
Wall slip, shear banding, and instability in the flow of a

triblock copolymer micellar solution
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The shear flow of a triblock copolymer micellar solution (PEO–PPO–PEO Pluronic P84 in brine)
is investigated using simultaneous rheological and velocity profile measurements in the concentric
cylinder geometry. We focus on two different temperatures below and above the transition temper-
ature Tc which was previously associated with the apparition of a stress plateau in the flow curve.
(i) At T = 37.0◦C < Tc, the bulk flow remains homogeneous and Newtonian-like, although signif-
icant wall slip is measured at the rotor that can be linked to an inflexion point in the flow curve.
(ii) At T = 39.4◦C > Tc, the stress plateau is shown to correspond to stationary shear-banded
states characterized by two high shear rate bands close to the walls and a very weakly sheared
central band, together with large slip velocities at the rotor. In both cases, the high shear branch of
the flow curve is characterized by flow instability. Interpretations of wall slip, three-band structure,
and instability are proposed in light of recent theoretical models and experiments.

PACS numbers: 83.60.-a, 83.80.Qr, 47.50.+d, 43.58.+z
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I. INTRODUCTION

Triblock copolymers PEO–PPO–PEO based on
poly(ethylene oxide) (PEO) and poly(propylene oxide)
(PPO) have interesting self-assembly behavior in aque-
ous solutions due to their amphiphilic character [1–3].
PPO is soluble in water only at low concentrations and
for molecular weights smaller than about 4000 [4]. As
a homopolymer, PEO is insoluble in water at low and
high temperatures. The binodal appears as a closed
loop in the temperature–concentration phase diagram,
and the miscibility region shrinks with increasing molec-
ular weight [5–7]. Thus the hydrophilic/hydrophobic bal-
ance of these copolymers can be tuned by changing the
PEO/PPO molar ratio and the temperature. Above the
critical micelle concentration (cmc) and the critical mi-
cellar temperature (cmt), the copolymer chains aggregate
and form micelles with a PPO core and a PEO corona [8].
The cmc and the cmt both depend on the total molecular
weight [1–3] and on the concentration of added compo-
nents like, e.g., monovalent salts [9–11].

The structure of the micelles has been elucidated by us-
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ing scattering techniques [8, 12]. Above the cmt and the
cmc, spherical micelles are obtained with the aggregation
number being an increasing function of the temperature
[13, 14]. At low temperature many water molecules are
still present in the PPO core but are progressively ex-
pelled as the temperature increases. Yet the radius of
the core increases and there is a growing entropic con-
tribution from the stretched PPO blocks to the free en-
ergy per micelle. Hence the aggregation number can-
not increase indefinitely and a spheroidal or cylindrical
shape can be expected [13, 14] if the size of the PEO
blocks is not too large compared to that of the PPO
block [15]. This is basically the same packing param-
eter criterion as the one used for conventional surfac-
tants [16]. Clear experimental evidence for the growth
of elongated micelles has been provided by scattering
techniques for the commercial Pluronic copolymers P85
(Mw = 4600 g mol−1, PEO weight fraction ≈ 0.5) [17–
19] and P84 (Mw = 4200 g mol−1, PEO weight fraction
≈ 0.4) [20–23].

At low concentration of the copolymer micelles, the
temperature-induced micellar growth has a huge influ-
ence on the viscoelastic properties. Typically, for a
Pluronic P84 weight fraction of 0.04 in 2 M NaCl brine,
the zero-shear viscosity increases by a factor 105 when
the temperature increases from 30◦C to 40◦C [24]. Be-
low 30◦C the solution contains only dilute spherical mi-
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celles with a negligible effect on the viscosity. As the ag-
gregates grow into wormlike micelles, the solution enters
the semidilute regime of living entangled polymers and
the zero-shear viscosity jumps accordingly. Above about
41◦C, the solvent becomes progressively poorer for the
PEO corona and the aggregates become more compact
as the cloud point is approached [23].

The non-Newtonian behavior under steady shear is
also strongly influenced by micellar growth. The steady-
state flow curves (shear stress σ vs shear rate γ̇) mea-
sured in the concentric cylinder geometry display a dif-
ferent behavior below and above a transition tempera-
ture Tc ≈ 37.7◦C at weight fraction 0.04 [24]. Below this
temperature the shear stress is a monotonic increasing
function of the imposed shear rate, while above Tc the
flow curve exhibits two increasing branches separated by
a stress plateau [24]. The presence of this plateau is of-
ten interpreted as the hallmark of shear-banded flows,
i.e., of the existence of a non-uniform velocity gradient
across the gap of the rheometer. The occurrence and the
stability of non-uniform shear flows have been studied
theoretically for about twenty years [25–48]. The exis-
tence of a plateau in the flow curve has been indeed ob-
served in a number of experimental systems, mainly in
conventional surfactant solutions [49–70]. However only a
few studies have been able to measure directly the veloc-
ity profile in the rheometer gap using NMR velocimetry
[52, 53, 56, 57, 64], particle image velocimetry [55, 68],
heterodyne dynamic light scattering [60, 70] or ultrasonic
speckle velocimetry (USV) [65]. The recently developped
USV technique allows one to measure velocity profiles
with a temporal resolution of 0.02 to 2 s depending on
the shear rate [71]. Thus the stability of inhomogeneous
velocity profiles can be investigated and the transition to
unstable flow regimes can be studied.

