
The Hyperion system: Compiling multithreaded Java

bytecode for distributed execution

Gabriel Antoniu, Luc Bougé, Philip Hatcher, Mark Macbeth, Keith Mcguigan,

Raymond Namyst

To cite this version:

Gabriel Antoniu, Luc Bougé, Philip Hatcher, Mark Macbeth, Keith Mcguigan,
et al.. The Hyperion system: Compiling multithreaded Java bytecode for
distributed execution. Parallel Computing, Elsevier, 2001, 27, pp.1279-1297.
<http://www.sciencedirect.com/science? ob=ArticleURL& udi=B6V12-43J6KFB-
1& user=10& coverDate=09

HAL Id: inria-00563581

https://hal.inria.fr/inria-00563581

Submitted on 6 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52319242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00563581




The Hyperion system:Compiling multithreaded Java byteodefor distributed exeution ?
Gabriel Antoniu a;1, Lu Bougé a, Philip Hather b,Mark MaBeth b, Keith MGuigan b and Raymond Namyst aaLIP, ENS Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, Frane.bDept. Computer Siene, Univ. New Hampshire, Durham, NH 03824, USA.AbstratOur work ombines Java ompilation to native ode with a run-time library thatexeutes Java threads in a distributed-memory environment. This allows a Java pro-grammer to view a luster of proessors as exeuting a single Java virtual mahine.The separate proessors are simply resoures for exeuting Java threads with trueparallelism, and the run-time system provides the illusion of a shared memory ontop of the private memories of the proessors. The environment we present is avail-able on top of several UNIX systems and an use a large variety of ommuniationinterfaes thanks to the high portability of its run-time system. To evaluate our ap-proah, we ompare serial C, serial Java, and multithreaded Java implementationsof a branh-and-bound solution to the minimal-ost map-oloring problem. All mea-surements have been arried out on two platforms using two di�erent ommuniationinterfaes: SISCI/SCI and MPI-BIP/Myrinet.Key words: Java, ompiling, distributed shared memory, Java onsisteny,multithreading, Hyperion, PM2

1 IntrodutionThe Java programming language is an attrative vehile for onstruting par-allel programs to exeute on lusters of omputers. The Java language design? A preliminary version of this work has been presented at the Euro-Par 2000Conferene, Munih, Germany, August 2000.1 Contat: Gabriel.Antoniu�ens-lyon.fr.Preprint submitted to Elsevier Preprint 22 Marh 2001



re�ets two emerging trends in parallel omputing: the widespread aeptaneof both a thread programming model and the use of a distributed-shared mem-ory (DSM). While many researhers have endeavored to build Java-based toolsfor parallel programming, we think most people have failed to appreiate thepossibilities inherent in Java's use of threads and a �relaxed� memory model.There are a large number of parallel Java e�orts that onnet multiple Javavirtual mahines by utilizing Java's Remote-Method-Invoation faility (e.g.,[1�5℄) or by grafting an existing message-passing library (e.g., [6,7℄) onto Java.In our work we view a luster as exeuting a single Java virtual mahine. Theseparate nodes of the luster are hidden from the programmer and are sim-ply resoures for exeuting Java threads with true parallelism. The separatememories of the nodes are also hidden from the programmer and our imple-mentation must support the illusion of a shared memory within the ontextof the Java memory model, whih is �relaxed� in that it does not require se-quential onsisteny. (See [8℄ for a omparison of our work with an RMI-basedapproah.)Our approah is most losely related to e�orts to implement Java interpreterson top of a distributed shared memory [9�11℄. However, we are interested inomputationally intensive programs that an exploit parallel hardware. Weexpet that the ost of ompiling to native ode will be reovered many timesover in the ourse of running suh programs. Therefore we fous on ombiningJava ompilation with support for exeuting Java threads in a distributed-memory environment.Our work is done in the ontext of the Hyperion environment for the high-performane exeution of Java programs. Hyperion was developed at theUniversity of New Hampshire and omprises a Java-byteode-to-C translatorand a run-time library for the distributed exeution of Java threads. Hype-rion has been built using the PM2 distributed, multithreaded run-time sys-tem from the Éole Normale Supérieure de Lyon [12℄. As well as providinglightweight threads and e�ient inter-node ommuniation, PM2 provides ageneri distributed-shared-memory layer, DSM-PM2 [13℄. Another importantadvantage of PM2 is its high portability on several UNIX platforms and on alarge variety of ommuniation interfaes and protools (BIP, SCI, VIA, MPI,TCP). Thanks to this feature, Java programs ompiled by Hyperion an beexeuted with true parallelism in all these environments.In this paper we desribe the overall design of the Hyperion system, the strat-egy followed for the implementation of Hyperion using PM2, and a prelim-inary evaluation of Hyperion/PM2 by omparing serial C, serial Java, andmultithreaded Java implementations of a branh-and-bound solution to theminimal-ost map-oloring problem. The evaluation is performed on two dif-ferent platforms using two di�erent ommuniation interfaes: the SISCI in-2



javac
Sun’s

compiler
java2c

compiler

Prog.java
gcc

Prog.class Prog

libs

(bytecode)

Prog.[ch]

