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Dependence of kinetic friction on velocity: Master equation approach
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(Dated: April 29, 2011)

We investigate the velocity dependence of kinetic friction with a model which makes minimal
assumptions on the actual mechanism of friction so that it can be applied at many scales provided
the system involves multi-contact friction. Using a recently developed master equation approach
we investigate the influence of two concurrent processes. First, at a nonzero temperature thermal
fluctuations allow an activated breaking of contacts which are still below the threshold. As a result,
the friction force monotonically increases with velocity. Second, the aging of contacts leads to a
decrease of the friction force with velocity. Aging effects include two aspects: the delay in contact
formation and aging of a contact itself, i.e., the change of its characteristics with the duration of
stationary contact. All these processes are considered simultaneously with the master equation
approach, giving a complete dependence of the kinetic friction force on the driving velocity and
system temperature, provided the interface parameters are known.

PACS numbers: 81.40.Pq; 46.55.+d; 61.72.Hh

I. INTRODUCTION

Almost three centuries ago Charles Coulomb (1736-
1806) discovered that kinetic friction does not depend on
the sliding velocity [1]. Later, more careful experiments
showed that this law is only approximately valid [2–7].
Friction does depend on the sliding velocity, but this de-
pendence is far from universal: some measurements find
an increase when velocity increases, while others find a
decay [8–10] or even a more complex non-monotonous
behavior [2]. A logarithmic dependence, often quoted,
has been found for two extreme scales, friction at the tip
of an AFM (see for instance [8, 9, 11–13]) or at the scale
of a fault in the earth crust [10], but it is often only ap-
proximate and observed in a fairly narrow velocity range.
Therefore understanding the velocity dependence of ki-
netic friction is still an open problem, and what makes it
difficult is that several phenomena contribute, the ther-
mal depining of contacts, their aging, and the delay in
contact formation.

In this study we investigate the velocity dependence
of friction with a model that includes these three contri-
butions and makes minimal assumptions on the actual
mechanism of friction so that it can be applied at many
scales provided the system involves multi-contact fric-
tion. Our aim is to elucidate the respective role of these
three contributions to the velocity dependence of friction
and to provide analytical treatments in some limits, or
simple numerical approaches that allow the investigation
of a velocity range that may span many orders of magni-
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tude.

At the most fundamental level multi-contact friction
can be described as resulting a succession of breaking and
formation of local contacts which possess a distribution of
breaking thresholds. This viewpoint was first applied to
describe earthquakes [14, 15] and then adopted to friction
by Persson [16].

We recently developed a master equation (ME)
approach to describe the breaking and attachment
events [17, 18]. It splits the analysis in two independent
parts: (i) the calculation of the friction force, given by the
master equation provided the statistical properties of the
contacts are known, and (ii) the study of the properties
of the contact themselves, which is system dependent.
This method is very general and allows us to calculate
the velocity dependence of friction, which results from
the interplay of two concurrent processes. First, at a
nonzero temperature thermal fluctuations allow an ac-
tivated breaking of contacts which are still below their
mechanical breaking threshold. This phenomenon leads
to a monotonic increase of the friction force F with the
velocity v. Second, the aging of contacts [19–21] leads to
a decrease of the friction force with velocity. It includes
two processes: the delay in contact formation, i.e., time
lag between contact breaking and re-making [18, 20–23],
and the aging of a contact itself, i.e., the change of its
characteristics with the time of stationary contact. To
incorporate the latter effect, the master equation must
be completed by an equation for the evolution of static
thresholds.

In earlier studies [17, 18] we considered thermal and
aging effects separately, to set up the method. How-
ever, to relate the results to experiments, both con-
tributions must be taken into account simultaneously.
This is the aim of the present paper, which is orga-
nized as follows. Section II is a brief review of the mas-
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ter equation approach. Section III discusses tempera-
ture effects. Whereas our earlier work [18] focussed on
time-dependent phenomena to analyze stick-slip, here we
concentrate on the steady-state case (constant velocity).
This allows us to proceed further and derive explicit ex-
pressions for the influence of temperature. Then Sec. IV
introduces the second effect, the aging of the contacts.
It first summarizes the method introduced earlier and
its main results [18], which only considered the T = 0
case, and then studies the combined influence of aging
and temperature fluctuations. Section V adds the influ-
ence of the delay in contact formation after breaking, to
get the full picture, allowing us to compute the velocity
dependence of friction. Section VI discusses all those re-
sults in the context of experimental data. The difficulty
to apply the theory to actual experiments is to prop-
erly assess the values of the parameters that enter in the
theoretical expressions, and not simply try to fit experi-
mental curves, which would not be very significant owing
to the number of parameters which are involved. There-
fore Sec. VI focusses on this assessment. Finally, Sec. VII
concludes the paper with a discussion of perspectives for
its further development.