In Ref. [24] two of us used small-angle light scatter-
ing to study Pluronic P84 solutions in brine sheared in
the concentric cylinder geometry. Strong indications for
shear-induced demixing below Tc and for shear banding
above Tc were found but no direct evidence from velocity
measurements was provided. The aim of the present pa-
per is to use the USV technique to simultaneously mea-
sure the rheology and velocity profiles of the same so-
lutions in experimental conditions very close to those of
Ref. [24]. We study the system at different temperatures,
below and above the transition temperature Tc (where a
plateau appears in the flow curve). We are thus able
to follow the evolution of the velocity profiles as a func-
tion of the applied shear rate and of the temperature,
and to identify different flow regimes that turn out to
be more complex than those usually observed in shear-
banded flows.

The paper is organized as follows. Experimental de-
tails about the samples and about the rheological and
velocimetry setups are given in Sect. II. Results obtained
at two different temperatures are described in Sect. III.
We show that (i) at T = 37.0◦C the bulk flow remains ho-
mogeneous and Newtonian-like, although significant wall

slip is measured at the rotor that can be linked to an in-
flexion point in the flow curve, and (ii) at T = 39.4◦C the
stress plateau in the flow curve is associated to station-
ary shear-banded states characterized by two high shear
rate bands close to the walls and a very weakly sheared
central band, together with large slip velocities at the ro-
tor. In both cases, on the high shear branch of the flow
curve, the flow becomes highly non-stationary and two-
dimensional or even possibly three-dimensional. These
results are further discussed in Sect. IV where interpre-
tations of wall slip, three-band structure, and instability
are proposed in light of recent theoretical models and
experimental results on shear banding.

II. EXPERIMENTAL SECTION

A. Sample preparation

We used without further purification the commercial
Pluronic P84 supplied by BASF. The total molecular
weight is 4200 g mol−1 and the nominal stoechiometry
is PEO19–PPO43–PEO19. With 2 M added NaCl, mi-
crocalorimetric measurements [21] show that, for a 0.04
weight fraction, the cmt and the cloud point are at about
2◦C and 43◦C, respectively. The onset of micellar growth
is about 30◦C [21, 23]. The transition to the semidi-
lute regime of wormlike micelles is estimated to occur
at about 35◦C, when the zero-shear viscosity has in-
creased by a factor 10. Stock solutions at 0.04 g cm−3

were prepared and stored in the dark at 4◦C for further
use. The acoustic contrast for USV measurements was
provided by monodisperse micrometric polystyrene latex
particles (Microparticles GmbH, diameter 9 µm) added
to the copolymer solution at a weight fraction of 0.01 [71].
To avoid settling of the particles, the solution was first
seeded at room temperature. After the dispersion of the
latices by vigorous stirring, the solution was brought to
about 36◦C to increase its zero-shear viscosity. In these
conditions, the latex particles remained suspended in the
solution for the whole duration of the experiments, typi-
cally a few hours.

B. Rheology

Rheological measurements were performed with two
home-built setups based on commercial rheometers.
They have been described elsewhere [24, 71]. In both
cases the rheometers are stress-controlled but have a feed-
back loop that allows strain-controlled measurements. In
the temperature range 30◦C–40◦C, the temperature reg-
ulation of the solution is straightforward and the evapo-
ration is minimized thanks to the use of solvent traps.

In the case of the rheometer coupled with small-angle
light scattering [24], the Couette device is operated by
a RS1 rheometer (Thermo Haake). The inner rotor has
an outer radius R1 = 26 mm and the outer stator an
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FIG. 1: Influence of latex particles on the rheology of the
solutions. Flow curve measured with the setup of Ref. [24]
on the P84 solution in brine without particles (•) and with
particles at 0.01 weight fraction (◦) at a temperature T =
40.2◦C. Inset: zero-shear viscosity η0 as a function of the
temperature T for the two solutions.

inner radius R2 = 27 mm. Both are made out of quartz.
Thermostated water circulating in a jacket surrounding
the stator regulates the temperature to within ± 0.05◦C,
which is measured by a Pt resistor located in the bottom
aluminum plate of the jacket.

The setup coupled with USV has very similar charac-
teristics [71]. The inner rotor is operated by an AR1000
rheometer (TA Instruments). The rotor (R1 = 24 mm)
and the stator (R2 = 25 mm) are made out of Plexiglas.
The stator is surrounded by water whose temperature
is kept constant to within ± 0.1◦C. The temperature is
measured in the circulating bath and the offset with the
actual temperature in the Couette cell is estimated to be
about 0.5–1◦C in the range of temperatures probed in
these experiments (36 < T < 41◦C).

Thus the experimental conditions of the shear flow can
be well enough reproduced in the two setups to allow for
a comparison of the results. However these conditions
are not strictly identical. In particular, the different ma-
terials of the Couette devices might influence wall slip
and small differences in the actual temperature of the
samples will play an important role since temperature
controls crucially the micellar growth.

We checked for the influence of added latex particles
on the rheology with the setup of Ref. [24]. Figure 1 com-
pares the flow curve at a given temperature T = 40.2◦C
and the evolution of the zero-shear viscosity with temper-
ature measured in the copolymer solution without latices
to the same data obtained in the solution seeded with
latices. Although the global temperature evolution is
well reproduced in the two samples, the solution with
added particles has a much higher zero-shear viscosity
for a given temperature in the growth regime (see inset
of Fig. 1). At T = 40.2◦C, close to the maximum of
viscosity, the difference in the zero-shear viscosity is less

marked. The difference in viscosity even vanishes pro-
gressively as the shear rate is increased so that the value
and the boundaries of the stress plateau are almost unaf-
fected by the presence of latices. Thus, although the be-
havior in the non-Newtonian regime, which is of interest
in this paper, appears to remain unchanged by the addi-
tion of latex particles, the zero-shear viscosity cannot be
used as an internal temperature calibration to correct for
small differences in actual temperatures. Nevertheless, a
qualitative comparison can still be achieved between the
previous [24] and the present results.