Fig. 1. Compiling Java programs with Hyperionterfae on top of a SCI network [14℄ and the MPI-BIP interfae on top of aMyrinet network [15℄.2 The Hyperion systemOur vision is that programmers will develop Java programs using the work-stations on their desks and then submit the programs for prodution runs toa �high-performane Java exeution server� that appears as a resoure on thenetwork. Instead of the onventional Java paradigm of pulling byteode bakto their workstation for exeution, programmers will push byteode to thehigh-performane server for remote exeution. Upon arrival at the server, thebyteode is translated for native exeution on the proessors of the server. Weutilize our own Java-byteode-to-C ompiler (java2) for this task and thenleverage the native C ompiler for the translation to mahine ode.As an aside, note that the seurity issues surrounding �pushing� or �pulling�byteodes an be handled di�erently. When pulling byteodes, users want tobring appliations from potentially untrusted loations on the network. TheJava features for byteode validation an be very useful in this ontext. Inontrast, when �pushing� byteodes to a high-performane Java server, on-ventional seurity methods might be employed, suh as only aepting pro-grams from trusted users. However, the Java seurity features ould still beuseful if one wanted to support an �open� Java server, aepting programsfrom untrusted users.Code generation in java2 is straightforward (see Figure 1). Eah virtual ma-hine instrution is translated diretly into a separate C statement, similar tothe approahes taken in the Harissa [16℄ or Toba [17℄ ompilers. As a result ofthis method, we rely on the C ompiler to remove all the extraneous tempo-rary variables reated along the way. Currently, java2 supports all non-wideformat instrutions as well as exeption handling.The java2 ompiler also inludes an optimizer for improving the performaneof objet referenes with respet to the distributed-shared memory. For exam-ple, if an objet is referened on eah iteration of a loop, the optimizer willlift out of the loop the ode for obtaining a loally ahed opy of the objet.3



Inside the loop, therefore, the objet an be diretly aessed with low over-head via a simple pointer. This optimization needs to be supported by bothompiler analysis and run-time support to ensure that the loal ahe will notbe �ushed for the duration of the loop.To build a user program, user lass �les are ompiled (�rst by Hyperion's java2and then the generated C ode by a C ompiler) and linked with the Hyperionrun-time library and with the neessary external libraries. The Hyperion run-time system is strutured as a olletion of modules that interat with oneanother (see Figure 2). We now present the main ones.Java API support Hyperion urrently uses the Sun Mirosystems JDK 1.1as the basis for its Java API support. Classes in the Java API that do notinlude native methods an simply be ompiled by java2. However, lasseswith native methods need to have those native methods written by hand to�t the Hyperion design. Unfortunately, the Sun JDK 1.1 has a large numberof native methods sattered throughout the API lasses. To date, we haveonly implemented a small number of these native methods and therefore oursupport for the full API is limited. We hope that other releases of Java 2 (e.g.,Sun JDK 1.2) will be more amenable to being ompiled by java2.Thread subsystem The thread module provides support for lightweightthreads, on top of whih Java threads an be implemented. This supportinludes thread reation/destrution and thread synhronization using mu-texes. For portability reasons, we model the interfae to this subsystem onthe ore funtions provided by POSIX threads. Additionally, the thread sub-system provides an API for thread migration, whih we plan to use in futureinvestigations of dynami and transparent appliation load balaning.Communiation subsystem The ommuniation subsystem supportsmessage transmission between the nodes of a luster. The interfae is basedupon message handlers being asynhronously invoked on the reeiving end.This interfae is mandatory sine most ommuniations, either one-way orround-trip, must our without any expliit ontribution of the remote node:inoming requests are handled by a speial daemon thread whih runs on-urrently with the appliation threads. For example, in our implementationof the Java memory model, one node of a luster an asynhronously requestdata from another node.
4



loadIntoCahe Load an objet into the aheinvalidateCahe Invalidate all entries in the aheupdateMainMemory Update main memory with modi�ations made toobjets in the aheget Retrieve a �eld from an objet previously loadedinto the aheput Modify a �eld in an objet previously loaded intothe aheTable 1Interfae between the Hyperion memory subsystemand the implementation layer.Memory subsystem The Memory subsystem is responsible for implement-ing the Java memory model. Its interfae is based upon the operational spe-i�ation of the Java memory model [18℄. The model utilizes both a mainmemory and thread ahes. Table 1 lists the key primitives of the Hyper-ion memory subsystem. These primitives oneptually manipulate the allingthread's ahe and/or the main memory. (The Hyperion implementation ofthe Java memory model is disussed in detail in Setion 4.)Hyperion's memory subsystem also inludes mehanisms for objet alloa-tion, garbage olletion and distributed synhronization. Java monitors andthe assoiated wait/notify methods are supported by attahing mutexes andondition variables from the Hyperion threads module to the Java objetsmanaged by the Hyperion memory layer.Note that the whole design of the memory subsystem (and the orrespondingAPI) is based on objets. However, the DSM support may be page-based. Thememory subsystem interfae hides suh details from the rest of the system.More information about this point is given in Setion 3.
Load balaner The load balaner is responsible for hoosing the most ap-propriate node on whih to plae a newly reated thread. The urrent strategyis rather simple: threads are assigned to nodes in a round-robin fashion. Weuse a distributed algorithm, with eah node using round-robin plaement ofits loally reated threads, independently of the other nodes. More omplexload balaning strategies based on dynami thread migration and on the in-teration between thread migration and the memory onsisteny mehanismsare urrently under investigation. 5



Communication
subsystem

balancer

subsystem
Memory

Load

Thread
subsystem

PM2 API: pm2_rpc, pm2_thread_create, etc.

DSM subsystem

PM2

Hyperion runtime

Native
Java API

Thread subsystem Comm. subsystemFig. 2. Overview of the Hyperion software arhiteture3 Implementing Hyperion on top of PM2As spei�ed in the previous setion, eah high-level omponent of the Hyperionruntime (namely the thread, ommuniation and memory subsystems) requiresthat a number of funtionalities be supported by the (lower) implementationlayer. The urrent implementation of the Hyperion runtime is based upon thePM2 distributed multithreaded environment (Figure 2), whih provides thefeatures needed by all subsystems. Nevertheless, other implementations arepossible (an alternative implementation of the memory subsystem is urrentlyunder study). In this paper, we fous on the PM2 implementation.PM2's programming interfae allows user-level threads to be reated loallyor remotely and to ommuniate through Remote Proedure Calls (RPCs).Besides, PM2 provides a thread migration mehanism that allows threads tobe transparently and preemptively moved from one node to another duringtheir exeution. Suh a funtionality is typially useful to implement dynamiload-balaning poliies. Finally, the aess to a ommon global address spaeis available via a distributed shared memory faility: the DSM-PM2 [13℄ layer.Most Hyperion run-time primitives in the thread, ommuniation and sharedmemory subsystems are implemented through diret mapping onto the orre-sponding PM2 routines.Thread subsystem The thread omponent of Hyperion is a very thin layerthat interfaes to PM2's thread library, alled Marel. Marel is an e�ient,user-level, POSIX-like thread pakage featuring thread migration. Most of thefuntions in Marel's API provide the same syntax and semantis as the or-responding POSIX Threads funtions. However, it is important to note thatthe Hyperion thread omponent uses the PM2 thread omponent through the6