II. MASTER EQUATION

The earthquake (EQ) model is the most generic model
for friction due to multiple contacts at an interface. The
sliding interface is treated as a set of Nc “contacts” which
deform elastically with the average rigidity k. The con-
tacts represent, for example, asperities for the interface of
rough surfaces [24], or patches of lubricant or its domains
(“solid islands” [25]) in the case of lubricated friction.
The ith contact connects the slider and the bottom sub-
strate through a spring of elastic constant ki. When the
slider moves, the position of the contact point changes,
and the contact’s spring elongates or shortens, so that the
slider experiences the force −F =

∑
fi from the inter-

face, where fi = kixi and xi(t) is the spring length. The
contacts are coupled frictionally to the slider. Namely, as
long as the force |fi| is below a certain threshold fsi (cor-
responding to the onset of plastic flow of the entangled
asperity, or to local shear-induced melting of the bound-
ary lubrication layer), this contact i moves together with
the slider. When the force exceeds the threshold, the con-
tact breaks, and then re-attaches again in the unstressed
state after some delay time τ . Thus with every contact
we may associate the threshold value fsi, which takes

random values from a distribution P̃c(f) having a mean
value fs. The spring constants are related to the thresh-
old forces by the relationship ki = k (fsi/fs)

1/2, because
the value of the static threshold is proportional to the
area Ai of the given contact, while the transverse rigid-
ity ki is proportional to contact’s size, ki ∝

√
Ai. When

a contact is formed again (re-attached to the slider), new
values for its parameters have to be assigned.
Rather than studying the evolution of the EQ model

by numerical simulation it is possible to describe it ana-
lytically [17, 18]. Let Pc(x) be the normalized probability
distribution of values of the thresholds xsi at which con-
tacts break; it is coupled with the distribution of thresh-

old forces by the relationship Pc(x) dx = P̃c(f) df . To de-
scribe the evolution of the model, we introduce the distri-
bution Q(x;X) of the stretchings xi when the bottom of
the solid block is at a position X . Let us consider a small
displacement ∆X > 0 of the bottom of the sliding block.
It induces a variation of the stretching xi of the contacts
which has the same value ∆X for all contacts (here we
neglect the elastic deformation of the block). The dis-
placement X leads to three kinds of changes in the dis-
tribution Q(x;X): first, there is a shift due to the global
increase of the stretching of the asperities; second, some
contacts break because their stretching exceeds the max-
imum value that they can withstand; and third, those
broken contacts form again, at a lower stretching, after
a slip at the scale of the asperities, which locally reduces
the tension within the corresponding asperities. These
three contributions can be written as a master equation
for Q(x;X):

[
∂

∂x
+

∂

∂X
+ P (x)

]
Q(x;X) = R(x) Γ(X) , (1)

where P (x)∆X describes the fraction of contacts that
break when the slider position changes from X to X +
∆X . At zero temperature P (x) is coupled with the
threshold distribution Pc(x) by the relationship [17, 18]

P (x) = Pc(x)/Jc(x) , Jc(x) =

∫ ∞

x

dξPc(ξ) . (2)

The function Γ(X) in Eq. (1) describes the contacts that
form again after breaking,

Γ(X) =

∫ ∞

−∞

dξ P (ξ)Q(ξ;X) (3)

(the delay time is neglected at this stage), and R(x) is
the (normalized) distribution of stretchings for newborn
contacts. Then, the friction force is given by

F (X) = Nc k

∫ ∞

−∞

dxxQ(x;X) . (4)

The evolution of the system in the quasi-static limit
where inertia effects are neglected shows that, in the long
term, the initial distribution approaches a stationary dis-
tribution Qs(x) and the total force F becomes indepen-
dent of X . This statement is valid for any distribution
Pc(x) except for the singular case of Pc(x) = δ(x− xs).

In the present work we concentrate on the steady state
(smooth sliding). In what follows we use R(x) = δ(x) for
simplicity. The steady-state solution of Eq. (1) is

Q(x) = Θ(x)EP (x)/C[P ] , (5)

where Θ(x) is the Heaviside step function (Θ(x) = 1 for
x ≥ 0 and 0 otherwise), EP (x) = exp[−U(x)], U(x) =
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∫ x

0 dξ P (ξ), and C[P ] =
∫∞

0 dxEP (x). Note also that, in
the steady state,

Γ = 1/C[P ] , (6)

because
∫∞

0
dξ P (ξ)EP (ξ) =

∫∞

0
dU e−U = 1.

