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[1] Core formation in terrestrial planets is a complex process, possibly involving several
mechanisms. This paper presents a direct numerical simulation of one of these, the
separation of an emulsion of metal in a magma ocean. The model, using a fully
Lagrangian approach called the moving particle semi-implicit method, solves the
equations of fluid dynamics, including a proper treatment of surface tension. It allows
investigation of the balances controlling the distribution of drop size and velocity, in both
two- and three-dimensional situations. A scaling analysis where buoyancy is balanced by
both surface tension and inertia correctly predicts the average values in these quantities.
The full calculation gives an average drop radius of 1.5 cm falling at a velocity of
about 30 cm s�1. Analysis of the full distribution remains interesting and shows that a
significant part of the smallest droplets is entrained upward by the return flow in molten
silicate and might be entrained by succeeding thermal convection. In addition, we
investigate the conversion of gravitational energy into viscous heating and the thermal
equilibration between both phases. We find that viscous heating is essentially produced at
the surface of iron drops and that thermal equilibration is dominated by advection. Scaling
thermal diffusion to chemical diffusion leads to the estimation that the latter would happen
in less than 100 m in the magma ocean.

Citation: Ichikawa, H., S. Labrosse, and K. Kurita (2010), Direct numerical simulation of an iron rain in the magma ocean,

J. Geophys. Res., 115, B01404, doi:10.1029/2009JB006427.

1. Introduction

[2] The processes leading to the differentiation of the
Earth in a silicate mantle and a metallic core have been
discussed in several papers [e.g., Stevenson, 1990; Tonks
and Melosh, 1990; Karato and Rama Murthy, 1997; Rubie
et al., 2003], but owing to the enormous challenges self-
consistent treatments represent, the dynamics involved was
until recently only sketched. All the proposed scenarios
require melting of the metallic part, whereas the silicate part
can be solid or liquid. If the silicate stays solid, the
segregation can happen by porous flow and compaction of
the silicate matrix [e.g. Stevenson, 1990; Yoshino et al.,
2003; Bruhn et al., 2000], large scale diapirs [Stevenson,
1990; Honda et al., 1993; Samuel and Tackley, 2008],
hydraulic fracturing [Stevenson, 2003], or a combination
of several of these processes [Golabek et al., 2008; Ricard
et al., 2009]. In the case where the silicates are liquid as
well, both liquids are assumed to be nonmiscible and to
form an emulsion. The large density difference renders the

emulsion unstable and leads to a rain of iron in the magma
ocean.
[3] All these processes are equally likely and may all

have occurred at different stages of planetary formation and
at different depth of large planets like the Earth (Figure 1).
In particular, the huge energy brought in by the giant impact
that formed the Moon is likely to have melted a large
fraction of the proto-Earth [Tonks and Melosh, 1993;
Canup, 2004], forming a magma ocean at its surface. Direct
evidences in support of this magma ocean are scarce, mostly
because they have been largely erased by subsequent
convection in the solid mantle. Nevertheless, several argu-
ments can be used in support of this scenario. The existence
of positive anomalies in 142Nd in Isua [Caro et al., 2003;
Boyet et al., 2003; Caro et al., 2005] requires an significant
amount of melting at very early stages of the history of the
Earth. The present heat loss of the Earth can be used to
constrain its thermal evolution and leads to a hot start, that
can be linked to an early magma ocean stage [Jaupart et al.,
2007; Labrosse and Jaupart, 2007].
[4] The settling of iron drops in the magma ocean is one

of the processes of core formation that need to be investi-
gated. In particular, the small size of the iron drops allows
important chemical and thermal exchanges between the two
phases. The excess in siderophile elements concentration in
the mantle and the absence of fractionation between Ni and
Co compared to chondrites have been explained by equi-
librium between iron and silicates at a pressure in excess of
20 GPa [Thibault and Walter, 1995; Li and Agee, 1996;
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Wood et al., 2006], which corresponds to about 500 km
depth in the present Earth. This could very well be
explained by chemical equilibrium between millimeter sized
iron droplets and liquid silicates near the bottom of a
magma ocean before they collect in iron pools too large
to allow further equilibration [Rubie et al., 2003].
[5] Core formation as an iron rain in the magma ocean

has been modeled only using scaling analysis. In such
models, the characteristic size of iron droplets is determined
by the balance between different forces, typically the
viscous stress that is the cause of drop disruption and
surface tension which resists disruption. Whether such
scaling apply in the range of parameters relevant to the
Earth needs to be tested, which is one of the goals of
the present paper. This issue is important since it controls
the ability of iron and silicates to equilibrate during the
descent of the drops. Indeed, comparison of the time
required for a drop to equilibrate to that for crossing any
given section of the magma ocean allows identification of
the thermodynamic conditions at which the last equilibrium
occurred. We expect these scalings to describe rather
properly the largest drops in the distribution but what
fraction of the total mass does it represent and how does
the rest of the distribution behave?
[6] In order to investigate these issues, we developed a

fully Lagrangian numerical model solving the dynamics of
emulsions under the action of gravity. This allows solution
of the time-dependent dynamics of the small scale iron rain
in the magma ocean and obtain the statistically steady
distributions of sizes and velocity of iron drops. We propose
a scaling of the average values of these quantities in the
inertial regime and find a fair agreement with the scaling
predictions. Analysis of the full distribution implies that
some part of the smallest droplets are entrained upward by
the return flow in the silicate which could, on a larger scale,
bring them to the top of the emulsion where thermal
convection in the magma ocean might be able to entrain a
small fraction of them.
[7] Thermal equilibration of metal and silicate is studied

by solving the energy balance equation together with the
momentum balance. It is found to be dominated by advec-

tion. A typical time for thermal equilibration is 5 s for a
droplet having a radius of 4 mm falling at about 10 cm s�1,
which corresponds to a distance of 50 cm. Chemical
diffusion being slower than thermal diffusion is even less
relevant and chemical equilibration should also be domi-
nated by advection and can be estimated to occur in about
50 m.

