
Revisiting Out-of-SSA Translation for Correctness, Code

Quality, and Efficiency

Benoit Boissinot, Alain Darte, Fabrice Rastello, Benôıt Dupont de Dinechin,

Christophe Guillon

To cite this version:

Benoit Boissinot, Alain Darte, Fabrice Rastello, Benôıt Dupont de Dinechin, Christophe Guil-
lon. Revisiting Out-of-SSA Translation for Correctness, Code Quality, and Efficiency. [Research
Report] 2008, pp.14. <inria-00349925v3>

HAL Id: inria-00349925

https://hal.inria.fr/inria-00349925v3

Submitted on 22 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52318385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00349925v3


Revisiting Out-of-SSA Translation for Correctness, Code Quality, and Efficiency

Benoit Boissinot, Alain Darte, and Fabrice Rastello

Compsys team, LIP

UMR 5668 CNRS—ENS Lyon—UCB Lyon—Inria

Lyon, France

Email: firstname.lastname@ens-lyon.fr

Benoit Dupont de Dinechin and Christophe Guillon

CEC compiler group

STMicroelectronics

Grenoble, France

Email: firstname.lastname@st.com

Abstract—Static single assignment (SSA) form is an interme-
diate program representation in which many code optimizations
can be performed with fast and easy-to-implement algorithms.
However, some of these optimizations create situations where the
SSA variables arising from the same original variable now have
overlapping live ranges. This complicates the translation out of
SSA code into standard code. There are three issues to consider:
correctness, code quality (elimination of copies), and algorithm
efficiency (speed and memory footprint). Briggs et al. proposed
patches to correct the initial approach of Cytron et al. A cleaner
and more general approach was proposed by Sreedhar et al.,
along with techniques to reduce the number of generated copies.
We propose a new approach based on coalescing and a precise
view of interferences, in which correctness and optimizations
are separated. Our approach is provably correct and simpler to
implement, with no patches or particular cases as in previous
solutions, while reducing the number of generated copies. Also,
experiments with SPEC CINT2000 show that it is 2x faster and
10x less memory-consuming than the Method III of Sreedhar et
al., which makes it suitable for just-in-time compilation.

I. Introduction

SSA form [1] is a popular intermediate code representation

used in modern compilers. Each variable is defined once and

φ-functions are used to merge the values at join points of the

control flow graph. The properties of the underlying domi-

nance tree [2] and the implied use-def chains make possible

the use of efficient, simple, and fast algorithms for various

code optimizations in SSA. However, designing a correct

algorithm and developing a bug-free implementation to go out

of general SSA is not so easy, especially when taking into

account critical edges, branches that define variables, register

renaming constraints, and the natural semantics of φ-functions

as parallel copies. Some compilers restrict SSA to CSSA [3]

(conventional SSA), as going out of it is straightforward. In

CSSA, all SSA variables connected (possibly by transitivity)

by φ-functions have non-overlapping live ranges. They can

thus be all replaced by the same name without changing

the semantics of the code, like with code obtained just after

SSA construction. However, restricting to CSSA means either

disabling many SSA optimizations (as in GCC or Jikes 1) with

a potential loss in code quality, or pushing the burden on the

SSA optimizations designer, who must guarantee that CSSA

and register renaming constraints are correctly maintained. A

LIP Research Report RR2008-40
1http://jira.codehaus.org/browse/RVM-254

general mechanism to go out of SSA is preferable. Correctness

and ease of implementation are the first issues to address.

In addition to correctness, it is important to design fast

algorithms for SSA construction and destruction, and not

only for static compilation. Indeed, as optimizations in SSA

are fast and powerful, SSA is increasingly used in just-

in-time (JIT) compilers that operate on a high-level target-

independent program representation such as Java byte-code,

CLI byte-code (.NET MSIL), or LLVM bitcode. Most existing

JIT compilers also save time by including only the essential

tasks of code generation: instruction selection, flow analyzes,

register allocation [4]. These tasks are complemented by the

binary encoding and the link editing required for creating

executable native code. Register allocation often relies on

"linear scan" techniques [5], [6], [7], [8] in order to save

compilation time and space by avoiding interference graphs.

Similarly, instruction scheduling is usually reduced to post-

pass scheduling [9]. Pre-pass scheduling is applied only where

predicted or found beneficial [10], [11].

For SSA, it is important to consider with care the cost of its

construction, the increase of the universe of variable names,

and the cost of out-of-SSA translation. For the construction,

simple and fast algorithms exist [12], [13]. It is also possible to

encode SSA directly in byte-code, with an acceptable code size

increase [14]. Unfortunately, increasing the number of variable

names has a negative impact on the computation/storage of the

liveness sets and the interference graph (if used), especially if

the latter is implemented as a bit matrix to support fast queries.

A naive translation out of SSA further increases the number

of new variables and the code size, because φ-functions are

replaced by variables and copies from/to these variables. A

solution is to introduce copies on the fly and only when needed

during the out-of-SSA translation, as in the Method III of

Sreedhar et al. [3]. In order to eliminate copies or to avoid

introducing them, some interference information, and thus

some liveness information, is required. Budimlić et al. [15]

proposed an out-of-SSA mechanism more suitable for JIT

compilation, based on the notion of dominance forest, which

reduces the number of interference tests and does not require

an interference graph. Finally, fast liveness checking [16] for

SSA can also be used to avoid the expensive computation

of liveness sets by data-flow analysis. However, no solution

proposed so far integrates all these optimizations.

In light of previous work, our primary goal was to design a

new out-of-SSA translation, suitable for JIT compilation, thus



focused on speed and memory footprint of the algorithms,

as previous approaches were not fully satisfactory. However,

to make this possible, we had to revisit the way out-of-SSA

translation is conceptually modeled. We then realized that our

framework also addresses correctness of the translation and

quality of the generated code. The next section defines the

needed SSA concepts more precisely, motivates the need for

revisiting out-of-SSA translation, and gives an overview of our

method and its various options. Beforehand, here is a summary

of the contributions of this paper:

Coalescing-based formulation We propose a conceptually

simple approach for out-of-SSA translation based on

“coalescing” (a term used in register allocation when

merging two non-interfering live ranges). Thanks to this

formulation, our technique is provably-correct, generic,

easy to implement, and can benefit from register alloca-

tion techniques. In particular, we handle register renaming

constraints (dedicated registers, calling conventions, etc.).

Value-based interferences A unique feature of our method is

that we exploit the fact that SSA variables are uniquely

defined, thus have only one value, to define a more

accurate definition of interferences, generalizing the tech-

niques of Chaitin et al. [17] and of Sreedhar et al. [3]. All

our algorithms can be applied with the traditional inter-

ference definition as well as our value-based definition.

Parallel copies Our technique exploits the semantics of φ-

functions, i.e., with parallel copies. This makes the imple-

mentation easier and gives more freedom for coalescing.

At some point, parallel copies must be converted as

sequences of copies. We designed an optimal algorithm

(in terms of number of copies) for this sequentialization.

Linear intersection check During the algorithm, we need

to check interferences between two sets of coalesced

variables. We propose an algorithm, linear in the number

of variables, while previous algorithms were quadratic.

Speed/memory optimizations To reduce memory footprint,

we can avoid the need for explicit liveness sets and/or

interference graph. Also, as in Method III of Sreedhar et

al. [3], our algorithm can be adapted to insert copies on

the fly, only when needed, to speed up the algorithm.

II. Why revisiting out-of-SSA translation approaches?

The translation out of SSA has already been addressed, so

why a new method? First, we want to rely on a provably-

correct method, generic, simple to implement, without special

cases and patches, and in which correctness and code quality

(performance and size) are conceptually separated. Second,

we need to develop a technique that can be fast and not too

memory-consuming, without compromising correctness and

code quality. Let us first go back to previous approaches.

Translation out of SSA was first mentioned by Cytron et

al. [1, Page 478]: “Naively, a k-input φ-function at entrance

of a node X can be replaced by k ordinary assignments, one at

the end of each control flow predecessor of X. This is always

correct, but these ordinary statements sometimes perform a

good deal of useless work. If the naive replacement is preceded

by dead code elimination and then followed by coloring,

however, the resulting code is efficient”. In other words, copies

are placed in predecessor basic blocks to emulate the φ-

function semantics and Chaitin-style coalescing [17] (as in

register allocation) is used to remove some of them.

Although this naive translation seems, at first sight, correct,

Briggs et al. [12] pointed subtle errors due to parallel copies

and/or critical edges in the control flow graph. Two typical

situations are identified, the “lost copy problem” and the

“swap problem”, some patches are proposed to handle them

correctly, and a “more complicated algorithm that includes

liveness analysis and a pre-order walk over the dominator tree”

(Page 880) is quickly presented for the general cases, but with

neither a discussion of complexity, nor a correctness proof.

