
Efficient Grid Resource Selection for a CEM Application

Eddy Caron, Cristian Klein, Christian Pérez

To cite this version:

Eddy Caron, Cristian Klein, Christian Pérez. Efficient Grid Resource Selection for a CEM
Application. Rencontres francophones du parallélisme (RenPar 19), Sep 2009, Toulouse, France.
2009. <inria-00564612>

HAL Id: inria-00564612

https://hal.inria.fr/inria-00564612

Submitted on 9 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00564612

RenPar’19 / SympA’13 / CFSE’7
Toulouse, France, du 9 au 11 septembre 2009

Efficient Grid Resource Selection for a CEM Application∗

Eddy CARON, Cristian KLEIN, Christian PÉREZ

LIP, École Normale Supérieur de Lyon,
46 Allée d’Italie
69364 Lyon, France
{Eddy.Caron,Cristian.Klein}@ens-lyon.fr, Christian.Perez@inria.fr

Résumé

Computational Electromagnetics (CEM) is a domain which provides numerical solutions to compute an-
tenna performance, electromagnetic compatibility, radar cross section and electromagnetic wave propaga-
tion. The ever-increasing need for more precision and larger meshes raises the natural question whether
it is worth porting CEM algorithms to computer grids. Due to the nature of the computations, CEM al-
gorithms are not trivially parallelisable, as data dependency inside the mesh implies communication. The
goal of this paper is to answer the question: given a set of resources, what is the subset of resources one
should chose among, to minimise the time it takes to solve a CEM problem. After presenting a model of
the application execution time, several algorithms for selecting resources are described. The limits of the
theoretical model is then compared against experimental results, obtained from the Grid’5000 platform.

Mots-clés : CEM, Grid, Mapping, Grid’5000

1. Introduction

Partial Differential Equations (PDE) are involved in the solution to many problems, like car crash test
simulation or dynamics fluid. However, solving the PDEs by variables elimination is difficult for all but
the simple cases. For solving real-world problems, one may use the Finite Element Method (FEM), which
consists in representing the space as a mesh. The resulting algorithms are non-trivially parallelisable,
having irregular computations. As the size of the meshes increases, the question whether such applications
could be speed up by deploying them in grid environments is naturally raised. The DiscoGrid project [1]
aims to efficiently use hierarchical platforms, by proposing a message-passing API [3] with hierarchy-
specific functions, which would allow an application to take better data-placement decisions. For example,
the project focuses on Computational ElectroMagnetics (CEM) applications, which uses the FEM to solve
electromagnetic problems.

The MAXDG1 software is used for the numerical resolution of the three-dimensional Maxwell equations
in the time domain, for heterogeneous media and using tetrahedral unstructured meshes. Initially paral-
lelized using MPI, it has already been ported to use the DiscoGrid API. Running the application consists
in two steps. First, the mesh is being partitioned based on a resource description file, having the ability
to assign bigger meshes to resources with more computation power. This is achieved using the partIt

tool [4]. Second, the created submeshes are used to launch the application on the chosen resources.

Given a hierarchical topology, partIt is able to efficiently partition the mesh to minimise communication
between resources, however, partitioning is always done for all resources, without taking into account
that communication time might actually slow down the application. This article studies how to improve
on this, and, given a set of resources and a mesh, how to choose the subset of resources which would
minimise the execution time of the application.

The remaining of the paper is organised as follows: Section 2 introduces the application and resource
model used to estimate the execution time; Section 3 presents and compares several algorithms to select

∗

This work was supported by the French National Agency for Research project DISC (ANR-05-CIGC-005).

RenPar’19 / SympA’13 / CFSE’7
Toulouse, France, du 9 au 11 septembre 2009

resources; Section 4 displays experimental results and explains differences between the theoretical values
and those obtained in practice; finally, Section 6 concludes the paper and opens up future perspectives.