2. Equations

[8] In this section, the conservation equations for the two
phases are explained, with a particular care in the interfacial
aspects. At the scale of interest here (typically about 10 cm),
both liquid metal and silicates can be considered as incom-
pressible fluids, so that the mass conservation equation
leads:

rr � u ¼ 0; ð1Þ

u being the velocity. Equation (1) is obviously valid in each
phase but also at the interfaces between phases because of
the absence of phase change.
[9] In order to write the balance equation for momentum,

we need to write the surface tension stresses. These apply
only to the surface but it is desirable to write a volume
version of it, by introducing a surface Dirac (generalized)
function, dS, which is also the interfacial surface area per
unit volume. To that end, we introduce a characteristic
function, q, which takes the value 0 in fluid 0 and 1 in
fluid 1. This function is best viewed as a distribution
(generalized function) [Drew, 1983] and the domain of
integration V is either R3, all functions having the proper
decay properties at infinity, or the base cell of a periodic
domain.
[10] The volume fraction f of fluid 1 in volume V is

simply computed as f = 1
V

R
V
qdV and the average of any

given quantity q in fluid 1 contained in volume V is hq, qi �
hqi1 = 1

V

R
V
qqdV. Now, rq essentially provides the quan-

tities pertaining to the interface between the two phases
[Bercovici et al., 2001]. More precisely, the Dirac function
we seek, dS, centered on the interface is defined as dS � n̂ �
rrq, with n̂ = rrq/krrqk the unit vector normal to the
interface, pointing from fluid 0 (metal) to fluid 1 (silicate).
Then, the total surface S of interface contained in volume V
is simply written: S =

R
V
dSdV. Therefore, dS is the interfacial

area per unit volume and has the dimension of 1 m.
[11] The momentum equation including a constant sur-

face tension can then be written as [e.g., Brackbill et al.,
1992; Scardovelli and Zaleski, 1999]

Du

Dt
¼� 1

r
rrpþ 1

r
rr � hrruþ h rruð ÞT

n o

þ r0
r
� 1

� �
gez �

g
r
n̂ rrS � n̂ð ÞdS;

with rrS ¼ rr� n̂ n̂ � rrð Þ and p ¼ P � p0; ð2Þ

where h, P, p0, g, r0, and g are dynamic viscosity, pressure,
hydrostatic pressure, acceleration due to gravity, average
density, and interfacial tension coefficient, respectively, and
a Newtonian rheology has been assumed. Note that
interfacial tension only acts in the normal direction because

Figure 1. Cartoon of the deep magma ocean model drawn
in reference to the work by Stevenson [1990], Rubie et al.
[2003], and Wood et al. [2006]. At the surface, magma
ocean is formed by release of impact energy and green
house effect. Segregated metal droplets in the magma ocean
accumulate at the bottom of the magma ocean and forms
metal ponds. The metal crosses the solid silicate mantle in
the form of diapirs to form the core.
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we assume a constant g. We adopted the hydrostatic balance
as a basic state for the calculation

1

r0

@

@z
p0 zð Þ ¼ �g ) p0 z; tð Þ ¼ �r0gz: ð3Þ

[12] In order to investigate the partitioning of the gravi-
tational energy between metal and silicate and equilibration
between fluids, we solve an energy equation

rCp

DT

Dt
¼ rr � krrTð Þ þ 2hE : E ð4Þ

with T the temperature, Cp the specific heat per unit mass, k
the thermal conductivity, and

2hE : E ¼ h
2

@ui
@xj
þ @uj
@xi

� �2

the rate of viscous heating. This term is responsible for the
transformation of gravitational potential energy into heat.
We neglected here the term aT(DP/Dt), often referred to as
‘‘adiabatic heating,’’ because its ratio to the viscous heating
term is of order aTr/Dr � 0.1 for a temperature of 2000 K.
For the same reason, the temperature dependence of the
density is not taken into account in the momentum equation
and no feedback of the energy equation on the flow is
considered.
[13] Equations (1), (2), and (4) are valid at each position

but the physical parameters take different values in the two
fluids, denoted by subscript m for metal and s for silicate. In
order to reduce the parameter space, it is useful to introduce
some dimensionless numbers and to render the balance
equations dimensionless as well. Metal and silicates have
different physical properties and we use that of the latter, rs,
hs and ks, as references essentially because the continuous
phase is composed of silicate. For the density, another
choice could make sense, Dr = rm � rs, since this is at
the origin of the driving force. However, in terms of
numerical values, Dr ’ rs and using rs as reference in
all terms helps to simplify the equation. With this choice,

the physical parameters have a dimensionless form noted
with a star exponent, r? = (1 or rm/rs), and similarly with
other physical parameters. Any temperature dependence of
the physical quantities, in particular density if thermal
convection is to be considered, could be added here.
[14] Then, we seek two scales, length L and velocity U,

