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Based on physical arguments, the importance of separating the mean-flow from turbulence in the

modeling of the subgrid-scale eddy-viscosity is emphasized. Therefore, two distinct time-domain

smoothing algorithms are proposed to estimate the mean-flow as the simulation progresses, namely,

an exponentially weighted moving average sor exponential smoothingd and an adaptive low-pass
Kalman filter. These algorithms highlight the longer-term evolution or cycles of the flow but erase

short-term fluctuations. Indeed, it is our assumption that the mean-flow sin the statistical sensed may
be approximated as the low-frequency component of the velocity field and that the turbulent part of

the flow adds itself to this “unsteady mean.” The cutoff frequency separating these two components

is fixed according to some characteristic time-scale of the flow in the exponential smoothing, but

inferred dynamically from the recent history of the flow in the Kalman filter. In practice, these two

algorithms are implemented in large-eddy simulations that rely on a shear-improved Smagorinsky’s
model. In this model, the magnitude of mean-flow rate of strain is subtracted from the magnitude of

the instantaneous rate of strain in the subgrid-scale eddy-viscosity. Two test-cases have been

investigated: a turbulent plane-channel flow sRew=395d and the flow past a circular cylinder in the
subcritical turbulent regime sReD=4.73104d. Comparisons with direct numerical simulation and
experimental data demonstrate the good efficiency of the whole modeling. This allows us to address

nonhomogeneous unsteady configurations without adding significant complication and

computational cost to the standard Smagorinsky’s model. From a computational viewpoint, this

modeling deserves interest since it is entirely local in space. It is therefore adapted for parallelization

and convenient for boundary conditions. © 2010 American Institute of Physics.
fdoi:10.1063/1.3490063g

I. CONTEXT AND MOTIVATIONS

Large-eddy simulation sLESd is a promising technique
that offers an affordable means for the numerical simulation

of turbulent flows.
1,2
Unlike the Reynolds-averaged Navier–

Stokes methods commonly used in the industry, LES gives a

direct representation of the large-sized turbulent eddies and

their dynamics. It is therefore expected to provide a better

description of turbulence impacts. LES has already demon-

strated its capabilities in computations of academic building-
block flows; however, further progress is still required to
address realistic complex configurations.

3
The present work

aims at improving this situation. Our guideline is to develop

numerical modeling that remains as simple as possible in its

formulation but captures the “basic physics,” therefore offer-

ing an interesting compromise between accuracy and com-

putational cost.

Turbulence that occurs in nature, or in engineering

flows, is usually not, even approximately, homogeneous.

There are frequent variations of the mean velocity with po-

sition sand time in unsteady configurationsd. In the follow-
ing, the general framework of LES is briefly recalled and

physical arguments are brought forward to justify the impor-

tance of the mean velocity gradients in the modeling of the

subgrid-scale sSGSd eddy-viscosity.
LES is rooted in the idea to discretize the flow on a grid

whose resolution is coarse compared to the size of the small-

est turbulent eddies. Therefore, only the large-sized eddies

are represented numerically. This is justifiable since the

large-sized eddies contain most of the kinetic energy and

their strengths make them the efficient carriers of momen-

tum, heat, mass, etc. On the contrary, the small-sized eddies

are mainly responsible for dissipation and contribute little to

transport. Conceptually, the solution of a LES is expected to

represent the flow variables filtered over a “filter window”

whose characteristic width corresponds to the grid reso-

lution. These filtered variables are solutions of the flow equa-

tions supplemented by terms accounting for the action of the

sunresolvedd SGS fluctuations on the grid-scale dynamics.4

These additional terms need to be modeled in order to close

the governing equations, which constitutes a major difficulty

in the case of complex turbulent flows.

In the present study, primarily devoted to weakly com-

pressible aerodynamics, the relevant flow variables are r, ru,
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and ret referring to the mass, momentum, and total energy of

the fluid per unit volume, respectively. The related filtered

variables are r̄, ru; r̄ũ, and ret; r̄et̃, where the overbar

refers to the grid filter operator and the tilde is the Favre

operator sq̃=rq / r̄d. The filtered flow equations are expressed
as

] r̄

]t
+

]sr̄u j˜ d

]x j
= 0, s1d

]sr̄ui˜ d

]t
+

]sr̄ui˜ u j˜ d

]x j
= −

] P̄

]xi
+

] t̄ij

]x j
+

]Pij
SGS

]x j
, s2d

]sr̄et̃d

]t
+

]fsr̄et̃ + P̄du j˜ g

]x j

=
]fui˜ st̄ij + Pij

SGSdg

]x j
+

]

]x j

Sl̄
]T̃

]x j
D − ]Q j

SGS

]x j
. s3d

Implicit summation on repeated indices is used. The fluid is

air, considered as Newtonian with constant dynamic viscos-

ity m̄=1.8310−5 kg m−1 s−1,

t̄ij = m̄S ]ui˜

]x j
+

]u j˜

]xi
−
2

3

]uk̃

]xk
dijD , s4d

and constant thermal conductivity l̄=2.54

310−2 W m−1 K−1. Air is assumed to behave as a perfect

gas, thus following

P̄ = rr̄T̃ with r = 287 J kg−1 K−1, s5d

where P is the pressure and T is the temperature. The ratio of

specific heats sat constant pressure and volumed is fixed at

g=Cp /C
v
=1.4. The SGS stress tensor sPij

SGSd and the SGS

heat current sQ j
SGSd encompass the exchanges of momentum

and heat with the SGS motions. A common thread is to as-

sume that these terms are essentially responsible for a diffu-

sive transport at grid scale. This assumption yields

Pij
SGS = mSGSS ]ui˜

]x j
+

]u j˜

]xi
−
2

3

]uk̃

]xk
dijD and

s6d

Q j
SGS =

− mSGSCp

PrSGS
3

]T̃

]x j
,

where mSGS represents a SGS eddy-viscosity and PrSGS=0.9

may be viewed as a fixed SGS Prandtl number.
5
Unlike the

molecular viscosity, the eddy-viscosity is a property of the

flow but not of the fluid. It is therefore expected to depend

explicitly on sresolvedd flow variables and on the local grid

spacing.

In practice, the eddy-viscosity is primarily intended to

ensure the correct drain of kinetic energy from the resolved

to the unresolved turbulent scales. Tackling this problem

from a deterministic viewpoint is mainly out of reach.
6
A

statistical approach is rather adopted and an expression of the

eddy-viscosity is sought on the basis of statistical hypotheses

made on the SGS turbulent scales.
7
Along this line, physical

arguments are now provided to defend the importance of

mean-flow gradients in the SGS properties.