PM2 API and does not aess the thread omponent diretly, as would betypial when using a lassial Pthreads-ompliant pakage. PM2 implementsa areful integration of multithreading and ommuniation that atually re-quired several modi�ations to the thread management funtions (e.g., threadreation).Communiation subsystem The ommuniation omponent of Hyperionis implemented using PM2 remote proedure alls, whih allow PM2 threadsto invoke the remote exeution of user-de�ned servies (i.e., funtions). On theremote node, PM2 RPC invoations an either be handled by a pre-existingthread or they an involve the reation of a new thread. This latter funtional-ity allows us to easily implement Hyperion's ommuniation subsystem. PM2utilizes a generi ommuniation pakage alled Madeleine [19℄ that providesan e�ient interfae to a wide range of high-performane ommuniation li-braries, inluding low-level ones. The following ommuniation interfaes areurrently supported: BIP on top of a Myrinet network, SISCI on top of a SCInetwork, VIA, the Virtual Interfae Arhiteture, MPI and TCP.Memory subsystem The memory management primitives desribed inTable 1 are implemented on top of PM2's distributed-shared-memory layer,DSM-PM2 [13℄. DSM-PM2 provides a portable, on�gurable implementationplatform for multithreaded DSM onsisteny protools. It has been designedto be generi enough to support multiple onsisteny models. Besides, alterna-tive protools are available for a given onsisteny model, thereby enabling theprogrammer to possibly tune the DSM system aording to the spei� appli-ation needs. Currently, two built-in alternative protools provide Sequentialonsisteny, and two other provide Release onsisteny. Also, new onsistenymodels and protools an be easily implemented using the existing generiDSM-PM2 library routines.DSM-PM2 is strutured in layers. At the high level, a DSM protool poliylayer is responsible for implementing onsisteny models out of a subset ofthe available library routines. The library routines (used to bring a opy ofa page to a thread, to invalidate all opies of a page, et.) are grouped inthe lower-level DSM protool library layer. Finally, these library routines arebuilt on top of two base omponents: the DSM page manager and the DSMommuniation module. The DSM page manager is essentially dediated tothe low-level management of memory pages. It implements a distributed tableontaining page ownership information and maintains the appropriate aessrights on eah node. The DSM ommuniation module is responsible for pro-viding elementary ommuniation mehanisms, suh as delivering requests forpage opies, sending pages, and invalidating pages.7



Main memory

x

Thread T

x

Cache
use(x)

store(x) write(x)

load(x)

assign(x)

read(x)

Fig. 3. Interations between the thread ahe and the main memory as spei�ed bythe Java Memory ModelThe DSM-PM2 user has three alternatives that may be utilized aording tothe user's spei� needs: (1) use a built-in protool, (2) build a new protoolout of a subset of library routines, or (3) write new protools using the API ofthe DSM page manager and DSM ommuniation module (for more elaboratefeatures not implemented by the library routines). The memory subsystemprimitives of Hyperion (loadIntoCahe, updateMainMemory, invalidateCahe,get and put) have been implemented using this latter approah, aordingto the spei�ation of the Java Memory Model, as detailed in Setion 4.4 Implementing the Java memory model on a distributed luster4.1 The Java memory modelA entral aspet of Hyperion's design is onerned with the implementationof the abstrat memory model of Java within a physially distributed environ-ment. The Hyperion system must provide the illusion of a uniformly aessible,shared objet memory, whih is independent of the physial objet loationsaross the luster.The Java Memory Model (JMM) allows Java threads to use their privatememory to ahe values retrieved from main memory. Cahing greatly im-proves performane if the appliation exhibits temporal loality, by aessinga ahed objet multiple times before the ahe is invalidated. The spei�a-8



tion of the Java language [18, Chapter 17℄ is very areful to desribe how athread may utilize its ahe. It spei�es that eah Java thread is oneptu-ally equipped with a loal ahe, interating with a ommon main memory(Figure 3). A thread may perform use and assign ations to aess values forvariables that have been ahed loally. The use ation retrieves a variable'svalue from the ahe for use by the thread's exeution engine. The assign a-tion overwrites a variable's value in the ahe with a new value provided bythe exeution engine. The transfer of a variable's value from the main memoryto the ahe of a thread is ompleted by the unique pairing of a read ationperformed by main memory with a load ation performed by the thread. Theread ation retrieves the variable's value from main memory and transmits itto the thread. The load ation aepts the value from main memory and putsit in the thread's ahe loation for the variable. The reverse transfer, from athread's ahe bak to main memory, is ompleted by the unique pairing of astore ation performed by the thread with a write ation performed by mainmemory. The store ation transmits to main memory the value for a variableresiding in the thread's ahe. The write ation aepts the value transmittedby the thread and deposits it in the main memory loation for the variable.The JMM also de�nes synhronization ations. Java monitors are desribedin terms of loks and eah Java objet is assoiated with a lok, whih is alsostored in the main memory. A lok may only be held by a single thread at atime. (A thread requesting a lok held by another thread will blok until thelok beomes available and the requesting thread is able to obtain it.) Threadsmay request lok and unlok ations and the main memory is responsible forompleting these ations. When a thread aquires a lok, it must �ush allvariables from its ahe. Before a thread releases a lok, it must �rst transmitbak to main memory all values it assigned sine it aquired the lok. These tworules ensure that the onventional use of loks to protet a shared variable,will work orretly. After a thread grabs the lok, the �rst referene to thevariable will ause the variable value to be read from the main memory andloaded into the thread's ahe. The variable an then be updated and, whenthe thread performs the unlok, the updated value will be stored and writtenbak to main memory, so as to be visible to other threads.4.2 A distributed implementation in HyperionIn Hyperion, the main memory region for an objet is on its home node, thenode on whih the objet was reated. The home node is in harge of managingthe master opy of the objet. Initially, the objets are stored on their homenodes and an then be repliated if aessed on other nodes. On using anobjet, for instane as the right-hand side of an assignment, the loal opy ofthe objet in the node's ahe is aessed; if no opy is present, then one is9