which provide the timescale by a simple ratio. The buoy-
ancy and interfacial forces are important players in the
dynamics and their balance provides the length scale:

rsg ¼
g
L2

) L ¼
ffiffiffiffiffiffiffi
g
rsg

r
: ð5Þ

This is equivalent to considering the Bond (or Eötvös)
number, Bo = L2gDr/g, close to unity. (Remember
that Dr ’ rs.) Note that if the droplets are very small, the
interfacial force can only be balanced by pressure (Laplace
balance) and the shape of the droplet is essentially spherical.
[15] For the velocity scale U, the previous two terms can

be balanced either with the viscous force, leading to a
Stokes scaling, or to inertia. The proper choice is dictated
by the value of the Reynolds number, Re = rsUL/hs, which
is not imposed a priori but is an output of the model. We
nevertheless expect it to be larger than one, favoring a
scaling derived from the balance between inertia and surface
tension (or buoyancy):

g
L
¼ rsU

2; ð6Þ

which is equivalent to assuming a Weber number,
We = rsU

2L/g, of order one. Substituting equation (5)
into equation (6) leads to U =

ffiffiffiffiffiffi
gL
p

= (gg/rs)
1/4. From

equations (5), the timescale is t = L/U = (g/rsg
3)1/4.

Finally, using g/L as pressure scale, equation (2) takes the
form

Du

Dt
¼� 1

r?
rrpþM

1
4
1

r*
rr � h?rruþ �? rruð ÞT

n o

þ r?0
r?
� 1

� �
êz �

1

r?
rrS � n̂ð ÞdSn̂: ð7Þ

where all variables are given the same notation as before for
simplicity. The Morton number, M = Res

�4 = hs
4g/g3rs,

with Res = rsUL/hs and the Bond number have been used to
classify drop shapes [Clift et al., 1978].
[16] Table 1 gives representative values for the different

parameters entering the problem and the resulting charac-
teristic scales and dimensionless numbers. Some of these
parameters are quite uncertain and most notably the viscos-
ities. The fact that the estimated Reynolds number is slightly
larger than one justifies the use of inertia as a scaling factor
instead of viscous force. This point will be made stronger by
realising that the viscosities used in this calculations are
overestimates of the actual silicate viscosity [Liebske et al.,
2005]. However, the viscosity could also be influenced by
temperature and the presence of crystals and we varied its
value between 10�2 Pa s and 10 Pa s.
[17] There are mainly three remaining important param-

eters for the dynamics: M, r*m, and h*m. The uncertainties
in density determination of both phases are small and the

Table 1. Representative Parameter Values Used in the Calcula-

tions and the Resulting Characteristic Scales and Dimensionless

Numbersa

Parameter Value

rs 3750 kg m�3

rm 7800 kg m�3

Cp 103 J kg�1 K�1

g 1 N m�1

g 10 m s�2

ks 3.75 W K�1 m�1

km 7.8 W K�1 m�1

a 6 � 10�5 K�1

hs = hm 1 Pa s
L 5 mm
U 0.23 m s�1

t 0.02 s
Q 1.24 � 10�5 K
Res 4.4
aSee Rubie et al. [2003].
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density ratio r*m can be set to a constant value. On the other
hand, the viscosities are not well constrained and we can
therefore vary both viscosities as control parameters or vary
their ratio and the Morton number.

3. Numerical Method

[18] In order to solve the partial differential equations
discussed in section 2, we use the moving particle semi-
implicit (MPS) method [Koshizuka and Oka, 1996], which
is Lagrangian and well suited for incompressible flows.
Lagrangian methods allow natural tracking of interfaces,
which make them the ideal choice to study the dynamics of
an emulsion. It has already been used to model various fluid
flows, such as free surface flow [Koshizuka and Oka, 1996],
multiphase flow [Nomura et al., 2001], and flow including
phase change [Koshizuka et al., 1999]. In order to treat the
surface tension term within MPS, the curvature is needed
and we use the method proposed by Nomura et al. [2001]
for two-dimensional (2-D) problems and that developed by
Ichikawa and Labrosse [2010] for three-dimensional (3-D)
problems. In two dimensions, the curvature is computed by
fitting a circle on the interface whereas in three dimensions,
it is computed as rrS � n̂, where the normal vector is
obtained from the gradient of the color function using a
blending of MPS and smooth particle hydrodynamics
(SPH). We do not use any special algorithm to treat
coalescence, as would be required for a precise study of
that phenomenon, because the small viscosities considered
here render that process very fast [Eggers et al., 1999]
compared to the typical velocity of the fluid. In our model,
merging happens naturally when two drop surfaces get
within range of particle interaction and we think this
treatment is sufficient to deal with the global characteristics
if the emulsion.

[19] The computational domain has periodic boundaries
in all directions, vertical as well as horizontal. In two
dimensions, the computational particles are initially placed
in a square lattice whereas in three dimensions, we use a
hexagonal close-packed structure for the initial particle
allocation. Such choices have little influence on the dynam-
ics after the initial transient phase.
[20] We computed cases with volume fraction of metal,

f = Vm/(Vm + Vs), equal to 0.18 and 0.0576 and a few cases
with a lower value. Unless otherwise stated, there is initially
only one droplet, at rest, with a square shape. Square drops
rapidly lose their initial shape by the effect of surface
tension and after a few cycles of disrupting and merging,
the initial condition is totally forgotten. We also considered,
as initial condition, the case of many droplets evenly
spaced. The silicate viscosity is varied from 10�2 Pa s to
10 Pa s in the 2-D calculations, corresponding to a temper-
ature of �2800 to �1700 K [Rubie et al., 2003, Figure 2b].