Nevertheless, according to the authors, this solution “cures

the problems that (they) have seen in practice” (Page 879).

The first solution, both simple and correct, was proposed by

Sreedhar et al. [3]. In addition to the copies at the end of each

control flow predecessor, they insert another copy at the entry

of the basic block for each φ-function. This simple mechanism,

detailed hereafter, is sufficient to make the translation always

correct, except for the special cases described later. Several

strategies are then proposed to introduce as few copies as

possible, including a special rule to eliminate more copies

than with standard coalescing so that “copies that it places

cannot be eliminated by the standard interference graph based

coalescing algorithm” [3, Page 196]. This last (also unproved)

claim turns out to be correct, but only for the particular way

copies are inserted, i.e., always after the previously-inserted

copies in the same basic block. Also, the way coalescing

is handled is again more a patch, driven by implementation

considerations, than a conceptual choice. We will come back to

this point later. Nevertheless, our technique is largely inspired

by the various algorithms of Sreedhar et al.

In other words, these previous approaches face some con-

ceptual subtleties that make them sometimes incorrect, incom-

plete, overly pessimistic, or too expensive. This is mostly due

to the fact that a clean definition of interference for variables

involved in a φ-function is missing, while it is needed both for

correctness (for adding necessary copies) and for code quality

(for coalescing useless copies). Our first contribution, beyond

algorithmic improvements, is to address this key point. Thanks

to this interference definition, we develop a clean out-of-SSA

translation approach, in which correctness and optimization are

not intermixed. The resulting implementation is much simpler,

has no special cases, and we can even develop fast algorithms

for each independent phase, without compromising the quality

of results. Before detailing our contributions, we first explain

the basics of out-of-SSA translation, with copy insertion and

coalescing, and its intrinsic subtleties.

A. Correctness of φ-functions elimination with copy insertion

Consider a φ-function a0 = φ(a1, . . . , an) placed at entry

of a basic block B0: a0 takes the value of ai if the control-

flow comes from the i-th predecessor basic block of B0. If

a0, . . . , an can be given the same name without changing the



u = . . .

v = . . .

B0

B3

B1 B2

w = φ(u, v)

. . .= w

Br(u, B3, B4)

B4

a) Initial SSA code

u = . . .

v = . . .

B0

B3

B1 B2

. . .= w

w = φ(u, v′)

Br(u, B3, B4)

v′ = v

B4

b) Insufficient copy insertion

v = . . .

B0

B3

B1 B2

. . .= w

w = . . .

Br(w, B3, B4)

w = v

B4

c) Incorrect out-of-SSA translation

Fig. 1. Considering live-out sets may not be enough.

program semantics, the φ-function can be eliminated. When

this property is true, the SSA form is said to be conventional

(CSSA) [3]. This is not always the case, in particular after copy

propagation or code motion, as some of the ai may “interfere”.

The technique of Sreedhar et al. [3] consists in three steps: a)

translate SSA into CSSA, thanks to the introduction of copies;

b) eliminate redundant copies; c) eliminate φ-functions and

leave CSSA. In their Method I, the translation into CSSA is

as follows. For each φ-function a0 = φ(a1, . . . , an) at entry of

block B0, with predecessor blocks Bi, 1 ≤ i ≤ n:

• n + 1 new variables a′
0
, . . . , a′n are introduced;

• a copy a′
i
= ai is placed at the end of Bi;

• a copy a0 = a′
0
is placed just after all φ-functions in B0;

• the φ-function is replaced by a′
0
= φ(a′

1
, . . . , a′n).

If, because of different φ-functions, several copies are in-

troduced at the same place, they should be viewed as parallel

copies. This is what we propose, as Leung and George do

in [18]. However, as far as correctness is concerned, copies

can be sequentialized in any order, as they concern different

variables. This is what Sreedhar et al. do in all their methods.

Lemma 1: If copies are placed in the predecessor blocks

after any definition in them, then the introduction of the new

variables a′
i
and the corresponding copies, for all φ-functions,

transform the code in CSSA form. In other words, replacing all

variables a′
i
by a new unique variable for each φ-function and

removing all φ-functions is a correct out-of-SSA translation.

Proof: After insertion of copies, the code semantics is

preserved. The variable ai is copied (after its definition) into a
′
i
,

then fed into the new φ-function to create a′
0
, which is finally

copied into a0. All names are different, thus do not create any

definition conflict. To show that the code is in CSSA, note that

the variables a′
i
have very short live ranges. The variables a′

i
,

for i > 0, are defined at the very end of disjoint blocks Bi, thus

none is live at the definition of another: they do not interfere.

The same is true for a′
0
whose live range is located at the very

beginning of B0, even if B0 may be equal to Bi for some i.

The n+1 variables a′
i
are never simultaneously live on a given

execution path, so they can share the same variable name.

Lemma 1 explains why the proposal of Cytron et al. was

wrong. Without the copy from a′
0
to a0, the φ-function defines

directly a0 whose live range can be long enough to intersect

the live range of some a′
i
, i > 0, if a0 is live out of the block Bi

where a′
i
is defined. Two cases are possible: either a0 is used

in a successor of Bi , B0, in which case the edge from Bi to B0

is critical (as in the “lost copy problem”), or a0 is used in B0

as a φ-function argument (as in the “swap problem”). In this

latter case, if parallel copies are used, a0 is dead before a′
i
is

defined but, if copies are sequentialized blindly, the live range

of a0 can go beyond the definition point of a′
i
and lead to

incorrect code after renaming a0 and a′
i
with the same name.

So, the trick is to split the definition of the φ-function itself

with one new variable at the block entry, in addition to copies

traditionally inserted at the end of predecessor blocks. Then,

in the methods of Sreedhar et al., the copy involving a′
i
is

considered useless depending on the intersection of its live

range with the live-out set of the block Bi. However, there

is a first subtlety. Depending on the branch instruction, the

copies cannot always be inserted at the very end of the block,

i.e., after all variables uses and definitions. For example, for a

φ-function after a conditional branch that uses a variable u, the

copies are inserted before the use of u. Thus, the intersection

check must be done with u also, otherwise some incorrect code

can be generated. Consider the SSA code in Figure 1(a), which

is not CSSA. As u is not live-out of block B2, the optimized

algorithm (Method III) of Sreedhar et al. considers that it is

sufficient to insert a copy v′ of v at the end of B2. But the copy

has to be inserted before the branch, so before the use of u

(Figure 1(b)) and the code is still not CSSA since u and v′

interfere. Removing the φ-function, i.e., giving the same name

to w, u, and v′ leads to the incorrect code of Figure 1(c). This

problem is never mentioned in the literature. Fortunately, it is

easy to correct it by considering the intersection with the set

of variables live just after the point of copy insertion (here the

live-out set plus u) instead of just the live-out set of the block.

There is a more tricky case, when the basic block contains

variables defined after the point of copy insertion. This is the

case for some DSP-like branch instructions with a behavior

similar to hardware looping. In addition to the condition, a

counter u is decremented by the instruction itself. If u is used

in a φ-function in a direct successor block, no copy insertion

can split its live range. It must then be given the same name

as the variable defined by the φ-function. If both variables

interfere, this is just impossible! To solve the problem, the SSA

optimization could be designed with more care, or the counter



t2 = t1 + . . .

u0

B1

B2

Br(u2, B1, B2)

t0 = u2

u2 = u1 − 1

u1 = φ(u0, u2)

Br(t2, B1, B2)

. . .= u2

B3

t1 = φ(t0, t2)

a) Initial SSA code

t2 = t1 + . . .

u

B1

B2

Br(t2, B1, B2)

. . .= u

B3

t1 = φ(u, t2)

Br_dec(u, B1, B2)

b) Branch with decrement (Br_dec)

t2 = t1 + . . .

u

B1

B2

Br(t2, B1, B2)

. . .= u

B3

Br_dec(u, B1, B2)

t0 = u

t1 = φ(t0, t2)

c) CSSA with additional edge splitting

Fig. 2. Copy insertion may not be sufficient.

variable must not be promoted to SSA, or some instruction

must be changed, or the control-flow edge must be split

somehow. This point has never been mentioned before: out-of-

SSA translation by copy insertion alone is not always possible,

depending on the branch instructions and the particular case

of interferences. For example, suppose that for the code of

Figure 2(a), the instruction selection chooses a branch with

decrement (denoted Br_dec) for Block B1 (Figure 2(b)). Then,

the φ-function of Block B2, which uses u, cannot be translated

out of SSA by standard copy insertion because u interferes

with t1 and its live range cannot be split. To go out of SSA,

one could add t1 = u− 1 in Block B1 to anticipate the branch.

