
Solving and Certifying the Solution of a Linear System

Hong Diep Nguyen, Nathalie Revol

To cite this version:

Hong Diep Nguyen, Nathalie Revol. Solving and Certifying the Solution of a Linear System.
Reliable Computing, Springer Verlag, 2011, 15 (2), pp.120-131. <inria-00546856>

HAL Id: inria-00546856

https://hal.inria.fr/inria-00546856

Submitted on 15 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52319522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00546856

Solving and Certifying the Solution of a Linear

System

NGUYEN Hong Diep, Nathalie REVOL

INRIA
Université de Lyon

Laboratoire LIP (UMR 5668 CNRS - ENS Lyon - INRIA - UCBL)

École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
Hong.Diep.Nguyen@ens-lyon.fr, Nathalie.Revol@ens-lyon.fr

Abstract. Using floating-point arithmetic to solve a linear system yields a
computed result, which is an approximation of the exact solution because of
roundoff errors. In this paper, we present an approach to certify the computed
solution. Here, ”certify” means computing a guaranteed enclosure of the error.
Our method is an iterative refinement method and thus it also improves the
computed result. The method we present is inspired from the verifylss func-
tion of the IntLab library, with a first step, using floating-point arithmetic, to
solve the linear system, followed by interval computations to get and refine an
enclosure of the error. The specificity of our method is to relax the requirement
of tightness of the error, in order to gain in performance. Indeed, only the order
of magnitude of the error is needed. Experiments show a gain in accuracy and
in performance, for various condition number of the matrix of the linear system.

1 Introduction

In this paper, our approach is presented for solving a linear system and at the
same time certifying the computed solution. “Certify” means to compute an
enclosure of the error by switching from floating-point arithmetic to interval
arithmetic to solve the residual system: this yields a guaranteed enclosure of
the error on the exact result. This idea can be found in the verifylss function
of the IntLab library [17]. verifylss first computes a floating-point approx-
imation of the solution using iterative refinement, then it switches to interval
arithmetic to compute an interval error bound using a method due to Neumaier
[11]. Our proposal is to use alternately floating-point arithmetic and interval
arithmetic to refine simultaneously the approximation and the error bound.

The use of the residual is the basis of iterative refinement methods [8, 19,
5]. An enclosure of the error can be computed, using interval arithmetic, by
adapting one of these iterative refinement methods. These two building blocks,

1

i.e, the floating-point solution of a linear system and the iterative refinement
of the error bounds using interval arithmetic, are combined to produce a more
accurate solution along with a tight enclosure of the error. Furthermore, the
error bound yields the number of correct digits of the approximate solution.

Another question naturally arises: it is well known that the accuracy of the
iteratively refined solution relies for a large part on the computing precision
used for the residual computation, but what is the best computing precision?
Classically, the computing precision is (at least) doubled [1]. To explore this
point, our algorithms are implemented using variable precisions.

This paper is organised as follows: the next section briefly introduces the
classical floating-point iterative refinement methods, and its adaptation to in-
terval arithmetic. The starting point of the interval iterative refinement method
is an interval enclosure of the solution: its determination is explained in Section
3. Section 4 contains the specific iterative improvement method we use, namely
the interval version of Gauss-Seidel iteration [10], and the relaxation we propose.
In Section 5, all building blocks introduced in the previous sections are assem-
bled and the complete version of our algorithm is given. Finally, experimental
results are given: they demonstrate the efficiency of our method, and also the
gain in terms of result accuracy when increasing the computing precisions.

2 Iterative refinement

In this section, we give a brief introduction to the iterative refinement method
and we explain how it can be adapted to compute a guaranteed error bound.