loaded from the main memory using the loadIntoCahe primitive. On assigningan objet, for instane through the left-hand side of an assignment, the loalopy of the objet in the node's ahe is assigned; if no opy is present, thena fresh opy is loaded.For a thread exeuting a lok ation, Hyperion �rst performs the ode nees-sary for the thread to aquire the lok, then updates main memory with allassigned values in the ahe (via the updateMainMemory primitive), and �nallyinvalidates the ahe (via the invalidateCahe primitive). For a thread exeut-ing the unlok ation, the implementation �rst updates main memory with allassigned values in the ahe (again via the updateMainMemory primitive) andthen performs the ode neessary for the thread to release the lok.Note that the JMM only requires that the ahe be invalidated when a lok isaquired, but that Hyperion also updates main memory. The update of mainmemory is not expliit in the JMM rules in this situation, but it is implied bythe separate rule that requires a store ation be subsequently performed fora variable prior to a load ation for the variable, if an assign ation has beenpreviously performed for the variable. If the update of main memory were notdone prior to the ahe invalidation, then any assigned values in the ahewould be lost when the ahe was invalidated, in violation of this rule.Hyperion uses spei� aess primitives to shared data: the get and put prim-itives. This allows us to detet and reord all modi�ations to loally ahedobjets using a bitmap. The put primitive uses it to reord all writes to theobjet, using objet-�eld granularity. All loal modi�ations are sent to thehome node of the page by the updateMainMemory primitive. When updatingmain memory, Hyperion identi�es all updated variables in the ahe. Then itfurther identi�es the home for all suh variables and generates RPCs to allthe homes to transmit the updated values. The alling thread must blok un-til all suh RPCs are expliitly aknowledged with an answering RPC, whihindiates that the updated values were reeived and stored at the home node.Aknowledgments are neessary in order to prevent a thread from ontinuingon and releasing the lok �early.� Suh an early release would lead to an er-ror, if another thread aquired the lok and ahed variables that had beenupdated by the other thread, but for whih the new values had not yet beenwritten into main memory.Java objets are implemented on top of DSM-PM2 pages. If an objet spansseveral pages, all the pages are ahed loally when the objet is loaded. Con-sequently, loading an objet into the loal ahe may generate prefething,sine all objets on the orresponding page(s) are atually brought to the ur-rent node. This pre-fething is Java ompliant beause �early� read and loadations are expliitly allowed, as long as they are performed after the last lokation performed by the thread. Sine eah lok ation is implemented with10



an invalidation of the loal ahe, any values pre-fethed before the last lokare disarded at the time of the lok . Therefore, any values that are �hits� inthe ahe are guaranteed to be values fethed sine the last lok was exeuted.Note that ahing at the page level, rather than at the objet level, does nota�et the updating of main memory. Sine in the JMM a lok or a unlokation auses all ahed values that have been modi�ed to be sent to mainmemory, treating ahed memory in units of pages is Java ompliant.In the original desription of the Java memory model, eah thread is equippedwith its private, thread-level ahe. The design of Hyperion reognizes that formany appliations performane may be improved by running many threadsin parallel, many more than the number of available nodes in the luster.To support this view, Hyperion enables all the threads running on a singlenode to share a ommon, node-level ahe. Sharing a ommon ahe amongall the threads running at a single node enhanes prefething of objets, thusproviding a better loality of aess. Also, the size of the ahes is a funtionof the number of nodes, instead of the number of threads as in the originaldesription. This is a major deviation from the original desription of theJMM, whih deserves a detailed disussion. We postpone this aspet to thenext setion for the sake of larity.Node-level onurreny provides the potential for onurrent exeution of im-plementation ations suh as page fething, ahe invalidation or the updateof main memory. To limit this potential, Hyperion employs mutexes, as wellas more omplex loking mehanisms.� First, eah ahed page is proteted by a mutex to serialize the updat-ing of the page's modi�ation bitmap. This mutex is also loked prior totransmitting the modi�ations bak to the home node. The mutex is notloked by the get primitive, sine there is no on�it between reading a �eldand either updating the enompassing page's bitmap or sending the page'smodi�ations bak to the home node.� Seond, a single, node-level mutex is employed to prevent onurrent aheinvalidations and main-memory updates. This mutex is neessary to protetthe internal data strutures used by the ahe.� Finally, a more sophistiated loking mehanism is employed that preventsany thread from doing a ahe invalidation until all threads are in a positionto safely allow the invalidation to proeed. This mehanism is similar tosolutions to the �readers-and-writers problem� in that multiple threads (thereaders) may aess ahed values but only one thread (the writer) at a timean invalidate the ahe. In addition, there an be no threads aessing theahe when it is invalidated. Threads release their �reader� lok wheneverthey reah a point in the program where an objet might �move�. Thisinludes lok and unlok ations when the ahe is invalidated, as well as thenew operator, when the garbage olletor might be invoked. This mehanism11