Despite the nonhomogeneous nature of most turbulent

flows, it is commonly thought that the small-scale properties

of turbulence should be considered as locally homogeneous

sand isotropicd. This hypothesis relies on the idea that

small-sized eddies adjust themselves via strong nonlinear in-

teractions, in which all statistical information about the

large-scale inhomogeneities is lost. This is the classical phe-

nomenology of Kolmogorov’s theory.
8
Within this picture, it

is implicitly assumed sbut often forgottend that the size of the
turbulent eddies should be small compared to the length-

scale associated with the mean velocity gradients, which is

Ls ,
u8

S
, s7d

where u8;Îkuu8u2l and S;Îu¹kulu2 denote the norms of the
fluctuating velocity and of the mean velocity gradient, re-

spectively. Here, angular brackets a priori refer to an en-

semble sstatisticald average and the fluctuating velocity arises
from the Reynolds decomposition: u= kul+u8. The charac-

teristic scale s7d is obtained by equaling the time-scale asso-
ciated with the mean velocity gradient scharacteristic of the
mean-flow distortiond and the turn-over time of turbulent ed-
dies of size , scharacteristic of turbulent interactions at scale
,d. That is, 1 /S,«−1/3

,
2/3 for ,=Ls, according to Kolmog-

orov’s theory.
8
From the averaged Navier–Stokes equations,

the mean dissipation rate sper unit massd «=−kui8u j8l
3]kuil /]x j ,u8

2
S, which finally yields Ls,u8 /S or,

equivalently,
9 Ls,Î« /S

3. Note that the previous reasoning

relies on dimensional arguments that ignore dimensionless

factors. In that sense, the symbol “,” should be understood

as “is of the order of.” In the jargon of fluid mechanics, S is

usually referred to as the shear and Ls is the shear length-

scale. The shear is often expressed as

S = Î2kSijlkSijl ,

where kSijl is the rate-of-strain tensor of the mean-flow.
Turbulent eddies of size smaller than Ls evolve rapidly

enough and are insensitive to the mean-flow distortion: The

mean-flow acts principally to convect these eddies without

significantly stretching them. On the contrary, turbulent ed-

dies of size larger than Ls have no time to adjust dynamically

while they are distorted by the mean-flow gradients. Termed

differently, the shear length-scale Ls isolates the problem of

the self-interaction of fluctuating velocities, at scales ,,Ls,

from the problem of the interaction of the fluctuating veloc-

ity with the mean-flow velocity, at scales ,.Ls. This feature

is of great importance in the context of LES, as it implies

that the statistical properties of the SGS motion sand there-

fore the nature of the SGS eddy-viscosityd should differ de-
pending on whether the grid resolution D is locally smaller,

or larger, than the shear length-scale Ls. Therefore, it is de-

sirable to account explicitly for the mean-flow gradients in

the modeling of the SGS eddy-viscosity, also the canonical

assumption of homogeneous and isotropic turbulence swhich
ignores the mean-flow inhomogeneities: S.0 and Ls.`d
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should be abandoned. This is particularly relevant for high-

Reynolds-number flows, when the resolution of the simula-

tion is almost comparable to the large scales of the flow.

These features naturally call for a generic procedure to esti-

mate numerically the mean-flow and evaluate the SGS eddy-

viscosity as the LES progresses. This is the main concern of

the present study, which will be developed in Sec. II. Prac-

tical implementations in LES relying on a shear-improved
Smagorinsky’s model will be examined in Sec. III.

II. SMOOTHING ALGORITHMS FOR MEAN-FLOW
EXTRACTION

Statistical ensemble average may be approximated by

space average over directions of homogeneity, whenever it is

possible. When it is not, time average may be used instead.

Space average is relevant to simple-geometry flows swith
directions throughout which fluctuations can be considered

as statistically homogeneousd, whereas time average is ad-
equate when the flow sits mean and its fluctuationsd remains
statistically stationary in time. In the presence of determinis-

tic unsteadiness, such as vortex shedding or blade passing in

a turbomachine, these two approximations must clearly be

abandoned. Therefore, a more general procedure must be de-

signed to extract the mean velocity field and track its pos-

sible evolution sif large-scale instabilities develop in the
flowd.

Our proposal is based on weighted moving average in

time, which may be viewed as a generic smoothing operation

that highlights longer-term variations or cycles but erase

rapid fluctuations. It is here assumed that the mean-flow is

given sat each grid pointd by the low-frequency component
of the velocity field, and that the turbulent component of the

flow adds itself to this “unsteady mean.” From the viewpoint

of signal-processing, extracting a low-frequency trend from a

time series is a “dangerous technique” that requires to deter-

mine a priori a cutoff frequency above which excitations
should be ignored. This cutoff frequency is well defined if

there exists a clear-cut separation in the power-spectrum of

the signal so that a low-frequency component may be iso-

lated from the high frequencies. Also, it assumes that the

separation between the mean-flow and such fluctuations is

stationary. In the context of turbulent flows, there is no clear

separation in frequency, as fluid dynamics is known to ex-

hibit large-band spectra,
5
and steadiness is not always

achieved either. Nevertheless, strategies have been elabo-

rated in order to extract low-frequency trends from the ve-

locity time series. These trends are assumed to be represen-

tative of the mean-flow behavior, even if they unavoidably

include some turbulent low-frequencies as well.

Two distinct algorithms are considered, based on exist-

ing well-known smoothing schemes. They are presented in

detail and discussed in relation to their application to mean-

flow extraction. First, we introduce an exponentially

weighted moving average susually called exponential
smoothingd with a fixed smoothing factor, hence a stationary
method. This basic method should be considered as a base-

line approach, a starting point for comparisons with more

elaborated smoothing methods. Then, an adaptive Kalman

filter is presented as a refinement of the exponential smooth-

ing. This second approach does not require an a priori stated
value for the cutoff frequency but only the prescription of a

relevant interval for this frequency; the cutoff frequency

adapts itself dynamically within this interval according to the

recent history of the signal. These two methods are now

presented.

A. Exponentially weighted moving average

A simple method for extracting the low-frequency com-

ponent of the velocity field would be a moving sunweightedd
arithmetic average of the velocity signal sat each mesh-pointd
over a time interval of length tc= sN−1dDt, where Dt is the
time step of the simulation and N is the number of points

retained in the average. This method would correspond to a

low-pass filtering with a cutoff frequency fc,1 /tc. Unfortu-

nately, this simple technique requires the storage of the last N
instants in order to maintain a constant fc. This appears to be

prohibitive in memory when processed over a three-

dimensional grid with an integration time step typically

much smaller than the cutoff period. Another disadvantage is

that it cannot be used on the first N−1 instants.

These limitations are alleviated by considering an expo-
nentially weighted moving average, also referred to as expo-
nential smoothing in literature and originally introduced in

the works of Brown and Holt in the 1950s ssee, e.g., the
reviews in Refs. 10–12d. The main point is to update at each
time step the previous estimate of the mean by taking into

account the new data point. Let us denote by fugsnd the esti-

mated mean of one component of the velocity u at time n and

at some arbitrary mesh-point. The update of this estimated

mean writes in a recurrence form,

fugsn+1d = s1 − cexpdfugsnd + cexpu
sn+1d s8d

with fugs0d=us0d at initial time and the smoothing factor

0,cexp,1. This algorithm requires only the storage of the

mean fug, which is a major improvement over the arithmetic
average. The smoothing factor cexp somehow controls the

range of past iterations influencing the estimation of the

mean. From Eq. s8d, an older data point at instant m contrib-

utes to the mean-flow at instant n+1.m with an exponen-

tially decreasing weight s1−cexpd
n+1−m3cexp, therefore giv-

ing more importance to the recent observations while still not

discarding older observations entirely.

To be physically sound, cexp should be related to the

cutoff frequency of this smoothing. In order to exhibit this

relation, we shall reformulate Eq. s8d under the form of a

digital filter.
13
First, let us recall the general z-transform ap-

plied to a discrete-time process Xsnd :Xsnd
→ X̂szd=onXsndz−n.