2.1 Floating-point iterative refinement

Iterative refinement is a technique for improving a computed solution x̃ to a
linear system Ax = b. First, the approximate solution x̃ is computed by some
method. Then, the residual r = b − Ax̃ of the system for this approximation
is computed. The exact error e is the solution of a linear system involving
the matrix A, with r as the right-hand side: Ae = r. By solving, again ap-
proximately, the residual system, a correction term ẽ is obtained and is used to
update the floating-point approximation. This method is sketched in Algorithm
1 using MatLab notations. Hereafter, MatLab notations are used to describe
algorithms: A \ b means the solution to the linear system of equations Ax = b
computed by some method, and = means assignment. Operations take place
between scalars, vectors or matrices as long as their dimensions agree.

Algorithm 1 Classical iterative refinement
x̃ = A \ b;
while (stopping criterion non verified)

r = b − Ax̃;
ẽ = A \ r;
x̃ = x̃ + ẽ;

end

2

If r and ẽ could be computed exactly, then obviously A(x̃+ ẽ) = Ax̃+ r = b.
Hence, the iteration would converge with just one step. Nevertheless, because
of rounding errors, none of them are computed exactly.

In the first versions of this method, floating-point iterative refinement is used
with Gaussian elimination. Its convergence conditions are provided in [8, 19].
Higham [4] gives a more thorough and general analysis for a generic solver and
for both fixed and mixed computing precision. In fixed precision iterative re-
finement, the working precision is used for all computations. In mixed precision
iterative refinement, residuals are computed in twice the working precision.

First, it is stated in [8, 4] that the rates of convergence of mixed and fixed
iterative refinement are similar. However, the computing precision used for
residual computations affects the accuracy of results. Indeed, given a matrix A
which is not too ill-conditioned, the relative error, after convergence, of mixed
precision iterative refinement is [4] of order ‖x − x̃‖∞/‖x‖∞ ≈ u, with u being
the relative machine error related to working precision. For fixed precision
iterative refinement, the relative error, after convergence, is only of order ‖x −
x̃‖∞/‖x‖∞ ≈ 2n cond (A, x)u: a relative error of order u is no longer ensured.
However, this relative error bound is the best that can be obtained without using
higher precision. Usually, fixed precision iterative refinement is used to get a
stable solution to linear systems, such as in [7, 6]. Indeed, only one iteration
of iterative refinement with only fixed precision accumulation of the residual
suffices to make Gaussian elimination componentwise backward stable [19].

2.2 Interval iterative refinement

Notations: intervals are boldface, matrices are uppercase, vectors are lower-
case. [·] denotes the result of an expression computed using interval arithmetic.

The idea of the interval version of iterative refinement is to compute an en-
closure of the error term instead of approximating it. This enclosure of the error,
added to the approximate solution, yields an enclosure of the exact result. The
algorithm proceeds as follows: a floating-point approximation of the solution
is computed first. Then, the residual is computed using interval arithmetic:
it contains the exact residual. The residual system is now an interval linear
system. Hence, the solution e to this interval linear system contains the exact
correction of the floating-point approximation. Thus, x̃ + e contains the exact
solution to the original system. Finally, the floating-point approximate solution
x̃ is updated by adding the midpoint of e to it, meanwhile e is centred to zero.

Algorithm 2 Interval iterative refinement x̃ = A \ b;
while (stopping criterion not verified)

r = [b − Ax̃];
e = A \ r;
x̃ = x̃ + mid (e);
e = e − mid (e);

end

3

Actually, when computing the initial solution, the residual system is usu-
ally preconditioned by R, a floating-point approximate inverse of A, and that
multiplication is performed using interval arithmetic. This operation leads to
another interval system:

Ke = z, where K = [RA],z = [Rr]. (1)

The goal is to make the iteration contractant and thus to ensure its convergence.
However, the system now has an interval matrix and solving such a system is
NP-hard [16, 15]

Algorithms for solving interval linear systems return a box containing the
convex hull of the solution, denoted by �Σ(A, r), which is thus not the minimal
enclosure. Direct algorithms to enclose the solution of an interval linear system
exist [3, 13, 11]. Here we prefer an iterative refinement method, which reuses
some of the previous floating-point computations. Indeed, as it will be shown in
the next section, such an enclosure of that convex hull can be obtained at a cost
of O(n2) operations. This complexity is asymptotically negligible compared to
the cost of solving the original system using floating-point arithmetic.