2. Estimating Total Execution Time

Resource Modeling

In this study, resources consist in hosts which are grouped inside clusters. Let nC be the number of

clusters, each cluster i having n
(i)
H hosts. Each host in cluster i has network access of bandwidth B

(i)
H ,

the intra-cluster latency being l
(i)
LAN . Hosts are homogeneous within the same cluster. Cluster i has an

uplink bandwidth of B
(i)
C , while the maximum inter-cluster latency is lWAN . Hosts are considered to be

single-core, as the goal is to model grid-level behaviour.

Application Modeling

MAXDG1 is an iterative application, each iteration being composed of several stages of computation, sep-
arated by communication phases (UPDATE or ALLREDUCE). While ALLREDUCEs imply a blocking
operation, where all nodes have to wait, the UPDATEs can be done either in either blocking or non-
blocking mode. ALLREDUCEs operate on small amounts of data (maximum 7 double-precision values),
while UPDATEs may operate on either small or large data sizes, depending on how the partitioning has
been done. Each iterations has nU = 2 UPDATEs of the same size and nAR = 4 ALLREDUCEs.

2.1. Computation

When running the application sequentially on various hardware, we observed that some phases of the
computation run faster on processors with more cache, while others favor CPU frequency. These com-
putation phases are separated by communication, which force faster hosts to wait after the slower ones.
The time spend by the whole grid in a computation phase is the maximum of the per-cluster computation

times. Therefore, we give each phase a distinct speed coefficient α
(i)
j , representing the number of seconds

required to process one tetrahedra in computation phase j on a host of cluster i. Tests on Grid’5000
hardware show that the proportionality is respected within an error of 20%, because all objects on which
iterations are done (vertices, faces, etc.) are proportional to the number of tetrahedra. The time spent in

one computation phase becomes: t
(i)
j = α

(i)
j · n

(i)
tl , where n

(i)
tl is the number of local tetrahedra assigned

to a host on cluster i. Some of these computation phases can be overlapped with UPDATEs.

2.2. Communication

The basic formula used to estimate communication time is t = l + s/B, where t is the elapsed time for
completing the communication, l is the latency of the network between the sender and the receiver, s is
the size of the message and B is the available bandwidth.

ALLREDUCE In order to model the ALLREDUCE operation, we first have to choose an algorithm
which implements it. We chose to reduce the number of WAN traversals, as this is by far the largest
source of latency. Therefore, we used a similar approach to the one described in [6], which works by first
doing a local reduce on a head node of each cluster, doing an all-to-all exchange between head nodes
of the locally reduced values, then doing a cluster-wide broadcast. Given the fact that the size of the
ALLREDUCE messages is small (less than 100 bytes) and that intra-cluster latency is small compared

to inter-cluster latency2 ALLREDUCE time becomes: t
(i)
AR = lWAN .

UPDATE Unfortunately, the number of connections (artificial faces) between neighbor meshes is unpre-
dictable and depends both on the mesh and how it has been partitioned. While the number of artificial
faces is computed by the partitioning tool, this is not an option when choosing resources, as the operation
may take a lot of time.

In order to find an upper bound for the time of UPDATE, we chose to start from the hypothesis that,
since the number of tetrahedra is proportional to the volume of the mesh, while the number of artificial
faces should be proportional to the surface of the mesh, the function should somehow represent the ratio

2

For n
(i)
H

= 1024 and l
(i)
LAN

= 44 µs the intra-cluster latency is 0.88 ms, which is small compared to WAN latencies, which
are of the order of tenth of ms. For clusters with a very large number of hosts, whether intra-cluster latency can really be
ignored should be revisited, but is outside the scope of this paper.

RenPar’19 / SympA’13 / CFSE’7
Toulouse, France, du 9 au 11 septembre 2009

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 50 100 150 200 250

U
pd

at
es

 (
nu

m
be

r
of

 a
rt

ifi
ca

l f
ac

es
)

Hosts (total)

c1
c2
c3
c4
c5
c6
c8

f(x)

Figure 1: Number of inter-host artifical faces for a mesh with 588000 tetrahedra.

between surface and volume: nU = β · n
2/3
tl . Two separate values for β are taken, one for inter-host

UPDATEs (βH) and one for inter-cluster UPDATEs (βC).