N0 Homex N1loadIntoCahe(x) loadIntoCahe(x)request x request xsend x (value 7) to N0send x (7) to N1T0: use x (7) T3: use x (7)T1: assign x = 17 T4: assign x = 19T2: use x (17) T5: use x (19)updateMainMemory(x) updateMainMemory(x)transmit x (17) transmit x (19)reeive x (17) from N0reeive x (19) from N1Fig. 4. A typial situation for threads interating on a variable x.Main Memoryread x (value 7) for T0read x (7) for T3write x (17) for T1read x (17) for T2write x (19) for T4read x (19) for T5Fig. 5. The serial ordering for variable x.prevents a ahe invalidate when a page feth is underway and thus avoidsthe need to possibly disard arriving pages and re-issue page requests. Inaddition, onurrent page requests an be safely and simply satis�ed by asingle page feth from the home node.4.3 Node-level onurreny and node-level ahesDoes the node-level ahe approah of Hyperion omply with the thread-levelahe spei�ation of JMM? And does speial are need to be taken to supportonurrent aess to the loal ahe?12



One aspet of sharing the loal ahe is that it extends pre-fething to rossthread boundaries, in ontrast with the operational desription of the JMM.Atually, one thread an ause an objet to be ahed. The ahed objetmay be subsequently aessed by another thread exeuting on the same node.The justi�ation for this pre-fething is the same as disussed in the preed-ing subsetion. The key fat is that, if any thread invalidates the ahe, thewhole ahe is invalidated for all threads. This ensures that any �hit� in theahe provides a valid value no matter whih thread is exeuting the aess.The values in the ahe have all been loaded after the last ahe invalidationperformed by any thread.A seond aspet of ahe sharing is that an assign performed by one threadon a given node will be �seen� earlier by other threads on the same nodethan by threads exeuting elsewhere in the luster, again in ontrast withthe operational desription of the JMM. Sine the JMM utilizes a separateahe for eah thread, it requires that, for a thread to use the value assignedby another thread, the value must be stored to main memory by the threadthat performed the assign and then loaded from main memory by the threadthat is performing the use. In Hyperion, however, the home loation is notatually touhed until there is a lok or a unlok exeuted on the node. Thismeans that the JMM onept of main memory is not diretly implementedin Hyperion by a set of physial home loations, one �xed loation for eahvariable. In some irumstanes, the value orresponding to the oneptualJMM main-memory opy of a given variable, may be read or written in thenode-level ahe, instead of its regular home loation.In fat, in Hyperion a variable may be ahed on multiple nodes with mul-tiple threads on eah node onurrently aessing the loal opy. The JMMrequires that the main-memory ations performed on this variable be serializ-able. However, in Hyperion the ations are potentially performed onurrentlyby proessors on di�erent nodes. The key element to the argument that theHyperion approah is JMM ompliant is that the required serial ordering ofJMM main-memory ations for a given variable an always be onstrutedfrom the node-level traes of the Hyperion implementation's manipulation ofthat variable at run time.In general the serial ordering of the main-memory ations is onstruted byspliing together the Hyperion traes for eah node. The spliing is drivenby the trae from the home node, using the alls to the loadIntoCahe andupdateMainMemory routines of Hyperion's runtime to ontrol the merging fromthe other traes.� A all to loadIntoCahe for a variable x issues a read request from the loalnode to the home node for x; eventually, this home node serves the requestby atually reading the value of x in from memory (read ation of the JMM)13



and it sends it bak to the requesting node; the value is eventually reeivedand loaded into the ahe (load ation), where an subsequently be used(use ation).� A all to the updateMainMemory routine sans all the variables x whih havebeen modi�ed (assign ation) at the loal node sine the last update; foreah of them, it transmits the loal value to the spei� home node (storeation); the home node eventually reeives this value and atually updatesits memory with it (write ation).To illustrate a typial situation, onsider the sequene of ations displayed inFigure 4. Variable x is ahed on two single-proessor nodes, N0 and N1. Thereare three threads exeuting on eah node: T0, T1 and T2 on N0; T3, T4 and T5on N1. The home node for x is Homex. Despite the onurrent assignmentsand the subsequent use of the assigned values by other threads, the requiredserial ordering of the main memory ations an still be onstruted, as shownin Figure 5.A full desription of an algorithm for onstruting a serial ordering of the JMMmain-memory ations, given a set of Hyperion node-level traes, is providedin [20℄. We are urrently working on a formal desription of this algorithm.5 Performane evaluation: minimal-ost map-oloring5.1 Experimental onditions and benhmark programsWe have implemented branh-and-bound solutions to the minimal-ost map-oloring problem, using serial C, serial Java, and multithreaded Java. Theseprograms have �rst been run on a eight-node luster of 200 MHz Pentium Proproessors, running Linux 2.2, interonneted by a Myrinet network and usingMPI implemented on top of the BIP ommuniation interfae [21℄. We havealso exeuted the programs without any modi�ation on a four-node luster of450 MHz Pentium II proessors running Linux 2.2, interonneted by a SCInetwork using the SISCI ommuniation interfae. The serial C program isompiled using the GNU C ompiler, version 2.7.2.3 with -O6 optimization,and runs �natively� as a normal Linux exeutable. The Java programs aretranslated to C by Hyperion's java2 ompiler, the generated C ode is alsoompiled by GNU C with -O6 optimization, and the resulting objet �les arelinked with the Hyperion/PM2 run-time system.The two serial programs use idential algorithms, based upon storing thesearh states in a priority queue. The queue �rst gives priority to states inthe bottom half of the searh tree and then seondly sorts by bound value.14