The z-transform applied to Eq. s8d yields

fuĝszd =
cexp

1 − s1 − cexpdz
−1

ûszd .

By considering z=eivDt sthe relation between z and the ana-
log harmonic frequency v when the signal has sampling pe-

riod Dtd, one gets that the power-spectra of fugsnd and usnd are

linked by the transform

125104-3 Smoothing algorithms for mean-flow extraction Phys. Fluids 22, 125104 ~2010!
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ufuĝsvdu2 =
cexp
2

ueivDt − s1 − cexpdu
2
· uûsvdu2,

which is a discrete-time first-order low-pass filter. The cutoff

frequency fc, at which the amplitude is reduced by half,
14
is

given by

cexp
ueivcDt − s1 − cexpdu

=
1

2
with vc = 2pfc.

Solving directly this equation gives cexp= sÎ6ac+ac
2−acd /3

with ac=1−cossvcDtd.
In practical simulations, vcDt!1 sa necessary condition

for time integrationd and therefore cexp.vcDt /Î3, which fi-
nally yields

cexp .
2pfcDt

Î3
< 3.628fcDt . s9d

This first method acts as a low-pass filtering on the ve-

locity time signal with a fixed cutoff frequency. The main

advantage of this method is its simplicity, both conceptually

and in its implementation; the computational cost is also very

low. However, a known limitation sas already mentionedd is
the difficulty to pick an appropriate cutoff frequency for the

whole flow. As argued in Ref. 10, this parameter is danger-

ous to be guessed at. Unavoidably, there is a trade-off be-

tween the ability to follow faithfully a quick evolution of the

mean, which requires a cutoff frequency sand therefore cexpd
not too small, and the capacity to smooth out correctly the

fluctuations, for which a small cutoff frequency is usually

better. Moreover, for a slowly evolving mean-flow, there is

an inevitable delay sinduced by the exponential smootherd
with respect to the proper dynamic. This delay is given by

the group delay at null frequency:
13

Dt /cexp, so the smaller

cexp is, the larger the delay is. These drawbacks restrict the

use of the exponential smoothing to “well-characterized” un-

steady flows, for which one can single out a characteristic

frequency associated with unsteadiness. In order to address

arbitrary flows, a more flexible algorithm is required, capable

of adapting itself dynamically to the local behavior of the

flow. This had led us to design a second algorithm based on

the Kalman filtering.

B. Adaptive Kalman filtering

Amore elaborated way to extract the mean velocity field

is by use of a Kalman filter.
12
In brief, a Kalman filter is a

recursive filter that estimates the state of a dynamic system,

here the mean velocity of the flow, from a series of measure-

ments sor observationsd. Kalman filtering is a major topic in
control theory and control systems in engineering science,

and is known to be rather efficient.
12,15

An important feature

of this filter is its formulation as a recursive estimator, in

which the updated state is computed from the previous state

and the current measurement only sas for the exponential

smoothingd. Moreover, being adaptive in nature, the Kalman

filter is expected to allow for a better control and adjustment

to the low-frequency behavior of the flow, especially in lo-

calized regions where instabilities develop sin the vicinity of

an obstacle, for instanced. From a computational viewpoint,

it is therefore an interesting alternative solution to the expo-

nential smoothing.

The problem can be formulated quite simply in a state-
space representation, in which the mean velocity sat each
mesh-pointd represents the state variable of the system and

the instantaneous velocity is an observation,

Hfugsnd = fugsn−1d + dfugsnd

usnd = fugsnd + dusnd.
J s10d

This is the state-space representation of a random walk

model with noise,
12
the noise representing here the fluctua-

tions added to the mean-flow. In this form, the mean velocity

adjusts itself at each time step with some control increment

dfugsnd= fugsnd− fugsn−1d. The measurement equation expresses

the deviation of the instantaneous velocity from the esti-

mated mean: dusnd=usnd− fugsnd. These two quantities are

modeled as random Gaussian processes with zero mean and

normal variance. Here, it is assumed that the evolution of the

mean velocity is sveryd slow compared to the evolution of

the instantaneous velocity so that no deterministic evolution

is prescribed for fug : fugsnd= fugsn−1d a priori. However, fug is
authorized to evolve slike a sort of biased random walkd if
the observation departs significantly from the mean. In our

model, the variance of dfug is fixed but the variance of du is

updated dynamically as the simulation evolves. This strategy

allows the instantaneous velocity to depart significantly from

its mean, which is expected to fluctuate in a gentler manner.

The preliminary step is the initialization of the algo-

rithm. Initially, the mean is fixed at fugs0d=us0d. The root

mean square of dfug is kept constant throughout the itera-

tions sas previously mentionedd and fixed at

sdfug =
2pfcDt

Î3
up, s11d

where up should be interpreted as a “reference velocity” rep-

resentative of large-scale turbulence se.g., in a plane-channel
flow up should be identified with the friction velocity at the

walld. This essential choice for sdfug stems from the property

that in a steady regime for the mean-flow, our Kalman filter

should behave as an exponential smoothing with smoothing

factor cexp=sdfug /sdu sas briefly demonstrated in Ref. 16d.
Thus, our expression for sdfug is consistent with the require-

ment that for stationary periods, sdfug /sdu.2pfcDt /Î3
faccording to Eq. s9dg with sdu.up. Finally, the error cova-

riance, which enters in the computation of the optimal

Kalman gain ssee belowd, is initialized by Ps0d=sdu
2 s0d

with

sdu
s0d
=sdfug.

Standard calculations express a Kalman filter in a recur-

sive form implying two distinct phases: predict and update.
The “predict phase” uses the state estimate from the previous

timestep to produce a prediction at the current timestep. In

the “update phase,” measurement information at the current

timestep is used to refine this prediction by use of an optimal

Kalman gain. Accordingly, the complete algorithm sfollow-
ing the standard theory of the Kalman filtering

12,15d is orga-
nized as follows:

125104-4 Cahuzac et al. Phys. Fluids 22, 125104 ~2010!
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Predict:

• The mean estimate does not a priori change:

fug̃sn+1d= fugsnd. The error covariance is predicted as

P̃sn+1d=Psnd+sdfug
2 .

Update:

• The optimal Kalman gain is given by

Ksn+1d = P̃sn+1d 3
1

P̃sn+1d + sdu
2 snd

s12d

and the updated mean estimate is obtained by the “cor-

rection equation”

fugsn+1d = fug̃sn+1d + Ksn+1d 3 susn+1d − fug̃sn+1dd . s13d

This expression is reminiscent of Eq. s8d for the expo-
nential smoothing. Here, the Kalman gain acts as an

instantaneous equivalent of the smoothing factor cexp.
• The error covariance is updated sfor the next iterationd
by

Psn+1d = P̃sn+1d − Ksn+1d 3 P̃sn+1d.