Or one could split the critical edge between B1 and B2 as in

Figure 2(c). In other words, simple copy insertions as in the

model of Sreedhar et al. is not enough in this case.

These different situations illustrate again why out-of-SSA

translation must be analyzed with care, to address correctness

even before thinking of code optimization. Aggressive SSA

optimizations can indeed make out-of-SSA translation tricky.

B. Going out of CSSA: a coalescing problem

Once the copies are inserted as in Section II-A, the code

is in CSSA, except for the special cases of branch with

definition explained above. Then, going out of CSSA is

straightforward: all variables involved in a φ-function can be

given the same name and the φ-functions can be removed. This

solves the correctness aspect. To improve the code however,

it is important to remove as many copies as possible. This

can be treated with classic coalescing as CSSA is equivalent

to standard code: liveness and interferences can be defined

as for regular code (with parallel copies). The difference is

that the number of introduced copies and of new variables

can be artificially large, which can be too costly especially

if an interference graph is used. Sreedhar et al. proposed

several improvements: introducing copies only when variables

interfere and updating conservatively the interference graph

(Method II), a more involved algorithm that uses and up-

dates liveness information (Method III), a special SSA-based

coalescing, useful to complement Method I and Method II

but useless after Method III. All these techniques rely on the

explicit representation of congruence classes that partition the

program variables into sets of variables coalesced together.

But why relying on special coalescing rules depending on

the method? Actually, once the code is in CSSA, the opti-

mization problem is a standard aggressive coalescing problem

(i.e., with no constraints on the number of target variables) and

heuristics exist for this NP-complete problem [19], [20]. The

fact that the code is in SSA does not make it simpler or special.

Also, Method III, even though it was primarily designed for

speed, turns out to give better results than Method I followed

by coalescing. This is because Sreedhar et al. rely on a too

conservative definition of interferences to decide if two vari-

ables can be coalesced. As Section III-A will show, it is better

to exploit the SSA properties to identify when two variables

have the same value: in this case, they do not interfere even if

their live ranges intersect. Then, with this intrinsic definition

of interferences, there is no point to compare, in terms of

quality of results, a method that introduces all copies first

as in Method I or on the fly as in Method III. They should

be equivalent. Furthermore, this definition of interferences is

more accurate, thus more copies can be removed.

Another weakness in Sreedhar et al. model is that copies are

inserted in a particular sequential order at the end or entry of

basic blocks. We prefer to stick to the SSA semantics, i.e., to

use parallel copies (all uses are read before any write occurs).

We then sequentialize these copies, once we know which

remain. The interest is twofold. First, with sequential copies,

some additional interferences between the corresponding vari-

ables appear, which hinders coalescing, especially in case of

additional register constraints. Second, with parallel copies,

we avoid a tricky update of liveness information: copies are

handled in a uniform way. This is fundamental to reduce the



B0

a2 = φ(a1, b2)

b2 = φ(b1, a2)

if p then

B1

a1 = . . .

b1 = . . .

a) Swap problem

B0

u0 = φ(u1, u2)

v0 = φ(v1, v2)

if p then

B1

(a2, b2) = (u0, v0)

(u2, v2) = (b2, a2)

b1 = . . .

a1 = . . .

(u1, v1) = (a1, b1)

b) Corresponding CSSA code

a1

b1 v = (v0, v1, v2)

u = (u0, u1, u2)

b2

a2

c) Interferences and coalescing

B0

if p then

B1

b2 = . . .

a2 = . . .

a2 = n

b2 = a2

n = b2

d) After copy sequentialization

Fig. 3. Out-of-SSA translation for the swap problem.

engineering effort. We now illustrate our mechanism on the

two classic examples, the swap and the lost copy problems.

Consider the code in Figure 3(a). Copies ui (for the first

φ-function) and vi (for the second) are inserted to go to

CSSA, see Figure 3(b). The interference graph is built and

the variables u0, u1, and u2 (resp. v0, v1, and v2) are imme-

diately coalesced into a new variable u (resp. v), as depicted

in Figure 3(c). Affinities are represented with dotted lines.

Aggressive coalescing can always coalesce a1 with u and b1
with v, then either u is coalesced with a2 and v with b2 (the

solution depicted), or the converse. In both cases, the final

program contains a single swap, which can be materialized as

in Figure 3(d), thanks to copy sequentialization. Here an extra

copy is used, unless an instruction can perform a swap.

Now, consider the code in Figure 4(a). Copies are inserted

to go to CSSA, see Figure 4(b). The copy between u and

x2 cannot be eliminated as u and x2 interfere as Figure 4(c)

shows. However, all other copies can be removed to get the

code of Figure 4(d). If the back-edge is split and the copy

from x3 to u placed on the new block, u does not interfere

with x2 anymore. However, as x2 and x3 interfere, only one

of the two copies x2 → u and x3 → u can be eliminated. Each

choice leads to a different out-of-SSA code.

In conclusion, with a more accurate interference definition,

the use of parallel copies, a standard coalescing algorithm

to remove copies, we get what we need: a conceptually

simple approach, provably correct, in which correctness and

optimization are separated. This is of high importance for

implementing SSA without bugs in an industrial compiler.

III. Key points of the out-of-SSA translation

We can now give an overview of the general process before

detailing each individual step. Conceptually, our out-of-SSA

translation process comprises four successive phases:

1) Insert parallel copies for all φ-functions as in Method I

of Sreedhar et al. and coalesce all a′
i
together.

2) Build the interference graph with an accurate definition

of interference, using the “SSA value” of variables.

3) Coalesce aggressively, maybe with renaming constraints.

4) Sequentialize parallel copies, possibly with one more

variable and some additional copies, in case of swaps.

Step 1 was presented in Section II-A. We now detail

Steps 2, 3, and 4 in Sections III-A, III-B, and III-C respec-

tively. Also, thanks to the independence between correctness

(Step 1) and optimization (Step 3), we propose algorithms

that make the whole process fast enough for just-in-time

compilation. They are described in Section IV: fast live range

intersection test (Section IV-A), fast interference test and

node merging (Section IV-B), “virtualization” of initial copy

insertion (Section IV-C), i.e., copy insertion on the fly as in

Method III of Sreedhar et al. With these techniques, we can

even avoid to build the liveness sets and the interference graph,

for a gain in memory footprint too.

A. Live range intersection and equality of values

It is common to find in the literature the following definition

of interference “two variables interfere if their live ranges

intersect” (e.g. in [21], [15], [22]) or its refinement “two

variables interfere if one is live at a definition point of the

other” (e.g. in [23]). In fact, a and b interfere only if they

cannot be stored in a common register. Chaitin et al. discuss

more precisely the “ultimate notion of interference” [17]: a

and b cannot be stored in a common register if there exists an

execution point where a and b carry two different values that

are both defined, used in the future, and not redefined between

their definition and use. This definition of interference contains

two dynamic (i.e., related to the execution) notions: the notion

of liveness and the notion of value. Analyzing statically if a

variable is live at a given execution point is a difficult problem.

This can be approximated (quite accurately in practice) using

data flow reaching definition and upward exposed use [2]. In

SSA with the dominance property – in which each use is

dominated by its unique definition, so it is defined – upward

exposed use analysis is sufficient. The notion of value is even

harder, but may be approximated using data-flow analysis on

specific lattices [24], [25]. This has been extensively studied

in particular in the context of partial redundancy elimination.

The scope of variable coalescing is usually not so large, and

Chaitin proposed a simpler conservative test: two variables

interfere if one is live at a definition point of the other

and this definition is not a copy between the two variables.

This interference notion is the most commonly used, see for



B0

if p then

B1

x2 = φ(x1, x3)

x3 = x2 + 1

x1 = . . .

x2

a) Lost-copy problem

B0

if p then

B1

u0 = φ(u1, u2)

x3 = x2 + 1

x1 = . . .

u1 = x1

x2 = u0

u2 = x3

x2

b) Corresponding CSSA code

u = (u0, u1, u2)x1 x3

x2

c) Interferences and coalescing

B0

if p then

B1

x1 = x2 + 1

x1 = . . .

x2 = x1

x2

d) After copy optimization

Fig. 4. Out-of-SSA translation for the lost-copy problem.

example how the interference graph is computed in [2].