4. Results

4.1. Overview of Two-Dimensional Calculations

[21] In two-dimensional calculations, one or more square
droplets are initially set at rest. All parameter sets are listed
in Table 2. The computational domain is 10 cm � 10 cm or,
in dimensionless form, 19.4 � 19.4. We computed solutions
for hs = hm = 0.01,0.1,0.5,1.0,2.0,5.0, and 10.0 Pa s for two
different volume fractions of metal, 5.76% (cases A1–A8
and D1) and 18.0% (cases B1–B8). We also computed
solutions for hm/hs = 0.1 with hs = 10.0 Pa s for a volume
fraction of metal of 18.0% (case B8). In terms of resolution,
we used 40,000 particles for hs � 5.0 Pa s, and 90,000
particles for all other calculations, except for the cases A4
and A5 with hs = hm = 1.0 Pa s and a metal fraction of
5.76% for which we used 160,000 particles. The particles
are initially set at rest on a square lattice.

Table 2. Input Parameters and Results for the Two-Dimensional Calculationsa

Case
hs

(Pa s)
hm
(Pa s)

Metal
Fraction

Number
of Particles

Morton
Number

Number
of Drops

Radius
(m)

Velocity
(m s�1)

rmax

(m)
vmax

(m s�1)

A1 0.01 0.01 0.0576 90 000 2.67 � 10�11 1 0.00383 �0.209 0.00552 �0.263
A2 0.1 0.1 0.0576 90 000 2.67 � 10�7 1 0.00404 �0.184 0.00578 �0.227
A3 0.5 0.5 0.0576 90 000 1.67 � 10�4 1 0.00426 �0.110 0.00579 �0.193
A4 1.0 1.0 0.0576 160 000 2.67 � 10�3 1 0.00421 �0.108 0.00659 �0.197
A5 1.0 1.0 0.0576 160 000 2.67 � 10�3 256 0.00409 �0.108 0.00625 �0.188
A6 2.0 2.0 0.0576 90 000 4.27 � 10�2 1 0.00533 �0.105 0.00836 �0.168
A7 5.0 5.0 0.0576 40 000 1.67 4 0.00748 �0.118 0.00976 �0.139
A8 10.0 10.0 0.0576 40 000 2.67 � 10 4 0.00946 �0.0748 0.0114 �0.0893

B1 0.01 0.01 0.18 90 000 2.67 � 10�11 1 0.00593 �0.107 0.00970 �0.131
B2 0.1 0.1 0.18 90 000 2.67 � 10�7 1 0.00564 �0.101 0.00900 �0.147
B3 0.5 0.5 0.18 90 000 1.67 � 10�4 1 0.00505 �0.0711 0.00844 �0.148
B4 1.0 1.0 0.18 90 000 2.67 � 10�3 1 0.00493 �0.0654 0.00854 �0.166
B5 2.0 2.0 0.18 90 000 4.27 � 10�2 1 0.00518 �0.0674 0.00939 �0.166
B6 5.0 5.0 0.18 40 000 1.67 4 0.00774 �0.0802 0.0140 �0.175
B7 10.0 10.0 0.18 40 000 2.67 � 10 4 0.0102 �0.0819 0.0161 �0.130
B8 10.0 1.0 0.18 40 000 2.67 � 10 4 0.00956 �0.0991 0.0159 �0.149

C1 2.0 2.0 0.025 90 000 4.27 � 10�2 1 0.00892 �0.261 0.00892 �0.261
C2 2.0 2.0 0.03 90 000 4.27 � 10�2 1 0.00977 �0.286 0.00977 �0.286
C3 2.0 2.0 0.035 90 000 4.27 � 10�2 1 0.00782 �0.248 0.00913 �0.252
C4 2.0 2.0 0.040 90 000 4.27 � 10�2 1 0.00662 �0.160 0.00895 �0.235

D1 1.0 10.0 0.0576 90 000 2.67 � 10�3 1 0.00440 �0.112 0.00672 �0.179
aNumber of drops refers to the initial number of metal droplets; rmax and vmax are the time averages of radius and velocity of the largest droplet.
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[22] Let first discuss in details the cases with hs = hm =
1.0 Pa s and a metal fraction of 5.76% using 160,000 particles.
Two different initial conditions are considered: case A4 with
only one large metal drop (Figure 2) and case A5 with
256 droplets originally set in a lattice arrangement (Figure 3).
The gravity force is directed toward the bottom of Figures 2
and 3. In case A4, the drop gets first elongated by the
viscous stress exerted by the ambient fluid and takes the
shape of a boomerang (Figure 2b). After about 0.5s,
the viscous stress overcomes surface tension and the droplet
is disrupted into several droplets. A statistically steady state
is reached after about 2 s. In case A5, the lattice-like
arrangement collapses (Figure 3b) and droplet sizes increase
by repeated merging (Figures 3b–3e). Finally, the very
small droplets in Figure 3e are swept in by larger drops
and the system reaches a statistically steady state identical to
the one reached in case A4. The time to reach that state is,
however, longer, of the order of 10s. In the statistically
steady state, the system keeps its droplet size distribution by
compensating merging and disruptions.
[23] Figure 4 shows the time dependence of the average

