2.9 1,482 1,575 29430 118161 54 facass

2.3 1 1,244 1 58 1244343 analdriver

1.7 537 946 1 15 946437 analf

1.6 49 862 29430 159788 29 facstack

1.2 658 658 309 0 2130 copyCB

0.6 345 345 1 0 345723 analgnew

0.6 314 314 26520 0 12 facm

Table 3: Example of TAU profile when running MUMPS on an unsymmetric
matrix.

of the appendix, together with a short description of the routines cited in this
report. For more detailed explanations about the multifrontal or MUMPS,
the reader should refer to the literature, for example papers [4, 3].

Profiling revealed that the following portions of MUMPS were generally
the most costly ones and could be scaled by multithreading:

1. The BLAS operations during factorization. MUMPS uses Level 1, 2
and 3 BLAS operations during both factorization and solve. These
operations consume most of the time, and can be multithreaded us-
ing threaded BLAS libraries such as GOTO, ACML and MKL (see
Section 3.1. For example, in Table 3, facp, facq, and facm refer to
the routines containing the most expensive BLAS operations from the
factorization in the case of unsymmetric matrices.

2. Assembly operations in MUMPS (facass), where contribution blocks
of children nodes of the assembly tree are assembled at the parent level.
In this phase the initializations to zero of the frontal matrices were also
costly and could be multithreaded in a straightforward way yielding
considerable gain in the unsymmetric case (facass). In the symmetric
case, because of the difficulty of parallelizing efficiently small triangu-
lar loops, the parallelization is slightly less efficient. The assembly
of children contributions to parent nodes were also parallelized using
OpenMP.

RR n° 7411
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3. Copying contribution blocks during stacking operations (facstack and
copyCB operations). These were multithreaded using OpenMP direc-
tives.

4. In some symmetric cases pivot search operations (facildlt) were
found to be quite costly. These operations were also multithreaded
using OpenMP directives.

In the next subsections the scaling of the multithreaded parts is dis-
cussed.

3.1 BLAS operations

The natural and simplest approach here consists in using multithreaded
BLAS libraries. The well-known libraries include GOTOBLAS3, proba-
bly the fastest, MKLBLAS4 from Intel, ACMLBLAS5 from AMD and AT-
LAS6 BLAS. The number of threads is fixed during configuration in AT-
LAS and could not be varied at runtime using the environment variable
OMP NUM THREADS. The other three libraries allow modifying the num-
ber of threads at runtime and were experimented with. Although the man-
uals suggest that both Level 3 and Level 2 BLAS operations are multi-
threaded, Level 3 BLAS functions scaled better because of the higher flops
to memory accesses ratio. The routines facsldlt and factldlt contains
Level 3 BLAS in symmetric cases, while facp and facq contain Level3 BLAS
in unsymmetric cases (again, please refer to Section C of the appendix for
more details on those routines). The Level 2 BLAS (facmldlt routine used
in the symmetric case to factorize a block of columns and facm routine used
in the unsymmetric case to factorize a block of rows) scaled poorly with the
number of threads. The likely reason is bad data locality during these oper-
ations and a larger amount of memory accesses compared to the number of
flops. In the unsymmetric and symmetric positive definite cases, facm and
facmldlt consume a small percentage of the total time (as will be shown
later) and hence we obtained comparatively better scaling than in the sym-
metric indefinite case, where the cost of facmldlt is larger. One reason is
that in the unsymmetric case, the row storage is more cache friendly to fac-
torize a block of rows, whereas the row storage is less efficient to factorize a
block of columns. Furthermore (see C, the difference between the symmet-
ric and symmetric positive cases come from the fact that in the symmetric
positive definite case, much less work is performed in facmldlt because
the non-fully summed rows will be updated later using Level 3 BLAS, in
factldlt.

3www.cs.utexas.edu/users/flame/goto
4software.intel.com/en-us/intel-mkl/
5www.amd.com/acml
6math-atlas.sourceforge.net/

INRIA
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Figure 2: Time spent (seconds) in BLAS calls and in OpenMP regions, as a
function of the BLAS library used, Opteron.

The GOTO library was configured using flag USE OPENMP=1, in order
to allow for compatibility with OpenMP. Although we observed that GOTO
is the fastest among the BLAS libraries tested, it could not be used since
even with USE OPENMP=1 it still appeared to conflict with the other
OpenMP regions, so that the net performance of MUMPS with high numbers
of threads turned out to be better with other libraries. It seems that GOTO
creates threads and keeps some threads active after the main thread returns
to the calling application – perhaps this is the cause of interference with
the threads created in the other OpenMP regions leading to the slowdown.
Figure 2 shows this effect: with GOTO BLAS, the time spent in BLAS
routines is smaller, but the performance of the other OpenMP regions in
MUMPS deteriorates a lot. ACML perturbed the OpenMP regions only a
little while MKL was found to be the most compatible with all the OpenMP
regions. Therefore we used MKL for all our experiments.

3.2 Assembly operations

The assembly operations in MUMPS are performed in the routine facass,
where the costly parts involve initialization of the parent block to zero fol-
lowed by adding contributions from the children. In both operations, paral-
lelization using OpenMP directives helped. These operations mostly involve
memory accesses (together with add operations). The scaling for the testcase
AMAT30 (N = 134335, NZ = 975205, unsymmetric) is shown in Figure 3.
We observe that the initialization to 0 shows slightly inferior speed-up with

RR n° 7411
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Figure 3: Assembly time as a function of the number of threads (testcase
AMAT30 ), Opteron. The figure shows separately initialization to 0 and
assembly of contributions blocks (both are part of the assembly routine
facass). Time for copying contribution blocks (copyCB) is also given for
comparison.

respect to the assembly of contribution blocks. However, this testcase shows
good scaling with number of threads. On some other matrices the scaling
tends to saturate after 4 threads. This is generally due to small front sizes
and small contribution block sizes (less than 300), where we generally do not
obtain any scaling. More details of scaling for each routine will be shown
later.

