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WHAT IS COST?

Damien Gaboriau

Orbit equivalence theory considers dynamical
systems from the point of view of orbit equiv-
alence relations. The notion of cost is a useful
invariant in this theory.

When a countable group Γ acts on a space
it defines an equivalence relation: “to be in the
same orbit”. We consider measure preserving ac-
tions on a standard probability measure space.
Cost was introduced by G. Levitt in order to
quantify the amount of information needed to
build this equivalence relation.

Consider for instance the Z2-action on the cir-
cle R/2πZ given by two rotations a and b, whose
angles together with 2π are rationally indepen-
dent. Because of commutativity, there are many
ways to check that two points are in the same
orbit by using elementary jumps x ∼ a±1(x) and
x ∼ b±1(x). Indeed, the information encoded in
the data {a, b} is highly redundant. Chooses in-
stead some interval Iǫ ⊂ R/2πZ of length ǫ > 0,
and restricts the elementary jumps x ∼ b(x) to
only those x’s in Iǫ (and retain the a-jumps).
Then Φǫ := {a, b|Iǫ} still generates the or-
bit equivalence relation R of the Z

2-action: the
smallest equivalence relation containing all the
(x, ϕ(x)) for ϕ ∈ Φǫ and x in the domain of ϕ, is
R itself.

In fact, because the a-orbits are dense, each
point z admits some a-iterate an(z) in Iǫ, so that
the connection between z and b(z) may be recov-
ered in (2n+1)-jumps, namely n times a, followed
by the restriction b|Iǫ and then n times a−1. The
measures of the domains of a and b|Iǫ sum to
1 + ǫ. This is by definition the cost of Φǫ. And
it is cheaper than the cost of {a, b}. Moreover,
considering ǫ tending to 0 leads one to declare R
to have cost = 1 (a priori ≤ 1, but Cost(R) ≥ 1
when the classes are infinite).

More generally, consider an action α of a
countable group Γ on a standard Borel space
(X,µ), preserving the probability measure µ. Ex-
amples of such actions are plentiful, for instance
Bernoulli shifts (X,µ) = (X0, µ0)

Γ (Γ acting by

precomposition on functions f : Γ → X0 pre-
serves the product measure µ⊗Γ

0 ), or for instance
the action by multiplication of a countable sub-
group of a compact group with its Haar measure.

In this measure theoretic context, all the con-
structions have to be measurable and sets of mea-
sure 0 are neglected. Assume that the action is
free, i.e. the only element with a fixed point set
of positive measure is the identity.

Consider a countable family Φ = {ϕj} of iso-
morphisms ϕj : Aj → Bj between Borel subsets
Aj , Bj ⊂ X whose graphs are each contained in
Rα, i.e. for each j, each x ∈ Aj belongs to the
α-orbit of ϕj(x). The cost of Φ is the number
of generators weighted by the measure of their
domains, that is to say Cost(Φ) =

∑
j µ(Aj).

The cost of the action α, and equivalently of
its orbit equivalence relationRα, is defined as the
infimum of the costs over all generating Φ’s:

Cost(Rα) := inf{Cost(Φ) : Φ generates Rα}.

It is clear, by taking the ϕj = α(γj) associated
with a generating set (γj) of Γ that Cost(Rα) is
less than or equal to the rank of Γ, i.e. its mini-
mal number of generators.

There is a pedantic way of defining the rank of
a countable group: as the infimum of the mea-
sures of the generating subsets, for the natu-
ral measure on Γ, namely the counting-measure.
When applied to Rα, this gives an interesting in-
terpretation of the cost. As a subset of X ×X ,
Rα is simply the union of the graphs of the maps
α(γ) : X → X , for γ ∈ Γ. There is a natural
measure ν on Rα defined by pushing forward µ
by the maps sγ : x 7→ (x, γ(x)) and gathering
together the various measures sγ∗µ.

The cost of Rα is equivalently defined as
the infimum of the ν-measures of the subsets of
Rα, that are not contained in any proper sub-
equivalence relation.