Chaitin et al. noticed that, with this conservative interference

definition, when a and b are coalesced, the set of interferences

of the new variable may be strictly smaller than the union

of interferences of a and b. Thus, simply merging the two

corresponding nodes in the interference graph is an over-

approximation with respect to the interference definition. For

example, in a block with two successive copies b = a and

c = a where a is defined before, and b and c (and possibly a)

are used after, it is considered that b and c interfere but that

none of them interfere with a. However, after coalescing a

and b, c should not interfere anymore with the coalesced

variable. Hence, the interference graph has to be updated or

rebuilt. Chaitin et al. [17] proposed a counting mechanism,

rediscovered in [26], to update the interference graph, but it

was considered to be too space consuming. Recomputing it

from time to time was preferred [17], [23]. Since then, most

coalescing techniques based on graph coloring use either live

range intersection graph [3], [15] or Chaitin’s interference

graph with reconstructions [21], [27].

However, in SSA, each variable has, statically, a unique

value, given by its unique definition. Furthermore, the “has-

the-same-value” binary relation defined on variables is an

equivalence relation. This property is used in SSA dominance-

based copy folding and global value numbering [28]. The

value of an equivalence class is the variable whose definition

dominates the definitions of all other variables in the class.

Hence, using the same scheme as in SSA copy folding, finding

the value of a variable can be done by a simple topological

traversal of the dominance tree: when reaching an assignment

of a variable b, if the instruction is a copy b = a, V(b) is

set to V(a), otherwise V(b) is set to b. The interference test

in now both simple and accurate (no need to rebuild/update

after a coalescing): if live(x) denotes the set of program points

where x is live, a interfere with b if live(a) intersects live(b)

and V(a) , V(b). (The first part reduces to def(a) ∈ live(b)

or def(b) ∈ live(a) thanks to the dominance property [15].)

In the previous example, a, b, and c have the same value

V(c) = V(b) = V(a) = a, thus they do not interfere.

It should be clear now why we advocate the out-of-SSA

translation previously introduced: introduce copies to ensure

the correctness, exploit the SSA properties to identify variables

that have the same value, and coalesce variables that do not

interfere. Because of our more accurate notion of interference,

there is no need to rebuild or update the interference graph,

no need to develop a special SSA-based coalescing algorithm

as in [3], no need to make a distinction between variables

that can be coalesced with Chaitin’s approach or not. What is

important is just to know if they interfere or not.

To make the interference definition complete, it remains to

define precisely when variables are live. In SSA, the status

of the φ-function and its arguments is unclear because they

live beyond the dominance tree. However, after Step 1 (the

introduction of the variables a′
i
) and their coalescing into one

unique node, the code is in CSSA and could be translated

directly into standard code. The liveness of this unique node

is thus precisely defined: its live range is the union of the live

range of its constituting elements, using traditional liveness

definition for standard code. In other words, it lives from the

output of each parallel copy in the predecessor block to the

input of the parallel copy where the φ-function exists. Also,

to check the intersection with other variables, it is sufficient

to check the intersection at the parallel copies locations.

Note that our notion of values is limited to the live ranges

of SSA variables, as we consider that each φ-function defines

a new variable. We could propagate information through a φ-

function when its arguments are equivalent (same value). But,

we would face the complexity of general value numbering. By

comparison, our equality test in SSA comes for free.

B. Coalescing φ-related copies as well as standard copies

As discussed earlier, the out-of-SSA translation is nothing

but a traditional aggressive coalescing problem, i.e., with no

constraints on the number of colors. If all copies are initially

inserted, as in Method I of Sreedhar et al., any sophisticated

technique can be used. In particular, it is possible to use

weights to treat in priority the copies placed in inner loops:

this reduces the number of static and of dynamically-executed

copies. Sreedhar et al. do not use weights. We use classic

profile information to get basic block frequencies. Note how-

ever that this weight may be slightly under-estimated: in some

cases, there may be an additional copy if a swap is needed

when sequentializing a parallel copy (see Section III-C).



If copies are inserted on the fly, as in Method III of Sreedhar

et al., the copy variables a′
i
are created only when needed,

but reasoning as if they were available. We call this process

virtualization (see Section IV-C). To make this possible, φ-

functions are considered one after the other, thus copies are

coalesced in this particular φ-function by φ-function order.

Also, Sreedhar et al. use a deferred copy insertion mechanism

that, even if not expressed in these terms, amounts to build

some maximal independent set of variables (i.e., that do not

interfere), which are then coalesced. This gives indeed slightly

better results than reasoning one copy at a time. In our

virtualized version, we also process one φ-function at at time,

but simply consider its related copies by decreasing weight.

We also address the problem of copy sharing. Consider

again the example of two successive copies b = a and c = a.

We have seen that, thanks to our definition of value, the fact

that b is live at the definition of c does not imply that b

and c interfere. Suppose however that a (after some other

coalescing) interferes with b and c. Then, no coalescing can

occur although coalescing b and c would save one copy, by

“sharing” the copy of a. Similar practical situations, due to

calling convention constraints, are given in [18]. This sharing

problem is difficult to model and optimize (the problem of

placing copies is even worse), but we can optimize it a bit.

We coalesce two variables b and c if they are both copies of

the same variable a and if their live ranges intersect (note:

if their live ranges are disjoint, such a coalescing may be

incorrect as it would increase the live range of the dominating

variable, possibly creating some interference not taken into

account). Section III-E measures the effects of this important

post-optimization, which is a direct by-product of our value-

based interference definition.

C. Sequentialization of parallel copies

During the whole algorithm, we treat the copies placed at

a given program point as parallel copies, which are indeed

the semantics of φ-functions. This gives several benefits: a

simpler implementation, in particular for defining and updating

liveness sets, a more symmetric implementation, and fewer

constraints for the coalescer. However, at the end of the

process, we need to go back to standard code, i.e., write the

final copies in some sequential order.

In most cases, a simple order of copies can be found,

but sometimes more copies are needed (more precisely, one

for each cyclic permutation, with no duplication) into one

additional variable. Conceptually, the technique is simple but

it is more tricky to derive a fast implementation. We designed

a fast sequentialization algorithm that requires the minimum

number of copies. We realized afterward that a similar algo-

rithm has already been proposed by C. May [29]. Nevertheless,

for completeness, we give here a detailed description of the

algorithm as well as the complete pseudo-code (Algorithm 1).

Consider the directed graph G whose vertices are the

variables involved in the parallel copy and with an edge from

a to b whenever there is a copy from a to b (we write a 7→ b).

This graph has the following key property: each vertex has

a unique incoming edge, the copy that defines it (a parallel

copy (b 7→ a, c 7→ a) is possible but only if V(b) = V(c) in

which case one of the copies can be removed). Thus, G has

a particular structure: each connected component is a circuit

(possibly reduced to one vertex) and each vertex of the circuit

can be the root of a directed tree. The copies of the tree

edges can be sequentialized starting from the leaves, copying

a variable to its successors before overwriting it with its final

value. Once these tree copies are scheduled, it remains to

consider the circuit copies. If at least one vertex of the circuit

was the root of a tree, it has already been copied somewhere,

otherwise, we copy one of the circuit vertices into a new

variable. Then, the copies of the circuit can be sequentialized,

starting with the copy into this “saved” vertex and back along

the circuit edges. The last copy is done by moving the saved

value in the right variable. Thus, we generate the same number

of copies as expressed by the parallel copy, except possibly

one additional copy for each circuit with no tree edge, i.e.,

no duplication of variable. For example, for the parallel copy

(a 7→ b, b 7→ c, c 7→ a, c 7→ d), there is one circuit (a, b, c) and

an edge from c to d, so we generate the copies d = c, c = a,

a = b, and b = d (and not b = c).

Algorithm 1 emulates a traversal of G (without building

it), allowing to overwrite a variable as soon as it is saved in

some other variable. When a variable a is copied in a variable

b, the algorithm remembers b as the last location where the

initial value of a is available. This information is stored into

loc(a). The initial value that must be copied into b is stored in

pred(b). The initialization consists in identifying the variables

whose values are not needed (tree leaves), which are stored

in the list ready. The list to_do contains the destination of

all copies to be treated. Copies are first treated by considering

leaves (while loop on the list ready). Then, the to_do list

is considered, ignoring copies that have already been treated,

possibly breaking a circuit with no duplication, thanks to an

extra copy into the fresh variable n.

D. Handling register renaming constraints

Register renaming constraints, such as calling conventions

or dedicated registers, are treated with pinned variables [18].

A pinned variable is a SSA variable pre-coalesced to another

variable or pre-allocated to an architectural register [19]. To

avoid interferences, we first ensure that a pinned variable has

a short live range spanning no more than the constraining

instruction. This is achieved by splitting the live ranges of

pinned variables with parallel copies inserted just before and

after the constraining instructions. These parallel copies are

then coalesced just like the copies related to the φ-functions.