3.3 Copying contribution blocks

These copies (routine copyCB) operations consist of memory accesses and are
performed during stack operations (routine facstack); they are amenable
to multithreading (as can already be observed in Figure 3). Figure 4 shows
that the scaling strongly depends on the contribution block sizes. In this
figure, each point gives the average time per call for a range of front sizes.
For example, the value on the y-axis corresponding to 1500 on the x-axis
represents the average time spent in the routine when the call is done with
a contribution block in the range 1400 and 1600. Our experience is that the
potential for scaling of copyCB and facass are similar: similar to assembly

INRIA
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Figure 4: Behaviour of copyCB as a function of the number of threads. Each
point on the x-axis refers to an interval of width 200. Testcase DIMES,
Opteron.

operations, large blocks are needed to obtain reasonable speed-ups in these
memory-bound operations. Unfortunately, the number of calls to copyCB or
facass with small blocks is much larger than the number of calls with large
blocks, so that overall, on the range of matrices tested, the bad scalability
with small blocks can be a bottleneck when increasing the number of threads.

3.4 Pivot Search operations

In some symmetric indefinite testcases, the pivot search operations in the
facildlt routine were found to be costly. In the unsymmetric cases the
pivot search (routine faci) is on rows whose elements are contiguous in
memory, while in symmetric cases pivot search is mainly done within columns
with a stride equal to the front size. The non-contiguous memory accesses
in symmetric cases are the likely reason for this increased cost. Still, the
pivot search operations from facildlt were multithreaded using OpenMP

RR n° 7411
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1 thread 2 threads 4 threads

Loop RMAX 3.35 2.33 2.07
Loop TMAX 1.65 1.11 0.84

Table 4: Performance (time in seconds) of the two main loops of the symmet-
ric pivot search operations (routine facildlt), testcase THREAD, Opteron.

1 thread 2 threads

Loop RMAX(without IF statements) 0.789 7.965
Loop RMAX(with IF statements) 0.835 0.789
Loop TMAX(without IF statements) 0.033 0.035
Loop TMAX(with IF statements) 0.037 .032

Table 5: Stabilizing the facildlt OpenMP operations using IF statements,
testcase BOXCAV, Opteron. Times in seconds.

reduction statements the results of which are shown in Table 4. In the test-
case THREAD there was a reasonable gain in the two main pivot search
loops, we call them RMAX and TMAX, however for most testcases there is
a speed-down in these regions with the OpenMP directives. This is mostly
caused within the regions of smaller loop sizes (< 300) or granularities which
speed down distinctively as the number of threads is increased. We can sta-
bilize this effect by using IF statements as a part of the OpenMP directive,
which stops multithreading according to the IF statement. An example is
shown in Table 5 where there is a disastrous slowdown without regulating
the OpenMP region according to block sizes, and this effect is stabilized
with addition of the IF statements. This stabilizing effect by adding the IF
statement was observed both on Opteron and Nehalem machines.

4 Results of Multithreading and Case Studies

There are three different matrix modes that MUMPS takes as input, these
are - symmetric positive definite, symmetric indefinite and unsymmetric. In
the first two cases an LDLT factorization is sought, whereas the unsymmet-
ric cases are treated using an LU factorization. In this section, the results
of multithreading for these different modes are discussed, and we then focus
on the solve phase in Section 4.4. All experiments in this section were done
with ’KMP AFFINITY=none’ (effects of thread affinity are discussed later).
We remind that the METIS ordering is used, together with MKL BLAS and
Intel compilers.

INRIA
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Routine 1 thread 2 threads 4 threads 8 threads

factldlt 21.9 11.62 7.61 5.28
facsldlt 2.4 1.28 0.81 0.54
facmldlt 0.12 0.12 0.12 0.13
ldltassniv12 0.73 0.70 0.67 0.64
copyCB 0.61 0.56 0.63 0.73
FactorTime 31.8 20.14 16.07 13.66

Table 6: Time (seconds) spent in the most costly routines as a function of
the number of threads. Testcase APACHE2, Nehalem. The TAU profiler
was used, inducing a small performance penalty.

4.1 Symmetric Positive Definite cases

Testcase APACHE2 (N=715176, NZ=2766523) from the University of Florida
collection was used. The TAU profiles of the various routines with varying
number of threads on Nehalem is shown in Table 6, this is a single node
machine with 8 cores. The costliest, factldlt and facsldlt are the BLAS
3 routines which scale reasonably well with the number of cores. The speed-
up is around 4 for these routines. However, there is little gain in the other
multithreaded parts such as facm (Level 2 BLAS), facass and copyCB; the
reason being the small granularity of tasks in these functions with many
memory accesses. Overall in the purely threaded case there is an overall
gain of around 3 times. In this testcase the multithreaded regions work on
smaller contribution blocks and hence we don’t see much gain. Later we will
show that most of the gains come from the bigger blocks (block size > 200)
and will try to stabilize the slowdowns in smaller blocks (see section 5.4).