drop size and velocity for the two cases. The average
velocity is defined as the arithmetic average over all the

metal particles, which is equivalent to a mass or volume
average among all drops since the fluid is considered as
incompressible. We can see that the average velocity of the
metal phase fluctuates with time, and so must also be the
case of the average silicate velocity.
[24] The effective radius r of a droplet is computed from

its volume V by assimilating the droplet to a disk. The mean
radius is then obtained by volume weighted average,P

iriVi/
P

iVi, where the sum is taken over the droplets.
The time sequence of the mean of droplets’ radii and velocity
(Figure 4) show that case A4 reaches steady state faster than
case A5. In case A5, if a drop is slightly larger than the
neighboring ones, its higher velocity will make it catch the
drops that are in front and merge with them which will make
its advantage even bigger. Stevenson [1990] showed, using
a simple model for the growth of this larger drop, that the
time required to reach the maximum size is very small.
[25] We already showed that the average size and velocity

of the droplets are independent of the initial condition,
either starting with only one large drop or with a set of
small ones. We can now go one step further and compare
their size distribution, as represented on Figure 5. Both
distributions represent the time and space variability once a
statistically steady state has been reached. They are identical
and show the sharply defined minimum of droplet sizes a

Figure 2. Case A4. Falling metal droplet in silicate liquid.
Boundaries are periodic in all directions. An initially square
drop is deformed into a boomerang shape and broken up by
the viscous stress. The times of the different frames are (a) 0 s,
(b) 0.52 s, (c) 0.8 s, (d) 1.2 s, (e) 2.0 s, and (f) 10 s (see
Table 2 for a full list of parameters). Movie 1 is also for this
case.

Figure 3. Case A5. Falling metal droplets in silicate
liquid. The boundaries are periodic in all directions. Two
hundred and fifty-six initially square drops are placed at
lattice points. The times for the different frames are (a) 0 s,
(b) 1.0 s, (c) 4.0 s, (d) 8.0 s, (e) 10.0 s, and (f) 32.0 s (see
Table 2 for a full list of parameters).
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little more than �0.001 m, and a long tail toward the large
values of droplet sizes. Smaller droplets that exist originally
for case A5 are rapidly swept by bigger ones. Droplets
smaller than that minimum cannot be formed by disruption
of bigger ones because it requires a very large viscous force
to counteract the surface tension in droplets with such small
radius of curvature.
[26] The survival time of initial small droplets is short,

about 20 s in the simulation, which would be dependent on
the initial size, much shorter than the total falling time in the
magma ocean. Therefore, we hereafter concentrate the
analysis on the properties of droplets in steady state.
4.1.1. Dependence on Viscosity or Morton Number
[27] The mean radius and velocity of droplets, averaged

in time once a statistically steady state has been reached, are
presented on Figure 6 for different values of the silicate
viscosity. The Morton number and the dimensionless radius

Figure 5. Comparison of the size distributions of droplets,
in volume fraction of the total for cases A4 and A5 in
statistically steady state. The distributions represent both
temporal and spatial variations. The cumulative distribution
for case A4 is also shown. The lowest size in the
distribution is similar to the initial size of droplets in
case A5, as shown by the vertical line.

Figure 6. Variation of the mean droplet (a) radius and
(b) velocity as function of silicate viscosity or Morton
number for a volume fraction f = 0.0576. Light grey error
bars denote the standard deviation with time of the mean
value. Black error bars denote the standard deviation of the
full distribution.

Figure 4. Mean (a) radius and (b) velocity of the metal
droplets in the two-dimensional case with hs = hm = 1 Pa s.
The two cases are statistically identical after about 10 s. In
case A4, the initial condition has only one square drop
(Figure 2). I case A5, the initial condition has 256 square
droplets (Figure 3).
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and velocity are also given on the graph. One can see that,
with increasing viscosity, the average size increases and the
average velocity decreases. However, the increase in droplet
size with viscosity is very small for hs � 1.0 Pa s and then
transitions to another regime where it increases rapidly. This
transition can be associated to a transition from high
Reynolds number to low Reynolds number regime. At the
transition, with a viscosity of about �1 Pa s (Figure 6), the
Reynolds number estimated from the average size and
velocity of drops is Re = 1.7, of the same order as the
value estimated earlier from the scaling analysis (Re = 4.4).
In the case of large Re, the viscosity ceases to play a role,
even though the smallest droplets have a low Reynolds
number. This validates the previous analysis (equation (5))
where the size of droplets was predicted independently of
the viscosity. On the other hand, the large increase of drop
size in the high viscosity regime requires a different scaling
analysis to be explained.
[28] The estimated length scale is derived from equating

gravity force, drag force and surface tension acting on a
drop. The breakup by the action of the viscous force should
lead to a different scaling. Following Stevenson [1990], one
can assume a Stokes velocity v � gDrR2/hs and balance
viscous stress hsv/R with surface tension g/R to get a limit
radius of R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=gDr

p
. However, this scaling is indepen-

dent of the viscosity which cannot explain Figure 6. This
scaling only provides a maximum size and bigger drops
should be unstable. However, the time required for the
instability to fully develop and decrease the drop size back
to a stable situation is not specified.
[29] It would be interesting to extend the present results to

