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To cite this version:

Germán Varas, Valérie Vidal, Jean-Christophe Géminard. Morphology of air invasion in an
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Morphology of air invasion in an immersed granular layer

Germán Varas, Valérie Vidal, and Jean-Christophe Géminard
Laboratoire de Physique, Université de Lyon, Ecole Normale Supérieure - CNRS, 46 Allée d’Italie, F-69364 Lyon Cedex, France

(Received 19 April 2011; published 23 June 2011)

We report a study of the paths formed by a finite volume of air gently injected at the base of an immersed
granular material. A two-dimensional model, based on experimental observations, shows that the typical height
and width of the region explored by the branched path depends not only on the injected volume V , but also
on a dimensionless parameter χ which accounts for the relative effects of the gravity and capillarity. For a
given injected volume V , larger gravity effects lead to taller and narrower structures; for a given χ , the typical
height and width of the structure scale like V 1/2 and V 1/4, respectively, while the typical gaseous fraction in the
corresponding region increases accordingly like V 1/4. Such results can be of practical importance: For instance,
gas can be trapped on purpose in an underground natural container below a granular slurry. Our results can help
in predicting if the gas is likely to reach the free surface and escape the system if the container presents a defect
(hole or fracture).

DOI: 10.1103/PhysRevE.83.061302 PACS number(s): 83.80.Fg, 47.57.Gc, 47.85.Dh

I. INTRODUCTION

The invasion of a gas in porous media is encountered in a
wide range of systems, from industrial processes (oil industry
[1,2], methane hydrate dissociation [3], etc.) to geophysical
phenomena [4–7]. A typical example of the application is
air sparging [8]: air is injected into the subsurface below the
lowest known depth of contamination and, due to buoyancy,
air serves to remove or helps degrade the contaminants.
Concerning natural processes, the study of gas emission at the
sea floor (venting dynamics) has led to the study of the release
of methane from pockmarks in the mid-Atlantic continental
shelf [9]. These studies contributed to the understanding
of the carbon-cycle perturbations. The results are important
because these pertubations are likely to induce global climate
changes [10].

Because of their implication in a wide range of systems and
because of the potentially huge economical benefits, the under-
standing of such invasion processes has attracted the scientific
community. They resemble many growth processes such as the
Eden cluster model [11], ballistic models [12,13], dendritic
growth, or the diffusion-limited aggregation (DLA) [14].
These models, which have been intensively studied [15,16],
especially in numerical simulations, consider a homogeneous
media in the absence of external forces [17].

One can also mention various numerical studies of similar
systems, from the destabilization produced by gravity in
two-dimensional (2D) porous media [18–20] to the study of
the fractal dimension in an etched network [21]. Most of the
systems involve tip effects in which the local growth velocity is
proportional to the local gradient of an external field (pressure,
impurity concentration, etc.). We also point out that a very
similar growth or propagation phenomenon is observed in
the mining industry when fragments are extracted from an
extraction point at the base of the ore bed (draw body [22]).

Concerning, in particular, the injection of a gas in granular
materials, we can distinguish the biphasic case (grains and
air) [23] from the triphasic case (grains, fluid, and air)
[24,25], the latter being more complex and not fully un-
derstood. The dynamics of the interface between air and an
immersed granular material has been experimentally studied

in a Hele-Shaw cell [26], mainly in a regime in which the gas
forms a finger, reminiscent of the Saffman-Taylor finger. In
this regime the grains are displaced by the interface. The main
physical mechanisms at play involve the surface tension, the
viscous dissipation, and a pressure gradient. The morphology
produced during the air injection can be influenced by the
rate of gas delivery and the vertical distance from the source
[27]. We lately showed that, in a regime in which the air
creates a path between the grains without moving them, the
region invaded by the gas can be described as the result of a
diffusion process [24]. The first simplistic approach neglected
the formation of side branches during the growth of the air path.
Here we propose a numerical analysis, based on experimental
observations, of the role played by the injected volume and
by the properties of the granular bed in the morphology of the
region invaded by the gas, taking into account the formation
of side branches.