Finally, in order to make the Kalman filter adaptive, an

estimate of the variance of du is required. For this purpose,

we suggest the following formula:

sdu
2 sn+1d = maxssdu

2̃ ,0.13 up2d , s14d

with

sdu
2̃ = up 3 ufugsn+1d − usn+1du . s15d

The estimator s15d is ad hoc and devised to yield a

physically sound estimation of the variance of the fluctuating

velocity: up is fixed while ufugsn+1d−usn+1du takes into account
the observed sinstantaneousd fluctuation. The maximum used

in Eq. s14d prevents sdu
2 from vanishing because, in that case,

the mean estimate would stick to the instantaneous velocity

for all subsequent time steps sthis is a pitfall of the algo-

rithmd. Indeed, if sdu
2 snd.0 then Ksn+1d.1 and fugsn+1d

.usn+1d, consequently sdu
2 sn+1d.0, etc. The value 0.13up2

acts as a snonzerod lower bound for sdu
2 . This bound is

reached in regions where the flow is laminar and smooth, and

permits to track the onset of turbulence when it occurs:

When fluctuations grow, the estimated observation variance

sdu
2 snd

increases and Ksn+1d decreases. The fluctuating part is

therefore well separated from the mean-flow which has lower

frequencies. The numerical factor 0.1 is empirical and should

not be considered as a proper parameter of the method. Sev-

eral tests have shown that the efficiency of the whole Kalman

filter was not sensitive to the exact value of this factor: 0.1 is

just a correct order of magnitude. Generally speaking, one

cannot expect to extract a mean component from instanta-

neous variations without specifying at least a range of time

scales potentially relevant for the evolution of the mean

component—Eqs. s14d and s15d—and the maximum therein,

fulfill this role.

Obvious limitations of our Kalman filter are related to

the assumptions made on the process. First, the state-space

representation s10d is linear. Second, noises involved in the

random walk and in the observation equation are both con-

sidered as Gaussian. These assumptions seem unconnected to

the physics of turbulent flows, which are known to be

strongly nonlinear processes with non-Gaussian statistics.

This is undeniable; however, taking into account a potential

nonlinear evolution or some non-Gaussian features may nei-

ther be a trivial task nor necessarily provide a significant

benefit in the present context. From a signal-processing

viewpoint, classical developments of the Kalman filter to

nonlinear and/or non-Gaussian statistics would be the ex-
tended Kalman filter spossibly with unscented transformd17

or the particle filter srelying on sequential Monte Carlo

estimates
18,19d. Particle filters are ruled out because their

good performance comes at the expense of an extremely high

computational overhead sas compared to the standard Kal-

man filterd. Extended Kalman filters are useful for nonlinear
systems and deal with non-Gaussianity sthis latter being di-

rectly related to the nonlinearityd; however, this approach

works only if a local linearization of the state-space model is

available and if this expansion is relevant. Turbulent flows

do not seem to readily correspond to this framework. Our

standard Kalman filter may not be the optimal predictor, nev-

ertheless, it should behave relatively well sbeing the solution
of a least-square approachd if the noise distribution is mono-
modal and is well-characterized by its mean and its variance

sfirst two cumulantsd. In other terms, the noises involved in

Eq. s10d are not required to be exactly Gaussian: It is enough
if their distribution is close to a monomodal distribution with

fluctuations spread around a given mean. A linear model is

also justified by the requirement to separate a mean from

fluctuations. Usual approaches, dating back to the Reynolds
decomposition, are based on such linear decomposition, even
for unsteady flows. Note that the extraction of the mean-flow

is done by a linear procedure, however, the mean-flow evo-

lution results from nonlinear dynamics taken into account in

the simulation. Another interest in keeping the simple linear

formulation is that it readily compares and extends the expo-

nential smoothing in an adaptive way.

We would like now to briefly comment upon applica-

tions of temporal filtering in the general context of LES.

Time-domain filtering provides an alternative to sconven-
tionald spatial filtering that offers both physically sound and
practical advantages.

20
In practice, temporal filters naturally

commute with spatial differential operator; they also remain

manageable in case of unstructured or highly stretched grids

whereas spatial filters become problematic. Physically, it is

thought that filtering the high-frequency content from the

frequency spectrum should effectively remove high-

wavenumber content from the wavenumber spectrum as

well. This is the physical idea behind temporally filtered
large-eddy simulations.

21
Recently, Pruett et al.22 developed

a temporal approximate deconvolution model, which com-

bines time-domain filtering with linear deconvolution in or-

der to estimate the unfiltered velocity components in the SGS

stress tensor. The application of temporal smoothing has also

been a standard procedure spossibly in addition to spatial

averagingd for extracting mean quantities during a simula-

tion, e.g., in Germano et al.23 dynamic procedure. In the
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present work, emphasis has been placed on recasting time-

domain filtering in a physical form with a particular interest

in unsteady turbulent flows. Our main contribution is the

introduction of an adaptive Kalman filter, which alleviates

the empirical prescription of a fixed cutoff frequency in the

filtering procedure.

III. TEST CASES

The previous smoothing algorithms have been imple-

mented in practical LES relying on a shear-improved

Smagorinsky’s model,
24
in which the mean velocity field is

required to evaluate the SGS eddy-viscosity.

A. The shear-improved Smagorinsky’s model

The physical arguments developed in the first section

about nonhomogeneous turbulent flows may be formulated

analytically by assuming that the shear is uniform sat least
locallyd. By explicating the scale-by-scale energy budget of
shear turbulence from the Navier–Stokes equations, Lévêque
et al.24 showed evidence that the SGS eddy-viscosity should

encompass two types of interactions: sid between the mean

velocity gradient and the resolved fluctuating velocities sthe
rapid part of the SGS fluctuations

25d and siid among the re-

solved fluctuating velocities themselves sthe slow part of the

SGS fluctuationsd. The rapid part is related to the large-scale

distortion, while the slow part is associated with Kolmogor-

ov’s energy cascade. Interestingly, these developments end

up with a model for the SGS eddy-viscosity, in which it

appears that the shear sthe norm of the mean rate-of-strain

tensord should be subtracted from the norm of the instanta-

neous rate-of-strain tensor,

mSGS = r̄sCsDd2suS̃u − ukS̃lud , s16d

where Cs=0.18 is Smagorinsky’s constant for homogeneous

and isotropic turbulence,
2

D is the grid spacing scomputed as

the cubic root of the cell volumed, and uS̃u;Î2S̃ijS̃ij. This

improvement accounts for the large-scale distortion in re-

gions of strong shear and, at the same time, allows us to

recover the standard Smagorinsky’s model
26

in regions of

locally homogeneous and isotropic turbulence sat grid scaled.
Interestingly, the shear-improved Smagorinsky’s model

sSISMd does not call for any adjustable parameter sbesides
Cs which is fixed at Cs=0.18 for all turbulent flowsd nor ad
hoc damping function. It does not use any kind of dynamic

adjustment either. First results concerning a plane-channel

flow
24

and a backward-facing step flow
27

have shown the

good predictive capacity of this model, essentially equivalent

to the dynamic Smagorinsky’s model
23

but with a computa-

tional cost and a manageability comparable to the original

Smagorinsky’s model.

It is now our motivation to examine how the SISM be-

haves when implemented in engineering-flow solvers that

use coarser grids, rely on lower-order discretization schemes,

and are dedicated to complex-geometry unsteady turbulent

flows. For this purpose, the smoothing algorithms presented

in the previous section are devoted tools to evaluate the

mean rate-of-strain tensor in Eq. s16d. In practice, computa-

tions have been carried out with the solver TURB’FLOW. The

dynamical equations have been presented in Sec. I. Spatial

discretization is based on finite volumes for multiblock struc-

tured grids. Convective fluxes are interpolated with a four-

point centered scheme sfourth-order on regular gridd and dif-

fusive fluxes with a two-point centered scheme ssecond-
orderd. Time stepping relies on a five-step Runge–Kutta

scheme. More details about the TURB’FLOW solver may be

found in Ref. 28. Two test flows are considered. First is a

plane-channel flow configuration
2
that allows us to isolate

the basic features of wall-bounded flows. Second is the flow

past a cylinder in subcritical turbulent regime that exhibits

phenomena, such as boundary layer separation, transition,

vortex shedding, and its interaction with turbulence.