(Giving priority to the states in the bottom half of the searh tree drivesthe searh to �nd solutions more quikly, whih in turn allows the searhspae to be more e�iently pruned.) The parallel program does an initial,single-threaded, breadth-�rst expansion of the searh tree to generate sixty-four searh states. Sixty-four threads are then started and eah one is givena single state to expand. Eah thread keeps its own priority queue, using thesame searh strategy as employed by the serial programs. The best urrent so-lution is stored in a single loation, proteted by a Java monitor. All threadspoll this loation at regular intervals in order to e�etively prune their searhspae. All programs use a pre-alloated pool of searh-state data objets. Thisavoids making a large number of alls to either the C storage alloation prim-itives (mallo/free) or utilizing the Java garbage olletor. (Our distributedJava garbage olletor is still under development.) If the pool is exhausted,the searh mehanism swithes to a depth-�rst strategy until the pool is re-plenished. Maintaining a onstant number of threads aross exeutions ondi�erent size lusters helps to keep fairly onstant the aggregate amount ofwork performed aross the benhmarking runs. However, the pattern of inter-ation of the threads (via the detetion of solutions) does vary and thus thework performed also varies slightly aross di�erent runs.For benhmarking, we have solved the problem of oloring the twenty-nineeastern-most states in the USA using four olors with di�erent osts. Assign-ing sixty-four threads to this problem in the manner desribed above, andusing Hyperion's round-robin assignment of threads to nodes, is reasonablye�etive at evenly spreading the number of state expansions performed arounda luster, if the number of nodes divides evenly into the number of threads.(In the future we plan to investigate dynami and transparent load balaningapproahes using the thread migration features of PM2.)5.2 Overhead of Hyperion/PM2 vs. hand-written C odeFirst, we ompare the performane of the serial programs on a single 450 MHzPentium II proessor running Linux 2.2. Both the hand-written C program andthe C ode generated by java2were ompiled to native Pentium II instrutionsusing g 2.7.2.3 with option -O6. Exeution times are given in seonds.Hand-written C 63Java via Hyperion/PM2 324Java via Hyperion/PM2, in-line DSM heks disabled 168Java via Hyperion/PM2, array bound heks also disabled 9815



We onsider this a �hard� omparison beause we are omparing against hand-written, optimized C ode and beause the amount of straight-line omputa-tion is minimal. This appliation features a large amount of objet manipula-tion (inserting to and retrieving from the priority queue; alloating new statesfrom the pool and returning �dead-end� states to the pool) with a relativelysmall amount of omputation involved in expanding and evaluating a singlestate. In fat, the top two lines in the table demonstrate that the originalHyperion/PM2 exeution is roughly �ve times slower than the exeution ofthe hand-written C program.The bottom two lines in the table help explain the urrent overheads in theHyperion/PM2 implementation of the Java ode and represent umulativeimprovements to the performane of the program. In the third line of the table,the Java ode is exeuted on a single node with the in-line heks disabled:in-line heks are used by Hyperion to test for the presene or the absene of agiven Java objet at the loal node in the distributed implementation; as thereis only one node at work in the ase at stake, they are always satis�ed. In thefourth line of the table, the array bound heks are additionally disabled. Thislast version an be onsidered as the losest to the hand-written C ode. It isonly 55% slower. A omparison with hand-written C++ ode would probablybe more fair to Hyperion, and would probably result in an even lower gap.We an draw two onlusions from these �gures. First, the in-line heks usedto implement the Hyperion DSM primitives (e.g., loadIntoCahe, get and put)are very expensive for this appliation. By disabling these heks in the Code generated by java2, we save nearly 50% of the exeution time. (Thisemphasizes the map-oloring appliation's heavy use of objet manipulationand light use of integer or �oating-point alulations.) For this appliationit may be better to utilize a DSM-implementation tehnique that relies onpage-fault detetion rather than in-line tests for loality. Even if the extraost of a page fault is paid for every aess to a non-ahed remote objet,this alternative tehnique avoids the high ost of the in-line heks. Suh aomparison an be onveniently made using DSM-PM2's generi support. Anextensive study of the relative e�ieny of in-line vs. page-fault heks, basedon �ve other appliations, an be found in [22℄. There, the page-fault versionusually performs signi�antly better than the in-line hek version.Seond, the ost of the array-bounds hek in the Java array-index operation,at least in the Hyperion implementation, is also quite signi�ant. We imple-ment the bounds hek by an expliit test in the generated C ode. In themap-oloring appliation, arrays are used to implement the priority queuesand in the representation of searh states. In both ases the atual index al-ulations are straightforward and would be amenable to optimization by aompiler that supported the guaranteed safe removal of suh heks. Suh anoptimization ould be implemented in java2. Alternatively, this optimization16



1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

P
ar

al
le

liz
ab

ili
ty

Number of nodes

200 MHz, MPI-BIP/Myrinet
450 MHz, SISCI/SCI
Ideal parallelizability

Fig. 6. Parallelizability results for the multithreaded version of our Java programsolving the problem of oloring the twenty-nine eastern-most states in the USAusing four olors with di�erent osts. Tests have been done on two luster platforms:200 MHz Pentium Pro using MPI-BIP/Myrinet and 450 MHz Pentium II usingSISCI/SCI. The program is run in all ases with 64 threads.might be done by analysis of the byteode prior to the exeution of java2.Or, the optimization ould be performed on the generated C ode. We planto further investigate these alternatives in the future.5.3 Performane of the multithreaded versionNext, we provide the performane of the multithreaded version of the Javaprogram on the two lusters desribed in Setion 5.1. Parallelizability resultsare presented in Figure 6: the multi-node exeution times are ompared to thesingle-node exeution time of the same multithreaded Java program run with64 threads.On the 200 MHz Pentium Pro luster using MPI-BIP/Myrinet, the exeutiontime dereases from 638 s for a single-node exeution to 178 s for an 4-nodeexeution (90% e�ieny), and further to 89 s for an 8-node exeution (still90% e�ieny). On the 450 MHz Pentium II luster using SISCI/SCI, thee�ieny is slightly lower (78% on 4 nodes), but the exeution time is sig-ni�antly better: the program runs in 273 s on 1 node, and 89 s on 4 nodes.Observe that the multithreaded program on one 450 MHz Pentium II nodefollows a more e�ient searh path for the partiular problem being solvedthan its serial, single-threaded version reported in Setion 5.2. The e�ieny17