II. PROBLEM STATEMENT

We aim at characterizing the geometry of the region invaded
by a gas locally injected at the base of an immersed granular
bed. In Ref. [24], we reported experimental results obtained
in both three-dimensional (3D) and 2D experimental setups.
The 2D system proved to be very useful as it makes it possible
to visualize the paths created by the gas within the granular
matrix. Thus, we will limit the present study to experimental
examples obtained in a thin Hele-Shaw cell and numerical
results from a (2D) model. We were previously interested in
the loci of the gas emission at the free surface resulting from a
continuous injection of gas. Here, we consider a qualitatively
different situation in which a finite amount of gas is injected
so that the invaded region does not reach the free surface. We
aim at characterizing its morphology.

A. Summary and limitations of the former results

Long-term experiments [24] showed that, for the (2D)
cell, the invasion of the immersed granular bed by the gas
can be interpreted in terms of a diffusive-like model, the
system exhibiting at long times a parabolic fluidized region
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whose width w depends on the vertical distance z from the
lower edge as w = √

D z. We proposed that the diffusion
coefficient D was an increasing function of a unique parameter
of the system χ ≡ σP /ρgd, which compares the width σP of
the distribution of the capillary overpressure associated with
the passage between the grains with the typical hydrostatic
pressure variation ρgd over the grain size d. The result can be
understood as follows: For very small grains, the hydrostatic
pressure difference is very small compared to the capillary
overpressure which scales like 1/d (thus much smaller than the
width of its distribution) and, locally, the air creating its path
between the grains propagates as if inside an isotropic medium.
The width of the invaded region is large, which corresponds to
large D. On the contrary, if the effect of the gravity is much
larger than the capillary overpressure, the growth of an air
finger in the system is not limited by the capillarity and the
gas crosses the system straight along the vertical (very large
grains). The invaded region is narrow, which corresponds to
small D.

The previous experimental results are worth extending in
several aspects. First, we were not able to check experimentally
the dependence of D on χ . Indeed, one can barely vary χ in a
well-controlled manner by changing the grain size d because
the polydispersity of the samples and the packing of the grains
are difficult to control. Second, in the theoretical approach, we
assumed that the air was creating paths without side branches,
which is obviously not the case when the effects of the gravity
are weak. Finally, from a practical point of view, the geometry
of the region invaded by a constant volume of gas is, at least,
as interesting as the loci of the gas emission at the free surface
in the continuous regime. Thus, we aim here at extending the
previous results to branched invasion paths in the case of the
injection of a finite volume.

B. Preliminary experimental results

To directly observe the paths of air within the granular
material, we designed a 2D setup that consists of a Hele-Shaw
cell (Fig. 1): the granular matter, immersed in water, is
contained between two vertical walls (glass plates 40-cm wide,
30-cm high, gap 2 mm). To control the gravity effects, the
cell can be tilted by an angle α with respect to the vertical
so as to produce an effective gravity geff ≡ g cos α. The
experimental setup thus makes it possible to change χ , the
granular material remaining unchanged. The injection of air
through an inlet located at the center of the lower edge is
insured by a mass-flow controller (Bronkhorst, Mass-Stream
Series D-5111). The flow rate � can be tuned in the range 0.2 to
2.2 mL/s. The granular material consists of glass beads (USF
Matrasur, sodosilicated glass) previously sieved to control
their size (diameter d =150–250, 250–425, and 425–600 μm).
A webcam (Logitech, QuickCam S7500, 640 × 480 px2,
20 images/s) is used to image the system from the side,
whereas the light source consists of a transparency flat viewer
(Just NormLicht, Classic Line) positioned behind the cell. The
initial state of the system consists of an immersed granular
bed (typical depth 24 cm), free of bubbles, whose surface is
leveled. A chosen volume of air V is then gently injected in
the system.