In the following all the results were obtained with
the setup of Ref. [71]. The combined rheological and
velocimetry experiments were performed by imposing a
constant shear rate to the solutions for increasing shear
rate steps. The values reported for the stress correspond
to its average value across the gap.

C. Ultrasonic speckle velocimetry

The USV setup has been described at length in
Ref. [71]. This technique is based on backscattering from
acoustic impedance inhomogeneities suspended in a fluid
medium. When the liquid contains a lot of scatterers
per unit volume, the backscattered signal results in an
ultrasonic speckle built from the interferences of all the
backscattered waves. To discriminate between different
scatterers in space and to measure velocity profiles in a
flow, a solution is to use short acoustic pulses that gener-
ate a series of backscattered echoes. The arrival times of
the echoes are then directly linked to the positions of the
scatterers along the acoustic beam. Cross-correlation of
speckle signals corresponding to successive pulses yields
the displacement of the scatterers projected along the
acoustic axis. By using pulses with central frequencies
larger than 20 MHz, velocity profiles can be measured in
complex fluids sheared between two plates separated by
a gap e = 1 mm with a spatial resolution of about 40 µm.
The pulse repetition frequency is tuned according to the
rotation speed of the rotor so that the maximum dis-
placement between two successive pulses remains smaller
than half the acoustic wavelength.

Velocity profiles were recorded after an equilibration
time of 30 minutes. For γ̇ < 15 s−1, an “individual”
velocity profile corresponds to an average over 1000 suc-
cessive pulses. For a given number of pulses, the total
averaging time is inversely proportional to the applied
shear rate [71]. Typically, in the present experiments,
for a small shear rate of γ̇ ≈ 0.1 s−1, an “individual”
velocity profile was measured in 250 s. For γ̇ ≥ 15 s−1,
we used averages over 20 bursts of 20 pulses. The pe-
riod of the burst sequence was chosen so that the to-
tal averaging time for an individual velocity profile was
equal to 1 s whatever γ̇ ≥ 15 s−1. The “time-averaged”
velocity profiles shown below in Figs. 3 and 6 are then
obtained by averaging individual velocity profiles during
about 15 minutes i.e. over only a few individual velocity
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FIG. 2: Flow curve at T = 37.0◦C. The full symbols (•) cor-
respond to the engineering data σ(γ̇) while the open symbols
(¤) represent the “true” flow curve σ(γ̇true) obtained once
wall slip is taken into account (see text). The solid lines are
σ = 0.25γ̇ in regime (N) and σ = 0.012γ̇ in regime (U).

profiles for the lowest shear rates to several hundreds as
soon as γ̇ ≥ 15 s−1. For the purpose of the discussion be-
low, it is important to keep in mind that USV measures
the projection of the velocity vector along the acoustic
axis. The reader is referred to Ref. [71] for full technical
details.

III. RESULTS

A. T = 37.0◦C : homogeneous flow with wall slip

Figure 2 shows the flow curve measured by the rheome-
ter at T = 37.0◦C (hereafter referred to as the “engineer-
ing” flow curve). As reported earlier [24], it shows an
inflexion point but no stress plateau. At low shear rates,
a zero-shear viscosity of 0.25 Pa s is measured. Figure 3
shows the corresponding time-averaged velocity profiles
v(x) measured for different applied shear rates, where x
is the distance from the rotor. The stator is located at
x = e = R2 − R1 = 1 mm. For the whole range of
shear rates investigated here, the time-averaged velocity
profiles correspond to those expected for a Newtonian
fluid and the time-averaged velocity gradient is constant
across the whole gap.

However, for applied shear rates higher than about
3 s−1, there is a noticeable difference between the ve-
locity v0 = γ̇e imposed by the rotor and the true velocity
of the fluid at the rotor (x = 0), i.e., wall slip occurs
at the rotor. A quantitative estimate of the slip velocity
is obtained through a linear fit ṽ(x) of the experimen-
tal data close to the inner wall over x = 0.08–0.20 mm.
The slip velocity vs at the rotor is then simply given by
vs = v0− ṽ(0). As seen in Fig. 4, wall slip does not set in
abruptly for a well defined shear rate but the slip velocity
rather appears to increase smoothly over the whole range
of applied shear rates. Note the error bars on the first
data points which indicate an experimental uncertainty
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FIG. 3: Time-averaged velocity profiles at T = 37.0◦C. The
standard deviation is of the order of the marker size. The
dotted lines are the velocity profiles expected in a Newtonian
fluid without wall slip. Inset: dimensionless data vs/v0 vs
x/e. Top : γ̇ = 0.5 (•), 1 (◦), and 2 s−1 (¥). Bottom : γ̇ =
20 (•), 50 (◦), and 100 s−1 (¥).

on the determination of vs of about 0.01 mm s−1. As long
as γ̇ < 3 s−1, wall slip thus remains hardly detectable and
is buried in experimental noise. The relative slip vs/v0

increases until it reaches about 30% for γ̇ > 100 s−1 (see
inset of Fig. 4). For the purpose of further discussion we
notice that no wall slip is observed at the stator (x = 1).

Finally, as long as the imposed shear rate remains
smaller than 300 s−1, the flow is stationary as shown by
the very small standard deviation of the velocity mea-
surements (of the order of the marker size in Fig. 3).
For shear rates higher than 300 s−1, the flow reaches a
new, unstable regime, whose signature is the considerably
larger statistical fluctuations of the instantaneous veloc-
ity profiles around their average value (velocity profiles
not shown, see Sect. III B 5 for more details on this unsta-
ble flow regime). The flow profile becomes non-stationary
although its mean shape for long time averages remains
close to Newtonian in the bulk with about 30% wall slip
at the rotor.