The distribution P̃c(f) can be estimated for the contact
of rough surfaces [18, 24] as well as for the contact of
polycrystal substrates [18, 26]: its general shape may be
approximated by the function

P̃c(f) ∝ fn exp(−f/f∗) , (7)

where n ≥ 0 depends on the nature of the interface.
Then, the distribution Pc(x) can be related to the dis-

tribution P̃c(fs) of the static friction force thresholds
of the contacts. If a given contact has an area A,
then it is characterized by the static friction threshold
fs ∝ A and the (shear) elastic constant k ∝

√
A (as-

suming that the linear size of the contact and its height
are of the same order of magnitude, see [16] and Ap-
pendix A in Ref. [18]). The displacement threshold for
the given contact is xs = fs/k, so that fs ∝ x2

s, or

dfs/dxs ∝ xs. Then, using Pc(xs) dxs = P̃c(fs) dfs, we

obtain Pc(xs) ∝ xsP̃c[fs(xs)], or

Pc(x) ∝ x1+2n exp(−x2/x2
∗) , (8)

where x∗ may be estimated from experiments asNckx∗ ≈
Fs. In the SFA/B (surface force apparatus/balance) ex-
periments, where the sliding surfaces are made of mica,
the interface may be atomically flat over a macroscopic
area. But even in this case the lubricant film cannot be
ideally homogeneous throughout the whole contact area
— it should be split into domains, e.g., with different
orientation, because this will lower the system free en-
ergy due to the increase of entropy. Domains of different
orientations have different values for the thresholds fsi,
i.e., they play the same role as asperities in the contact
of rough surfaces.

For the normalized distribution of static thresholds
given by Eq. (8) with n = 1,

Pc(x) = (2/x∗)u
3e−u2

, where u ≡ x/x∗ , (9)

we can express the steady-state solution of the master
equation analytically. In this case

Jc(x) = (1 + u2) e−u2

, (10)

so that at zero temperature we have

P (x) = (2/x∗)u
3/(1 + u2) , (11)

U(x) = u2 − ln(1 + u2) , (12)

EP (x) = Jc(x) = (1 + u2) e−u2

, (13)

C[P ] = x∗/C0, where C0 =
4

3
√
π
≈ 0.752, (14)

Q(x) = (C0/x∗)(1 + u2) e−u2

, u ≥ 0 (15)

and the kinetic friction is

fk ≡ Fk/ (Nck) = fk0 ≡ C0x∗ . (16)

The ME formalism described above can be extended
to take into account various generalizations of the EQ
model, such as temperature effects and contact aging,
which are examined in the following sections.

III. NONZERO TEMPERATURE

Temperature effects enter in the ME formalism
through their effect on the fraction of contacts that break
per unit displacement of the sliding block, P (x), because
thermal fluctuations allow an activated breaking of any
contact which is still below the threshold [16, 18, 20–23].
For a sliding at velocity v so that X = vt, the thermally
activated jumps can be incorporated in the master equa-
tion, if we use, instead of the zero-temperature breaking
fraction density P (x), an expression PT (x) defined by
(see [18])

PT (x) = P (x) +H(x) , (17)

where the temperature contribution is given by

H(x) =
ω

v
ekx

2/2kBT

∫ ∞

x

dξ Pc(ξ) e
−kξ2/2kBT (18)

for “soft” contacts or by

H(x) =
ω

v

∫ ∞

x

dξ Pc(ξ)

(
1− x

ξ

) 1

2

e−kξ2(1− x
ξ )

3

2 /2kBT

(19)
in the case of “stiff” contacts which have a deep pinning
potential so that their breaking only occurs with a sig-
nificant probability when their stretching is close to the
threshold. Here ω is the attempt frequency of contact
breaking, ω ∼ 1010 s−1 according to Refs. [16, 21].
For concreteness, in what follows we assume that the

contacts are soft, Eq. (18), and we select n = 1 in Eq. (8),
so that Pc(x) is given by Eq. (9).
At a nonzero temperature the total rate of contact

breaking, Eq. (17), is equal to PT (x) = P (x)+(ω/v)h(x),
where for the soft contacts

h(x) =
1 + (1 + b)u2

(1 + b)2
e−u2

(20)

with

b(T ) =
kx2

∗

2kBT
. (21)
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The condition b = 1 defines a crossover temperature

kBT∗ =
1

2
kx2

∗ . (22)

Then, a straightforward integration gives the function
UT (x) =

∫ x

0 dξ PT (ξ) = U(x) + ∆U(x), where

∆U(x) = S0(v, T )
[
erf(u)− S1(T )u e

−u2
]

(23)

with

S0(v, T ) =
ωx∗

C0v

(1 + b/3)

(1 + b)2
(24)

and

S1(T ) =
C0

2

(1 + b)

(1 + b/3)
. (25)

The coefficient S1(T ) weakly changes with temperature
from S1(0) = 2/

√
π ≈ 1.128 to S1(∞) = C0/2 ≈ 0.376.