α

π/2−α

camera

air

Hele-Shaw cell

water

grains

FIG. 1. (Color online) Sketch of the experimental setup. A total
volume V of air is injected at constant flow rate � into a thin vertical
cell (Hele-Shaw cell) containing a granular layer immersed in water.
The effective gravity is changed by tilting the cell by an angle α

(from 0◦ to 90◦). The formation of the pattern in the granular bed is
recorded with a camera positioned in front of the experimental cell.

The preliminary experimental results (Fig. 2) show that
the branches are more numerous and, thus, the pattern more
compact when the effective gravity is reduced by tilting the
experimental cell. Accordingly, the invaded region is broader
and smaller in this case whereas an increase of geff leads to a
narrower and taller pattern with less branches. To characterize
the average geometry of the invaded region we would have
to repeat the experiment a large number of times, which is
difficult. Indeed, once the pattern is formed, to reset the initial
condition, one must open the cell to remove the air trapped in
the system, which takes a long time. Moreover, we would not
be sure to prepare the system in the exact same way and the
state of the granular packing (its density, for instance) might
be different from one run to another.

Thus, to overcome the difficulty, we performed the numer-
ical analysis of the problem that is thoroughly described in
Sec. III.

III. NUMERICAL ANALYSIS

To assess the dependence of the geometry of the invaded
region on the problem parameters, especially χ and the
injected volume V , we perform the simple numerical analysis
whose ingredients and results are reported in the Secs. III A
and III B, respectively.

A. Ingredients

In a simplified 2D approach of the system, we consider that
the granular packing reduces to a 2D square network, each
vertex corresponding to the void space between four grains.
The size of the network (1200 × 1000) compares with the
typical size of the experimental cell in units of grains (typically
1600 grains in width by 1200 grains in height) and is large
enough to avoid boundary effects on the sides and at the top.
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(a) (b)

1cm

FIG. 2. Images of the experimental pattern. The 2D experiment
reveals that, for the same volume V = 1.98 mL, the path created by
the injected gas has a drastically different geometry depending on the
effective gravity geff . (a) For an almost horizontal cell (α = 80◦), one
observes a highly branched pattern, which remains located around the
outlet (note that its typical width compares with its typical height).
(b) By contrast, for a vertical cell (α = 0◦), even if the image reveals
a significant number of branches, the maximum height reached by the
gaseous structure is much larger than its width (d = 250–425 μm).

The only boundary condition is that the gas cannot trespass on
the bottom plane.

The propagation of an air finger in the material is limited
by the capillary overpressure δPc to overcome going from one
vertex to a neighboring one. Considering that the typical size
of the pass between the two void spaces scales like the grain
diameter d [25], we estimate that, on average, δPc ∼ γ /d,
where γ denotes the air-water surface tension. However,
due to the local heterogeneity of the system (polydispersity,
wetting conditions, local arrangement of the grains, etc.),
δPc differs from one pass to another. Thus, to account for
the heterogeneity, we assume that the links between the
vertices are associated with capillary overpressures distributed
according to a Gaussian distribution of width σP around the
nominal value 	Pc which, we remind, is of the order of γ /d.

The propagation of the air finger along the vertical is
favored by the additional contribution of the hydrostatics.
Indeed, in the experiments, the water that fills the space
between the grains is subjected to gravity so that, for instance,
the pressure difference in the water between one vertex and
the first neighbor above is δPg = ρgeffd, where ρ denotes the
density of water. In the numerical computations, the effects of
the gravity are accounted for by considering that the threshold
overpressure to overcome to go from one vertex to another
is δPt = δPc − ρgeffz, where z (positive) denotes the vertical
distance from the outlet plane (bottom edge). Technically, we
associate with each of the links the threshold overpressure δPt

by adding the corresponding contribution of the gravity to the
previously chosen map δPc.