After each step the approximate solution is updated, and also the error
bound on it. This updated error bound serves as the starting point for the
next step, or as the initial solution for the next refinement: there’s no need to
recompute it. Still, to start the refinement, an initial solution to the residual
system is needed. The following section explains how to compute an initial
solution to an interval linear system.

3 Initial solution

Determining an initial enclosure of the solution is a main issue in the refinement
method. The entire real line could be considered as an initial enclosure of each
component, but formulas shown in Section 4 would not be able to refine it.

The necessary condition to be able to compute an initial enclosure of the
interval linear system Ke = z is that K is invertible, i.e. each real matrix
K ∈ K is invertible. Nevertheless, checking the invertibility of an interval
matrix is NP-hard [14, 15]. However, if some sufficient condition is satisfied, an
initial solution to an interval linear system can be computed. For this purpose,
we apply the following proposition to the original, real, matrix A and to the
interval right-hand side r.

Proposition 3 ([10, Prop. 4.1.9, p. 121]) Let A ∈ IR
n×n be an interval

matrix of dimensions n × n and let C, C ′ ∈ R
n×n.

1. If CAC ′ is an H-matrix then, for all b ∈ IR
n, we have

|AHb| ≤ |C ′|〈CAC ′〉−1|Cb|,

4

2. if 〈CAC ′〉u ≥ v > 0 for some u > 0 then

|AHb| ≤ ‖Cb‖v|C
′|u,

AHb ⊆ ‖Cb‖v|C
′|[−u, u],

where AH is the convex hull of the inverse of A, 〈A〉 is the comparison
matrix of A, whose components are defined by:

〈A〉i,i = min(|ai,i|, ai,i ∈ Ai,i),

〈A〉i,j = −max(|ai,j |, ai,j ∈ Ai,j) for j 6= i,

and ‖b‖v is the scaled norm with respect to v: ‖b‖v = max(|bi|/vi) i ∈ 1, . . . , n.

Following this proposition, a sufficient condition to be able to compute an
initial solution is that we exhibit C and C ′ such that CAC ′ is an H-matrix. In
our algorithm, we use C = R, with R an approximate inverse of A, and C ′ = I.
If R is a good approximation of the inverse of A then CAC ′ = RA ≈ I is an H-
matrix. We also need to exhibit u and v as in the second part of the proposition,
to get e = ‖Rr‖v[−u, u] as an initial enclosure of the system Ae = r.

Because all computations are performed using floating-point (as opposed to
exact) arithmetic, it is necessary to compute RA using interval arithmetic in
order to get a guaranteed result. So the previous proposition is modified as
shown below. In the following, F denotes the set of floating-point numbers.

Proposition 4 Let A ∈ F
n×n and R ∈ F

n×n be a floating-point approximate
inverse of A. If 〈[RA]〉u ≥ v > 0 for some u > 0 then:

|A−1r| ≤ ‖Rr‖vu,

A−1r ⊆ ‖Rr‖v[−u, u].

What is left now is to find a positive vector u so that 〈[RA]〉u > 0. In our
case, A is a floating-point matrix. If A is well preconditioned, let’s say RA
is close to identity, or diagonally dominant, then it suffices to use the vector
(1, . . . , 1)T as the value of u and the product [RA]u is positive. If the test
of positivity of [RA]u fails, then our algorithm stops and issues a warning of
failure.

4 Relaxed interval iterative refinement

There exist several methods of interval iterative refinement, such as the methods
of Jacobi and of Gauss-Seidel (introduced below), or the method of Krawczyk.
Krawczyk method converges quadratically, but Gauss-Seidel iteration always
yields tighter intervals than Krawczyk iteration, when applied to a precondi-
tioned system [10, Theorem 4.3.5]. This section details our method for the
iterative improvement of an initial enclosure e of the solution to the system
Ke = z: it is a relaxed interval version of the Gauss-Seidel iteration.