In Fig. 2 we marked by different background grey val-
ues the regions corresponding to Newtonian behavior
(N), noticeable wall slip (S), and unstable flow (U). Fig-
ure 2 also shows the “true” flow curve, i.e., the shear
stress σ plotted against the shear rate corrected for wall
slip γ̇true = γ̇ − vs/e hereafter called the “true” shear
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FIG. 4: Time-averaged slip velocity vs at the rotor at T =
37.0◦C vs applied shear rate γ̇. The error bars correspond
to the standard deviation of the measurements. The solid
lines have slopes 1.7 and 1 (see discussion in Sect. IV A). The
dashed line is vs = v0. For γ̇ < 1 s−1, slip velocities are too
small to show in logarithmic scales. Inset: relative slip vs/v0

at the rotor vs applied shear rate γ̇.

rate (open symbols). Here and in the following the limits
of the different flow regimes are defined according to the
true shear rates.

B. T = 39.4◦C : complex banded flow

We now turn to measurements performed at a higher
temperature where the flow curve was previously shown
to present a stress plateau [24]. We first give a general
overview of the rheological and flow behaviors and then
describe more precisely the various flow regimes observed
at T = 39.4◦C.

1. Rheological and flow behavior overview

As shown in Fig. 5, the flow curve at T = 39.4◦C ex-
hibits an almost flat stress plateau at σ ≈ 1.2 Pa over
more than two decades separating a Newtonian branch
(N) for γ̇ . 0.03 s−1 (η0 ≈ 39 Pa s) and a second in-
creasing branch for γ̇ & 5 s−1 corresponding to unstable
flow (U). From velocity profile measurements, the stress
plateau can be divided into two parts: a first regime
(S) for 0.03 < γ̇ < 0.3 s−1 where only wall slip is ob-
served, and a new regime (B) for 0.3 < γ̇ < 5 s−1 where
time-averaged velocity profiles reveal a three-band struc-
ture together with wall slip (see Fig. 6). Velocity pro-
files in regimes (N), (S), and (U) (not shown) are widely
similar to those measured in the corresponding regimes
at T = 37.0◦C. In particular, the high shear unstable
branch (U) is again characterized by very large temporal
fluctuations (δv/v & 50%) around an average homoge-
neous velocity profile with significant wall slip at the ro-
tor. The rheological and flow behaviors were found to be
qualitatively the same for all investigated temperatures
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FIG. 5: Flow curve at T = 39.4◦C. The full symbols (•) cor-
respond to the engineering data σ(γ̇) while the open symbols
(¤) represent the “true” flow curve σ(γ̇true) obtained once
wall slip is taken into account. The solid lines are σ = 39γ̇ in
regime N and σ = 0.65γ̇0.55 in regime U.
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FIG. 6: Time-averaged velocity profiles at T = 39.4◦C in the
shear banding regime noted (B) in Fig. 5. γ̇ = 0.5 (•), 1
(◦), 1.5 (¥), and 2 s−1 (¤). The error bars correspond to
the standard deviation of the measurements. Note that the
corresponding slip velocities can be easily estimated from the
applied shear rate and from the fluid velocity measured at the
rotor using vs = γ̇e − v(x = 0).

T ≥ 38◦C.

2. Rheological signals

Figure 7 shows that in regimes (N), (S), and (B),
steady state is reached within about 10 minutes. A stress
overshoot in the temporal evolution of the shear stress
σ(t) marks the onset of nonlinear behavior for regimes
(S), (B), and (U). In regime (U), the instability of the
flow is revealed by the significant increase of the tempo-
ral fluctuations of σ(t): typically δσ/σ ≈ 20% whereas
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FIG. 7: Rheological time series σ(t) recorded at T = 39.4◦C
for four different imposed shear rates. (a) Newtonian regime
(N): γ̇ = 0.02 s−1. (b) Wall slip regime (S): γ̇ = 0.2 s−1. (c)
Shear banding regime (B): γ̇ = 0.5 s−1. (d) Unstable regime
(U): γ̇ = 7 s−1. The insets show that the feedback loop of the
rheometer keeps the shear rate γ̇(t) constant to within 2% for
γ̇ = 0.02 s−1, 0.6% for γ̇ = 0.2 s−1, and 0.3% for γ̇ = 0.5 and
7 s−1.

δγ̇/γ̇ ≤ 0.3%. The Fourier spectrum of σ(t) exhibits a
single characteristic frequency corresponding to that of
the rotor rotation in an otherwise 1/f behavior. The
evolution of the relative fluctuations of the applied shear
rate depicted in the insets of Fig. 7 reflects the increasing
difficulty to control the shear rate as it becomes very low.
We could not detect any significant temporal correlation
between the fluctuations of the applied shear rate and
those of the measured stress.
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FIG. 8: Time-averaged slip velocity vs at the rotor at T =
39.4◦C vs applied shear rate γ̇. The error bars correspond to
the standard deviation of the measurements. The dashed line
is vs = v0. Inset: relative slip vs/v0 at the rotor vs applied
shear rate γ̇.