For the meshes we had at hand, βH = 5 did a good job for inter-host UPDATEs, always being greater
than the actual number of exchanges (Figure 1). The number of artificial faces between submeshes
belonging to different clusters showed a similar trend, where in the above formula, we input the number
of cluster-local tetrahedra and use βC = 1.

As we cannot guarantee that this value will work well for all meshes and all partitions, we will use a self
correcting approach. After choosing resources we will run the partitioning tool to see the actual number
of updates. Should they affect our estimations significantly, a new value for βH and βC is computed and
the process is restarted.

Assuming the application exchanges sU bytes for each artificial face, the UPDATE time is:

t
(i)
U = lWAN +

sU

min
(

B
(j)
C , n

(j)
H · B

(j)
H

) · βC ·

(
nt

nC

)2/3

︸ ︷︷ ︸

Inter-cluster exchanges

+
sU

B
(i)
H

· βH ·

(
nt

ntH

)2/3

︸ ︷︷ ︸

Intra-cluster exchanges

(1)

where ntH is the total number of hosts.

In practice, we observed that certain phenomena hinder using the whole host bandwidth for UPDATE
operations. First, the default TCP behaviour on many operating systems (as per RFC 2861) consists
in doing a slow start after a certain period of communication inactivity. Due to the fact that com-
putations between the UPDATEs might take some time, this means that TCP will never reach its
optimal window, for which the bandwidth is maximal. On Linux, this issue can be solved by setting
net.ipv4.tcp_slow_start_after_idle to 0, which will force the TCP protocol to use the last window,
even after a long period of inactivity.

Second, bidirectional TCP transfers cannot reach the maximum full-duplex network capacity, not even on
the LAN. For example, running an iperf dual test returns less than 1Gbps for both directions when using
Gigabit Ethernet cards. This is caused by the two transfers congesting each others ACK path. During
our estimation we will assume that the effective available bandwidth is only 50% of the one inputted by
the user. A more elaborate study regarding transfer completion time in high-speed networks is presented
in [5].

2.3. Totals

We compute the total iteration time as the sum of the maximum per-cluster time of each computation
or communication phase. For synchronous communication the UPDATE time has to be added to the
duration of an iteration, while for asynchronous communication it has to be maxed with the computation
which can be overlapped.

RenPar’19 / SympA’13 / CFSE’7
Toulouse, France, du 9 au 11 septembre 2009

2.3.1. Testing

Our application exchanges 6 double-precision floating-point values for each artificial face (sU = 48bytes).

We did a limited number of experiments on the Grid’5000 platform, in order to validate our model.
We ran our experiments on the Toulouse pastel and Sophia sol cluster, both having Dual-Core AMD
Opteron(tm) Processor 2218, running at 2.6GHz with 1MB of RAM. For this processor we measured
α ≈ 1.033 ·10−5 (seconds / tetrahedron) and αU ≈ 2.198 ·10−6 (seconds / tetrahedron). The inter-cluster
latency was lWAN = 8.1 ms, while the bandwidth of each host was BH = 1 Gbps. The results of these
tests showed a good predictability, the error being less then 5%.

3. Selecting Resources

This section deals with the selection of grid resources for the MAXDG1 application. First, the factors
that have to be taken into account are enumerated, next several algorithms are described. Finally, the
algorithms are compared, from a performance and precision point of view, both in the average and worst
cases.

This paper assumes that the intra-cluster latencies are negligible compared to inter-cluster latencies.
Since the number of artificial faces does not change significantly when partitioning the mesh with different
weights, as would be required when adding hosts to a cluster, when choosing resources, either all hosts
from a cluster belong to our chosen resource set, or none of them.