5

4.1 Jacobi and Gauss-Seidel methods

Given an initial enclosure e to the interval linear system Ke = z, an improved
approximate enclosure is obtained by writing the linear system satisfied by ẽ ∈ e:
∃K̃ ∈ K,∃z̃ ∈ z : K̃ẽ = z̃. Developing the i-th line and separating the i-th
component, one gets:

ẽi =



z̃i −

i−1
∑

j=1

K̃i,j ẽj −

n
∑

j=j+1

K̃i,jej



 /K̃i,i and ẽi ∈ ei.

Replacing punctual terms by the corresponding interval terms yields the formula
of the interval Jacobi iteration:

ẽi ∈ e′

i :=



zi −

i−1
∑

j=1

Ki,jej −

n
∑

j=j+1

Ki,jej



 /Ki,i ∩ ei.

Taking into account that for components that have already been refined, ẽj

belongs to both original value ej and refined valued e′

j , ej can be replaced by
e′

j for j < i to obtain the Gauss-Seidel iteration.

e′

i =



zi −

i−1
∑

j=1

Ki,je
′

j −

n
∑

j=j+1

Ki,jej



 /Ki,i ∩ ei. (2)

Taking the intersection with the former iterate ei implies the contracting
property of both Jacobi and Gauss-Seidel iterations. Hence, both iterations
converge. Nevertheless, making full use of the refined values, Gauss-Seidel it-
erations converge much more quickly than Jacobi iterations. As mentioned in
Section 3, our sufficient condition to compute an initial solution to the interval
residual system is that [RA] is an H-matrix. Under this condition, Gauss-Seidel
iterations converge very quickly. Actually, in the experiments presented in Sec-
tion 6, five iterations suffice to obtain accurate results.

Let us now detail the complexity of an iteration. The refinement of each
component requires n − 1 interval multiplications, n interval additions and one
interval division. Thus, in total, each Gauss-Seidel iteration costs O(n2) interval
operations. Hence, theoretically, the refinement stage should not affect the
overall cost of the method. In practice however, as the number of iterations
increases, the execution time of the refinement increases significantly because
of interval computations. Indeed, interval operations are usually slower than
floating-point operations, within a factor up to 20. In the next section, we
propose a relaxation technique to reduce the cost of the refinement step. The
idea is to use floating-point operations rather than interval ones when possible.

4.2 Relaxation

The refinement step is used to improve the error bound upon a computed ap-
proximation. This error bound should correspond to lost bits in the approxima-
tion. Hence, it is not necessary to compute an error bound with high accuracy.

6

Thus we relax the tightness requirement on this error bound to speed up the
program. To gain in performance, the matrix of the system is enlarged, so as to
have its off-diagonal elements centred in 0. Formulas for subsequent operations
are thus simplified: the computed intervals are symmetrical around 0 and only
one endpoint is computed, using floating-point arithmetic.

Let D ∈ IR
n×n and M ∈ IR

n×n be defined by

Di,j =

{

Ki,j if i = j
0 if i 6= j

M i,j =

{

0 if i = j
[−mag (Ki,j),mag (Ki,j)] if i 6= j

Because x ∈ [−mag (x),mag (x)] and mag (x) = mag ([−mag (x),mag (x)]) for
all x ∈ IR, we have:

K ⊆ D + M (3)

〈K〉 = 〈D + M〉. (4)

From (3), we deduce that the solution set of system (1) is included in the solution
set of the system:

(D + M)e = z (5)

In particular, if K is centred about the identity matrix (ideally RA = I), then
the equality in (3) holds, and the two systems have the same solution set.