B. Plane-channel flow

1. Numerical simulation settings

The temporal development of a biperiodic plane-channel

flow is considered from an initially perturbed laminar flow

sPoiseuille’s parabolic velocity profile plus a 2% random

relative perturbationd. In the fully developed turbulent re-

gime, the objective Reynolds number is Rew=ruwd /m=395

sr is the density, d is the channel half width, uw is the mean

wall friction velocity, and m is the dynamic molecular vis-

cosityd. Present LES flow conditions are r=1.214 kg m−3

sinitial valued, d=0.01 m, and m=1.81310−5 kg m−1 s−1

sconstantd, yielding the objective friction velocity uw

=0.59 m s−1. The comprehensive direct numerical simula-

tion sDNSd database obtained by Moser et al.29 is used as a

reference. An illustration of this test-case is given in Fig. 1.

The mean-flow is oriented along the x-direction and

plane walls bound the flow at y= 6d. Periodicity is imposed

in the streamwise and spanwise directions. The computa-

tional domain extends over Lx3Ly 3Lz=2pd32d3pd
ssame as the reference DNSd. The grid is Cartesian with

49389341 points; a tanh distribution is used in the

y-direction. In the turbulent regime, the grid spacing is

Dx+=52 sin wall unitsd, Dy+=0.5 at the wall s11 points be-

low y+=10d, and Dy+=24 at centerline, Dz+=31. This mesh

density respects standard recommendations for LES, as re-

FIG. 1. Instantaneous contours of u1
+ swall unit streamwise velocityd in the

turbulent regime, obtained from the computation using the SISM-ES. As

expected, the turbulent flow develops streaky structures in the near-wall

region.
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viewed, for example, in Ref. 2. Besides, a very small nondi-

mensional time step, Dt+=Dtuw /d=3310−5, is imposed by

the explicit discretization. The pressure is reduced to obtain a

Mach number Ma.0.2 at the centerline, in order to optimize

the convergence of the compressible solver, while keeping

incompressible flow conditions stypically, throughout the do-
main at the last instant, density lies within 1% of the initial

density r=1.214 kg m−3d. The momentum in the x-direction
is maintained by a uniform sover the whole flowd source

term that is adjusted dynamically to match the objective

mean centerline velocity scalculated as the product of the

DNS nondimensional mean centerline velocity and uw

=0.59 m s−1d on the one hand. The friction velocity is a

result of the simulation on the other hand. Actually, for a

turbulent velocity profile, the calibration of the mean center-

line velocity allows a rather effective calibration of the vol-

ume flow rate sor the mass flow rate, given the incompress-

ibility of the flowd. This is checked numerically by

integrating the mean axial velocity profile with the Simpson

rule for nonregular grids. The volume flow rate difference

between the different LES simulations and the reference

DNS sdimensionalized at the present flow conditionsd is

lower than 1%. This calibration is consistent with common

practice in real flows, where the incident velocity or the

volume/mass flow rate is fixed. Moreover, the fixed center-

line velocity is a stringent condition when evaluating the

description of the wall region.

The numerical results are nondimensionalized with the

channel half width, d, and the objective friction velocity, uw.

The use of the objective friction velocity sinstead of the com-
puted friction velocityd as reference velocity is rather un-

usual, and will be discussed when addressing the mean ve-

locity profile.

Four LESs have been carried out with different subgrid-

scale models:

• The shear-improved Smagorinsky’s model with a spa-

tial average over the x and z directions sSISM-SAd.
• The shear-improved Smagorinsky’s model with an ex-

ponential smoothing sSISM-ESd. The smoothing factor
cexp is constant over the whole domain. The

cutoff frequency is fixed at fc=uw /d, which yields

cexp=1.07310−4 from Eq. s9d. This cutoff frequency
is expected to be representative of the largest eddies

and provide a reasonable estimate of the lower bound

of the turbulent spectrum.

• The shear-improved Smagorinsky’s model with an

adaptive Kalman filtering sSISM-AKFd. In a consis-

tent way with the exponential smoothing,

sdfug =
2pfcDt

Î3
up,

with the characteristic velocity up=uw and the cutoff

frequency fc=uw /d; uw is the objective friction

velocity.

• The filtered-structure-function model sFSFd.30 The

most general FSF formulation sknown as the six-
neighbor formulationd is used. There is no preferred

direction in the discretization stencil.

2. Instantaneous velocity probes and smoothing
methods

The different smoothing strategies used for the SISM are

illustrated on the velocity signal recorded by a probe at

y+=10 sx=0.19Lx and z=0.23Lzd. The instantaneous velocity
component, u1

+, is displayed in Fig. 2, together with the mean

estimate, fu1
+g, resulting from the three different smoothings.

The transition to turbulence, characterized by the develop-

ment of turbulent fluctuations and the increase of the mean

velocity, is observed for 6# t+#12. The high frequencies are

obviously suppressed from the smoothed signals. Neverthe-

less, some low-frequencies persist for the exponential

smoothing and the adaptive Kalman filtering as expected

from their low-pass behavior. The spatial average fFig. 2sadg
removes nearly all the fluctuations in the turbulent regime

and captures the evolution of the mean velocity from the

laminar to the turbulent regime. This average is very efficient

indeed, however, it requires spatial homogeneity; a condition

which is hardly met in complex flow configurations.

Concerning the exponential smoothing fFig. 2sbdg, the
cutoff period was fixed at Tc

+=1. Velocity fluctuations with a

period exceeding Tc
+ are maintained. Besides, the character-

istic time related to the streamwise advection sthrough the

whole channeld may be estimated as Dtconv
+ =Lx

+
/ ku1

+l.0.82

at y+=10. The exponential smoothing therefore retains dy-

namical fluid structures whose period is larger than Dtconv
+ .

Such events are actually trapped between the periodic

streamwise boundary conditions, passing several times in

circles through the channel. This feature enforces artificial

temporal correlation and weakens the smoothing. This

streamwise periodicity is an artifact of the channel-flow con-

figuration that should not occur in practical configurations;

the exponential smoothing should then be more regular.

For comparison, the spatial average in the x-direction is cal-
culated a posteriori. Interestingly, the x-average follows

quite accurately swith a short time leadd the variations of the
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FIG. 2. Numerical velocity probes at y+=10 sx=0.193Lx and z=0.233Lzd
for the simulations with spatial average: SISM-SA sad, exponential smooth-
ing: SISM-ES sbd, and adaptive Kalman filtering: SISM-AKF scd. Dots:
instantaneous velocity u1

+; continuous lines: estimated mean velocity fu1
+g.

The dashed-line in sbd is the postprocessed spatial average along the

x-direction; this curve has been shifted vertically s+4d for clarity.
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exponential smoothing. This may be explained by the fact

that roughly speaking, the whole velocity profile salong the
x-directiond passes through the probe during a time interval
Dtconv
+ of the order of the “memory time,” Tc

+. Therefore, the

exponential smoothing sin timed is mainly equivalent to the
spatial average in the streamwise direction. However, this

former does not require any homogeneity conditions. It is

local in space and time while the x-average relies on a 48-
point stencil. Finally, the adaptive Kalman filtering fFig.
2scdg behaves qualitatively in a similar way as the exponen-
tial smoothing but with a cutoff frequency that adapts itself

locally. Here, at y+=10, this appears to give smoother results.
This feature will be investigated next.