MAXDG1 uses about 600 bytes for each tetrahedron. This means that a system with 1GB of RAM
available for data will be able to store submeshes with at least 1, 750, 000 local tetrahedra. Since this is
quite a lot, compared to the computation time required to solve such a problem (we estimate at least 11s
per iteration), this study considers that memory is not an impediment when choosing resources, however
it should not be too difficult to adapt the algorithms to take this into account.

3.1. Algorithms

Due to space constraints we will only list here the driving principles of the algorithms, without detailing
how they work nor presenting their pseudo-code.

3.1.1. Exhaustive

The first algorithm we devised is an exhaustive search inside the solution space, allowing us to find the
optimal resource subset, limited only by the quality of our estimations. As expected, its time complexity
is exponential in the number of clusters (n), being O(2n). It can be used for small cases, to compare
the precision of the other algorithms. On a Intel Core 2 Duo @ 2GHz, exhaustive search takes about 78
seconds for 18 clusters, to compare to the 25 clusters of Grid’5000.

3.1.2. Random

We have also considered a totally random algorithm, which blindly choses clusters. Because generating a
random resource set is a very cheap operation, the random algorithm takes virtually no time compared to
other algorithm. Therefore, in order to more sensibly compare algorithms as a product between precision
and performance, we will generate a thousand random solutions and choose the best out of it.

3.1.3. Greedy

The naive greedy approach consists in starting with an empty resource set (whose total iteration time is
infinity) and in each step adding a cluster which would minimise the total iteration time. The algorithm
stops when no matter what cluster we add, the total iteration time is increasing.

It is very easy to fool the naive approach. The first chosen cluster will always be the one with the largest
computation power. If that cluster is connected to a high-latency network, chances are that it does not
belong to the best resource set. Therefore, we chose to improve on the naive greedy approach, by starting
from a resource set initially filled with each cluster in turn. The complexity becomes O(n3).

Although results are greatly improved, the greedy approach is still far from returning the optimal solution.
Often we have clusters grouped together in “low-latency islands”. For example, we might have two clusters
in Hawaii and two in Australia. Suppose we have the two Australian clusters in our current resource
set. Depending on the size of the mesh, computation power and network latency, it might happen that
adding only one Hawaiian cluster does not improve performance, however adding both does. In such a

RenPar’19 / SympA’13 / CFSE’7
Toulouse, France, du 9 au 11 septembre 2009

Algorithm Fail (h)
Error (%) Time (ms)

min avg max min avg max
exhaustive 0 0 0 0 689 706 1012
rnd 1000 24 601 2410 0 0 0
rnd1k 782 0 22 363 176 185 211
greedy 2 0 ǫ 4 12 37 92
grouping 0 0 0 0 28 59 132
sa 630 0 19 209 25 57 100
sa.greedy 1 0 ǫ 4 42 96 211
sa.grouping 0 0 0 0 59 118 219

Table 1: Comparison of Algorithms in heterogeneous cases. ǫ means the error is less than 1%.

case, the greedy approach would not return an optimal solution.

3.1.4. Greedy with Cluster Grouping

In order to improve on the greedy algorithm, we wanted to somehow enable the greedy algorithm to
intelligently add multiple clusters at a time. Since clusters that are in the same city or same country are
more likely to have smaller latency between them, we chose to group them and allow the algorithm to
add a whole group at a time. While it is somewhat challenging, one can still find corner cases in which
the algorithm does not return the optimal solution.

3.1.5. Simulated Annealing

Since in essence we have to find the global minimum of a certain function, which also has local minima,
we decided to experiment with simulated annealing [2], due to its popularity and ease of implementation.
We used this algorithm to build a solution either from an empty resource set, or improve the solution
found by the two greedy approached described above.