Moreover, (4) means that if K is an H-matrix then (D + M) is also an H-
matrix. Hence both systems have the same convergence property. Let us apply
the Gauss-Seidel iteration for system (5) to get a relaxed solution to (1):

e′

i =



zi −

i−1
∑

j=1

M i,je
′

j −

n
∑

j=i+1

M i,jej



 /Di,i ∩ ei. (6)

Since M i,i = 0 and M i,j , for i 6= j, is symmetrical around 0, each product
M I,jyj , for any yj ∈ IR, can be written as:

M i,jyj =
[

−mag (M i,j)mag (yj),mag (M i,j)mag (yj)
]

Thus, if the Gauss-Seidel iteration is performed in place (i.e. the new iterate
e′ is stored at the memory location of the previous iterate e), then there is no
need to distinguish between e′ and e and the iteration can be written as follows.
Denote by M i the i-th row of M , the truncated solution of (5) is computed by

ei =
(

zi −
[

−mag (M i)
T mag (e),mag (M i)

T mag (e)
])

/Di,i ∩ ei (7)

In comparison with the interval iterative refinement (2) of the original resid-
ual system, there is no computation of an interval dot product, the inter-
val refinement of relaxed system only requires a floating-point dot product,
mag (M)T mag (ei), which helps to reduce a lot the execution time. Note that,
to control rounding errors, this floating-point dot product must be computed
using upward rounding mode.

7

5 Algorithm

The complete algorithm we propose is given below, it uses all building blocks
introduced above.

Algorithm 5 Solve and certify a linear system
Compute the LU decomposition of A
Compute an approximation x̃ with a forward and a backward substitution

using L and U
Compute an approximative inverse of A, by solving RL = inv(U)

[5, Chapter 14]
Precondition the system: K = [RA]
Test if K is an H-matrix by computing a non-negative vector u

such that 〈K〉u ≥ v > 0.
If fail to compute u, display a warning “Failed to certify the

solution. The system may be either singular or too

ill-conditioned” and exit
Compute the residual r = [b − Ax̃] in double the working precision
Precondition the residual by R: z = Rr

Compute an initial error bound e = ‖z‖v[−u, u]
While (not converged)

Apply five Gauss-Seidel iterations on K,z, and e

Update x̃ and e

Recompute r and z

End

As mentioned in Section 2.2, the width of the interval error decreases after
each step. So it is a non-negative non-increasing series. This property leads to
two stopping criteria (for a study of stopping criteria, see [1]).

Firstly, we stop the computation whenever reaching a required number of
accurate bits. For example, working with double floating-point numbers, there
is no point of getting a result which is accurate to more than 52 bits. Using
interval arithmetic, it is quite easy to compute the number of exact bits in the
result via componentwise relative errors:

nb bits = −log2

(

max

(

wid (ei)

|x̃i|

))

. (8)

Nevertheless, the program can end up without reaching the required number
of exact bits. Hence, we have to detect whether the iteration yields extra correct
digits or stagnates. Let e and e′ be two successive iterates, a second stopping
criterion is that no more correct digit is obtained in any component of the
approximation:

max
j

(
∣

∣wid
(

e′

j

)

− wid (ej)
∣

∣

|x̃
(i)
j |

)

< u. (9)

In cases where none of these two criteria above is matched, it is necessary
to stop the computation when one has tried enough. Practically, in our imple-
mentations, the maximum number of iterations is set to 10.

8

6 Experiments

In this section we present some experimental results to demonstrate the effi-
ciency of our method, as well as to study the effect of computing precisions.

6.1 Implementation in MatLab

In what follows, the implementations in MatLab, using the interval library Int-
Lab, of Algorithm 2, and Algorithm 5 using Equation (7), are called respec-
tively certifylss and certifylss relaxed. The computing precision used
for all computations is the IEEE double floating-point precision, except for the
residual computation, which is computed in twice the working precision.

Figure 1 depicts results computed by these two functions, by the func-
tion verifylss of the IntLab library, and non-certified results computed by
MatLab. Certified results provided by all certified functions: certifylss,
certifylss relaxed and verifylss are much more accurate than non-verified
results provided by MatLab, at the price of a higher execution time.