On the other hand, the coefficient S0(v, T ) determines
whether the effect of temperature is essential or not. The
temperature-induced breaking of contacts is essential at
low driving velocities only, when S0(v, T ) ≫ 1. Thus, the
equation S0(v∗, T ) = 1 defines the crossover velocity:

v∗(T ) =
ωx∗

C0

[1 + b(T )/3]

[1 + b(T )]2
. (26)

We see that v∗ monotonically increases with temperature
as v∗(T ) ≈ 0.443ωx∗T/T∗ at T ≪ T∗ and approaches the
maximal value v∗ ≈ 1.33ωx∗ at T ≫ T∗.
Then, EPT (x) = e−UT (x) = (1 + u2) e−u2

e−∆U(x), and
we can find the kinetic friction force:

fk(v, T ) =

∫ ∞

0

dxxEPT (x)

/∫ ∞

0

dxEPT (x) . (27)

At a low driving velocity, v ≪ v∗, we may put ∆U(x) ≈
S2u, where

S2(v, T ) =
ωx∗

v (1 + b)2
, (28)

and Eq. (27) leads to

fk ≈ x∗/S2 = (v/ω)(1 + b)2. (29)

A linear dependence of the kinetic friction on the driving
velocity at low velocities corresponds to the creep mo-
tion due to temperature activated breaking of contacts
and was predicted in several earlier studies [16, 21–23],
although our approach allowed us to derive it rigorously.
The dependence (29) may be interpreted as an effective
“viscosity” of the confined interface:

η =
fk
v

=
1

ω

(
1 +

kx2
∗

2kBT

)2

. (30)
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1
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FIG. 1: (Color online): The friction force fk as a function of
the driving velocity. Dash-dotted blue line shows the low-v
approximation (29), dashed red line shows the high-v approx-
imation (31), and dotted magenta line shows a logarithmic
fitting. k = 1, ω = 1, x∗ = 1, kBT = 1.

At a high velocity, v ≫ v∗, when e−∆U(x) ≈ 1− S2u+
1
2 (S2u)

2, we obtain C ≈ 3
√
π/4 − S2 + (5

√
π/16)S2

2 so
that

fk ≈ fk0
(
1− C1S2 + C2S

2
2

)
, (31)

where C1 = 5
√
π/8−C0 ≈ 0.356 and C2 = 16/9π−1/3 ≈

0.233. Equation (31) agrees qualitatively with that found
by Persson [16] in the case of b ≫ 1.
Approximate expressions (29, 31) together with the

numerical integration of Eq. (27) are presented in Fig. 1.
Also we showed a logarithmic fitting which operates in
a narrow interval of velocities near the crossover ve-
locity only. Persson [16] showed that the logarithmic
dependence may be obtained analytically, only if the
Pc(x) distribution has a sharp cutoff at some x = xs

as, e.g., in simplified versions of the EQ model with
Pc(x) = δ(x− xs).
Although we cannot obtain analytical results for the

stiff contacts, we calculated the fk(v) dependences nu-
merically (see Fig. 2), which shows that the effect remains
qualitatively the same.

IV. AGING OF CONTACTS

The aging of contacts was considered in our work [18]
where, however, we ignored the temperature-induced
breaking of contacts discussed above in Sec. III. When ag-
ing is taken into account the master equation for Q(x,X)
must be completed by an equation for the evolution of
Pc(x), which in turns affects P (x). Let the newborn con-
tacts be characterized by a distribution Pci(x), while at
t → ∞, due to aging the distribution Pc(x) approaches
a final distribution Pcf (x). If we assume that the evolu-
tion of Pc(x) corresponds to a stochastic process, then it



5

10-4 10-3 10-2 10-1 1 10
0.01

0.1

1

T = 0.01
 soft
 stiff  

 

f k

v
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FIG. 2: (Color online): The friction force fk as a function of
the driving velocity v for soft (dotted) and stiff (solid curves)
contacts at low temperature kBT = 0.01 (blue) and high tem-
perature kBT = 1 (black). k = 1, ω = 1, x∗ = 1.

should be described by a Smoluchowsky equation

∂Pc

∂t
= D L̂Pc, where L̂ ≡ ∂

∂x

(
B(x) +

∂

∂x

)
, (32)

in which the “diffusion” parameter D describes the rate
of aging, B(x) = dŪ(x)/dx, and the “potential” Ū(x)
determines the final distribution, Pcf (x) ∝ exp

[
−Ū(x)