3. Slip velocity

Once again no slip is detected at the stator for T =
39.4◦C. The evolution of the slip velocity at the rotor
with the imposed shear rate is shown in Fig. 8. It strik-
ingly differs from that observed at T = 37.0◦C (Fig. 4).
After a sharp increase in regime (S), vs almost saturates
in the shear banding regime (B). This behavior corre-
sponds to a decrease of the relative slip vs/v0 as γ̇ is
increased (see inset of Fig. 8) which starts at the onset of
shear banding when vs/v0 ≈ 0.8. The same criterion was
fulfilled at all temperatures where shear banding could
be observed (T ≥ 38◦C). Note that for T = 37.0◦C the
ratio vs/v0 remains always smaller than 0.3 although the
absolute value of the slip velocity can be orders of mag-
nitude larger at the lower temperature (see Fig. 4).

4. Shear banding regime

The most striking feature of Fig. 6 is the presence of
three shear bands in the gap. Figure 9 shows the location
of the two interfaces across the gap and the local shear
rate values within the bands as a function of the true
shear rate. Such data are easily extracted from piece-
wise linear fits of the time-averaged velocity profiles in
regime (B). The width of the high shear band close to the
rotor is seen to increase with the shear rate whereas no
systematic trend can be given for the band at the rotor.
Plotting the same data as a function of the local shear
stresses at the interfaces does not provide evidence for
any “stress selection” rule either. Moreover the central
band remains very weakly sheared for most of the im-
posed shear rate values. The shear rate inside the band
at the rotor is always at least twice as large as that in
the band at the stator. These results clearly point to a
complex shear banding scenario which will be discussed
below in Sect. IVB. Note that temporal fluctuations of
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FIG. 10: Individual velocity profiles recorded at T = 39.4◦C
for γ̇ = 7 s−1 (¥,¤) and γ̇ = 15 s−1 (•,◦). The dotted lines
indicate the corresponding rotor velocities v0.

the velocity field remain small in regime (B) but not quite
negliglible: standard deviations in Fig. 6 are δv/v ≈ 5–
10% typically. A detailed study of these fluctuations is
left for future work.

5. Unstable flow regime

Examples of instantaneous velocity profiles measured
within about 1 s in regime (U) are plotted in Fig. 10.

0

500

1000

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

t (s)
x (mm)

v 
(m

m
 s−

1 )

(a)

0

500

1000

0 0.2 0.4 0.6 0.8 1

0

5

10

15

t (s)
x (mm)

v 
(m

m
 s−

1 )

(b)

FIG. 11: Spatio-temporal representation of the velocity pro-
files v(x, t) at T = 39.4◦C for (a) γ̇ = 2 s−1 and (b) γ̇ = 15 s−1

(color online).

They clearly indicate that the flow is strongly non-
stationary. The spatio-temporal representations of the
velocity profiles v(x, t) shown in Fig. 11 illustrate the
drastic difference between the stationary flow observed
in regime (B) and the unstable flow regime (U) where
huge temporal fluctuations of v(x) are recorded. Finally
we shall argue in Sect. IV C that the flow becomes cannot
remain purely tangential in regime (U).

IV. DISCUSSION

A. Wall slip

In complex fluids like colloidal suspensions, the pos-
sible break-down of the no-slip boundary condition has
been shown for a long time [72, 73]. Depending on the
net interaction between the walls and the suspended col-
loids, different mechanisms are involved. For neutral or
repulsive walls, wall depletion occurs and creates a lubri-
cating layer of the suspending fluid close to the wall. The
equilibrium concentration profile at rest can be further
modified by the flow, in particular when the particles
are soft and deformable [74]. This also occurs in poly-
mer solutions [75]. For attractive walls, partly covered
with adsorbed colloids, wall slip could be expected to
be rather uncommon. One notable exception is the case
of entangled polymer solutions and melts when entangle-
ments between an adsorbed layer and the bulk system are
present. Such phenomena have been investigated both
theoretically and experimentally [76–81].
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is a power law with exponent 0.47.

Near field laser velocimetry experiments on
poly(dimethylsiloxane) (PDMS) melts sheared be-
tween sliding plates grafted with PDMS chains have
shown three different slip regimes [78–81]. At low and
high plate velocities, the slip velocity vs is proportional
to the wall velocity v0, with a quasi plug flow, vs ≈ v0, at
high velocities. In between these two limits, a nonlinear
friction regime is observed, where vs increases more
rapidly than linearly with v0. In this intermediate
regime, the slip length b = evs/(v0 − vs), i.e., the
distance at which the velocity profile extrapolates to
the wall velocity, increases almost linearly with the
slip velocity (b ∝ vα

s with α = 0.8–1.2). These results
have been explained in terms of a dynamic decoupling
between the surface and the bulk polymer chains [76, 77].
More precisely, in the case of grafted chains, such a
decoupling arises from the competition between the
strongly entanglement-dependent frictional force that
stretches the chains and the entropic elastic force that
recoils them. The resulting steady-state extension of
the surface and bulk chains increases with the shear
rate until the stretched chains are close to disentangle.
This is the onset of the intermediate slip regime which
lasts until the shear rate becomes larger than the
characteristic frequency at which the chains can reform
new entanglements. Then the surface and the bulk
chains become fully disentangled, the friction decreases
by two orders of magnitude, and the slip velocity is high
so that vs ≈ v0.

At the lowest temperature investigated in the present
work, T = 37.0◦C, the behavior of the slip velocity as a
function of shear rate is strongly reminiscent of the one
reported for PDMS melts in contact with PDMS grafted
surfaces [80]. Indeed, as shown by the lines in Fig. 4, a
weak slip regime, with a behavior obscured by experimen-
tal noise, and a strong slip regime, where vs ∝ γ̇, are sep-

arated by a region where the slip velocity increases faster
than linearly with the imposed shear rate (vs ∝ γ̇1.7). In
the strong slip regime, however, the slip velocity never
reaches the limiting value vs = v0 = γ̇e (indicated by a
dashed line in Fig. 4) but rather saturates at vs ≈ 0.3v0.
The corresponding slip length is shown in Fig. 12. Due
to the large uncertainty at small shear rates, we cannot
give a reliable value for the slip length b in the weak slip
regime, which cannot be distinguished from perfect New-
tonian behavior using the present measurements. Still,
although the power law behavior in our data is signifi-
cantly different (b ∼ vα

s with α ≃ 0.5), the slip lengths of
several hundred of microns observed in the intermediate
regime are close to those reported on PDMS (compare,
e.g., Fig. 7 of Ref. [80] to Fig. 4 of the present paper).