Since the gain is smaller with increasing number of threads we should
obtain better gains with a mixed MPI/OpenMP strategy than a purely
threaded solver. This behaviour is shown in Table 7. For symmetric positive
definite matrices we see that the pure MPI version (8 MPI) of MUMPS is
faster (here almost twice faster) than the pure threaded version (8 threads).
However, using 4 threads per MPI process pushes the gains a little further
with an overall speed-up of 4.28 (the problem is relatively small). For a
single right-hand side, the solve time decreases with increasing number of
MPI processes. This confirms the difficulty of exploiting multiple threads
in BLAS 2 operations in the threaded version, compared to the natural
exploitation of tree parallelism with MPI.

We now provide some elements of comparison with the HSL MA87 code,
a version of which was provided to us by the authors. HSL MA87 is a
DAG-based solver for sparse symmetric positive definite matrices [16] writ-
ten by Jonathan Hogg especially designed to efficiently exploit multicore
architectures. The scaling of this solver versus MUMPS is shown in Ta-
ble 8, where it can be seen that HSL MA87 scales almost perfectly with the

RR n° 7411
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8 MPI 4 MPI 2 MPI 1 MPI
1 thread 2 threads 4 threads 8 threads

FactorTime 7.68 7.40 6.68 13.48
SolveTime (1 RHS) 0.13 0.27 0.37 0.58

Table 7: Time (seconds) for the factor and solve phases with mixed MPI
and OpenMP on 8 cores, testcase APACHE2, Nehalem, compiling without
TAU. Serial version (1 MPI, 1 thread) takes 28.62 seconds.

number of threads, with a best case factorization time of 4.62 seconds. As
we have shown before in Table 7, the best case performance of MUMPS is
6.68 seconds for this case and although this is inferior to HSL performance
we are quite close. It is important to note here that MUMPS can handle
general matrices on distributed machines and it may be difficult to obtain
similar scaling as HSL MA87 in a general solver with the current OpenMP
approach.

1 thread 2 threads 4 threads 8 threads

FactorTime (HSL MA87) 28.04 14.49 7.57 4.62

SolveTime (HSl MA87) 0.609 0.69 0.699 0.724

Table 8: Time (seconds) for the factor and solve phases of the HSL MA87
code. Testcase APACHE2, Nehalem; refer to Table 7 for the performance
of MUMPS on 8 cores.

The scaling and performance gains for a bigger testcase, the FDTD

matrix(N = 343000, NZ = 3704680) are shown in Table 9 and Table 10. In
this case, using 8 threads for one MPI process gives the best speed-up of al-
most 5.5. In comparison, HSL MA87 gives a speed-up of 6.9, corresponding
to a performance of 164.16 seconds with 1 thread and 23.93 seconds with 8
threads. The solve time for 1 RHS for the HSL code on 8 threads was 1.02
second, while for MUMPS it was 0.57 second so that it can be interpreted
that MUMPS solve performance is better than MA87 for the bigger cases.
Note that there is a difference in FactorTime between Table 9 and Table 10.
For this testcase, this is due to the overhead when TAU is used for compiling
MUMPS.

4.2 Symmetric indefinite case

MUMPS can handle symmetric indefinite matrices, where a factorization
of LDLT is sought with both 1x1 and 2x2 pivots in D. Many practical
applications yield matrices of this form, for example most of the SOLSTICE
matrices belong to this category. The scaling of a Solstice matrix, Haltere
(N = 1288825, NZ = 10476775) is shown in Table 11, where the scaling
tends to saturate after 4 threads. Therefore we expect that using 1 MPI

INRIA
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Routine 1 thread 2 threads 4 threads 8 threads

factldlt 134.84 69.09 36.91 21.36
facsldlt 19.54 9.53 5.37 3.33
facmldlt 0.31 0.38 0.37 0.73
ldltassniv12 1.68 1.49 1.29 1.16
copyCB 1.44 1.19 0.97 0.895
FactorTime 167.56 89.63 51.2 33.64

Table 9: Time (seconds) spent in costly routines as a function of the number
of threads. Testcase FDTD, Nehalem. The TAU profiler was used inducing
a small performance penalty.

1 MPI 2 MPI 4 MPI 8 MPI
8 threads 4 threads 2 threads 1 threads

FactorTime 29.76 42 39.33 47.87

SolveTime 0.55 0.4085 0.50 0.3

Table 10: Time (seconds) spent in the factor and solve phases with mixed
MPI and OpenMP on 8 cores. Testcase FDTD, Nehalem, compiled without
TAU. Serial version (1 MPI, 1 thread) takes 164 seconds.

process per 4 threads should perform better than a pure OpenMP version
on 8 threads. This is shown in Table 12 where it can be seen that 4 threads
and 2 MPI gives the best performance similar to APACHE2 matrix. The
best case speedup over the serial version is 4.9 times. The scaling of the
BLAS2 routine facmldlt used to be very poor and was seriously limiting
the scalability of the solver (see results before this section) but the results in
this section are with a new version of facmldlt which has been rewritten to
better exploit locality of data. The new version does not rely on BLAS and
was parallelized directly with OpenMP, providing slightly better results. The
same testcase processed as an unsymmetric matrix using the unsymmetric
version of the solver is shown in Table 13. The main difference is that in
the unsymmetric case facm takes a much smaller percentage of time than
with the symmetric indefinite solver. With the latest version of MUMPS
the symmetric code actually scales better than the unsymmetric one. The
scaling of facass and copyCB on Nehalem are still poor but were found to
be better on Opteron, as shown in Table 14. On Opteron, these parts scale
by almost a factor of 2 till 4 threads and then saturate so that we should
use a maximum of 4 threads per MPI process to get a good performance.