higher viscosities to see whether the sizes stabilizes to a
definite high viscosity size. However, these calculations are
more time consuming because of the smaller time steps and
the larger computational domains required, which limited
our investigations.
4.1.2. Effect of the Volume Fraction of Metal
[30] We modeled situations with two different volume

fractions f of metal, 5.76% and 18%, and the different
results are summarized in Tables 2 and 3. The main effect of
increasing the metal fraction is to increase the size of the
drops and decrease their velocity. This results from the form
of the buoyancy force (equation (2)) in which the average
density r0 increases with the fraction of metal, and the
relative buoyancy of each metal particle therefore decreases.
The decrease of the driving force with f leads to a decrease
of the velocity and therefore of the viscous drag. This
allows the drop size to increase.
4.1.3. Effect of the Viscosity Ratio
[31] The viscosity of the metallic phase plays little role as

long as it is smaller than that of the silicate. Table 2 shows
the average radius and velocity of the metal phase for
several cases with different viscosity ratios, hs/hm = 10, 1,

and 0.1, and they do not show any marked difference.
Because the silicate phase is more abundant and, more
importantly, connected, its viscosity influences more effec-
tively the dynamics.

4.1.4. Viscous Heating in Two-Dimensional
Calculations
[32] Once a statistical steady state is reached concerning

the distributions in drop sizes and velocities, the gravita-
tional energy released by the net downflow of mass is
entirely converted in viscous heating. In the model, this
can be seen by integrating equation (4) over the computa-
tional domain, using its periodicity. In order to link this to
the gravitational energy, consider the equation for conser-
vation of total energy, � = e + u2/2, with e the internal
energy and u2/2 the kinetic energy:

d

dt

Z
V

r�dV ¼ �
Z
V

rr � qdV þ
Z
V

rg � udV þ
Z
V

rr � s � uð ÞdV ;

ð8Þ

with s the total stress tensor, which can be decomposed in a
hydrostatic part and the rest: sij = �p0dij + tij. Using the
periodicity of the computational domain, both the heat flux
and t terms drop. The second term on the right hand side is
also null from mass conservation and an uniform g, and we
are left with

d

dt

Z
V

r�dV ¼ �
Z
S

pou � dS: ð9Þ

Only the horizontal surfaces contribute to this integral and
the result depends on the gradient of the hydrostatic
pressure. Let introduce the average vertical velocity of the
metal um and silicate us, which are linked by mass
conservation:

frmum þ 1� fð Þrsus ¼ 0: ð10Þ

In statistical steady state, the kinetic energy is constant and
equation (8) leads to an equation for the evolution of the
average temperature T0 using the periodicity of the
computational domain:

dT0

dt
¼ g

Cp

1� rm
rs

� �
fum: ð11Þ

This leads to a steady increase in the temperature, and
Figure 7 shows the evolution of the mean temperature in
each phase as a function of time, along with the predicted
slope from equation (11).
[33] In addition, Figure 7 allows the study of the thermal

equilibration of the two phases. Before discussing that part,

Table 3. Input Parameters and Results for the Three-Dimensional Calculationsa

Case Metal Fraction Lx (m) Ly (m) Lz (m) Number of Particles Number of Drops Radius (m) Velocity (m s�1)

3D1 0.0576 0.0593 0.0595 0.120 244 596 1 0.0159 �0.261
3D2 0.0576 0.0593 0.0595 0.120 244 596 64 0.0159 �0.283
3D3 0.18 0.0593 0.0595 0.120 244 596 1 0.0221 �0.195
3D4 0.0576 0.0902 0.0900 0.120 562 331 1 0.0145 �0.279

aLi denotes the length of the domain for each direction (x, y, z). Number of drops stands for the initial number of metal droplets.
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it is worth considering where viscous heating actually
occurs. Figure 8 shows that viscous dissipation occurs
mostly at the interface between phases. Since thermal
diffusivity is identical in both phases, each should benefit
equally, but Figure 7 shows that, on the contrary, the
average temperature is larger in the metal than in the
silicate. This simply is explained by the metal phase having
a larger surface to volume ratio than the silicate.
[34] This initial difference is counteracted by advection

and diffusion, and in steady state, the case represented on
Figure 7 predicts a remaining difference of about 4� 10�4 K.
Also, the time difference between the two curves, about 5 s,
can tell us what is the main mechanism for equilibration.
Indeed, a 4 mm drop equilibrates thermally by diffusion in
about R2/k � 16 s, which is larger than obtained in the
calculation. On the other hand, the velocity being about
0.1 m s�1, the advection timescale is around 4 � 10�2 s and
explains the very small difference in temperature between
the two phases.