Figure 1: MatLab implementation results for 1000 × 1000 matrices.

When the coefficient matrix is not too ill-conditioned, all three certified func-
tions provide the same accuracy (52 bits). However, certifylss runs faster
than verifylss, because certifylss does not compute a tight error bound.
As expected, certifylss relaxed runs even faster. As for the verifylss

function, it first applies the iterative refinement on the floating-point approx-
imation. Then it computes a tight error bound for the refined approximation
using a method of Neumaier [11], which computes an upper bound of the inverse
of 〈[RA]〉: this explains the overhead on the execution time.

9

When the condition number increases, an accuracy of 52 bits cannot be ob-
tained any more. In that case, certifylss and certifylss relaxed provide
slightly more accurate results. However, the execution time for certify be-
comes higher than the execution time for verifylss, and for higher condition
number this becomes true even for certifylss relaxed.

When the condition number gets close to 1/u, all three functions fail to
certify the solution. Indeed, a good approximation of the inverse of A cannot
be obtained, so the sufficient condition that RA is an H-matrix does not hold.

It is noticeable that certifylss relaxed achieves the same accuracy as
certify, even if, by design, it relaxes the tightness constraint. Indeed, it obtains
the most significant bits of the error bound, which are the only ones needed.

6.2 Implementation using variable computing precisions

MPFR [2] and MPFI [12] are libraries that offer arbitrary precision for floating-
point arithmetic and interval arithmetic, respectively. Using these two libraries
to implement our algorithms, computing precision can be tuned at each step in
order to study the effect of these precisions on the result accuracy.

Matrices used in the following tests are generated by function gallery

(′randsvd′, dim, cond), where dim is matrix dimension (taken as 1000), and
cond is the condition number. Coefficients of generated matrices are IEEE dou-
ble floating-point numbers. The condition number varies between 25 and 250.

First, the precision for all the computations is fixed, except for the residual
computation, to study the effect on the result accuracy. Figure 2(a) depicts
results obtained with a fixed working precision of 53 bits. When the condi-
tion number decreases, the number of guaranteed correct bits (computed as in
Eq.(8)) increases nearly linearly. When the residual computation precision in-
creases, the number of guaranteed correct bits also increases linearly. However,
when the residual computation precision gets a bit higher than twice the work-
ing precision, the number of correct bits stops increasing: this precision becomes
too high and it does not have any effect when the other precisions remain low.
Practically, this phenomenon justifies the use of twice the working precision
for residual computations in iterative methods. From now on, the computing
precision for the residual will be set to twice the working precision.

Next the working precision varies and the results are shown in figure 2(b): it
is not necessary to use a precision equal to the output precision to get a result
which is correct to the last bit. For a fixed output precision, the needed working
precision depends on the condition number, and this dependency is again linear.
As revealed in figure 2(d) (view from top of 2(b)), when the condition number
increases by 0.5 bit, the computing precision should be increased by 1 bit in
order to get a result which is correct to the last bit.

In the final set of experiments, the demanded number of correct bits varies,
and the minimal working precision that reaches the prescribed accuracy is deter-
mined. As shown in Figure 2(c), the minimal working precision depends nearly
linearly on the condition number and the number of correct bits demanded.

10

(a) Floating residual precision (b) Floating working precision

(c) Minimal working precision needed (d) Floating working precision (seen from top)

Figure 2: Effects of the working precision and of the residual precision.

Conclusions and future work

Our method is based on an iterative refinement and on interval arithmetic for
guaranteeing the results. Relaxing the residual system enabled to gain in per-
formance without loosing in accuracy.

Experiments on computing precisions illustrate the linear relation between
the computing precision and the result accuracy. They also confirm that in most
cases, doubling the working precision suffices to get the best results.