4.3 Unsymmetric cases

We provided some first remarks on the compared unsymmetric and sym-
metric behaviour of the solver in the previous subsection. Here, larger un-
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Routine 1 thread 2 threads 4 threads 8 threads

factldlt 70.05 36.53 20.39 12.226
facsldlt 28.38 14.78 8.06 5.302
facmldlt 1.007 0.71 0.42 0.35
ldltassniv12 2.056 1.766 1.35 1.447
copyCB 1.59 1.42 1.14 1.23
FactorTime 132.0 77.2 48.5 35.9

Table 11: Time (seconds) spent in the most costly routines as a function of
the number of threads. Testcase Haltere, Nehalem. The TAU profiler was
used inducing a small performance penalty.

1 MPI 2 MPI 4 MPI 8 MPI
8 threads 4 threads 2 threads 1 thread

FactorTime 30.36 25.75 28.8 30.75

SolveTime (1 RHS) 1.18 0.9084 0.5429 0.4544

Table 12: Time spent in the factor and solve phases with mixed MPI and
OpenMP on 8 cores. Testcase Haltere, Nehalem, compiling without TAU.
Serial version (1 MPI, 1 thread) takes 126 seconds.

Routine 1 thread 2 threads 4 threads 8 threads

facp 147.83 76.6 40.075 21.99
facq 36.14 19.8 10.61 7.65
facm 0.21 0.21 0.22 0.23
facass 9.21 7.695 6.718 6.545
copyCB 2.988 2.545ec 2.446 2.28
FactorTime 211.5 120.02 75.68 55.11

Table 13: Time (seconds) spent in the most costly routines as a function of
the number of threads. Testcase Haltere unsym, processed as an unsymmet-
ric problem, Nehalem.

Routine 1 thread 2 threads 4 threads 8 threads

facp 315 162 86 50.1
facq 75.7 39.72 21.5 13.57
facm 0.73 0.75 0.79 0.8
facass 28.35 23.42 20.56 21.02
copyCB 9.867 6.98 4.776 6.02
FactorTime 577 261 162 119

Table 14: Time (seconds) spent in the most costly routines as a function
of the number of threads. Testcase Haltere, processed as an unsymmetric
problem, Opteron.

INRIA



Exploiting Multicore Parallelism in MUMPS 17

Routine 1 thread 2 threads 4 threads 8 threads

facp 119.95 61.97 32.165 17.66
facq 29.15 15.73 8.24 5.611
facm 0.35 0.36 0.36 0.38
facass 7 5.98 5.277 5.49
copyCB 2.32 2.20 2.06 1.92
FactorTime 166.17 93.93 55.68 39.02

Table 15: Time (seconds) spent in the most costly routines as a function
of the number of threads. Testcase A1M, Nehalem. The TAU profiler was
used.

1 MPI 2 MPI 4 MPI 8 MPI
8 threads 4 threads 2 threads 1 thread

FactorTime 35.72 34.98 35.89 47.18

SolveTime (1 RHS) 0.6977 0.5283 0.4533 0.39

Table 16: Time (seconds) spent in the factor and solve phases with mixed
MPI and OpenMP on 8 cores. Testcase A1M, Nehalem, compiling without
TAU. Serial version (1 MPI, 1 thread) takes 162 seconds.

1 MPI 2 MPI 4 MPI 8 MPI
8 threads 4 threads 2 threads 1 thread

FactorTime 107.332 90.409 96.19 127.467

Table 17: Time (seconds) spent in the factor phase with mixed MPI and
OpenMP on 8 cores. Testcase A1M, Opteron. Serial version (1 MPI, 1
thread) takes 424.8 seconds.
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symmetric testcases were benchmarked using the matrices from the French-
Israeli Multicomputing project. They are generated from the discretization
of 3-dimensional Navier-Stokes operator and yield saddle-point matrix struc-
ture. We present here two cases - AMAT60 (N = 965215, NZ = 7458355)
which is a saddle-point matrix with a large zero block at the end; and A1M

which is a submatrix of AMAT60 with no zeros on diagonal. The scaling
of testcase A1M (N = 738235, NZ = 4756918) is shown in Tables 15,
16 and 17, where the scaling results are similar to the unsymmetric case
discussed in the previous subsection. The best case speed-up is obtained
with 4 threads and 2 MPI processes, which is 4.63 on Nehalem and 4.70 on
Opteron. The scaling of the bigger case is shown in Table 18, which shows
considerable gains in all routines except facm up to 8 threads. This indicates
that the routine facm should probably be rewritten with more attention paid
to locality, similar to what was done for facmldlt (see first paragraph of
Section 4.2. Results of the mixed strategy are given in Table 19 and show
the best case performance with 8 threads (an overall speedup of 6.22 over
the serial version). This is similar to the result of the FDTD testcase which
also showed best results with 8 threads, implying that for very large cases 8
threads per MPI process currently give better performance than 4 threads
per MPI process.

Routine 1 thread 2 threads 4 threads 8 threads

facp 2876 1424 723 379
facq 780 385.89 195 115.4
facm 59.2 56 57.6 57.4
facass 85.9 55.5 41.1 37.9
copyCB 33.1 22.5 17.1 15.5
FactorTime 3884.4 2013.6 1068.0 624.2

Table 18: Time (seconds) spent in the most costly routines as a function of
the number of threads. Testcase AMAT60, Opteron. The TAU profiler was
used.

1 MPI 4 MPI 2 MPI 8 MPI
8 threads 2 threads 4 threads 1 thread

FactorTime 624 807 768 NA

SolveTime (1 RHS) 8.26 4.17 6.08 NA

Table 19: Time (seconds) spent in the factor and solve phases with mixed
MPI and OpenMP on 8 cores. Testcase AMAT60, Opteron. Serial version
(1MPI, 1 thread) takes 3884 seconds. NA means that the result is not
available because of insufficient memory.
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Figure 5: Time spent in the solve phase to solve 40 right-hand side vectors
as a function of the number of threads for two different blocking factors
(ICNTL(27)). Testcase A1M, Opteron.