4.2. Three-Dimensional Simulations

[35] Since collisions between metal droplets play an
important role one may consider that the dimensionality
of the calculation has a strong influence on the results. We
have performed three-dimensional calculations, in which
one or more metal droplets with an initially cubic shape are
set at rest in the liquid silicate and their subsequent
evolution is computed. These calculations are of course
more time consuming than their two-dimensional counter-
part which limited the exploration of the parameter space.
All calculations used a domain that was longer in the
vertical direction than in the horizontal one and the viscos-
ities are hs = hm = 1 Pa s. Two different volume fractions
were used, 5.76% and 18%, and all other parameters are
given in Table 3.
[36] Figure 9 shows the evolution of the metal phase

(volume fraction f = 5.76%) initially set as only one cubic
drop, for two different domain horizontal size (cases 3D1
and 3D4). Corresponding Movies 1–3 show that the drop

first gets a spherical shape to remove the singularities of the
initial cubic shape.1 Then, the flow in the silicate phase
around the drop drives a flow inside the drop and provokes
an indentation on the top of the metal drop while elongating
the sides (Figure 10). Small droplets separate from the edges
of this spherical cap. This is quite similar to the dynamics
obtained in two-dimensional calculations as displayed in
Figure 2.
[37] We also computed the case with initially 64 cubic

droplets, all other parameters being the same as the case just
discussed, including the volume fraction of metal. The
evolution of the metal phase is displayed in Figure 11.
After a transient period that involves the successive merging
of droplets, the system reaches a statistically steady state
similar to the case starting with a large drop. The situation is
similar to the discussion in two-dimensional calculations
and the time required to reach the steady state is much
longer when starting with small droplets.

4.3. Comparison Between Two- and Three-
Dimensional Results and Scaling Predictions

[38] The dimensional analysis presented above (section 2)
makes no distinction between two-dimensional (2-D) and
three-dimensional (3-D) analysis. We find that the prediction
from this dimensional analysis are close to the result of both
the 2-D and the 3-D calculations. For example, using hs =
hm = 1 Pa s, the scaling predicts a drop radius (equation (5))
of L = 5� 10�3 m and a velocity of V =�2.3� 10�1 m s�1.
The 3-D calculation (case 3D4) gives (Table 3) R3D = 1.45�
10�2 m and V3D = �2.79 � 10�1 m s�1 for mean radius and
velocity, respectively, whereas the 2-D calculation (case A4)
gives (Table 2) R2D = 4.2 � 10�3 m and V2D = �1.08 �
10�1 m s�1. One can think of several geometrical effects to
explain the slight differences. First, a 2-D drop is in fact an
infinite cylinder with a lower surface over volume ratio than
a 3-D drop with the same radius. This favors, in two
dimensions, volumetric terms in the momentum equation
(inertia and buoyancy force) over the surface term (interfa-
cial tension), and therefore leads to drops that are 50%
smaller than their 3-D counterpart. Moreover, the mean
curvature in two dimensions is 1/R and is therefore half the
value in three dimensions, which reinforces this prediction.
[39] We constructed probability charts in the (R, V) space,

for both 2-D and 3-D calculations (Figure 12) in order to
test a simple relationship between drop size and velocity. To
first order, both distributions are similar: the fastest drops
(that having the largest absolute value of their velocity) are
the largest ones, and vice versa. In both cases, the smallest
drops have a positive velocity, meaning that they move
upward. In fact, they are entrained by the silicate flow that
moves opposite to the metal flow in order to conserve mass.
The energy necessary to create these small droplets comes
from the gravitational settling of the largest drops that is
responsible for the largest stresses.
[40] There are also differences between the two distribu-

tions. First, the correlation between the radius and velocity
is more clearly defined in three dimensions than in two
dimensions. In particular, the 2-D calculation has some
small droplets that fall faster than the bigger ones and this

Figure 7. Mean temperature of metal (solid line) and
silicate (dashed line) in a two-dimensional calculation
(case A4) with hs = hm = 1.0 Pa s. The solid gray line
shows the temperature increase rate predicted by computing
the gravitational energy release (see details in the text).

1Animations are available in the HTML.
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is responsible for a large part of the scatter in the distribu-
tion. Again, inspection of Movies 1–3 provides an expla-
nation: When a small droplet is formed at the rear of a large
one, it can get entrained in its wake and gets accelerated.
The same situation may arise in three dimensions but the
small droplets have more options of escaping from the
influence of the large drop than in two dimensions, which
limits this effect. Another important difference between the
two cases lies in the clear bimodal nature of the distribution
obtained in three dimensions compared to the unimodal one
obtained in two dimensions.
[41] To conclude this section, we would like to stress that

the results from two- and three-dimensional calculations
both agree with the scaling analysis presented above when
dealing with the average velocity and size of drops in the
inertial regime. This justifies the use of a two-dimensional
setup to explore the phase space. However, to go beyond
these gross characteristics and deal with full distributions,
three-dimensional models are required.

5. Discussion

[42] After having presented the raw results, it is worth
discussing their physical meaning. The implications for the

dynamics of an iron rain in the magma ocean will be
outlined, with a particular concern on equilibration processes
and the possibility of iron residues in the mantle.
[43] In the magma ocean, the effective conditions of

equilibration depend on the average size of drops, about
1 cm in our calculation, which is similar to the value
proposed by Rubie et al. [2003]. Moreover, the study of
thermal equilibration, discussed in section 4.1.4, reveals the
importance of convective transfer in the drops, which
enhances the equilibration rate compared to a purely diffu-
sive process. This means that the average drop continuously
equilibrates with the surrounding magma as it falls, with
negligible delay. In the case discussed in section 4.1.4,
thermal equilibrium is reached in about 5 s, which corre-
sponds to a distance of about 50 cm. Of course, in the case
of chemical equilibrium, diffusion across the metal-silicate
interface is less efficient and equilibration would take
longer. Assuming a diffusion coefficient D = 10�8 m2 s�1

[Rubie et al., 2003], which is a hundred times lower than the
thermal diffusion coefficient, a distance of about 50 m
would be obtained, similar to the distance proposed by
Rubie et al. [2003]. This means that the equilibrium

Figure 8. Viscous dissipation (in W m�3) in a 2-D
calculation at two different times, corresponding to Figures 2b
and 2f. One can see that viscous dissipation mostly occurs at
the interface between phases.