]
,

so that we can write

B(x) = − [dPcf (x)/dx] /Pcf(x) . (33)

However, because the contacts continuously break and
form again when the substrate moves, this introduces two
extra contributions in the equation determining ∂Pc/∂X
in addition to the pure aging effect described by Eq. (32):
a term P (x;X)Q(x;X) takes into account the contacts
that break, while their reappearance with the threshold
distribution Pci(x) gives rise to the second extra term in
the equation. Thus, the evolution of Pc is described by
the equation

∂Pc(x;X)

∂X
−DvL̂Pc(x;X) + P (x;X)Q(x;X)

= Pci(x) Γ(X) , (34)

where Dv = D/v, and v = dX(t)/dt is the driving veloc-
ity. Finally, we come to the set of equations (1–3, 34).
For the steady-state regime, Eq. (34) reduces to

DvC[P ] L̂Pc(x) = P (x)EP (x)− Pci(x) , (35)

where we used Eqs. (5) and (6). Taking also into account
the identity P (x)EP (x) = Pc(x) [18], we finally come to
the equation

DvC[P ] L̂Pc(x) = Pc(x)− Pci(x) . (36)

It was shown [18] that the kinetic friction monoton-
ically decreases with the driving velocity as Fk(v) −

0 1 2 3 4 5 6
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0.4
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0.6
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0.8

 

 

 T=1    T=0
    D = infinity
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    D = 10-1

    D = 10-2

    D = 10-3

    D = 0

f k
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FIG. 3: (Color online): The kinetic friction force fk as a
function of the driving velocity v for different values of the
aging rate: D = ∞ (red dotted), 1 (blue short-dashed), 10−1

(black solid), 10−2 (magenta dash-dotted), 10−3 (blue short-
dotted), and D = 0 (red dotted curve). k = 1, ω = 1, kBT =
1; the initial and final Pc(x) distributions are given by Eq. (9)
with x∗i = 0.1 and x∗f = 1 correspondingly. Dashed curves
shows the dependences at T = 0.

Fk(0) ∝ −v/D in the low-velocity limit and Fk(v) −
Fk(∞) ∝ D/v in the high-velocity case. One may ex-
pect that at low velocities this decreasing will compen-
sate the friction increasing due to temperature induced
jumps. The problem, however, is more involved.
When the temperature effects are incorporated,

Eq. (36) for the function Pc(x) in the steady state takes
the form

Dv C[PT ] L̂Pc(x) = Pc(x)− Pci(x) . (37)

Numerical solutions of Eq. (37) are presented in Figs. 3
and 4a: the initial increase of the kinetic friction F with
the driving velocity v due to the temperature activated
breaking of contacts is followed by the decrease of F due
to contacts aging. Figure 4b shows also the dependence of
the effective “viscosity” η = fk/v on the driving velocity
v. It is constant at low velocity and then decreases; the
latter may be approximately fitted by a power law η(v) ∝
v−α with the exponent α changing from 1.5 to 1 as D
decreases.

Using the definition (32) of the operator L̂ and Eq. (33)
for the function B(x), the l.h.s. of Eq. (37) may be rewrit-
ten as

DvC L̂Pc(x) = DvC
d

dx

(
Pcf (x)

d

dx

Pc(x)

Pcf (x)

)
, (38)

while the r.h.s. of Eq. (37) may be presented as

Pc(x)− Pci(x) = − d

dx
[Jc(x)− Jci] , (39)

where Jci(x) =
∫∞

x
dξ Pci(ξ). Using Eqs. (38) and (39),
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FIG. 4: (Color online): (a) The same as in Fig. 3 in log-
log scale. (b) The dependences of the effective “viscosity”
η = fk/v on the velocity v (dashed lines show power-law fits).

we can find the first integral of Eq. (37):

Dv C[PT ]Pcf(x)
d

dx

(
Pc(x)

Pcf (x)

)
= Jci(x)− Jc(x) . (40)

Integration of Eq. (40) leads to an integral equation for
the function Pc(x):

Pc(x) = Pcf (x)

{
1 +

v

DC[PT ]

∫ x

0

Jci(ξ)− Jc(ξ)

Pcf (ξ)
dξ

}
.