3. Velocity profiles and energy spectra

The mean velocity profile and the turbulent intensity

profiles sin the stabilized turbulent regimed are displayed
in Fig. 3 and compared with DNS data. In the post-

processing, the average sdenoted by kld is meant over space
sx and z directions, y-mirrord and time s111 samples for
11.8# t+#28.0d.

In the present paper, the reference velocity for scaling is

the objective friction velocity suw=0.59 m s
−1d. The main

graph of Fig. 3sad is plotted with this convention. However, a
graph of the results plotted with a more conventional scaling

sbased on the computed friction velocityd is inlaid in the

major graph, for comparison with literature. The convention

of the present paper is preferred because the unified scaling

velocity allows a direct comparison between the different

versions of LES. More importantly, it makes the nondimen-

sional mean centerline velocity match the reference DNS,

which is consistent with the strategy of calibration. In com-

parison, the centerline error observed in the inlaid graph,

using the more conventional scaling, actually comes from the

friction velocity error sthe mean centerline velocity being

imposedd. Finally, the present convention allows quantifying
the velocity profile quality by considering the friction veloc-

ity value.

Considering the major graph of Fig. 3sad, a satisfactory
prediction of the mean velocity profile is achieved by the

different models. The FSF model yields the best prediction

but the different SISM implementations are close, with little

influence of the smoothing method. The objective friction

velocity uw is 0.59 m s−1 sfrom the reference DNSd com-

pared to 0.60 m s−1 for FSF, 0.53 m s−1 for SISM-SA, and

0.54 m s−1 for SISM-ES and SISM-AKF. In terms of the

Reynolds number, these values for the friction velocity yield

Rew=402 for FSF, Rew=355 for SISM-SA, and Rew=362 for

SISM-ES and SISM-KF, as opposed to Rew=395 for the

DNS. Even though the FSF model provides the best estimate,

the different SISM implementations lie within 10% of the

objective value, respecting the level of accuracy reviewed in

Ref. 31 for standard SGS models. The turbulent intensity

profiles are also well-captured for the three velocity compo-

nents. Here, the SISM provides results closer to the DNS

data than the FSF model. Little influence of the smoothing

method is again observed.

The spanwise spectra of the streamwise velocity are

shown in Fig. 4 for wall-normal distances y+=10 and

y+=100. The LES spectra are in close agreement with the

DNS in the range of energy-carrying wavenumbers and the

dependence on y+ is suitably captured. This ability to capture
only the large-scale phenomena swith a moderate grid den-
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sityd makes the genuine interest, and difficulty as well, of
large-eddy simulations. The SISM gives slightly better re-

sults than the FSF model swith little influence of the smooth-
ing methodd.

4. Two-point velocity autocorrelations

The two-point velocity autocorrelations in the stream-

wise and spanwise directions are displayed in Fig. 5 for

y+=10 and y+=100. Interestingly, our SISM implementations

appear particularly effective in capturing the correct depen-

dence on the separation distance. Again, the choice of the

smoothing method has no noticeable effect. The major trends

are fulfilled, that is to say, sid the correlations spread further
in the direction of the flow sx-directiond because of the
streaky structures sevidenced in Fig. 1d and siid when y in-
creases, correlations spread sin x and z directionsd and aniso-
tropy is reduced between the velocity components. In com-

parison, the FSF model appears slightly less effective in

capturing the DNS data. Finally, let us remark that the peri-

odic boundary conditions and the domain extent do not allow

for a proper decorrelation in the streamwise direction

sLx
+=1241d, as evidenced by R11 at y+=100. This is a known

issue of this test flow.

The correlation times tii
+ of the three components of the

fluctuating velocity, defined by kui8stdui8st+tiidl / kui8
2l=1 /2

for i=1,2 ,3, are plotted in Fig. 6. Here only, the average k · l
is meant over space sz direction and y-mirrord and time

s3000 samples for 28.6# t+#29.5d. Only the results for the
exponential smoothing sSISM-ESd are reported. It is found
that the correlation times globally decrease with the distance

from the wall and that t11 sin the streamwise directiond domi-
nates over t22 and t33. The cutoff period of the exponential
smoothing sTc

+=1d and the mean cutoff period of the Kalman
filter sfrom SISM-AKFd are also displayed in the figure. This
latter is obtained by identifying the optimal Kalman gain, K,
with the smoothing factor of the exponential smoothing and

by using Eq. s9d in order to relate this smoothing factor to
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Tc;1 / fc. This finally yields Tc
+=2pDt+ /Î3kKl, where k · l is

the usual postprocessing average. The two cutoff periods are

found about 20 times larger than the correlation times of the

velocity fluctuations, indicating that the two smoothing

methods are indeed efficient at filtering out the turbulent

fluctuations. The mean cutoff period of the adaptive Kalman

filter remains close to 1 but decreases with the wall-normal

distance, following the behavior of the velocity correlation

times. This is very reasonable since the Kalman filter is ex-

pected to adapt its cutoff period according to the observed

velocity fluctuations. In this test flow the spatial variation of

the correlation times is rather moderate, which explains that

the mean cutoff period of the adaptive Kalman filter remains

actually very close to the constant cutoff period of the expo-

nential smoothing. This justifies why the two methods

mostly behave the same way.

In summary, the results of our SISM-based LES of the

channel flow are in good agreement with the reference DNS

data for both one- and two-point statistics. The SISM, by

explicitly accounting for the mean-flow through a rather

simple formulation, reaches predictive qualities similar to the

filtered-structure-function model on this test flow. Regarding

the extraction of the mean-flow, the exponential smoothing

and the adaptive Kalman filter appear to be particularly con-

venient scomputationally sober, local in spaced and efficient
methods, yielding results essentially similar to the spatial

average sin this simple-geometry flowd. A more severe test
will be considered in the next section.

C. Flow past a cylinder in the subcritical turbulent
regime

The numerical simulation of flows around bluff bodies is

a great challenge for LES.
32
In this respect, the flow past a

circular cylinder at high Reynolds numbers is of special

importance.
33
The shear-layer transition regime is a well-

documented case that involves complex phenomena and,

therefore, deserves interest for our purpose. Here, the defini-

tion of the mean-flow requires attention. The boundary layer

separation sat the origin of the vortex sheddingd occurs up-
stream the transition, which makes the vortex-shedding part

of the sunsteadyd mean-flow. Moreover, contrary to the chan-
nel flow, there is no homogeneous direction, not even span-

wise, because of the three-dimensionality of the vortex

shedding.
34
Therefore, unsteady local smoothing strategies

are necessary to extract the mean-flow. Two SISM computa-

tions are presented, implementing the exponential smoothing

sSISM-ESd and the adaptive Kalman filtering sSISM-AKFd,
respectively.