The method presented here could also be used to solve interval linear systems
of small width, with the preconditioning matrix being the approximate inverse
of the midpoint coefficient matrix. In the future, the same philosophy and
techniques could be extended to other problems. For instance, linear systems
of inequalities could be solved using slack variables. Another example is the
solution of nonlinear systems by transforming them into linear systems using
Taylor models [9] of order 1. The idea here is to replace a nonlinear expression
by a Taylor order expansion of order 1, ie. by a linear form plus a constant
interval (which contains all truncation errors).

Acknowledgements. This work was supported by the ANR project EVA-Flo
and by “Pôle de compétitivité mondial” Minalogic.

11

References

[1] J. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee, and E. J. Riedy,
Error bounds from extra-precise iterative refinement, ACM Trans. Mathe-
matical Software 32 (2006), no. 2, 325–351.

[2] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier and P. Zimmermann. MPFR:
A Multiple-Precision Binary Floating-Point Library with Correct Rounding,
ACM Trans. Mathematical Software 33 (2007), no. 2, article 13. http:
//www.mpfr.org/

[3] E. R. Hansen, Bounding the Solution of Interval Linear Equations, SIAM
Journal on Numerical Analysis 29 (1992), no. 5, 1493–1503.

[4] N.J. Higham, Iterative refinement for linear systems and LAPACK, IMA
Journal of Numerical Analysis 17 (1997), no. 4, 495–509.

[5] , Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM
Press, 2002.

[6] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Dongarra,
Exploiting the Performance of 32 bit Floating Point Arithmetic in Obtain-
ing 64 bit Accuracy (Revisiting Iterative Refinement for Linear Systems) -
Article 113 (17 pages), Proc. ACM/IEEE conf. on Supercomputing, 2006.

[7] X.S. Li, and J Demmel. SuperLu DIST: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems, ACM Trans. Math-
ematical Software 29 (2003), no. 2, 110–140.

[8] C.B. Moler, Iterative Refinement in Floating Point, J. ACM 14 (1967),
no. 2, 316–321.

[9] M. Neher, From Interval Analysis to Taylor Models - An Overview (8
pages), IMACS’05, 17th IMACS World Congress on Scientific Computa-
tion, Applied Mathematics and Simulation, 2005.

[10] A. Neumaier, Interval Methods for Systems of equations, Cambridge Uni-
versity Press, 1990.

[11] , A Simple Derivation of the Hansen-Bliek-Rohn-Ning-Kearfott En-
closure for Linear Interval Equations, Reliable Computing 5 (1999), no. 2,
131–136, Erratum in Reliable Computing 6 (2000), no. 2, p. 227.

[12] N. Revol and F. Rouillier. Motivations for an Arbitrary Precision Interval
Arithmetic and the MPFI Library, Reliable Computing 11 (2005), no. 4,
275–290. http://gforge.inria.fr/projects/mpfi/

[13] J. Rohn, Cheap and Tight Bounds: The Recent Result by E. Hansen Can
Be Made More Efficient, Interval Computations (1993), no. 4, 13–21.

12

[14] , Checking Properties of Interval Matrices, Tech. Report 686, Czech
Academy of Sciences, 1996.

[15] , A Handbook of Results on Interval Linear Problems, Czech
Academy of Sciences, 2005, http://www.cs.cas.cz/ rohn/publist/handbook.

[16] J. Rohn and V. Kreinovich, Computing Exact Componentwise Bounds on
Solutions of Linear Systems with Interval Data is NP-hard, SIAM Journal
on Matrix Analysis and Applications 16 (1995), no. 2, 415–420.

[17] S.M. Rump, INTLAB - INTerval LABoratory, http://www.ti3.

tu-hamburg.de/rump/intlab.

[18] , Handbook on Accuracy and Reliability in Scientific Computation
(edited by Bo Einarsson), ch. Computer-assisted Proofs and Self-validating
Methods, pp. 195–240, SIAM, 2005.

[19] R.D. Skeel, Iterative Refinement Implies Numerical Stability for Gaussian
Elimination, Mathematics of Computation 35 (1980), no. 151, 817–832.

13