The above similarity between our measurements at
T = 37.0◦C and previous results on PDMS melts sheared
between PDMS grafted plates prompts us to interpret
wall slip in our experiments as a result of the dynamic
decoupling scenario described above. Of course, in our
case, micelles are not grafted at the cell walls. Never-
theless we may assume that PEO–PPO–PEO wormlike
micelles adsorb on the surfaces. Indeed at least one ex-
perimental study has clearly demonstrated the adsorb-
tion of wormlike micelles on a substrate for poly(styrene)-
poly(isoprene) diblock copolymers in heptane, a selective
solvent for poly(isoprene) [82]. No similar results have
been reported for wormlike micelles made of PEO–PPO
block copolymers. However it has been shown that spher-
ical micelles formed from diblock PEO–PPO copolymers
close to the bulk cmc adsorb on hydrophilic or hydropho-
bic silica substrates while retaining their shape [83, 84].
Thus in principle we can expect similar effects in our
system, namely adsorbtion of wormlike micelles on the
walls.

For adsorbed polymers, the possibility of tearing off
of the surface chains due to the shear stress should also
play a role and could explain the difference in the scaling
exponents and in the saturation value of vs. To the best
of our knowledge, no theoretical prediction is available
in the case of adsorbed chains. Moreover, in the case of
adsorbed surface wormlike micelles, the scission of the
micelles should also provide a mechanism for disentan-
glement. If the breaking time τb is much smaller than
the reptation time τR, one expects to recover in a first
approximation τ ∼ (τbτR)1/2 for the characteristic relax-
ation time [85]. Thus the transition to the strong slip
regime is expected to occur for γ̇τ & 1. In our case, how-
ever, the bulk relaxation time τ at T = 37.0◦C is about
1 s [24] so that the onset of strong slip corresponds to
γ̇τ ≈ 100. Such a discrepancy is easily explained by the
fact that adsorbed micelles should have a much smaller
contour length left available to entangle with the bulk
micelles. A more thorough investigation of the proposed
scenario for wall slip at T = 37.0◦C is beyond the scope
of this paper.

On the other hand, the vs vs γ̇ data for the higher
temperature T = 39.4◦C display a plateau-like behav-
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ior in the intermediate regime between weak and strong
slip regimes (see Fig. 8). The difference with the lower
temperature is even more striking when the slip length
is considered (see Fig. 12). At T = 39.4◦C, after a large
initial increase, b suddenly drops as the system enters the
shear banding regime. Such a decrease was also observed
in a lyotropic lamellar phase in the shear banding regime
[86]. This behavior was interpreted in terms of a decrease
of the thickness h of the lubricating layers that were as-
sumed to be composed of perfectly aligned membranes.
Indeed if one notes ηs the viscosity of the fluid inside the
slip layer and if one assumes that h ≪ e then stress conti-
nuity imposes ηsvs/h = η(v0 − vs)/e, where η is the bulk
viscosity. In other words, one has h = bηs/η. Assuming
ηs to remain constant and equal to the solvent (brine)
viscosity, a decrease of h in the shear banding regime
was attributed to solvent migration from the walls to the
shear-induced low viscosity fluid close to the rotor [86]. In
the present case of PEO–PPO–PEO wormlike micelles, a
constant ηs seems like a rather strong assumption since
one expects progressive disentanglement in the slip layer
unless the strong slip regime is reached. An alternative
explanation could be that the rheology of the slip layer
itself presents a non-monotonic behavior leading to insta-
bility. Such a behavior was recently observed and linked
to a stick-slip instability in nanotribology experiments on
confined surfactant layers adsorbed on the mica surfaces
of a surface force apparatus [87, 88]. Finally we shall see
below that the slip regime (S) in Figs. 5 and 8 is also
compatible with a very thin high shear band unresolved
by our velocimetry setup, so that a definite interpretation
of wall slip at T = 39.4◦C is still an open question.

To summarize our discussion on wall slip, the mea-
surements performed at T = 37.0◦C and presented in
Sect. IIIA are broadly consistent with the behavior ex-
pected for the dynamic decoupling at the interface be-
tween bulk and adsorbed surface chains. This supports
the hypothesis that adsorbed wormlike micelles could be
involved in the observed slip behavior. At T = 39.4◦C,
the slip phenomena are markedly different, in correla-
tion with the observation of shear banding in the bulk
at this temperature, although the interplay between slip
and shear banding remains unclear.