Figure 9. Case 3D4. Falling metal droplet (white) in
silicate liquid (clear). The boundaries are periodic in all
directions. An initially cubic drop is transformed into a
spherical cap (see Figure 10) and broken up by viscous stress.
In case 3D1 (Figures 9a–9c) and case 3D4 (Figures 9d–9f),
the only difference between the two being the domain size:
(a) 0 s, (b) 1.2 s, (c) 7.0 s, (d) 0 s, (e) 2.0 s, and (f) 4.3 s.
Movie 2 is also for case 3D4.
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recorded in mantle rocks would correspond to a sharply
defined position in a P-T diagram, which would be close to
the bottom of the magma ocean. In the classic cartoon of
core formation proposed by Stevenson [1990] (Figure 1),
the subsequent stages involve a rapid transfer across the
solid mantle by either Rayleigh-Taylor instability, hydraulic
fracturing [Stevenson, 2003], or percolation. In any of these
processes, chemical equilibration with the mantle is hin-
dered by slow chemical diffusion in the solid so that the last
equilibrium is acquired at the bottom of the magma ocean
and the present chemical composition of the mantle is
thought to reflect that equilibrium. However, this interpre-
tation seems simplistic for several reasons.
[44] The interpretation of mantle chemistry as the result

of equilibration with core forming iron at a single pressure
and temperature condition requires that the whole mantle
gets processed by this equilibrium. However, it is now
recognised that core formation occurs very early in the
solar system, at the planetesimal stage [e.g. Yin et al., 2002;
Baker et al., 2005] and on growing planets [Ricard et al.,
2009]. For the cartoon discussed above to keep its rele-
vance, the last giant impacts must be able to reprocess a
large fraction of the mantle by an efficient emulsification of
the core of the protoplanets.
[45] The possible existence of another magma ocean at the

bottom of the mantle [Labrosse et al., 2007; Mosenfelder et
al., 2009; Stixrude et al., 2009] can also affect the compo-
sition of the mantle resulting from core formation. The

proportion of the falling iron that should reequilibrate with
this basal magma ocean (BMO) depends on the ability of
the large scale diapirs to be disrupted in centimeter-sized
droplets while crossing this magma layer. This emulsifica-
tion is different from that occurring upon impact at the
surface since it does not benefit from any kinetic energy.
The main control parameter here is the ratio between the
scale of incoming iron diapirs and the thickness of the
BMO, both numbers being poorly constrained.
[46] Another issue worth considering concerns the effi-

ciency of metal segregation by the process investigated
here. We have shown in this paper that a simple scaling
for the size and velocity of iron drops in the magma ocean is
consistent with the averaged values resulting from a full
calculation. However, we have shown that the distribution
in these values is rather wide and that this can even lead to
very small droplets moving upward with the magma return
flow. At the large scale, the volume fraction of iron depends
on the position in the magma ocean and the size and
velocity distributions should also depend on position. Our
findings suggest that the smallest droplets would tend to be
brought up by the flow due to the fall of the largest drops.
We might therefore envision that the average drop size

Figure 10. Deformation of a spherical drop into a
spherical cap before disruption in smaller droplets,
corresponding to a frame between that of Figures 9d and 9e.
The surface of the drop is rendered as a blue isosurface, and
the vectors represent velocity in the reference frame of the
drop, in the center plane. White is for the silicates, and red is
for the metal. Circulation in the silicate and the metal
indents the drop from above and, eventually, leads to its
break up.

Figure 11. Case 3D2. Falling metal droplet (white) in
silicate liquid (clear). The boundaries are periodic in all
directions. Sixty-four initially cubic drops are positioned at
lattice points: (a) 0 s, (b) 0.8 s, (c) 3.0 s, (d) 4.0 s, (e) 6.0 s,
and (f) 7.8 s. The initial cubic shape is still apparent as sharp
angles under the droplets in Figure 11b. Movie 3 is also for
this case.
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would be lower at the top than at the bottom of the magma
ocean. In particular, the smallest droplets at the top of the
emulsion might be entrained by convection in the magma
ocean. In this case, some metal could be left behind core
formation and stay in the mantle after its solidification.
[47] In order to investigate the importance of that phe-

nomenon, we can use the criterion proposed by Solomatov
and Stevenson [1993] which deals with the entrainment by
thermal convection of settling crystals at the bottom of the
magma ocean. The negative buoyancy in the case of iron
droplets is much larger so that, for an equal particle size, the
maximum fraction that can be kept suspended is much
smaller. For the smallest droplets of radius 5 � 10�3 m
found in three-dimensional calculations (Figure 12), the
maximum fraction allowing suspension is found by assum-
ing the largest heat flow, about q � 105 J m�2 s�1

[Solomatov and Stevenson, 1993], a large viscosity h =
1 Pa s and the maximum fraction of iron that can be
suspended is fmax = 6 � 10�6 e, e � 0.01 being the
fraction of the available work from thermal convection that

is used to maintain the emulsion. The resulting number is
vanishingly small which shows that the process of iron rain
in the magma ocean is extremely efficient.
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