Pre-allocated variables require a special treatment, as two

variables pre-allocated to different architectural registers must

not be coalesced. So all variables pre-allocated to a given

register are first pre-coalesced together, and the corresponding

congruence class is labeled by this register. Next, when

checking the interference between two congruence classes, we

first check if they are labeled with two different registers. If

yes, they are considered to be interfering.



E. Qualitative experiments

The experiments were done on the SPEC CINT2000 bench-

marks (with the exception of the C++ benchmark eon) com-

Algorithm 1: Parallel copy sequentialization algorithm

Data: Set P of parallel copies of the form a 7→ b, a , b,

one extra fresh variable n

Output: List of copies in sequential order

ready ← [] ; to_do ← [] ; pred(n) ← ⊥ ;1

forall (a 7→ b) ∈ P do2

loc(b)← ⊥ ; pred(a) ← ⊥ ; /* initialization */3

forall (a 7→ b) ∈ P do4

loc(a) ← a ; /* needed and not copied yet */5

pred(b) ← a ; /* (unique) predecessor */6

to_do.push(b) ; /* copy into b to be done */7

forall (a 7→ b) ∈ P do8

if loc(b) = ⊥ then ready.push(b) ; /* b is not used9

and can be overwritten */

while to_do , [] do10

while ready , [] do11

b← ready.pop() ; /* pick a free location */12

a← pred(b) ; c← loc(a) ; /* available in c */13

emit_copy(c 7→ b) ; /* generate the copy */14

loc(a) ← b ; /* now, available in b */15

if a = c and pred(a) , ⊥ then ready.push(a) ;16

/* just copied, can be overwritten */

b← to_do.pop() ; /* look for remaining copy */17

if b = loc(b) then18

emit_copy(b 7→ n) ; /* break circuit with copy */19

loc(b) ← n ; /* now, available in n */20

ready.push(b) ; /* b can be overwritten */21

piled at aggressive optimization level, using the Open64-based

production compiler for the STMicroelectronics ST200 VLIW

family. This compiler was directly connected to the STMicro-

electronics JIT compiler for CLI [9], which implements the

out-of-SSA techniques proposed in this paper, the techniques

of Sreedhar et al. [3], and also the fast liveness checking for

SSA [16]. This experimental setup ensures that algorithms are

implemented in the context of a real JIT compiler, yet the code

they process is highly optimized C code.

First, we evaluated how the accuracy of interference impacts

the quality of coalescing by implementing seven variants of

coalescing. Below a 7→ b is a copy to be removed. X and Y

are the congruence classes of a and b, i.e., the set of coalesced

variables that contain a and b (see Section II-B). In case of

coalescing, X and Y will be merged into a larger class.

Intersect X and Y can be coalesced if no variables x ∈ X and

y ∈ Y have intersecting live ranges.

Sreedhar I This is Sreedhar et al. SSA-based coalescing: X

and Y can be coalesced if there is no pair of variables

(x, y) ∈ (X×Y)\{(a, b)} whose live ranges intersect: (a, b)

is not checked as a and b have the same value.

Chaitin X and Y can be coalesced if no variables x ∈ X and

y ∈ Y are such that x is live at the definition of y and this

definition is not a copy x 7→ y (or the converse).

Value X and Y can be coalesced if no variables x ∈ X and

y ∈ Y interfere following our value-based interference

definition, i.e., their live ranges intersect and have a

different value, as explained in Section III-A.

Sreedhar III This is the virtualization mechanism used in

Method III of Sreedhar et al. Copies are inserted,

considering one φ-function at a time, as explained in

Section III-B. We added the SSA-based coalescing of

Method I, which is useless for φ-related copies, but not

for copies due to register renaming constraints.

Value + IS This is Value, extended with a quick search for

an independent set of variables, for each φ-function, as

in Sreedhar III.

Sharing This is Value + IS, followed by our copy sharing

mechanism, see Section III-B. If c is live just after the

copy a 7→ b and V(c) = V(a), i.e., a and c have the same

value, then, denoting Z the congruence class of c, 1) if

Y = Z and Y , X, the copy a 7→ b is redundant and can

be removed; 2) if X, Y , and Z are all different, and if Y

and Z can be coalesced (following the Value rule), the

copy a 7→ b can be removed after coalescing Y and Z

because c has already the right value.

Figure 5 gives, for each variant, the ratio of number of

remaining static copies compared to the less accurate tech-

nique (Intersect). Comparing the cost of remaining “dynamic”

copies, computed with a static estimate of the basic block

frequencies, gives similar results. The first four variants show

what is gained when using a more and more accurate definition

of interferences (from Intersect to Value). It is interesting

to note, again, that Sreedhar I is quite inefficient as, for

example, it cannot coalesce two congruence classes X and Y if

X×Y contains two pairs of intersecting copy-related variables.

Introducing variables on the fly as in Method III avoids

this problem as only copies that cannot be removed by the

SSA-based coalescing are introduced (but, in [3], it is not

tuned to optimize weighted moves). Also, the independent

set search integrated in this method improves the results

compared to Value, which is the basic version with our value-

based interference. If this independent set search is also added

to Value, our technique outperforms Sreedhar III (version

Value + IS). The last variant, Sharing, shows that we can

go even further with our additional sharing mechanism.

These experiments confirm that the decomposition of the

problem into the insertion of parallel copies followed by

coalescing with an accurate identification of values is sufficient

to obtain the best code quality so far. In addition, it is also a

clean and flexible solution because, with our intrinsic value-

based interference definition, the fact that two variables can be

coalesced does not depend on the way we introduce copies,

whether before coalescing as in Method I or on the fly as in

Method III. Also, with less programming effort, we can do

slightly better than Sreedhar III in terms of quality of results.

More importantly, since our approach separates the correctness



16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rl
bm

k

25
4.

ga
p

25
5.

vo
rt
ex

25
6.

bz
ip

2

30
0.

tw
ol
f

su
m

0.4

0.5

0.6

0.7

0.8

0.9

1

Intersection

Sreedhar I

Chaitin

Value

Sreedhar III

Value IS

Sharing

Fig. 5. Impact of interference accuracy and coalescing strategies on remaining number of moves.

and the quality of results from how coalescing is implemented,

we can focus on algorithm speed and memory footprint. These

two points are addressed in the next section.

IV. Making it fast and less memory-consuming

Implementing the technique of Section III may be too costly.

First, it inserts many instructions before realizing most are

useless, and copy insertion is time-consuming. It introduces

many new variables, too. The size of the variable universe

has an impact on the liveness analysis and the interference

graph construction. Also, if a general coalescing algorithm is

used, a graph representation with adjacency lists (in addition

to the bit matrix) and a working graph to explicitly merge

nodes when coalescing variables, would be required. All these

constructions, updates, manipulations are time-consuming and

memory-consuming. We may improve the whole process by:

a) avoiding the use of a working graph and of an interference

graph, relying nevertheless on classic liveness sets; b) replac-

ing the quadratic time complexity interference check between

congruence classes by a linear complexity algorithm; c) replac-

ing classic liveness set computation by fast liveness checking

for SSA; d) emulating (“virtualizing”) the introduction of the

φ-related copies, as in Method III of Sreedhar et al.

If an interference graph is available, it is not clear whether

using an additional working graph is much more expensive

or not, but, in the context of aggressive coalescing, both

Chaitin [23] and Sreedhar et al. [3] preferred not to use one.

To get rid of it, Sreedhar et al. manipulate congruence classes,

that is, sets of variables that are already coalesced together.

Then, two variables can be coalesced if their corresponding

congruence classes do not contain two interfering variables,

one in each congruence class. This quadratic number of

variable-to-variable interference tests might be expensive. In

Section IV-B, we propose a linear time complexity algorithm

for interference detection between two congruence classes.

When an interference graph is not available, a variable

cannot directly access the list of variables that interfere with

it, so queries are typically restricted to interference checking,

i.e., existence of an interference. The classic approach consists

in computing the interference relation, which is stored as a

bit matrix. Building such interference graph implies a costly

traversal of the program and requires the liveness sets. Then,

interference queries are O(1). A second approach is to perform

value tests, dominance checks, and liveness checks, without

relying on any pre-computation of the liveness sets. Queries

are more time-consuming, but this avoids the need for an

interference graph. Section IV-A surveys such methods.

Finally, Section IV-C explains how to adapt the virtualiza-

tion mechanism used in Method III of Sreedhar et al., which

inserts copies only when needed, to avoid the introduction of

new variables and of useless copies that will be removed.