B. Shear banding

Shear-induced separation of complex fluids flow into
bands of different viscosities has been predicted and in-
terpreted for almost two decades in terms of an underly-
ing non-monotonic flow curve which leads to the presence
of a stress plateau at σ∗ between two critical shear rates
γ̇1 and γ̇2 in the rheological experiments [25, 26, 49]. In
the most simple scenario for shear banding, two or more
shear bands of viscosities η1 = σ∗/γ̇1 and η2 = σ∗/γ̇2

coexist along the stress plateau and the proportion α of
the highly sheared fluid is given by the so-called “lever
rule” α = (γ̇− γ̇1)/(γ̇2− γ̇1): as the imposed shear rate γ̇

is increased from γ̇1, the high shear bands progressively
invade the whole sample until γ̇ = γ̇2. The plateau value
was predicted to be σ∗ = 0.67G0 (with G0 the plateau
modulus) [26], which was indeed observed in some ex-
periments on wormlike micelles [49–51]. In the concen-
tric cylinder geometry, the (small) stress inhomogeneity
results in the presence of only two bands with the high
shear band close to the inner cylinder. Moreover the
lever rule was shown to hold in CPCl-NaSal semidilute
wormlike micellar solutions [60, 63, 68].

More refined models involved constitutive equations
based on the frame-invariant Gordon-Schowalter deriva-
tive [89]. In particular, the inclusion of diffusive terms in
such models were shown to be a necessary ingredient to
obtain stress selection in planar geometries [30, 33–35].
The possibility of non-uniform concentration in the gap
was introduced by the means of a two-fluid description
and the coupling between flow and concentration [37, 39–
41]. This last model should be well adapted to describe
our experimental system since it incorporates the flow-
concentration coupling that can explain butterfly isoin-
tensity patterns parallel to the flow direction, measured
earlier at T . 37◦C [24], and allows for a phase separa-
tion in the system.

The flow curve of Fig. 5 looks typical of a simple shear
banding phenomenon with σ∗ ≈ 1.2 Pa, γ̇1 ≈ 0.03 s−1,
and γ̇2 ≈ 5 s−1. With a plateau modulus G0 ≈ 1.8 Pa
[24], the observed stress plateau is even nicely predicted
by the most simple toy model, σ∗ = 0.67G0 [26]. Note
also that apparent wall slip in regime (S) may also be
interpreted in the framework of a simple shear banding
scenario. Indeed, if the lever rule is valid, the width of
the high shear band remains smaller than the USV spatial
resolution δ0 ≈ 40 µm as long as γ̇ < γ̇1+δ0(γ̇2− γ̇1)/e ≈

0.23 s−1. Thus due to the huge difference between η1 ≈

40 Pa s and η2 ≈ 0.2 Pa s, the high shear band may be
too thin to be detected over a significant fraction of the
stress plateau, which would be consistent with the slip
regime observed for γ̇ = 0.03–0.3 s−1.

However the velocity profiles measured along the stress
plateau at T = 39.4◦C and shown in Fig. 6 clearly point
to a much more complex shear banding scenario than pre-
dicted by even the most sophisticated models [37, 39–41]
for the following reasons. (i) Stationary states with three
shear bands are recorded over the whole stress plateau.
(ii) Strong wall slip is detected at the rotor. (iii) The var-
ious shear rates inside the bands do not remain constant
as the applied shear rate is increased. (iv) Even if the true
shear rate is considered, the lever rule does not hold. To
the best of our knowledge, even if transient three-banded
velocity profiles were already reported in wormlike mi-
celles [65], this is the first evidence for such profiles in
the steady state. This observation should undoubtedly
be confronted to the very recent model of Ref. [48]. Based
on a bead-spring mechanism with non-affine motion [43],
this model incorporates the same basic ingredients as the
two-fluid diffusive Johnson-Segalman model [37, 39–41]
and was shown to predict various flow structures depend-
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FIG. 13: Local shear rate γ̇(x) computed from the individual
velocity profiles recorded at T = 39.4◦C for γ̇ = 15 s−1 and
shown in Fig. 10.

ing on the boundary conditions. If the conformation flux
across the walls is set to zero (Neumann condition), two-
banded steady states are found whereas when the micelles
are aligned at the walls (Dirichlet condition) the model
predicts a stationary three-band structures very similar
to that observed in our experiments. Moreover, in the
latter case, strong depletion is observed at both walls.
Such a model may provide some keys to the unusual shear
banding reported in the present study and more specif-
ically to points (i) and (ii) above. Note that a similar
approach was proposed in the framework of yield stress
fluids and that similar results with multi-banded states
depending on boundary conditions were obtained in the
fluidity model of Ref. [90]. Finally, concerning issues (iii)
and (iv), let us note that a complex shear banding sce-
nario with multiple successive transitions where the local
shear rates do not remain constant and the lever rule does
not hold was also reported very recently for solutions of
self-assembled polymers [70]. Contrary to what we ob-
served in regime U (see below), we did not notice any
evidence for two- or three-dimensional flows in regime B.

C. Unstable flows

In all cases investigated in this work, the flow strongly
fluctuates in time as soon as the high shear branch of the
flow curve is reached. The individual velocity profiles
of Fig. 10 even show portions with positive slope. More
precisely, in spite of scatter due to differentiation, the
local shear rate shown in Fig. 13 and computed from

γ̇(x) =
v

r
−

∂v

∂r
, (1)

where r = R1 + x, becomes clearly negative for x ≈ 0.1–
0.2 mm in one case and x ≈ 0.4–0.5 mm in the other.
Since a negative local shear rate is not compatible with
material stability, we conclude that the flow cannot re-
main purely tangential.