3.2. Testing

We tested our algorithms off-line, using a test case generator. The network consists in multiple levels:
world, country, city and cluster, organised in a tree-like structure, each branch has a randomly chosen
latency. We devised several test-cases and presented their results in separate tables. For each algorithms,
we show the number of times it failed to find the best solution, i.e. another algorithm outperformed it
(Fail), the deviation from the best solution (Error = (tfound − tbest)/tbest); ǫ meaning the error is less
than 1%) and the time it took to find the solution (Time).

3.2.1. Heterogeneous Test Case

The goal of this first test is to compare the results of the algorithms against the known optimal value
given by the exhaustive algorithm. The total number of clusters is fixed and relatively small, to make
exhaustive testing feasible and to have an idea of how much time each algorithms requires.

Network heterogeneity is obtained using the following configuration: there are two countries with world
latencies in [50, 100] ms and three cities with country latencies in [10, 50] ms. Each city had two clusters
with latencies in [1, 5] ms. This guarantees that the latencies in the network will respect the triangle rule.

To simulate computation power heterogeneity, we took the performance values of a real clusters and
multiplied them with a uniform random value in [0.8, 1.2] ms. Each cluster was given between 16 and 64
hosts. 1000 distinct test cases have been generated. The results are presented in Table 1 and show that
intelligently (even if not optimally) choosing resources pays off. Greedy and grouping perform well in
such a heterogeneous case, having small errors. Simulated annealing by itself is not a very good solution.
When using it over greedy, it does not offer improvements which would justify the extra time.

3.2.2. Very Heterogeneous Case

In this test run, we wanted to cover an as diverse as possible problem space to discover possible corner
cases in the proposed algorithms. We kept the same network latency structure, but each test case had
between 1 and 4 countries, 1 and 10 cities per country, 1 and 3 clusters per city and between 8 and

RenPar’19 / SympA’13 / CFSE’7
Toulouse, France, du 9 au 11 septembre 2009

Algorithm Fail (h)
Error (%) Time (ms)

min avg max min max
rnd 926.6 0 278 1107 0 13
rnd1k 828.1 0 184 973 81 3247
greedy 4.9 0 ǫ 14 0 13660
grouping 1.6 0 ǫ 4 1 16259
sa 776.8 0 50 874 32 499
sa.greedy 3.8 0 ǫ 14 33 13927
sa.grouping 0.5 0 ǫ 1 34 16782

Table 2: Comparison of Algorithms in very heterogeneous cases. ǫ means the error is less than 1%

Algorithm Fail (h)
Error (%) Time (ms)

min avg max min avg max
exhaustive 0 0 0 0 39 43 79
rnd 688 0 96 491 0 0 2
rnd1k 15 0 0 17 161 171 666
greedy 127 0 2 36 19 27 101
grouping 2 0 ǫ ǫ 29 40 171
sa 335 0 5 84 39 61 183
sa.greedy 0 0 0 0 64 90 181
sa.grouping 0 0 0 0 72 103 181

Table 3: Comparison of Algorithms in a Close to Homogeneous Case. ǫ means the error is less than 1%

128 hosts per cluster. Due to the size of these tests it was too lengthy to run the exhaustive algorithm
and considered that an algorithm failed to find the best solution, if another one outperformed it. 10000
distinct test cases have been generated. The results are presented in Table 2.

We observe that the greedy algorithm performs quite well, but grouping improves results. When analysing
the test for which greedy failed, as previously, we observed that by taking one cluster at a time, it may
hang in local-minima. The grouping algorithm jumps over such local-minima, but may take too many
clusters at a time and thus miss the global-minimum. Adding simulated annealing helps both algorithms.
Interestingly, the simulated annealing phase after the greedy was sometimes “luckier” than one after
grouping, which is why the simulated annealing with grouping also has failures.

3.2.3. Close to Homogeneous Case

From the above test, it would seems that the greedy algorithm is quite a good one, however it does
not behave well when resources are in a certain configuration, as described in Section 3.1.3. In order
to explore how easy it is to find such a configuration, we devised a test in which resources are closer to
homogeneous. We kept the same network latency configuration, with only one country and two cities,
each city having four clusters. Each cluster has the same number of hosts which can be 64 or 128 and all
hosts have the same processing power.