The Z
2-action above, for which we computed

the cost, belongs to a larger class of examples.
Ornstein and Weiss proved the following remark-
able result: for any free action of an infinite
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amenable group (for instance commutative, or
nilpotent, or solvable groups), the orbit equiv-
alence relation may also be defined by a single

transformation of the space ψ : X → X . For
every γ ∈ Γ and almost every x ∈ X , there is
a certain iterate n(γ, x) such that ψn(γ,x)(x) =
α(γ)(x). For all these actions, the infimum in the
definition of the cost is in fact a minimum and
equals 1. This pair of properties in turn, when
satisfied for some free action, implies amenability
of Γ.

The direct product of any two infinite groups
Γ1 × Γ2, with at least one infinite-order element,
is easily seen to produce only cost 1 free actions
(a straightforward elaboration of the above Z

2-
action example). This allows one to produce
plenty of actions whose cost is 1 but for which
the infimum is not attained for any generating
Φ: just consider non-amenable direct products.
Recall that containing the free group Fn on n
(> 1) generators prevents a group from being
amenable.

When there exists a unique path of elementary
jumps x ∼ ϕ±1(x) to connecting any two points
in the same orbit, Φ is called a treeing. This
notion is useful for computing the cost of some
actions, and this is one of the main results in the
theory: A treeing always realizes the cost of the

equivalence relation it generates [1]. If Φ is not
a treeing, it is always possible to restrict some
ϕ ∈ Φ to a Borel subset of its domain and never-
theless continue to generate the same equivalence
relation. On the other hand, if Ψ is a treeing,
then restricting any ψ ∈ Ψ to a subset of its do-
main breaks some connecting path and thus stops
generatingRα. A treeing is minimal in this sense.
And the above statement claims that one cannot
expect any other Φ to appear that will generate
Rα at a cheaper cost

As a consequence, the cost of any free action
of the free group Fn equals exactly n. Indeed,
the family of transformations associated with a
free generating set of the group is a treeing. If
two free actions of two free groups on (X,µ)
are orbit equivalent (i.e. define the same or-
bit equivalence relation), then the groups must
have the same rank. The orbit equivalence re-
lation remembers this rank. As another conse-
quence, the cost of any free action of PSL(2,Z)
is 1 + 1

6 . Recall that PSL(2,Z) ≃ Z/3Z ∗ Z/2Z

and 1 + 1
6 = (1− 1

3 ) + (1− 1
2 ).

Naive strategies to produce treeings usually
collide with the following fundamental fact: when
an infinite countable group acts freely, there is

no measurable way to pick one point in each or-
bit. This is because such a set D of selected
points would have infinitely many pairwise dis-
joint translates γ(D), all with the same measure,
in a finite measure space: this is a impossible.

Grushko’s theorem states that the rank of a
free product equals the sum of the ranks of the
factors. Similarly, the cost of a free action of a
free product Γ1 ∗ Γ2 equals the sum of the costs
of the action restricted to the factors Γi.

Recall Schreier’s theorem: a finitely generated
infinite normal subgroup of a free group Fn must
have finite index. This theorem extends to those
groups Γ whose free actions have cost > 1. More-
over, Schreier’s formula (p − 1) = i(n − 1) re-
lates the rank n of the ambient free group Fn

to the rank p of a subgroup of finite index i.
This formula admits a counterpart in cost the-
ory: [Cost(Rα|A) − 1] = µ(A) [Cost(Rα) − 1]
(compression formula), where Rα|A is the re-
striction of the equivalence relation Rα to some
Borel subset A ⊂ X that meets each orbit and
that is equipped with the normalized restricted
measure.

Indeed, the computations of cost made thus far
raise several open questions. Cost seems to de-
pend not on the particular free action but solely
on the group. Is this true in general (fixed price

problem)? There is moreover a strange coin-
cidence with a numerical invariant, the first ℓ2

Betti number β
(2)
1 (Γ). Namely, it seems that

β
(2)
1 (Γ)+1 = Cost(Rα), when α is a free action of

an infinite group Γ, although only the inequality
≤ has been proved. In particular, is it true that
actions of infinite Kazhdan property (T) groups
have cost = 1?

Orbit equivalence theory and cost are related
to several other mathematical fields, like oper-
ator algebras, percolation on graphs, geometric
group theory, descriptive set theory, etc. Much
of the recent progress in von Neumann algebras
and orbit equivalence was the result of a success-
ful cross-pollination between these fields.
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