1. Numerical simulation settings

A circular cylinder of axis z with diameter D=2R
=0.01 m is set in an undisturbed airflow with velocity U`

=70 m s−1 along the x-direction sunder standard conditions

of temperature and pressured. The diameter-based Reynolds

number is ReD=4.73104, within the subcritical turbulent re-

gime range smore precisely, the shear-layer transition re-

gimed. This flow is complex and experiences laminar bound-

ary layer separation, shear-layer transition in the vicinity of

the cylinder, turbulent wake, and von Kármán vortex shed-

ding at the Strouhal number St= fsD /U`<0.2, yielding fs

<1400 Hz for the objective vortex-shedding frequency.

FIG. 7. Cylinder mesh at constant z. Left: global view; right: close-up view
around the cylinder severy second point in each directiond.

FIG. 8. Mean velocity field obtained from the SISM-ES computation. Up:

contours of nondimensional streamwise velocity kUl /U`. Down: velocity

vectors kUW l. The gray square indicates the end of the recirculation bubble.

FIG. 9. Nondimensional vorticity field sz componentd from the SISM-ES

computation. Left: instantaneous field; right: exponentially smoothed field at

the same instant.
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The aspect ratio of the cylinder sspan length over radiusd
has some influence on the flow,

35
which explains partly the

dispersion of the experimental results at comparable Rey-

nolds numbers. In our LES, the grid extends over 3D in the

spanwise direction sz-directiond but periodicity is imposed on
the end planes so that the computations can be representative

of higher aspect ratios. Views of the grid are displayed in

Fig. 7. The computational domain extends over 10D in the

radial direction and the whole grid uses 33106 points. In the

turbulent region, behind the separation line, the wall grid

density sin wall unitsd is Drmax
+ .1 swith a radial growth ratio

of 1.2d, RDumax
+ .20, and Dzmax

+ .25. Again, this mesh den-
sity respects standard recommendations for LES.

2
The non-

dimensional time step is Dt+=DtU` /D=4310−4, adapted to

explicit discretization.

The SISM-ES computation relies on a fixed smoothing

factor cexp=6.093310−4 sthroughout the whole domaind.
This value of cexp is obtained from Eq. s9d with fc=2fs,

where fs<1400 Hz is the objective vortex-shedding fre-

quency. The cutoff frequency is fixed at twice the vortex-

shedding frequency sthe factor 2 is arbitraryd in order to en-
sure that the vortex shedding is suitably captured in the

mean-flow reconstruction. The SISM-AKF computation re-

quires for calibration a reference velocity, up, and a reference

frequency, fc fcf. Eqs. s11d and s14dg. Our natural choices are
up=U` and fc= fs. Contrary to the exponential smoothing, in

which fc represents the actual cutoff frequency, fc is here a

reference value pointing out the order of magnitude of the

cutoff frequency. This latter adapts itself to the local behav-

ior of the flow according to the Kalman filtering procedure.

Finally, the computations have been recorded over 24 peri-

ods, representing nearly 3000 samples in the established tur-

bulent regime. k · l denotes the postprocessing time and span-
wise average.

2. Flow field, forces, and Strouhal number

An overview of the flow resulting from the SISM-ES

computation is presented at first. The mean streamwise ve-

locity, kUl, is represented in the upper half of Fig. 8. The

gray square dot delimits the recirculation bubble: the “wake-

closure length” lc is given by kUlsx= lc , y=0d=0. In the

lower half of the figure, the mean velocity vector field kUW l is
displayed. The mean recirculation zone can be clearly iden-

tified. In Fig. 9, the z-components of vorticity for both the

instantaneous flow and the exponentially smoothed flow are

compared at the same instant. While the instantaneous vor-

ticity exhibits a wide range of structure sizes, the

exponential-smoothed flow mostly captures the vortex shed-

ding swhere shear effects are significantd, as expected. Figure
10 displays the temporal evolution of the lift coefficient, CL,

and drag coefficient, CD, over 24 periods of vortex shedding.

As already mentioned in Refs. 36 and 37, a strong correla-

tion is observed between the variations of CD and the modu-

lation of CL; typically, the value of the drag is high when the

lift amplitude is maximum.

These first qualitative results are very satisfactory. Here,

only the results with exponential smoothing are shown, but

very similar features have been observed for the SISM com-

putation with the adaptive Kalman filter.

Quantitative comparisons are now carried out between

the SISM-ES, the SISM-AKF, and available experimental

data sat comparable Reynolds numbersd. The mean drag co-
efficient, kCDl, the root-mean-square drag coefficient, CD8 ,

and the root-mean-square lift coefficient, CL8, are gathered in

Table I. While the two smoothing methods had yielded very

similar results for the channel-flow computations, notable

differences are obtained here. However, both computations

give forces that lie within the experimental ranges.

The vortex shedding has a strong impact on the pressure

distribution around the cylinder and, therefore, on the lift and

drag oscillations. Except from the rearmost part of the cylin-

der, the wall pressure spectrum is peaked around the shed-

ding frequency, fs. From the wall pressure spectrum at

u=90° su is the angle taken from the upstream stagnation

pointd, the vortex-shedding frequency has been identified:

TABLE I. Force coefficients and Strouhal number for the LES in comparison with experimental data.

SISM-ES SISM-AKF Data in literature

kCDl: mean drag coefficient 1.34 1.23 1.35 sReD=4.33104d, Ref. 35

f1.0, 1.35g sReD=4.83104d, Ref. 38

f1.0, 1.3g sReD=4.83104d, Ref. 39

f1.1, 1.3g sReDP f104 ,105gd, Ref. 37

CD8 : rms drag coefficient 0.09 0.065 0.16 sReD=4.33104d, Ref. 35

f0.08, 0.1g sReD=4.83104d, Ref. 40

f0.05, 0.1g sReDP f104 ,105gd, Ref. 37

CL8: rms lift coefficient 0.77 0.603 f0.45, 0.55g sReD=4.33104d, Ref. 35

f0.4, 0.8g sReD=4.83104d, Ref. 40

f0.6, 0.82g sReDP f104 ,105gd, Ref. 37

St: Strouhal number 0.190 0.204 f0.18, 0.2g sReD=4.83104d, Ref. 38

f0.185, 0.195g sReD=6.13104d, Ref. 41
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• SISM-ES computation: fs=1330 Hz corresponding to

a Strouhal number St=0.190;

• SISM-AKF computation: fs=1422 Hz corresponding

to St=0.204.

In Table I, this key criterion is shown to be in very good

agreement with the available experimental data.

3. Wall friction and pressure distribution

Figure 11 shows the distribution of the mean friction

coefficient, kC fl;fktwl /
1

2
rU`

2 gÎReD swhere tw is the fric-

tiond, around the cylinder. Both computations are in good
agreement with the experimental data, with however a

slightly better matching for the SISM-AKF. The mean sepa-

ration angle, us, is the angle for which kC fl vanishes. Here,
the measured values are us=88° for the SISM-ES computa-

tion and us=86° for the SISM-AKF computation swith an

angular resolution of Du=2° in this regiond. According to

experimental data
37

in the range 4.03104#ReD#4.53104,

the expected separation angle is us<83°. The LES compu-

tations appear to slightly overestimate us but the discrepancy

is only two grid points.

In the channel-flow simulation, the cutoff frequency for

the exponential smoothing had been evaluated by fc=uw /d,
with d being the half width sreference length of the flowd and

uw the friction velocity sreference velocity based on the shear

at the walld. Along the same line of idea, a cutoff frequency

may be designed here from the radius of the cylinder

sR=D /2d and the maximal value of the skin friction velocity

on the cylinder, that is,

fshear =
maxsuwd

R
. s17d

Numerically, this yields fshear=1430 Hz in the SISM-ES

computation. This frequency is expected to be representative

of the largest turbulent eddies detaching from the cylinder.