1000 distinct test cases have been generated. The results are presented in Table 3. We observe that the
greedy approach behaves poorly, being surpassed precision-wise by the random approach. Hence, a good
algorithm is grouping which is further improved with an extra simulated annealing phase.

4. Experimental Results

4.1. Objectives

We devised an experiment having two goals. First, we wanted to check whether our theoretical model
holds in the real world, with what error and what are the causes of these errors. Second, we wanted to
know whether the expected optimal solution, found by our algorithms, conforms to reality.

RenPar’19 / SympA’13 / CFSE’7
Toulouse, France, du 9 au 11 septembre 2009

Site Cluster nH α 1

Lille chinqchint 32 6.75e-06
Lyon capricorne 48 1.46e-05
Nancy griffon 48 8.20e-06
Rennes paraquad 32 8.94e-06
Sophia azur 48 1.47e-05

2

This is the microbenchmark value measured in total seconds per tetrahedron for a mesh of 19800 tetrahedra.

Table 4: Grid’5000 configuration used for our experiments.

 50

 100

 150

 200

 250

 300

 350

 400

li li,na li,na,re li,na,re,ly* li,na,re,ly,so

T
ot

al
 It

er
at

io
n

T
im

e
(m

s)

Clusters

actual
estimated

(a) Mesh with 588000 tetrahedra

 100

 200

 300

 400

 500

 600

 700

 800

 900

li li,na li,na,re li,na,re,ly li,na,re,ly,so*

T
ot

al
 It

er
at

io
n

T
im

e
(m

s)

Clusters

actual
estimated

(b) Mesh with 2480674 tetrahedra

* Optimal solution as found by our resource selection utility.

Figure 2: Comparison between estimated and measure time for different Grid’5000 configurations.

4.2. Description

The experiments were done on the Grid’5000 platform, using the resource presented in Table 4. In order
for the latencies to be of the order of those found in grid environments, we avoided using two clusters
from the same site. We used two meshes, one having 588000 tetrahedra and the other having 2480674
tetrahedra. Our CEM resource selection utility was used to choose the expected optimal configuration
for each of the two meshes. All deterministic algorithms (i.e exhaustive, greedy and grouping) found the
same solutions.

Test runs have been done for the expected optimal configuration, and for other configurations obtained
by adding unselected clusters (fastest first) or removing clusters (slowest first) from the expected optimal
configuration. This should generate enough test cases both to validate the theoretical model and to see
real-world behaviour around the expected optimal configuration.

The results for both meshes are presented in Figure 2. The X-axes describes the different configurations
which were used in our experiments, the configuration marked with a star being the one found by our
resource selection utility. For each configuration we plotted the expected per-iteration time together with
the measured per-iteration times. Since we observed large variations from one iteration to another, we
also plotted the minimum and the maximum per-iteration time.

4.3. Analysis

We observe that the value of the fastest iteration closely follows our estimated values. The biggest error
comes from estimating the computation time, which, due to the way the mesh is split and due to different
processor cache sizes, does not behave perfectly linearly, as in our model. This also causes unoptimal
mesh splitting, therefore adding a new cluster might not induce the expected speedup and, by increasing
waiting time in the other clusters, may even slow down the application.

We also observed that the average per-iteration time deviates quite a bit from the minimum, mostly due

RenPar’19 / SympA’13 / CFSE’7
Toulouse, France, du 9 au 11 septembre 2009

nT

On Orsay On Grid
Iter Iter Comm nC Selected Clusters

(ms) (ms) (ms)
588, 245 17 17 0 3 Or (3)

2, 480, 674 71 53 27 13 Li (4), Na (2), Or (3), Re (4)
5, 135, 732 148 78 29 15 Li (4), Ly (2), Na (2), Or (3), Re (4)

100, 000, 000 2879 765 114 25 all
1, 000, 000, 000 28796 7256 751 25 all

Table 5: Expected optimal configuration for Grid’5000 for different mesh sizes.

to a few iterations are up to four time slower than the minimum. Whether these deviations are normal
or were caused by specific experimental conditions, and whether they can be estimated or bounded in
any way, needs to be further investigated.