(41)

Substituting Jc(x) ≈ Jcf (x) =
∫∞

x
dξ Pcf (ξ) into the

r.h.s. of Eq. (41), one may analytically find the low-
velocity behavior of the kinetic friction, for example, the
decrease of fk with v for T = 0. At a nonzero tem-
perature, however, aging does not affect the low-velocity
behavior (29) and only reduces the interval of velocities
where Eq. (29) is valid, as demonstrated in Figs. 3 and 4.
Indeed, at v → 0 and T > 0 the main contribution to
PT (x) comes from the function H(x) ∝ ω/v in Eq. (17),
which only weakly depends on Pc(x).
The limit Dv = D/v → 0 may be studied with the

help of Eq. (37) by substituting Pc(x) ≈ Pci(x) into its
left-hand side. For the function (9), this approach gives

Pc(x) − Pci(x) ≈ −16DvC[P ]

x∗ix2
if

uie
−u2

i

(
1− 1

2
u2
i

)
(42)

and

Jc(x)− Jci(x) ≈
4DvC[P ]

x2
if

u4
i e

−u2

i , (43)

where ui = x/x∗i and

1

x2
if

=
1

x2
∗i

− 1

x2
∗f

. (44)

0.1 1

0.1

1

 

 

exact  approx
    D = 1
    D = 10-1

    D = 10-2

    D = 10-3

f k

v

FIG. 5: (Color online): The kinetic friction force fk as a
function of the driving velocity v for different values of the
aging rate D = 1 (magenta dashed), 10−1 (blue solid), 10−2

(black dash-dotted) and 10−3 (red dotted curve) as compared
with approximate expressions (thin solid curves). k = 1, ω =
1, kBT = 1; the initial and final Pc(x) distributions are given
by Eq. (9) with x∗i = 0.1 and x∗f = 1 correspondingly.

Then, taking the corresponding integrals, we obtain to
first order in v−1

C ≈ x∗i

(
C−1

0 − S2 + C12S3

)
(45)

and

fk ≈ x2
∗i

C

[
1− (C0 + C1)S2 + C̃12S3

]
, (46)

where

S3(v) = 4DvC[P ]/x2
if , (47)

C12 ≈ 1.324 and C̃12 ≈ 1.789 are numerical constants. A
comparison of the exact and approximate expressions is
shown in Fig. 5.

V. DELAY IN CONTACT FORMATION

Finally, let us take into account the delay in contact
formation following the work of Schallamach [22]. Let τ
be the delay time, N be the total number of contacts, Nc

be the number of coupled (pinned) contacts, and Nf =
N−Nc be the number of detached (sliding) contacts. The
fraction of contacts that detach per unit displacement of
the sliding block is Γ(v, T ) =

∫
dxP (x)Q(x), i.e., when

the slider shifts by ∆X , the number of detached con-
tacts changes by NcΓ∆X , so that Nf = ΓvτNc. Us-
ing Nc + Nf = N , we obtain Nc = N/(1 + Γvτ) and
Nf = NΓvτ/(1 + Γvτ). If we define x̄ = 1/Γ and
vd = x̄/τ , we can write

Nc =
N

1 + v/vd
and Nf =

Nv/vd
1 + v/vd

. (48)
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FIG. 6: (Color online): The kinetic friction force fk as a
function of the driving velocity v for different values of the
delay time: vd = ∞ (black solid), 10 (red dot-dashed), 1
(magenta dotted) and 0.1 (blue dashed curve) for D = 0.1
and kBT = 1 (other parameters as in Fig. 3). Inset shows the
same in log-log scale.

The coupled contacts produce the force fk defined
above by the steady-state solution of the master equa-
tion. The combined dependence which incorporates tem-
perature effects, aging and delay in contact formation, is
shown in Fig. 6 for different values of the parameter vd.
However, above we assumed that the sliding contacts

experience zero friction, while these contacts may expe-
rience a viscous friction force fl = ηlv, where ηl corre-
sponds to the (bulk) viscosity of the liquid lubricant. In
this case the kinetic friction should be additionally mul-
tiplied by a factor β(v) = 1 + v2/vηvd, where vη = fk/ηl
(vη ≫ vd). Such a correction may be expected at huge
velocities only, e.g., for v ∼ 1 m/s. In this case the
function Fk(v), after decreasing, reaches a minimum at a
velocity v0 ≈ (vηvd)

1/2, and then increases according to
a law fk(v) ∝ ηlv. Note that the viscous friction which
comes from the excitation of phonons in the substrates,
as shown in MD simulation [7], may also depend on the
velocity, e.g., as ηl ∝ v4.