Indeed, as recalled in Sect. II C, USV only provides a
measurement of the velocity vector projected along the
acoustic axis. So far our interpretation of the velocity
profiles has relied on the assumption that the flow is
purely tangential. Here the only way to account for a
negative apparent shear rate is to include a non-zero ra-
dial component vr in the velocity field so that the exper-
imentally measured velocity actually reads

v(x) = vθ(x) +
vr(x)

tan θ
, (2)

where vθ is the tangential component of the velocity and
θ the angle between the acoustic axis and the radial di-
rection. Since θ ≈ 15◦ [71], the effect of radial velocity
is amplified by a factor of about 4 and, depending on
vr(x), Eq. (2) may lead to “negative local shear rates”
when used in Eq. (1). Moreover the detection of veloc-
ities larger than the wall velocity v0 close to the rotor
is another strong indication for a non-zero radial compo-
nent of the velocity (see Fig. 10). Note that, for γ̇ = 7
and 15 s−1, the rotation periods of the rotor are about
21 s and 10 s respectively, so that individual velocity pro-
files (recorded in about 1 s) only correspond to a fraction
of the rotor revolution. Thus the present experiments do
not allow us to discriminate between a two-dimensional
non-axisymmetric flow, i.e. where vθ and vr are functions
of both r and θ but the vertical velocity vz remains zero,
and a fully three-dimensional flow with all three velocity
components being non-zero.

As a possible cause for instability, we may first rule out
any inertial effect such as the Taylor-Couette instability.
Indeed, even on the high shear branch of the flow curve
at T = 39.4◦C where η ≈ 0.2 Pa s and γ̇ ≈ 10 s−1,
the Reynolds number is Re = ργ̇e2/η ≈ 0.05 and the
Taylor number is Ta = (e/R1)Re2 ≈ 10−4 so that the
flow can be considered as inertialess. In the Newtonian-
like case observed at T = 37.0◦C, one has η ≈ 10 mPa s
for the highest effective shear rate γ̇ ≈ 103 s−1. Although
these are only rough estimates, one gets Ta ≈ 400 which
remains smaller than the critical Taylor number 1712 for
a Newtonian fluid.

We rather propose to interpret the observed unstable
flows as a result of an elastic instability [91–93]. Such an
instability is driven by negative normal stress differences
that may cause a streamline to become unstable with
respect to radial perturbations. As shown by theoretical
analyses for viscoelastic fluids, a purely elastic instability
may develop when (e/R2)

1/2Wi > Mc, where Wi = γ̇τ
is the Weissenberg number and Mc some critical number
of order 1 whose exact value depends on the constitu-
tive model assumed for the fluid. For instance, one finds
Mc ≈ 5.9 for both the Upper-Convected Maxwell model
[92] and the Oldroyd-B model when the viscosity of the
solvent is half that of the polymeric part [94].

Previous rheological measurements on the PEO–PPO–
PEO Pluronic P84 in brine have shown that the relax-
ation time increases from τ ≈ 1 s at T = 37.0◦C to
τ ≈ 25 s at T = 40.0◦C [24]. Assuming Mc ≈ 5.9, these



11

measurements lead to critical shear rates γ̇c ≈ 30 s−1 at
T = 37.0◦C and γ̇c ≈ 1.5 s−1 at T = 39.4◦C for the on-
set of the elastic instability. The velocimetry experiments
reveal non-stationary unstable flows above 300 s−1 and
5 s−1 for T = 37.0◦C and T = 39.4◦C respectively, well
above the predicted thresholds for the elastic instability.
Our observations are thus consistent with an elastic insta-
bility, although the early stages of such an instability, i.e.,
an initially toroidal stationary flow with Taylor-like vor-
tices that undergo further bifurcation towards periodic
states as the rotation speed is increased [91, 93], should
in principle be observed for γ̇ = 30–300 s−1 and γ̇ = 1.5–
5 s−1 respectively. At T = 37.0◦C Newtonian-like veloc-
ity profiles are recorded all along the flow curve and no
stationary toroidal flow was observed. At T = 39.4◦C,
due to the complexity of the shear-banded velocity pro-
files, we cannot rule out the presence of a small time-
independent toroidal flow along the stress plateau. More-
over the exact viscoelastic properties of the fluid at high
shear rates are unknown. In particular, the relaxation
time of the sheared fluid is probably much smaller than
that measured in the linear regime so that the instability
threshold may be pushed towards higher shear rates. Fi-
nally the exact value of Mc may differ significantly from
5.9 so that the present discussion can only remain rather
qualitative.

V. CONCLUSIONS

We have investigated the flow of a PEO–PPO–PEO
Pluronic P84 solution in brine using simultaneous ve-
locity profile and rheological measurements. This study
completes the small-angle light scattering measurements
performed earlier on the same system [24]. It confirms

the presence of shear-banding and instability in the flow
of this triblock copolymer micellar solution. When the
rheological flow curve is an increasing function of the
shear rate, i.e., for T < Tc ≃ 37.7◦C, the velocity pro-
files remain Newtonian but a transition from weak to
strong wall slip is detected at the rotor. The evolution
of the slip velocity was compared to previous results on
PDMS and favors an interpretation in terms of micelles
adsorbed at the wall that progressively untangle from the
bulk fluid. For T > Tc the flow curve displays a stress
plateau that was correlated to the presence of shear band-
ing. However our data clearly reveal a complex shear
banding scenario with wall slip, stationary three-band
structure and varying local shear rates in the bands. The
presence of three shear bands in the gap was discussed
in light of recent theoretical predictions accounting for
the influence of boundary conditions on bulk behavior.
In connection with wall slip, the possibility that micelles
get strongly aligned at the walls could be at the origin
of a three-band structure. Finally, in all cases, the flow
was shown to become strongly non-stationary and either
non-axisymmetric or even possibly three-dimensional at
high shear rates. Such unstable flows are consistent with
the occurence of an elastic instability on the high shear
branch of the flow curve although information on the
structure and rheology of the fluid in this regime is miss-
ing.
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[64] M. R. López-González, W. M. Holmes, P. T. Callaghan
and P. J. Photinos, Phys. Rev. Lett. 93, 268302 (2004).
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