For both meshes, we observe that our application missed the optimal solution, but the extra time is less
than 4%. For the bigger mesh, disturbances caused a slowdown of the whole application when adding
the Lyon cluster. However, per-iteration time decreased when adding the Sophia cluster.

5. Numerical Application

We gave the whole Grid’5000 infrastructure as input to our resource selection utility having a total of 25
clusters. The results are presented in Table 5, which shows the estimated per-iteration time (Iter) and
communication time (Comm) when running the application on the fastest site (Orsay) and on the grid.
The bigger the size of the mesh, the bigger the benefit of using a grid. If the mesh is medium sized only
a portion of Grid’5000 is used.

6. Conclusion

The need for solving the CEM problem for ever increasing meshes leads to the idea of running these
applications in grid environments. This article has presented a model of how CEM applications and
MAXDG1 in particular behave in grid environments and presented several algorithms for choosing grid
resource so that execution time is minimised. Experimental results look promising and have validated
our theoretical assumptions.

Future perspectives include extending our study to multi-core machines. This would require extending
the partIt tool to support three hierarchical levels and added a module to DHICO (the DiscoGrid API
implementation we used) to handle cores. Studying other CEM- or FEM-like application should be the
next step, with the goal of determining whether application modeling can be automated.

Bibliographie

1. DiscoGrid project. Technical report, INRIA, 2007. Available online: http://www-sop.inria.fr/

nachos/team_members/Stephane.Lanteri/DiscoGrid/.
2. P. Brucker. Scheduling Algorithms. Springer, 5th edition, March 2007.
3. DiscoGrid Project. Work-package WP1: Specification of an API for hierarchical communica-

tions. Technical report, INRIA, 2007. Available online: http://www-sop.inria.fr/nachos/team_

members/Stephane.Lanteri/DiscoGrid/docs/SR-1.1.pdf.
4. DiscoGrid Project. Work-package WP3: Multi-level partitioning tool. Technical report, INRIA,

2008. Available online: http://www-sop.inria.fr/nachos/team_members/Stephane.Lanteri/

DiscoGrid/docs/TR-3.1.pdf.
5. R. Guillier, S. Soudan, and P. Primet. TCP variants and transfer time predictability in very high

speed networks. In Infocom 2007 High Speed Networks Workshop, May 2007.
6. T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoedjang. MAGPIE: MPI’s

collective communication operations for clustered wide area systems. In ACM SIGPLAN Notices,
pages 131–140, 1999.

http://www-sop.inria.fr/nachos/team_members/Stephane.Lanteri/DiscoGrid/
http://www-sop.inria.fr/nachos/team_members/Stephane.Lanteri/DiscoGrid/
http://www-sop.inria.fr/nachos/team_members/Stephane.Lanteri/DiscoGrid/docs/SR-1.1.pdf
http://www-sop.inria.fr/nachos/team_members/Stephane.Lanteri/DiscoGrid/docs/SR-1.1.pdf
http://www-sop.inria.fr/nachos/team_members/Stephane.Lanteri/DiscoGrid/docs/TR-3.1.pdf
http://www-sop.inria.fr/nachos/team_members/Stephane.Lanteri/DiscoGrid/docs/TR-3.1.pdf

	Introduction
	Estimating Total Execution Time
	Computation
	Communication
	Totals
	Testing

	Selecting Resources
	Algorithms
	Exhaustive
	Random
	Greedy
	Greedy with Cluster Grouping
	Simulated Annealing

	Testing
	Heterogeneous Test Case
	Very Heterogeneous Case
	Close to Homogeneous Case

	Experimental Results
	Objectives
	Description
	Analysis

	Numerical Application
	Conclusion