A. Live-range intersection tests

As discussed in Section III-A, our notion of interference

relies on a double test, one for live range intersection, and the

other for equality of values. The next section explains how to

check, with this interference notion, whether two congruence

classes interfere or not. In this section, we briefly survey

methods to detect if two live ranges intersect.

The classic method builds live-in and live-out sets for each

basic block using data-flow analysis. A refinement is to build

the sets only for the global variables (variables that are live

along some control-flow edge). The live range intersection

graph can then be built, either lazily or completely, by travers-

ing each basic block backward. This computation is fairly

expensive and its results are easily invalidated by program

transformations. As a result, the Method III of Sreedhar et

al., spends significant efforts to update the live-in and live-out

sets. The fact that sequential copies are used instead of parallel

copies makes this update even more complicated.

Budimlić et al. [15] proposed an intersection test that avoids

the need for an interference graph. It uses the SSA properties

and liveness information at the basic block boundaries. Pre-

cisely, two SSA variables intersect if and only if the variable

whose definition dominates the definition of the other is live

at this second definition point. Thus, either it is live-in for

this basic block or defined earlier in the same block. If it is

live-out, the two live ranges intersect, otherwise a backward



traversal of the block is needed to decide. Therefore, this test

avoids the use of an interference graph but requires the storage

of the liveness sets and performs basic block traversals. These

traversals can be avoided if def-use chains are available.

Recently, Boissinot et al. [16] proposed a fast liveness check

for SSA that answers whether a given variable is live at a given

program location. This technique does not require liveness sets

but relies on pre-computed data-structures that only depend

on the control flow graph. These data-structures are thus still

valid even if instructions are moved, introduced, or removed.

For testing if two SSA variables interfere, it is enough to check

if one variable is live at the definition of the other.

We will not detail these different intersection tests any

further. In the next section, they are used as a black box for

developing an algorithm that checks interference between two

congruence classes with a linear number of interference tests.

B. Linear interference test between two congruence classes

(with extension to value-based interferences)

Sections III-A and III-C presented two of our main contribu-

tions, the notion of value-based interference and the method to

sequentialize parallel copies. We now present our third main

contribution: how to efficiently perform an interference test

between two sets of already-coalesced variables (congruence

classes in Sreedhar et al. terminology). Suppose that the two

tests needed to decide if two SSA variables interfere – the

live range intersection test (Section IV-A) and the “has-the-

same-value” test (Section III-A) – are available as black boxes.

To replace the quadratic number of tests by a linear number

of tests, we simplify and generalize the dominance-forest

technique proposed by Budimlić et al. [15]. Our contributions

are: a) we avoid constructing explicitly the dominance forest;

b) we are also able to check for interference between two sets;

c) we extend this check to support value-based interferences.

Given a set of variables, Budimlić et al. define its dominance

forest as a graph forest where the ancestors of a variable are

exactly the variables of the set that dominate it (i.e., whose

definition point dominates the definition point of the other).

The key idea of their algorithm is that the set contains two

intersecting variables if and only if it contains a variable

that intersects with its parent in the dominance forest. So

they just traverse the dominance forest and check the live

range intersection for each of its edges. Instead of constructing

explicitly the dominance forest, we propose to represent each

congruence class as a list of variables ordered according to

a pre-DFS order ≺ of the dominance tree (i.e., a depth-first

search where each node is ordered before its successors). Then,

because querying if a variable is an ancestor of another one

can be achieved in O(1) (a simple dominance test), simulating

the stack of a recursive traversal of the dominance forest is

straightforward. Thus, as in [15], we can derive a linear-time

intersection test for a set of variables (Algorithm 2).

Now consider two intersection-free sets (two congruence

classes of non-intersecting variables) blue and red. To coa-

lesce them, there should be no intersection between any two

variables. We proceed as if the two sets were merged and

apply the previous technique. The only difference is that we

omit the intersection tests if two variables are in the same set:

in Line 10 of Algorithm 2, the intersect query should check

if parent and current belong to a different list.

Algorithm 2: Check intersection in a set of variables

Data: List of variables list sorted according to a

pre-DFS order of the dominance tree

Output: Returns true if the list contains an interference

dom ← empty_stack ; /* stack of the traversal */1

i← 0 ;2

while i < list.size() do3

current ← list(i++) ;4

other ← dom.top() ; /* null if dom is empty */5

while (other , null) and dominate(other, current) =6

false do

dom.pop() ; /* not the desired parent, remove */7

other ← dom.top() ; /* consider next one */8

parent ← other ;9

if (parent , null) and (intersect(current, parent) =10

true) then return true ; /* intersection detected */

dom.push(current) ; /* otherwise, keep checking */11

return false ;12

Also, because each set is represented as an ordered list,

traversing two lists in order is straightforward. We just

progress in the right list, according to the pre-DFS order ≺ of

the dominance tree. We use two indices ir and ib and replace

Lines 2-4 of the previous algorithm by the following lines:

ir ← 0 ; ib ← 0 ;

while ir < red.size() or ib < blue.size() do
if ir = red.size() or (ir < red.size() and ib < blue.size()

and blue(ib) ≺ red(ir)) then current ← blue(ib++) ;

else current ← red(ir++) ;

The last refinement is to extend our intersection technique to

an interference test that accounts for value equalities. Suppose

that b is the parent of a in the dominance forest. In the

previous algorithm, the induction hypothesis is that the subset

of already-visited variables is intersection-free. Then, if c

is an already-visited variable, the fact that b and a do not

intersect guarantees that c and a do not intersect, otherwise

the intersection of b and c would have already been detected.

However, for interferences with value equalities, this is no

longer true. The variable c may intersect b but if they have

the same value, they do not interfere. The consequence is

that, now, a and c may intersect even if a and b do not

intersect. However, if a does not intersect b and any of the

variables it intersects, then a does not intersect any of the

already-visited variables. To speed up such a test and to avoid

checking intersection between variables in the same set, we

keep track of one additional information: for each variable a,

we store the nearest ancestor of a that has the same value and

that intersects it. We call it the “equal intersecting ancestor”

of a. We assume that the equal intersecting ancestor is pre-

computed within each set, denoted by equal_anc_in(a), and



we compute the equal intersecting ancestor in the opposite set,

denoted by equal_anc_out(a). The skeleton of the algorithm

for interference test with value equalities is the same as for

Algorithm 2, with the patch to progress along the lists red and

blue, and where the call Line 10 is now an interference test

(Function interference). The principle of the algorithm is

apparent in the pseudo-code. Two equal intersecting ancestors,

in and out, are used to make sure that the test intersect(a,

b), which runs a possibly expensive intersection test, is per-

formed only if a and b belong to different sets.

Function update_equal_anc_out(a, b)

Data: Variables a and b, same value, but in different sets

Output: Set nearest intersecting ancestor of a, in other

set, with same value (null if does not exist)

tmp ← b ;1

while (tmp , null) and (intersect(a, tmp) = false) do2

tmp ← equal_anc_in(tmp) ; /* follow the chain of3

equal intersecting ancestors in the other set */

equal_anc_out(a) ← tmp ; /* tmp intersects a or null */4

Function chain_intersect(a, b)

Data: Variables a and b, different value, in different sets

Output: Returns true if a intersects b or one of its equal

intersecting ancestors in the same set

tmp ← b ;1

while (tmp , null) and (intersect(a, tmp) = false) do2

tmp ← equal_anc_in(tmp) ; /* follow the chain of3

equal intersecting ancestors */

if tmp = null then return false else return true ;4

Function interference(a, b)

Data: A variable a and its parent b in the dominance tree

Output: Returns true if a interferes (i.e., intersects and

has a different value) with an already-visited

variable. Also, update equal_anc information

/* a and b are assumed to not be equal to null */

equal_anc_out(a) ← null ; /* initialization */1

if a and b are in the same set then2

b← equal_anc_out(b) ; /* check/update in other set */3

if value(a) , value(b) then4

return chain_intersect(a, b) ; /* check with b and its5

equal intersecting ancestors in the other set */

else6

update_equal_anc_out(a, b) ; /* update equal7

intersecting ancestor going up in the other set */

return false ; /* no interference */8

Note that once a list is empty and the stack does not contain

any element of this list, there is no more intersection or updates

to make. Thus, the algorithm should be stopped, i.e., the while

loop condition in Algorithm 2 can be replaced by:

while (ir < red.size() and nb > 0) or (ib < blue.size() and

nr > 0) or (ir < red.size() and ib < blue.size()) do

where nr (resp. nb) are variables that count the number of stack

elements that come from the list red (resp. blue). Finally,

in case of coalescing, the two lists are merged into a unique

ordered list (takes linear time, using a similar joined traversal),

while the equal intersecting ancestor equal_anc_in(a) for the

combined set is updated to the maximum (following the pre-

DFS order ≺) of equal_anc_in(a) and equal_anc_out(a).