dereases slightly as the number of nodes inreases on a luster. This is dueto an inreasing number of ommuniations that are performed to the singlenode holding the urrent best answer. With a smaller number of nodes, thereare more threads per node and a greater hane that, on a given node, requestsby multiple threads to feth the page holding the best answer an be satis�edby a single message exhange on the network. (That is, roughly onurrentpage requests at one node may be satis�ed by one message exhange.)We believe these results indiate the strong promise of our approah. How-ever, further study is warranted. We plan to investigate the performane underHyperion/PM2 of additional Java multithreaded programs, inluding applia-tions onverted from the SPLASH-2 benhmark suite.6 Related workThe use of Java for distributed parallel programming has been the objet ofa large number of researh e�orts during the past several years. Most of thereently published results highlight the importane of transpareny with re-spet to the possibly distributed underlying arhiteture: multithreaded Javaappliations written using the shared-memory paradigm should run unmodi-�ed in distributed environments. Though this goal is put forward by almostall distributed Java projets, many of them fail to fully ahieve it.The JavaParty [4℄ platform provides a shared address spae and hides the inter-node ommuniation and network exeptions internally. Objet and threadloation is transparent and no expliit ommuniation protool needs to bedesigned nor implemented by the user. JavaParty extends Java with a pre-proessor and a run-time system handling distributed parallel programming.The soure ode is transformed into regular Java ode plus RMI hooks andthe latter are fed into Sun's RMI ompiler. Multithreaded Java programs areturned into distributed JavaParty programs by identifying the lasses and ob-jets that need to be spread aross the distributed environment. Unfortunately,this operation is not transparent for the programmer, who has to expliitlyuse the keyword remote as a lass modi�er. A very similar approah is takenby the Do! projet [3℄, whih obtains distribution by hanging the frameworklasses used by the program and by transforming lasses to transparently usethe Java RMI, while keeping an unhanged API. Again, potentially remoteobjets are expliitly indiated using the remote annotation.Another approah onsists in implementing Java interpreters on top of a dis-tributed shared memory [10,11℄ system. Java/DSM [11℄ is suh an example,relying on the Treadmarks distributed-shared-memory system. Nevertheless,using an o�-the-shelf DSM may not lead to the best performane, for a num-18



ber of reasons. First, to our knowledge, no available DSM provides spei�support for the Java memory model. Seond, using a general-purpose release-onsistent DSM sets up a limit to the potential spei� optimizations thatould be implemented to guarantee Java onsisteny. Loality and ahingare handled by the DSM support, whih is not �exible enough to allow thehigher-level layer of the system to on�gure its behavior.JVM [9℄ is another interpreter-based JVM providing a single image of atraditional JVM while running on a luster. Eah luster node has a JVMproess that implements the Java interpreter loop while exeuting part of theappliation's Java threads and ontaining part of the appliation objets. Inontrast to Hyperion's objet ahing approah, JVM exeutes methods onthe node holding the master opy of the objet, but inludes optimizations fordata ahing and repliation in some ases.Our interest in omputationally intensive programs that an exploit parallelhardware justi�es three main original design deisions for Hyperion. First, werely on a Java-to-C ompiler to transform byteode to native ode and weexpet the ompilation ost will be reovered many times over in the ourse ofrunning suh programs. We believe this approah will lead to muh better exe-ution times ompared to the interpreter-based approahes mentioned above.Seond, Hyperion uses the generi, multi-protool DSM-PM2 run-time sys-tem, whih is on�gured to spei�ally support Java onsisteny. Finally, weare able to take advantage of fast luster networks, suh as SCI and Myrinet,thanks to our portable and e�ient ommuniation library provided by thePM2 run-time system.7 ConlusionThe goal of the Hyperion projet is to provide the software infrastruture touse Java to program low-ost, high-performane lusters of ommodity pro-essors. Hyperion supports viewing a luster as exeuting a single Java virtualmahine. We believe that transparently enabling the use of suh lusters willmake Java an attrative language for high-performane omputing to a largelass of programmers.In Java, the notion of onurreny has been inluded from the very beginningin the language spei�ation, both at the user level and within the byteode.Conurreny is exposed to the user through threads, whih share a ommonaddress spae. The standard library provides a number of failities to start athread, suspend or kill it, swith ontrol between threads, et., and the Javamemory model spei�es how threads may interat with the ommon memory.It is thus possible to leverage this feature to diretly map a multithreaded19



Java program onto a luster. Faster exeution is obtained by mapping theoriginal Java threads onto the native threads available in the luster. Thesethreads are spread aross the proessing nodes to provide atual onurrentexeution and load balaning. The Java memory model is implemented by adistributed shared memory (DSM) substrate, so that the original semantis ofthe language is kept unhanged.Portability has been a major objetive in the design of Hyperion. We didnot ommit to any spei� �avor of Unix, nor any proessor arhiteture, norany spei� type of interonnetion network and protool. To ahieve thishallenge, the Hyperion platform has been built on top of a portable runtimeenvironment alled DSM-PM2, whih is portable aross a wide spetrum ofhigh-performane networks, suh as SCI, Myrinet, and Gigabit-Ethernet, andan be used with most ommon ommuniation interfaes, suh as TCP, MPIand VIA. While the system urrently runs on lusters of Linux PCs, we expetto be able to use Hyperion on nearly any UNIX-based luster or parallelomputing environment without any signi�ant modi�ation.Our benhmarking results demonstrate this portability as we ran an unmod-i�ed program on two lusters utilizing di�erent proessors, di�erent networktehnologies and di�erent ommuniation protools. Our results also identifytwo key needs to enable high-performane serial exeution of Java ode: theelimination of in-line heks for objet loality and the optimization of array-bound heking. Finally, we presented parallelizability results that demon-strate good parallel e�ieny for our benhmark appliation on the availablelusters.Hyperion therefore demonstrates that unmodi�ed, standard Java programsan run e�etively and transparently on lusters. Java threads an be im-plemented with high-performane, low-level threads that an be mapped todi�erent proessors for true parallelism and the Java memory model an bee�iently implemented in a distributed-memory environment. This ombina-tion of performane, transpareny and portability makes Java an attrativealternative for programming lusters of omputers.
AknowledgmentsWe thank the anonymous referees for their remarks, whih helped us improvethe quality of this paper.The Hyperion-PM2 ollaboration was supported by funding from the NSF andINRIA via the USA-Frane Cooperative Researh program.20