Interestingly, this is almost equal to the vortex-shedding fre-

quency sfs<1400 Hzd characterizing the mean-flow un-

steadiness. The proximity between the frequency associated

with the flow unsteadiness sfsd and the frequency of the larg-

est turbulent eddies sfsheard indicates that the mean-flow re-

construction using time-domain filtering necessarily includes

sto some extentd the dynamics of large-sized energy-carrying

turbulent eddies. One may evaluate that our mean-flow re-

construction encompasses turbulent velocity fluctuations

within the frequency band fshear, f , fc<2fshear ssince
fs< fsheard. This is an unavoidable limitation of our method

salready mentioned in Sec. IId. However, the present results

show that this limitation does not seem to dramatically im-

pact on the quality of the whole modeling. A similar reason-

ing can be followed for the adaptive Kalman filtering. In that

case, the cutoff frequency remains of the order of fshear and

adapts itself dynamically to the fluctuations of the flow. This

strategy appears to yield better results.

The distribution of the mean pressure-coefficient, kCpl
;skpl−p`d /

1

2
rU`

2 , around the cylinder is shown in Fig. 12

and compared with various experimental data. The prediction

is very satisfactory for both SISM computations.

Finally, the distribution of the root-mean-square

pressure-coefficient, Cp8, is plotted in Fig. 13. The overall

behavior is well-captured with a maximum around the point

of separation.
42

The intensity is notably overestimated sabout
50% on the peak leveld by the SISM computation with ex-

ponential smoothing but the computation with the adaptive

Kalman filtering captures much more accurately the experi-

mental levels sparticularly those closer to the simulated

ReD=4.73104d. This is another illustration of the influence

of the smoothing approach on this test-case.

4. Wake-centerline mean velocity

Figure 14 displays the mean velocity kUl along the wake

centerline for both SISM computations, in comparison with

the experimental results reported in Ref. 38 at ReD=1.4
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FIG. 11. Circular cylinder skin friction coefficient. s——d SISM-ES at

ReD=4.73104; s– – –d SISM-AKF at ReD=4.73104; ssd experimental

data sRef. 42d at ReD=9.13104; shd experimental data sRef. 39d at

ReD=105.
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FIG. 12. Mean pressure-coefficient distribution, kCpl, around the cylinder.

s——d SISM-ES at ReD=4.73104; s– – –d SISM-AKF at ReD=4.73104;

snd experimental data sRef. 35d at ReD=4.03104; ssd experimental data

sRef. 43d at ReD=4.63104; shd experimental data sRef. 39d at ReD=105.
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FIG. 13. Root-mean-square pressure-coefficient, Cp8, around the cylinder.

s——d SISM-ES at ReD=4.73104; s– – –d SISM-AKF at ReD=4.73104;

shd experimental data sRef. 41d at ReD=6.13104; snd experimental data
sRef. 36d at ReD=6.13104; ssd experimental data sRef. 42d at ReD=10

5;

sLd experimental data sRef. 44d at ReD=10
5.
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3105. The behavior and levels are globally captured. A spe-

cific attention can be drawn on the mean separation bubble

length sor wake-closure lengthd, lc, given by kUlsx= lc , y
=0d=0. In this regime, lc is expected to lower with increas-

ing Reynolds number.
45
For the present LES with ReD=4.7

3104, it should to be close to lc.1.25D. The SISM-ES
computation yields lc=D, surprisingly close to the value of
the experimental profile at ReD=1.43105. A much better

prediction is again achieved by the SISM-AKF with

lc=1.15D.
In summary, LES of the flow past a circular cylinder at

ReD=4.73104 was carried out using the SISM with two

different mean-flow extraction strategies: An exponential

smoothing sa baseline methodd and an adaptive Kalman filter
san elaborated methodd. A good overall prediction of this

complex flow was achieved for both smoothing methods.

However, when using the exponential smoothing some dis-

crepancies have been observed on the mean friction, wall

pressure fluctuations, and wake-centerline mean velocity. All

these discrepancies are reduced by the use of the Kalman

filter. This suggests the necessity of using adaptive

snonhomogeneousd cutoff properties when treating complex
snonhomogeneousd turbulent flows.

IV. SUMMARY AND CONCLUSION

The physical idea which underlies this study is to take

into account the mean-flow inhomogeneities in the subgrid-

scale viscosity. This feature is clearly encompassed in the

shear-improved Smagorinsky’s model. Numerically, two dis-

tinct smoothing algorithms san exponentially weighted mov-
ing average and an adaptive Kalman filterd are proposed to
extract the mean-flow as the simulation progresses. Our re-

sults indicate that the whole modeling offers an equitable

compromise between the accuracy of the numerical solution

and the computational cost. Since our method exploits the

temporal discretization recurrently, it is entirely local in

space and, therefore, suitable for parallelization and conve-

nient for boundary conditions.

In the classical channel-flow test-case, this approach was

shown to give satisfactory results regarding both mean and

fluctuating velocities, spectra, and two-point correlations.

Predictive capabilities appear comparable to the well-known

filtered-structure-function model, used as reference. Further

improvement of the present approach is still possible, as re-

vealed by the channel configuration through the underpredic-

tion of friction velocity. Since the different smoothing strat-

egies, i.e., the reference spatial average and the presently

introduced temporal digital filters, appear to achieve very

similar results, we believe that major benefit would rather be

gained from the improvement of the snumericald discretiza-
tion scheme and the subgrid-scale modeling sthe shear-
improved Smagorinsky’s modeld. The subcritical turbulent
flow past a cylinder has provided a more selective case for

the smoothing methods, combining both nonhomogeneity

and mean-flow unsteadiness. Extensive comparisons have

been carried out with experimental data sat comparable Rey-
nolds numbersd, concerning the global fluid forces acting on
the cylinder, the vortex-shedding frequency, the mean skin

friction, the mean and fluctuating pressure distribution

saround the cylinderd, and the mean wake-centerline velocity.
The numerical results using the exponential smoothing ex-

hibit some discrepancies swith experimental datad that are all
reduced by using the adaptive Kalman filter. This latter

yields a very satisfactory description of the flow characteris-

tics. The adaptivity and efficiency of this modeling sshear-
improved Smagorinsky’s model in combination with the

adaptive Kalman filterd make it very relevant for LES of
complex turbulent flows. Especially, applications to proper

turbomachine flows are of actual interest.

In the Kalman filtering framework, introducing correla-

tions in time sin order to better smooth the turbulent fluctua-
tionsd is readily possible. However, this would significantly
increase the computational cost and memory requirements sif
several time steps need to be storedd. For that reason, this
aspect was left out in the present work. Nevertheless, a pos-

sible improvement may consist in treating the temporal

smoothing from a Lagrangian viewpoint salong fluid trajec-
toriesd. This is under investigation. Finally, the smoothing
approaches investigated in the present work do not a priori
require a grid-convergence analysis because they are purely

temporal. However, since filtering acts on nonlinear turbulent

quantities, which are definitively dependent on the spatial

mesh resolution, a parametric study sas a function of the
mesh resolutiond would certainly deserve interest as well.
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