C. Virtualization of the φ-nodes

Implementation of the whole procedure, as described in

Section III, starts by introducing many new variables a′
i
(one

for each argument of a φ-function, plus its result) and copies in

the basic block of the φ-function and in its predecessors. These

variables are immediately coalesced together, into what we call

a φ-node, and stored into a congruence class. Nevertheless,

in the data structures used (interference graph, liveness sets,

variable name universe, parallel copy instructions, congruence

classes), these variables exist and consume memory and time,

even if at the end, after coalescing, they may disappear.

To avoid the introduction of these initial variables and

copies, our inspiration comes from the Method III of Sreedhar

et al., which emulates the whole process and introduces copies

on the fly, only when they appear to be required. We want

our implementation to be clean and able to handle all the

special cases without tricks. For that purpose, we use exactly

the same algorithms as for the solution without virtualization.

We use a special location in the code, identified as a “virtual”

parallel copy, where the real copies, if any, will be placed.

The original arguments (resp. results) of a φ-function are then

assumed, initially, to have a “use” (resp. “def”) in the parallel

copy but are not considered as live-out (resp. live-in) along the

corresponding control flow edge. Then, the algorithm selects

the copies to coalesce, following some order, either a real copy

or a virtual copy. If it turns out that a virtual copy ai 7→ a′
i

(resp. a′
0
7→ a0) cannot be coalesced, it is materialized in

the parallel copy and a′
i
(resp. a′

0
) becomes explicit in its

congruence class. The corresponding φ-operand is replaced

and the use of a′
i
(resp. def of a′

0
) is now assumed to be on the

corresponding control flow edge. This way, only copies that the

first approach would finally leave uncoalesced are introduced.

The key point to make the emulation of copy insertion

possible is that one should never have to test an interference

with a variable that is not yet materialized or coalesced. For

that reason, φ-functions are treated one by one, and all virtual

copies that imply a variable of the φ-function are considered

(either coalesced or materialized) before examining any other

copy. The weakness of this approach is that a global coalescing

algorithm cannot be used because only a partial view of the

interference structure is available to the algorithm. However,

the algorithm can still be guided by the weight of copies, i.e.,

the dynamic count associated to the block where it would be

placed if not coalesced. The rest is only a matter of accurate

implementation, but once again intrinsically this is nothing

else than emulating these copies and variables.



16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rl
bm

k

25
4.

ga
p

25
5.

vo
rt
ex

25
6.

bz
ip

2

30
0.

tw
ol
f

su
m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sreedhar III Us III Us III + InterCheck

Us III + InterCheck + LiveCheck Us III + Linear + InterCheck + LiveCheck Us I

Us I + Linear + InterCheck + LiveCheck

Fig. 6. Performance results in terms of speed (time to go out of SSA).

Measured Evaluated (Ordered sets) Evaluated (Bit sets)
0

0.2

0.4

0.6

0.8

1

1.2

Measured Evaluated (Ordered sets) Evaluated (Bit sets)
0

0.2

0.4

0.6

0.8

1

1.2

Sreedhar III

Us III

Us III + InterCheck

Us III + InterCheck + LiveCheck

Us III + Linear + InterCheck + LiveCheck

Us I

Us I + Linear + InterCheck + LiveCheck

Fig. 7. Performance results in terms of memory footprint (maximum and total).

D. Results in terms of speed and memory footprint

To measure the potential of our different contributions,

in terms of speed-up and memory footprint reduction, we

implemented a generic out-of-SSA translation that enables to

evaluate different combinations. We selected the following:

Us I Simple coalescing with no virtualization, but different

techniques for checking interferences and liveness.

Sreedhar III Method III of Sreedhar et al. (thus with virtu-

alization) complemented by their SSA-based coalescing

for non φ-related copies. Both use an interference graph

stored as a bit-matrix and liveness sets as ordered sets.

Us III Our implementation of virtualization of φ-related

copies followed by coalescing of other copies. This

implementation is generic enough to support various

options: with parallel or sequential copies, with/without

interference graph, with/without liveness sets. Hence, its

implementation is less tuned than Sreedhar III.

By default, Us III and Us I use an interference graph and

classic liveness sets. The options are:

InterCheck No interference graph: intersections are checked

using dominance and the liveness sets as in [15].

InterCheck+LiveCheck No interference graph and no live-

ness sets: intersections are checked with the fast liveness

checking algorithm of [16], see Section IV-A.

Linear+InterCheck+LiveCheck In addition, our linear in-

tersection check is used instead of the quadratic one.

When an interference graph, liveness sets, or liveness checking

are used, timings include their construction. Figure 6 shows the

timings for these different variants versus Sreedhar III as a

baseline. InterCheck always slows down the execution, while

LiveCheck and Linear always speedup the execution by a

significant ratio. A very interesting result is that the simple

SSA-based coalescing algorithm without any virtualization is

as fast as the complex algorithm with virtualization. Indeed,

when using Linear+InterCheck+LiveCheck, adding first

all copies and corresponding variables before coalescing them,

does not have the negative impact measured by Sreedhar et al.

any longer. Hence Us I+Linear+InterCheck+LiveCheck

provides a quite attractive solution, which is about twice faster

than Sreedhar III. Also, thanks to our interference defini-

tion with equality of values, the quality (in terms of copies)

of the generated code does not depend on the virtualization,

unlike in methods by Sreedhar et al.

Figure 7 shows the memory footprint used for the interfer-

ence graph and the liveness sets. The variable universe used

for liveness and interference information is restricted to the

φ-related and copy-related variables.

Interference graph is stored using a half-size bit-matrix.

Measured provides the measured footprint from

the statistics provided by our memory allocator.

In Sreedhar III or Us III, variables are added

incrementally so the bit-matrix grows dynamically.

This leads to a memory footprint slightly higher than

for a perfect memory. The behavior of such a perfect



memory is evaluated in Evaluated using the formula

⌈ #variables
8

⌉ × #variables/2.

Liveness sets are stored as ordered sets. Measured provides

the measured footprint of the liveness sets, without

counting those used in liveness construction. As for

the interference graph, liveness sets are modified by

Sreedhar III or Us III. Since the number of simulta-

neous live variables does not change, their sizes remain

roughly the same. Because the use of ordered sets instead

of bit-sets is arguable, we evaluated the corresponding

footprint of liveness sets, for a perfect memory, by count-

ing the size of each set. For bit-sets, we evaluated the

footprint using the formula ⌈ #variables
8

⌉×#basicblocks×2.

Liveness checking uses two bit-sets per basic block, plus a

few other sets during construction. These sets are mea-

sured in the memory footprint. A perfect memory is eval-

uated using the formula ⌈ #basicblock
8

⌉ × #basicblock× 2.

The results show that the main gain comes from the removal

of the interference graph. We point out that the memory used

for liveness sets construction is difficult to optimize and might

lead to a very large memory footprint in practice. On the other

hand, the liveness checking data structures depend only on the

control flow graph. Our statistics favor the classic liveness

sets, as the memory usage for their construction has been

omitted, while the memory usage for the liveness checking

has been kept. As an illustration, in our compiler, the memory

footprint for the liveness sets construction is of the same order

of magnitude as for the interference graph construction.

In conclusion, Us I+Linear+InterCheck+LiveCheck is

a simple and clean solution, as it avoids the complexity of

the implementation of virtualization. Yet it leads to a memory

footprint about 10 times smaller than Sreedhar III.

V. Conclusions

We revisited the out-of-SSA translation techniques for the

purposes of ensuring correctness, quality of generated code,

and efficiency (speed and memory footprint) of implemen-

tation. This work is motivated by the use of the SSA form

in JIT compilers for embedded processors. The techniques

proposed by Sreedhar et al. [3] fix the correctness issues

of previous algorithms, allow critical edges in the control

flow graph, and produce code of good quality. However, their

optimized version (Method III) is hard to implement correctly

when dealing with branch instructions that use or define

variables. The technique proposed by Budimlić et al. [15]

is geared towards speed, as it relies on dominance for the

fast intersection of SSA live ranges and introduces dominance

forests for finding intersections in a set of SSA variables in

linear time. This technique does not allow critical edges in

the control flow graph and is difficult to implement correctly.

Still, the idea to optimistically coalesce variables with a rough

but cheap filtering, then decoalesce interfering variables within

the obtained congruence classes, is interesting. This coalescing

scheme is orthogonal to and compatible with our techniques.