4.4 Solve Phase

In direct solvers, factorization time is the dominant cost whereas solve time
is not in case of a small number of right hand sides. But this cost becomes
dominant in the cases when the number of right-hand sides is big, or when
an application iterates on successive solves without refactoring the matrix.
Some regions of the solve phase use BLAS operations, while some small
loops in the solve phase were multithreaded. Single right-hand side uses
BLAS2, while multiple right-hand sides use BLAS3. Therefore we expect to
see scaling as we increase the number of right-hand sides and the blocking
factor during the solve phase. This blocking factor, ICNTL(27), corresponds
to the number of columns of right-hand side treated simultaneously. Notice
that in the current version of the code, this blocking factor cannot be very
large due to memory constraints, even if we have a very large number of
right-hand sides simultaneously. The scaling of the solve phase is shown
in Figure 5, line “SolveTime”, where we indeed see slowdowns with lower
ICNTL(27) for a constant number of solves. With ICNTL(27) bigger than
4, the scaling behaviour improves although it tends to saturate with more
than 4 threads (similar to the factorization phase).
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5 Issues and discussion on Multithreading

Tuning a mixed MPI/OpenMP solver is a challenging task [17] because of
various compiler, platform and architecture issues. In our approach, the
OpenMP directives form a high level abstraction which does not provide
transparency as to how the compiler and operating system handle the mul-
tithreaded tasks. They cannot yet be trusted to provide the best solution
for all the issues involving multithreading. Different authors report different
findings involving the use of OpenMP and POSIX threads [8] for handling
multithreading - such as thread affinity and thread activity. The leading is-
sues one should keep in mind are the following - data locality, thread activity
and thread affinity. In the following subsections we report on the important
issues during multithreading MUMPS.

5.1 Thread Affinity

Thread affinity describes how likely a thread is to run on a particular core.
By setting the thread affinity, we can bind a thread to a particular core
which may be beneficial to the performance of numerical kernels, particu-
larly in cases where the NUMA factor7 is large. To our knowledge there are
two ways to set thread affinity - one is through the use of libnuma, and the
other is through the environment variable KMP AFFINITY, when INTEL
compilers are used. We have used the latter method for experimenting with
the effect of thread affinity. There can be three values of this variable -
none (default), compact and scatter. Intuitively speaking the default mode
should perform the best since other modes interfere with the operating sys-
tem’s ability to schedule tasks. On Opteron no effect of setting the thread
affinity was observed. For smaller testcases we observed a small effect of
this variable on Nehalem, as depicted in Table 20. For small datasets the
compact mode seems to perform the best in OpenMP regions, and conse-
quently there is a small difference in the net factorization time. For example,
in APACHE2 factorization takes around 1.5 seconds more in default mode
and this difference was constant between several runs. However for larger
cases this effect was not noticeable. From this we can conclude that setting
the thread affinity has a stabilizing effect when smaller datasets with low
granularity are processed in the multithreaded regions. It does not seem
to affect scalability by a great deal. The thread affinity effect in our ex-
periments was visible only on Nehalem architectures, not on Opteron. One
reason of this might be that in our approach we do not do any specific effort
on locality aspects, for example, we do not force the same thread to work
on the same data during different tasks of the computation. We do not have

7In NUMA architectures, the NUMA factor shows the difference in latency for accessing
dada from a local memory location as opposed to a non-local one.
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2 threads 4 threads 8 threads
compact none scatter compact none scatter compact none scatter

facass 527 634 594 490 521 510 560 518 492
copyCB 480 701 665 465 673 625 687 898 677
faci 106 162 163 99 147 141 146 244 141

Table 20: Effect of KMP AFFINITY on the time (milliseconds) spent in
assembly (facass), memory copies (copyCB), and pivot search operations
(facildlt). Nehalem platform, testcase APACHE2, using the symmetric in-
definite version of the solver.

any control either on the status of the various levels of cache after calls to
multithreads BLAS.

5.2 Memory consumption

Using a larger number of threads per node decreases the memory require-
ments. This is because larger number of MPI processes require some dupli-
cation of data during different parts of the factorization phase, and because
the current memory scalability with the number of MPI processes has some
potential for improvements (see last Chapter of [1]). The shared memory
environments do not require data duplication and hence when memory is
limited using larger number of threads per MPI process is advisable. For
example, the example problem AMAT60 in Table 18 consumes a total of
17.98 GB on one MPI process, 23.1 GB on two MPI processes and 23.21
GB on four MPI processes. The APACHE2 testcase takes 1596 MBytes on
one MPI process, 1772 MBytes on two MPI processes, 1968 MBytes on four
MPI processes and 2416 MBytes eight MPI processes.