VI. MAKING THE LINK WITH EXPERIMENTS

For a real system, the results presented in the previ-
ous sections allow the calculation of the kinetic friction
force Fk(v, T ) provided the parameters of the model are
known. In this section section we examine how they can
be evaluated from experiments.
The contact parameters k and ω may be estimated

with the help of elastic theory [28]. Let us assume that
a contact has a cylinder shape of height h (the thickness
of the interface) and radius rc, so that it is character-
ized by the section Ai = πr2c , the (geometrical) inertial
momentum I = πr4c/4, a mass density ρ and a Young
modulus E. If the cylinder foot is fixed and a force ∆f

is applied to its top, the latter will be shifted on the dis-
tance ∆x = ∆fh3/3EI (the problem of bending pivot,
see Sec. 20, example 3 in Ref. [28]). Thus, the effec-
tive elastic constant of the contact is k = ∆f/∆x =
3EI/h3. The minimal frequency of bending vibration of
the pivot with one fixed end and one free end, is given
by ω ≈ (3.52/h2)(EI/ρAi)

1/2 (see Sec. 25, example 6 in
Ref. [28]).
Next, let a be the average distance between the con-

tacts, so that the total area of the interface is A = Na2,
and introduce the dimensionless parameter γc = rc/a
(γc < 0.5). The threshold distance x∗ may be estimated
as follows. At the beginning, when all contacts are in
the unstressed state, the maximal force the slider may
sustain is equal to F∗ ≈ Nkx∗ (this force corresponds to
the first large stick spike in the F (t) dependence at the
beginning of stick-slip motion at low driving). Thus, we
obtain that kx∗ ≈ a2σ∗, where σ∗ = F∗/A is the maximal
shear stress.

Let us consider a contact of two rough surfaces and
assume that a = h = rc. Then we obtain

ω ≈ 1.76
√
E/ρ

rc
(49)

for the attempt frequency,

k = (3π/4)Erc (50)

for the contact elasticity, and

x∗ = r2cσ∗/k (51)

for the threshold distance. For steel substrates we may
take ρ = 104 kg/m3 for the mass density, E = 2 ×
1011 N/m2 for the Young modulus, and σc = 109 N/m2

for the plasticity threshold. Assuming that σ∗ = σc

and rc ≈ 1 µm, we find that ω ≈ 7.9 × 109 s−1,
k ≈ 4.7 × 105 N/m, x∗ ≈ 2.1 × 10−9 m, b ≈ 2.7 × 108

for room temperature (i.e., b ≫ 1), so that the crossover
velocity is quite low, v∗ ≈ 0.03 µm/s.

Now let us consider a lubricated system, e.g., the one
with a few OMCTS layers as studied by Klein [29] and
Bureau [27], and assume that the lubricant consists of
solidified islands which melt under stress as proposed by
Persson [25]. In this case, instead of using the Young
modulus, let us assume that x∗ = rc; this allows us to
find the parameter EI = ah3σ∗/3γc. Then, the elastic
constant is k = aσ∗/γc, the attempt frequency is

ω ≈ 1.15
√
σ∗/ahργ3

c , (52)

the parameter b is given by

b ≈ γca
3σ∗/2kBT , (53)

and in the case of b ≫ 1 the crossover velocity is

v∗ ≈ γcωa/3C0b ≈ kBT/
√
a5hρσ∗γ3

c . (54)
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FIG. 7: The shear stress σ as a function of the shear rate γ̇
for different values of the OMCTS film thickness from nl = 2
to 6 monolayers. Inset: the crossover velocity v∗ as a function
of the number of layers.

For a four-layer OMCTS film [29] one may take ρ =
956 kg/m3, h ≈ 3.5× 10−9 m, F∗ ≈ 2× 10−5 N and A ≈
10−10 m2 so that σ∗ ≈ 2×105 Pa. Assuming γc = 0.5 and
a ≈ 1 µm, we obtain for room temperature, kBT = 4 ×
10−21 J, that ω ≈ 8×108 s−1 and b ≈ 1.25×107, i.e. this
system is in the low-temperature limit too, although the
crossover velocity is much higher than for rough surfaces,
v∗ ≈ 16 µm/s.
Moreover, we may calculate the dependence fk(v) for

different thicknesses of the lubricant film. If the film con-
sists of nl layers, then the film thickness is h = nld, where
d ≈ 8.75 Å is the diameter of the OMCTS molecule. Let
us assume that the maximal shear stress exponentially
decreases with the number of layers according to the re-
sults of MD simulation [7], σ∗ = σ0e

−βnl , where β ∼ 1
is a numerical constant. Taking σ0 = 4× 106 N/m2 and
β = 1.5, we obtain the dependences of the shear stress
σ = Fk/A on the shear rate γ̇ = v/h shown in Fig. 7,
which may be compared with the experimental depen-
dences (Fig. 2a) of Bureau [27].
Note that our approach may overestimate the value of

the crossover velocity v∗. First, the crossover will occur
earlier if the delay and/or aging effects play a signifi-
cant role. Besides, at low temperatures the stiff contacts
lead to higher “viscosity” and lower values of v∗ than
the soft contacts considered above (see Fig. 2). Second,
we completely ignored the elastic interaction between the
contacts. If the latter would be incorporated, a break-
ing of one contact may stimulate neighboring contacts to
break as well, i.e., the value of the parameter a should
describe such a cooperative “contact” size which may be
much larger than those of individual ones.