We significantly advanced the understanding of out-of-SSA

translation by reformulating it as an aggressive coalescing

problem applied to the CSSA program resulting from Method I

of Sreedhar et al. Our key insight, supported by our experi-

ments, is that interferences must be considered as intersection

refined with value equivalence for any out-of-SSA translation

to be effective. Thanks to the SSA structural properties, com-

puting the value equivalence comes at no cost. This leads to a

solution that is provably-correct, generic, easy to implement,

and that can benefit from register allocation techniques. In

particular, our implementation also coalesces copies inserted

before the out-of-SSA translation to satisfy register renaming

constraints (dedicated registers, calling conventions, etc.).

Then, we generalized the idea of dominance forests of

Budimlić et al., first to enable interference checking between

two congruence classes, then to take into account the equality

of values. In addition, our implementation is much simpler as

we do not explicitly build the dominance forest. The reduced

number of SSA variable intersection tests that results from this

technique enables more expensive intersection checks that do

not rely on liveness sets or explicit interference graph.

Last, we developed a solution, similar to Method III

of Sreedhar et al., for the virtualization of the φ-related

copies, i.e., to introduce variables and copies on the fly,

only when their insertion is decided. Surprisingly, unlike for

Sreedhar et al. methods, our experiments performed on the

SPEC CINT2000 benchmarks show that virtualization, which

is hard to implement, does not bring any clear benefit in

terms of speed and memory consumption. This is because,

thanks to fast liveness checking [16] and our linear-complexity

intersection test, we do not need any interference graph or live-

ness sets. Also, with value-based interference, virtualization is

equivalent in terms of code quality, in other words, inserting

all copies first does not degrade coalescing. Our out-of-SSA

translation algorithm, without virtualization, outperforms the

speed of Method III of Sreedhar et al. by a factor of 2,

reduces the memory footprint by a factor of 10, while ensuring

comparable or better copy coalescing abilities. However, we

point out that, so far, we handle register renaming constraints

with explicit copy insertions. It is possible that virtualization

of such copy insertions is useful. This is left for future work.

References

[1] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM Transactions on Programming Languages and

Systems, vol. 13, no. 4, pp. 451 – 490, 1991.

[2] A. W. Appel and J. Palsberg, Modern Compiler Implementation in Java,
2nd ed. Cambridge University Press, 2002.

[3] V. C. Sreedhar, R. D.-C. Ju, D. M. Gillies, and V. Santhanam, “Translat-
ing out of static single assignment form,” in Static Analysis Symposium

(SAS’99), Italy, 1999, pp. 194 – 204.

[4] A.-R. Adl-Tabatabai, M. Cierniak, G.-Y. Lueh, V. M. Parikh, and J. M.
Stichnoth, “Fast, effective code generation in a just-in-time java com-
piler,” in International Conference on Programming Language Design

and Implementation (PLDI’98). ACM Press, 1998, pp. 280–290.

[5] M. Poletto and V. Sarkar, “Linear scan register allocation,” ACM

Transactions on Programming Languages and Systems, vol. 21, no. 5,
pp. 895–913, 1999.

[6] O. Traub, G. Holloway, and M. D. Smith, “Quality and speed in linear-
scan register allocation,” in Int. Conf. on Programming Language Design
and Implementation (PLDI’98). ACM Press, 1998, pp. 142–151.



[7] C. Wimmer and H. Mössenböck, “Optimized interval splitting in a linear
scan register allocator,” in ACM/USENIX International Conference on

Virtual Execution Environments (VEE’05). Chicago, IL, USA: ACM,
2005, pp. 132–141.

[8] V. Sarkar and R. Barik, “Extended linear scan: An alternate foundation
for global register allocation,” in International Conference on Compiler

Construction (CC’07), ser. LNCS, vol. 4420. Braga, Portugal: Springer
Verlag, Mar. 2007, pp. 141–155.

[9] B. Dupont de Dinechin, “Inter-block scoreboard scheduling in a JIT
compiler for VLIW processors,” in Euro-Par 2008 - Parallel Processing,

14th International Euro-Par Conference, ser. LNCS, vol. 5168. Las
Palmas de Gran Canaria, Spain: Springer, Aug. 2008, pp. 370–381.

[10] J. Cavazos and J. E. B. Moss, “Inducing heuristics to decide whether
to schedule,” in International Conference on Programming Language

Design and Implementation (PLDI’04). Washington, DC, USA: ACM
Press, 2004, pp. 183–194.

[11] V. Tang, J. Siu, A. Vasilevskiy, and M. Mitran, “A framework for
reducing instruction scheduling overhead in dynamic compilers,” in Con-
ference of the Center for Advanced Studies on Collaborative Research

(CASCON’06). Toronto, Ontario, Canada: ACM, 2006, p. 5.

[12] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson, “Practical
improvements to the construction and destruction of static single as-
signment form,” Software – Practice and Experience, vol. 28, no. 8, pp.
859–881, Jul. 1998.

[13] V. C. Sreedhar and G. R. Gao, “A linear time algorithm for placing
φ-nodes,” in 22nd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL’95). ACM, 1995, pp. 62–73.

[14] A. Gal, C. W. Probst, and M. Franz, “Structural encoding of static single
assignment form,” Electronic Notes in Theoretical Computer Science,
vol. 141, no. 2, pp. 85–102, dec 2005.

[15] Z. Budimlić, K. D. Cooper, T. J. Harvey, K. Kennedy, T. S. Oberg,
and S. W. Reeves, “Fast copy coalescing and live-range identification,”
in International Conference on Programming Language Design and

Implementation (PLDI’02). ACM Press, June 2002, pp. 25–32.

[16] B. Boissinot, S. Hack, D. Grund, B. D. de Dinechin, and F. Rastello,
“Fast liveness checking for SSA-form programs,” in Int. Symp. on Code

Generation and Optimization (CGO’08). IEEE/ACM, 2008, pp. 35–44.

[17] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins,
and P. W. Markstein, “Register allocation via coloring,” Computer

Languages, vol. 6, pp. 47–57, Jan. 1981.

[18] A. Leung and L. George, “Static single assignment form for machine
code,” in International Conference on Programming Language Design

and Implementation (PLDI’99). ACM Press, 1999, pp. 204–214.
[Online]. Available: citeseer.ist.psu.edu/leung99static.html

[19] F. Rastello, F. de Ferrière, and C. Guillon, “Optimizing translation out of
SSA using renaming constraints,” in International Symposium on Code

Generation and Optimization (CGO’04). IEEE Computer Society Press,
2004, pp. 265–278.

[20] F. Bouchez, A. Darte, and F. Rastello, “On the complexity of register
coalescing,” in International Symposium on Code Generation and Op-

timization (CGO’07). IEEE Computer Society Press, Mar. 2007, pp.
102–114.

[21] L. George and A. W. Appel, “Iterated register coalescing,” ACM Trans-

actions on Programming Languages and Systems, vol. 18, no. 3, May
1996.

[22] M. D. Smith, N. Ramsey, and G. Holloway, “A generalized algorithm
for graph-coloring register allocation,” in International Conference on

Programming Language Design and Implementation (PLDI’04). ACM,
2004, pp. 277–288.

[23] G. J. Chaitin, “Register allocation & spilling via graph coloring,” in
SIGPLAN Symp. on Compiler Construction (CC’82), 1982, pp. 98–101.

[24] B. Alpern, M. N. Wegman, and F. K. Zadeck, “Detecting equality of
variables in programs,” in 15th Symposium on Principles of Program-

ming Languages (POPL’88). ACM, 1988, pp. 1–11.

[25] F. Bouchez, A. Darte, C. Guillon, and F. Rastello, “Register allocation
and spill complexity under SSA,” LIP, ENS-Lyon, France, Tech. Rep.
RR2005-33, Aug. 2005.

[26] B. Dupont de Dinechin, F. de Ferrière, C. Guillon, and A. Stoutchinin,
“Code generator optimizations for the ST120 DSP-MCU core,” in
International Conference on Compilers, Architecture, and Synthesis for

Embedded Systems (CASES’00), 2000, pp. 93 – 103.

[27] P. Briggs, K. D. Cooper, and L. Torczon, “Improvements to graph color-
ing register allocation,” ACM Transactions on Programming Languages

and Systems, vol. 16, no. 3, pp. 428–455, 1994.

[28] P. Briggs, K. D. Cooper, and L. T. Simpson, “Value numbering,”
Software – Practice and Experience, vol. 27, no. 6, pp. 701–724, 1997.

[29] C. May, “The parallel assignment problem redefined,” IEEE Transac-

tions on Software Engineering, vol. 15, no. 6, pp. 821–824, Jun. 1989.