5.3 Mixed MPI/OpenMP Strategy

As was shown in the experiments a mixed MPI/OpenMP strategy helps to
gain speed as well. Intuitively, MPI implementation is faster because of nat-
ural data locality but suffers from large overhead of communication costs.
OpenMP can help reduce the number of communications so using small
number of threads is better. However as was shown in the experiments,
in MUMPS there is almost linear speedup in the BLAS operations (which
constitute the dominant costs) for smaller number of threads and they sat-
urate as the number is increased due to physical limitations in the memory
bandwidth and shared cache. So for the MUMPS solver, MPI processes
should be increased when the saturation sets in order to maintain optimum
performance. For eight cores, 4 threads per MPI process currently seems to
be the optimum number for most cases.
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5.4 Regulating multithreaded regions

As was shown before, sometimes we may want to avoid forking into multiple
threads due to slowdown in small block sizes. OpenMP has different meth-
ods for regulating this - such as setting chunk sizes during scheduling, IF
statements that can avoid multithreading, or NUMTHREADS statements
to fix the number of threads for some regions. For small chunks of tasks
multithreading may be avoided using IF statements, giving the same serial
performance. For example, the faci operations corresponding to the pivot
search (see Table 4) required an IF statement to stop multithreading in
smaller blocks. However and to our surprise, it was found that we actually
have a slight degradation from the serial performance even with these state-
ments as shown in Table 21, in the smaller blocks. In the testcase THREAD
(table 4) most of the time is spent in the bigger blocks resulting into a net
speedup. The reason such performance degradation is not understood since
intuitively the compiler should follow the same method as in serial execution
for the smaller blocks. For getting performance gains within the OpenMP
regions that are memory-bound, the granularity of tasks has to be impor-
tant: Table 22 shows the performance for different block sizes in the copyCB
operations. Since most of the time is spent in the in smaller blocks the over-
all gain is smaller in this testcase. Furthermore, in the symmetric case, these
copyCB operations are performed on triangular matrices (so called triangular

loops, which are harder to parallelize. Some improvements may consist in
forcing smaller chunks, or in selecting a dynamic “GUIDED” scheduler, or
in trying to use the COLLAPSE keyword from the OpenMP 3.0 standard,
or in defining manually the first and last row for each threads in order to
balance the work. This has to be studied further. Dynamic scheduling might
have a significant cost on the numerous small blocks and small chunks may
be dangerous: during the copyCB operations chunks of memory are copied
from source to destination areas which are not contiguous as shown in Fig-
ure 6. By using smaller chunks, the work would be better balance but thread
interleaving may decrease data locality and become critical, if for example
two threads need to access the same cache line at a boundary between two
chunks.

In all cases, test matrices with too many small fronts or blocks do not
exhibit large gains within the threaded regions. This causes non-uniform
scaling in different testcases. In order to improve thread parallelism when a
lot of time is spent in small tasks, threads would need to exploit the so called
tree parallelism rather than just the parallelism within frontal matrices. This
is clearly beyond the objectives of this study consisting in multithreading
an MPI solver without deep restructuring or rewriting of the code.
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Thread 1 destThreads 2 src Thread 3  src Thread 2 dest Thread 3  destThread 1 src

Figure 6: Working areas of threads during CopyCB Operations.

Order of front 1 thread 2 threads 2 threads
with IF without IF

0-100 504 767 600
100-200 148 311 131
200-300 188 307 142

Table 21: Effect of an OpenMP IF to avoid multithreading the assembly of
contribution blocks smaller than 300. Time spent (milliseconds) in facass
operations for different front sizes. Testcase Haltere, Nehalem.

Order of # calls to
contribution # copyCB 1 thread 2 threads 4 threads 8 threads

0-500 60056 1823 1431 1204 1508
500-1000 721 1049 887 605 415
1000-1500 140 613 527 358 267
1500-2000 52 432 370 237 186
2000-2500 28 436 370 237 179
2500-3000 15 357 309 193 145
3000-3500 5 155 135 85 62
3500-4000 8 337 295 186 140
4500-5000 3 150 132 84 64
Total 61028 5358 4460 3192 2971

Table 22: Time (milliseconds) spent in copyCB for varying sizes of the
contribution blocks. Testcase Haltere, Opteron.
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5.5 Other issues

There are other issues such as platform issues and thread activities. Differ-
ent platforms have different architectures and hence demonstrate differing
scaling behaviour. For example, machines with better memory bandwidth
like Intel Nehalem demonstrate better scaling than previous Xeon machines.
Also machines with larger NUMA factors demonstrate poorer scaling with
threads and a pure MPI implementation is very competitive. Other authors
have shown that keeping threads active all the time also leads to better per-
formance. In MUMPS we follow the fork-join model to execute the threaded
regions – this loses some time in activating the sleeping threads once the
multithreaded execution starts, as is particularly visible on small frontal
matrices. The cache and NUMA penalties are particularly critical on these
small frontal matrices at the bottom of the tree, where the threaded ap-
proach would benefit from exploiting the tree parallelism (similar to MPI),
as said in the previous section.

Another issue is related to the multithreaded BLAS. Whereas multi-
threaded BLAS libraries are a natural way to parallelize BLAS operations,
it is not simple to control the number of threads within each BLAS call in a
portable manner. As an example, consider the routine factldlt, perform-
ing the BLAS3 updates of the Schur of a symmetric frontal matrix. The
way factldlt is implemented in MUMPS, many DGEMM BLAS calls are
done to perform updates of various rectangular blocks from the lower trian-
gle of the Schur complement. Instead of parallelizing inside each BLAS call,
it would make sense to parallelize at the upper level, hopefully obtaining
better speed-ups than around 4 on 8 threads for this routine. However, all
BLAS calls use the number of threads defined by OMP NUM THREADS,
which prevents us from doing this8. This issue will become critical if tree
parallelism is exploited by the threads, because BLAS calls should use 1
thread when tree parallelism is used, and more threads higher in the tree.
In order to do this in a portable way, one extreme solution would be to avoid
multithreaded BLAS altogether and redo the work of parallelizing above a
serial BLAS library. This could help improving data locality and trying to
keep assigning the same thread to the same data during the processing of a
frontal matrix but getting similar parallel BLAS performance as the existing
multithreaded BLAS libraries would probably be very hard. However, this
issue would have to be decided before widely distributing a first version of
a multithreaded MUMPS library.