Giving a quantitative evaluation of the influence of ag-
ing on the velocity dependence of the friction coefficient
is harder than for the temperature dependence due to
insufficient experimental data. Aging appears to cause a

decrease of friction as velocity increases, and thus, when
such a behavior is observed experimentally [9, 13] it can
be considered as a strong indication of the presence of
aging. Our analysis indicates that the combined effect
of temperature and aging leads to a maximum in the
friction coefficient versus velocity. Therefore, when ag-
ing is manifested by a decreasing friction versus velocity,
extending the experiments to lower velocities and tem-
peratures might detect the maximum and thus provide
some quantitative data to evaluate the aging parameters.

Although the aim of our work was to find the depen-
dence of the kinetic friction on the driving velocity, our
approach allows us to find the dependence on tempera-
ture as well. However, the behavior of a real tribologi-
cal system is more involved, because all parameters may
depend on temperature T in a general case. For exam-
ple, the delay time τ may exponentially depend on T
if the formation of a new contact is an activated pro-
cess [22]; the same may be true for the aging rate D.
In this case one may obtain a nonmonotonic tempera-
ture dependence of friction with, e.g., a peak at cryogenic
temperatures [21].

VII. CONCLUSION

In this study we determined the dependence of the ki-
netic friction force in the smooth sliding regime on the
driving velocity. In a general case, the friction linearly
increases with the velocity (this creep motion may be in-
terpreted as an effective “viscosity” of the confined film),
passes through a maximum and then decreases due to
delay/aging effects. The decay may be followed by a new
growth in friction in the case of liquid lubricant. Esti-
mation showed that for the contact of rough surfaces,
the initial growth of friction should occur at quite low
velocities, v ≪ 0.1 µm/s, so that for typical velocities
the friction is independent on velocity in agreement with
the Coulomb law. However, for the case of lubricated
friction with a thin lubricant film which solidifies due
to compression, the fk(v) dependence is essential, and
the linear dependence may stay valid up to velocities
v ∼ 10÷ 103 µm/s. At higher velocities the growth satu-
rates and the fk(v) dependence may be fitted by a loga-
rithmic law. The latter velocity interval is narrow if the
distribution of static thresholds is wide; the logarithmic
law may be found analytically for a wide interval of ve-
locities when the thresholds are approximately identical,
i.e., for the singular distribution Pc(x) = δ(x− xs).
We emphasize that our approach is only valid for a

system with many contacts, for example, N > 20 at
least [21]. When the contact is due to a single atom
as it may occur in the AFM/FFM devices, the friction
can be accurately described by the Prandtl-Tomlinson
model and should follow the logarithmic fk(v) depen-
dence, fk(v) ∝ (ln v/v0)

2/3 [30]. But if the AFM/FFM
tip is not too sharp so that the contact is due to more
than one atom, the logarithmic dependence is only ap-
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proximate and, moreover, for some systems the friction
may decrease with the velocity which has to be attributed
to the aging/delay effects [8, 9, 31].
In this work we had in mind that contacts correspond

to real asperities in the case of the contact of rough sur-
faces or to “solid islands” for the lubricated interface.
However, the ME approach also operates when the con-
tact is due to long molecules which are attached by their
ends to both substrates. Such a system was first studied
by Schallamach [22] and then further investigated by Fil-
ippov et al. [20], Srinivasan and Walcott [23], and Barel
et al. [21]. Note that when all molecules are identical,
they are characterized by the same static threshold, i.e.,
this system is close to the singular one, where the loga-
rithmic fk(v) dependence has to have a wide interval of
operation.

Finally, let us discuss restrictions of our approach.
First of all, we assumed the somehow idealized case of
wearless friction; wearing may mask the predicted de-
pendences. Besides, the interface is heated during slid-
ing; this effect is hard to describe analytically as well

as to control experimentally. Then, we did not estimated
the delay/aging parameters; moreover, these parameters,
e.g., the delay time τ , may depend on the driving velocity
v. Besides, we assumed the simplest mechanism of aging
described by the Smoluchowsky equation, while the real
situation may be more involved, e.g., it may correspond
to the Lifshitz-Slözov mechanism [18]. Also, we assumed
that the reformed contacts appear in the unstressed state,
R(x) = δ(x) in Eq. (1), which may not be the case in real
systems.
The most important issue, however, is the incorpora-

tion of the elastic interaction between the contacts as
well as elastic deformation of substrates at sliding. This
point certainly deserves a detailed investigation and is
the topic of our future work.
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