Referenes[1℄ F. Breg, S. Diwan, J. Villais, J. Balasubramanian, E. Akman, D. Gannon,Java RMI performane and objet model interoperability: experiments withJava/HPC++, Conurreny: Pratie and Experiene 10 (11-13) (1998) 941�955.[2℄ D. Caromel, W. Klauser, J. Vayssière, Towards seamless omputing andmetaomputing in Java, Conurreny: Pratie and Experiene 10 (11-13) (1998)1043�1062.[3℄ P. Launay, J.-L. Pazat, A framework for parallel programming in Java, in: High-Performane Computing and Networking (HPCN '98), Vol. 1401 of Let. Notesin Comp. Siene, Springer-Verlag, 1998, pp. 628�637.[4℄ M. Philippsen, M. Zenger, JavaParty � transparent remote objets in Java,Conurreny: Pratie and Experiene 9 (11) (1997) 1125�1242.[5℄ J. Maassen, T. Kielmann, H. Bal, E�ient repliated method invoation in Java,in: Pro. of the ACM 2000 Java Grande Conferene, San Franiso, California,2000, pp. 88�96.[6℄ A. Ferrari, JPVM: Network parallel omputing in Java, Conurreny: Pratieand Experiene 10 (11-13) (1998) 985�992.[7℄ V. Getov, S. F. Hummel, S. Minthev, High-performane parallel programmingin Java: exploiting native libraries, Conurreny: Pratie and Experiene10 (11-13) (1998) 863�872.[8℄ T. Kielmann, P. Hather, L. Bougé, H. Bal, Enabling Java for high-performaneomputing: Exploiting Distributed Shared Memory and Remote MethodInvoation, Communiations of the ACM (2001). Speial Issue on Java for HighPerformane Computing, to appear.[9℄ Y. Aridor, M. Fator, A. Teperman, JVM: A single system image of a JVMon a luster, in: Pro. of the International Conferene on Parallel Proessing,Fukushima, Japan, 1999, pp. 4�11.[10℄ X. Chen, V. Allan, MultiJav: A distributed shared memory system based onmultiple Java virtual mahines, in: Pro. of the Int'l Conferene on Parallel andDistributed Proessing Tehniques and Appliations, Las Vegas, Nevada, 1998,pp. 91�98.[11℄ W. Yu, A. Cox, Java/DSM: A platform for heterogeneous omputing,Conurreny: Pratie and Experiene 9 (11) (1997) 1213�1224.[12℄ R. Namyst, J.-F. Méhaut, PM2: Parallel multithreaded mahine, a omputingenvironment for distributed arhitetures, in: Parallel Computing (ParCo '95),Elsevier Siene Publishers, 1995, pp. 279�285.21



[13℄ G. Antoniu, L. Bougé, DSM-PM2: A portable implementation platform formultithreaded DSM onsisteny protools, in: Pro. 6th International Workshopon High-Level Parallel Programming Models and Supportive Environments(HIPS '01), San Franiso, 2001, to appear.[14℄ H. Hellwagner, A. Reinefeld (Eds.), SCI: Salable Coherent Interfae.Arhiteture and Software for High-Performane Compute Clusters, Vol. 1734of Let. Notes in Comp. Siene, Springer-Verlag, 1999.[15℄ L. Prylli, B. Touranheau, R. Westrelin, The design for a high performane MPIimplementation on the Myrinet network, in: Pro. 6th European PVM/MPIUsers' Group (EuroPVM/MPI '99), Vol. 1697 of Let. Notes in Comp. Siene,Springer Verlag, Barelona, Spain, 1999, pp. 223�230.[16℄ G. Muller, U. Pagh Shultz, Harissa: A hybrid approah to Java exeution, IEEESoftware 16 (2) (1999) 44�51.[17℄ T. Proebsting, G. Townsend, P. Bridges, J. Hartman, T. Newsham,S. Watterson, Toba: Java for appliations � a way ahead of time (WAT) ompiler,in: Pro. of the Third Conferene on Objet-Oriented Tehnologies and Systems,USENIX Assoiation, Portland, Oregon, 1997, pp. 41�53.[18℄ J. Gosling, W. Joy, G. Steele Jr., The Java Language Spei�ation, Addison-Wesley, Reading, Massahusetts, 1996.[19℄ L. Bougé, J.-F. Méhaut, R. Namyst, E�ient ommuniations in multithreadedruntime systems, in: Pro. 3rd Workshop on Runtime Systems for ParallelProgramming (RTSPP '99), Vol. 1586 of Let. Notes in Comp. Siene, Springer-Verlag, San Juan, Puerto Rio, 1999, pp. 468�482.[20℄ P. Hather, On the orretness of a luster implementation of Java, TehnialReport TR 00-05, University of New Hampshire (Jul. 2000).[21℄ L. Prylli, B. Touranheau, BIP: A new protool designed for high performanenetworking on Myrinet, in: Pro. of First Workshop on Personal ComputerBased Networks Of Workstations (PC-NOW '98), Vol. 1388 of Let. Notes inComp. Siene, Springer-Verlag, 1998, pp. 472�485.[22℄ G. Antoniu, P. Hather, Remote objet detetion in luster-based Java, in:Pro. 3rd Int. Workshop on Java for Parallel and Distributed Computing(JavaPDC '01), San Franiso, 2001, to appear.

22