8With specific BLAS libraries, it should be possible to nest OpenMP parallelism and
BLAS parallelism. For example mkl num threads could be set dynamically to 1 within
the routine factldlt, allowing exploiting the OMP NUM THREADS threads across the
BLAS calls.

INRIA



Exploiting Multicore Parallelism in MUMPS 25

6 Concluding Remarks and Future Work

In this report, we presented some of our experience in multithreading the
multifrontal solver MUMPS, without deeply restructuring the code. Al-
though an exhaustive study is missing, it was shown that multithreading
the solver is useful both in terms of speed and memory, as compared to
pure MPI implementations. We get almost scalable results for all cases
(unsymmetric, symmetric positive definite and symmetric indefinite cases),
and a mixed MPI and OpenMP strategy often yields an increased perfor-
mance. 4 threads per MPI process seem to provide the best performance for
most cases, whereas for the bigger, computationally more intensive cases,
8 threads work better. By mixing MPI and thread parallelism we were
able to obtain speed-ups around 6 on 8 cores without deeply rewriting
the code. Scalability was demonstrated on two different platforms without
architecture-specific tuning of the code. Some limitations of thread paral-
lelism have been shown on the small tasks, whose cost cannot be neglected
on the range of matrices we have tested. This means that, especially when
more threads will have to be used, a plateau can be expected and either tree
parallelism has to be exploited at the thread level, or much larger matrices
must be targeted. Note that this remark applies to both the factorization
and solve phases.

Before that, the factorization and assembly kernels should be studied
more deeply to push further the current approach. In particular, the tri-
angular loops of the symmetric code have to be better parallelized, keeping
the same thread working on the same rows during various operations would
help, and the block sizes must be optimized as a function of the number
of threads during the blocked factorizations. Some BLAS 2 factorization
kernels (such as facmldlt) have started to be rewritten in order to pro-
vide better locality but there is still scope for improvements. Also, finding
a portable way to exploit parallelism across independent BLAS calls is a
critical issue, otherwise serial BLAS has to be used, which means in many
cases writing OpenMP code around BLAS calls with smaller sizes.

We also plan to investigate the performance gains on machines with
massively parallel nodes and different architectures; on large problems, we
expect the relative costs of small tasks to be less critical if the number of
threads per MPI task does not grow too much. However, when increasing
the number of MPI processes, the amount of work spent in parallelized
fronts will become predominant and profiling will be needed to identify the
corresponding parts of the code which need to be multithreaded in this
new context. For example, the factorization kernels use different routines
than the ones from this report when fronts are parallelized. Also, the MPI
version heavily relies on the use of MPI PACK (and MPI UNPACK ) in
the message passing layer. In case these operations appear to be costly,
replacing them by multithreaded memory copies might be an option. When
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more than one MPI process is used, ScaLAPACK is called at the top of
the tree, and the block size and grid shape for ScaLAPACK may need to
be adapted to the number of threads used by each MPI process involved in
ScaLAPACK computations (note that in that case, multithreaded BLAS is

required if we do not want to also rewrite ScaLAPACK. This implies that a
version of MUMPS relying only on serial BLAS will not be satisfactory for
the performance of ScaLAPACK routines).
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This appendix contains three sections:

• some guidelines to use several threads with this version of MUMPS,
which relies on OpenMP and a multithreaded BLAS library,

• a remark on the saddle-point problems arising from the French-Israeli
Multicomputing project,

• a short description of the MUMPS routines cited in this report.

A User guidelines for using multithreaded feature

in MUMPS

1. For using multithreaded features in MUMPS the following are cur-
rently required - an OpenMP Fortran compiler and a threaded BLAS
library (MKL BLAS library is recommended). The only extra flags
required both during compilation and linking is -openmp (when Intel
ifort is used) or -fopenmp (when GNU compiler is used). The number
of threads can be set using the environment variable OMP NUM THREADS.

2. The number of threads required for optimum performance depends
on the testcase. In general, the multithreaded parts scale up to a
certain number of threads before saturating. For example, on 8-core
machines saturation sets in after 4 threads. So, the number of threads
per MPI process should be set at the 4 for eight-core machines for best
performance of most testcases.

3. For very large problems that require large memory using maximum
number of threads is beneficial to restrict the total memory usage per
node.

4. If Intel compilers are used setting KMP AFFINITY=compact is rec-
ommended.

B Remark on Saddle Point matrices

In the French-Israel Multicomputing project targeting computational fluid
dynamics applications, the matrices arise from are a class of saddle point
problems, the fast solution of which has been the topic of several research
efforts. The sparsity structure of the cases we handled is shown in Figure 7.
A class of formulations arising from Navier-Stokes equations typically yield
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Figure 7: Sparsity pattern of a small Israeli Matrix.
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such a structure, where there is a large zero block at the end. The for-
mulation yielding our testcases is described in [13]. A number of direct,
iterative and hybrid methods [6] have been proposed to treat such prob-
lems. Factorization in direct methods pose a big challenge because of a
large number of delayed pivots occurring due to the zero block, for example
the number of delayed pivots produced by MUMPS in the AMAT60 test-
case was 319246. Some methods in this area are based on finding a stable
permutation without zero pivots on diagonal (see [20, 7]), which essentially
are alternate reordering schemes. To get rid of the huge number of delayed
pivots we experimented with some of these reordering methods, however a
simple hybrid direct factorization of the zero free block followed by an itera-
tive solution of the Schur complement yielded the best solution. The matrix
can be represented in the following form:

Amat =

(

A11 B

BT 0

)

Here A11 is a zero-free diagonal block consisting of velocity equations
in three directions. It can be factorized rather fast using MUMPS and a
standard reordering method, compared to the whole Amat matrix. Other-
wise the three blocks in the independent three directions can be factorized
separately to form the LU decomposition of the A11 block, and since the
order of each sub-matrix is reduced by a factor of 4 the factorization time of
each block is small compared to the whole Amat. Subsequently, the Schur
complement S = BTA11

−1B can be solved iteratively. In our case, the Schur
complement was found to be well conditioned and we used GMRES. We ob-
served that the number of GMRES iterations remained almost constant with
increasing discretization. We do not have a proof of the well conditioning of
S, however even if a preconditioner is required this still seems to be better
than the direct method given the large reduction of factorization time. S is
not formed explicitly (it was found to be dense), only the factors of the three
blocks of A11 are formed. To compute the matrix-vector products S.v = w

during GMRES iterations, first we compute the sparse matrix-vector prod-
uct v1 = B.v, and then three MUMPS solves are required for computing
v2 = A11

−1.v1, which requires solves for each of the three blocks. Finally
computing w = BT .v2 forms the required matrix-vector product during each
iteration. For the 1 million case (testcase AMAT60 on 8 cores of the Opteron
platform (we use here 8 MPI processes with 1 thread each), the factoriza-
tion time for the direct method was 3625 seconds and the solve time was
17 seconds. With the same number of nodes, the hybrid approach took 314
seconds for factorization and 45.6 seconds for solve with 38 iterations and
a tolerance of 10−9. The increase in solve time is not very large since each
iteration consists of 3 MUMPS solves (one for each block). Overall there is
a gain of almost a 10x factor for this case. The largest testcase (3 million
unknowns) could not be solved on 16 cores of the Opteron platform using
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the direct method. Hoever, the hybrid method with 16 MPI processes (1
MPI process with 1 thread on each core) took 2553 seconds for factorization
and 347 seconds for solve (GMRES tolerance 10−9, 40 iterations).

C Short description of the routines studied in this
report

Before describing each of the routines studied in this report, we remind that
MUMPS relies on a multifrontal method, where the computations follow a
tree. At each node of that tree a so called frontal matrix (or front) of the
form

A =

(

A11 A12

A21 A22

)

(2)

is first assembled (assembly operations) using so called contribution blocks

from the children. A11, A12, A12 are called fully summed blocks and are
factorized, and a Schur complement is built in place of A22. This Schur
complement is the contribution block that will be used at the parent node to
assemble the frontal matrix of the parent. A is stored by rows and, in case the
symmetric solver is used, only its lower triangular part is accessed. During
factorization the tree is processed from bottom to top using a topological
order, so that two independent branches can be treated independently. This
is referred to as tree parallelism. Both tree and node parallelism must be
used when the number of processes increases. A node is said to be of type

1 if its frontal matrix is processed by a single MPI process, of type 2 if it is
processed by several MPI processes, and of type 3 if ScaLAPACK is used.

Since this report focuses on the factorization and solve phases, the rou-
tines analdriver (main driver), analgnew (construction of a matrix graph)
and analf (ordering and symbolic factorization) which appear in Table 3 and
are part of the analysis phase will not be detailed.

mumps Main MUMPS driver

factodriver, facb, and facpar Nested factorization drivers.

factoniv1 Factorization of a type 1 node (frontal matrix associated to the
node is processed by a single MPI process and is not distributed among
several MPI processes).

facp In the unsymmetric code, update of the parts A21 (TRSM) and A22

(GEMM), after the Schur complement has been computed.

faci In the unsymmetric code, pivot search with stability check. Requires
accessing to at least one row of A.
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facildlt In the symmetric case, pivot search with stability check. Requires
accessing to at least one column if A.

facm In the unsymmetric code, BLAS 2 factorization of a block of rows
from A11 and A12.

facq In the unsymmetric code, BLAS 3 update of the remaining rows of
A11 and A12 after facm. after a new block of rows has been factorized
by facm.

facmldlt In the symmetric code, BLAS 2 factorization of a block of columns
from A11 and A21.

facsldlt In the symmetric code, BLAS 3 update of the remaining columns
of A11 and A21, after facmldlt. In the symmetric positive definite
solver, A21 is not touched at this stage.

factldlt In the symmetric code, BLAS 3 update, by blocks of A22, after
A11 and A21 have been factorized. In the symmetric positive definite
solver, A21 is first factorized using the A11 block (TRSM operation).

facass Assembly of a frontal matrix A at a node k. Requires access to the
contribution blocks of the children and extend-add operations with
indirections and additions. facass also includes the initialization of
the entries of a frontal matrix to 0.

ldltassniv12 In the symmetric case, effective assembly operations, called
from facass.

copyCB Copy of the Schur complement (or contribution block, corre-
sponding to A22) of a frontal matrix from the dense matrix A to a
separate location, for later assembly at the parent node.

facstack Stack operation: after a frontal matrix A has been factorized
and its Schur complement has moved, factors are made contiguous in
memory. For type 1 nodes, this implies copies of A21 entries in the
unsymmetric case, and copies of entries in both A11 and A21 in the
symmetric case.

facstosendarrowheads modify storage of initial matrix into a so called
arrowhead format for easier assembly into the frontal matrices at each
node of the multifrontal tree. In case several MPI processes are used,
this routine also sends the elements of the initial matrix from the
MPI process with rank 0 to other MPI processes (assuming the initial
matrix is centralized).
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