The air path is calculated as follows: First, the finger is
grown from the virtual outlet, at the center of the bottom edge.
Second, during the finger growth, from an already existing
path, we consider the whole set of links connected to vertices
occupied by the gas and determine the one corresponding to
the smallest value of the threshold overpressure δPt . We make
the air invade the corresponding vertex, by adding the latter
to the air path. The procedure thus allows the generation of

x

z

600

400

200

0
−100 1000

χ=1000 χ=100

x
1000

)b()a(

−100

FIG. 3. Air paths from the numerical simulations. Note first that
the numerical procedure allows the creation of side branches. For
the same injected volume, thus the same number N = 4000 of
occupied vertices, one observes that the geometry of the path depends
drastically on the control parameter χ [(a) χ = 1000; (b) χ = 100].
As expected and also observed experimentally, for smaller χ (larger
gravity effects) the finger exhibits less branches and reaches a larger
height.

branches (Fig. 3). We repeat the process until a chosen number
of vertices (N = 2000,4000, and 8000), corresponding to a
chosen volume V ≡ Nvp (vp is the typical volume associated
with the void space between the grains), are occupied. Finally,
to get a relevant estimate of the average geometry of the
invaded region, we repeat the whole process 2000 times for
the same parameters (for a given χ and N ).

B. Results

In the present section, we discuss the geometrical
properties of the region invaded by the gas. The dis-
cussion is based on averages of 2000 numerical paths
(Fig. 4).

1. Geometrical characteristics of the invaded region

As expected, for χ = ∞ [Fig. 4(a)], the gas invades the
granular packing in an almost isotropic manner, the paths
filling half a disk above the outlet. The only anisotropy results
from the boundary condition (no air flow) at the lower edge
of the system. The observed pattern resulting from a pure
diffusive process with a reflecting boundary the typical size
of the invaded region scales like d

√
N . When χ is decreased,

and thus the pressure gradient increased, the invaded region
elongates along the vertical. However, one can notice that, for
a given injected volume, the width of the structure does not
change significantly whereas its height significantly increases
[Figs. 4(b)–4(e)].

To report a qualitative behavior of the system, we first
determine the contours of the invaded region associated with
the isodensity lines in Fig. 4: A contour is defined by the
fraction f such that, over 2000 paths, the contour is locally
crossed 2000f times [Fig. 5(a)].
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FIG. 4. Superposition of 2000 paths for the same injected volume V and different values of χ . The morphology of the invasion region goes
from an almost circular pattern for a horizontal cell [(a) zero effective gravity, χ = ∞] to a vertically elongated shape when χ is decreased
[N = 8000, (a) χ = ∞; (b) χ = 1250; (c) χ = 250; (d) χ = 166; (e) χ = 100].

A quantitative characterization of the structure geometry
is provided by measurements of its width 	x and height 	z.
From the superposition of 2000 paths [Fig. 5(a)], we consider
the intensity profile along the x axis, estimated over the whole
height of the system [Fig. 5(b)]. As expected, the profile is
symmetric and we consider 	x to be the width at half the
peak value. In the same way, we consider the intensity profile
along the z axis, estimated over the whole width of the system
[Fig. 5(c)]. We observe that the profile is almost flat and
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FIG. 5. (Color online) Contours, width 	x, and height 	z of
the invaded region and aspect ratio 	z/	x vs. χ . (a) We report the
contours (lines) for f = 2,4, and 6 ‰ (over 2000 paths, χ = 25 and
N = 4000). (b) The width 	x is defined to be the width at half height,
over the entire pattern, of the intensity profile along the x axis. (c)
The height 	z is that of the point at half the plateau value, over the
entire pattern, of the intensity profile along the z axis. (d) Aspect
ratio 
 ≡ 	z/	x vs. χ for three values of the injected volumes
(� : N = 2000, � : N = 4000 and • : N = 8000). Inset: A collapse
of the measurements is observed when reporting the aspect ratio as a
function of χ/

√
N .

suddenly decreases above a given altitude. We define 	z as the
altitude of the point corresponding to half the plateau value.

2. Dependence on V and χ

Reporting the contours of the invaded region for various
values of the injected volume (various N ) and effective gravity
(various χ ), one observes that, qualitatively, the geometry of
the pattern highly depends on both control parameters. First,
one observes that, for increasing injected volumes [Fig. 6(a)],
the height 	z increases almost linearly with N . We observe
that 	z increases faster than the average width 	x, which
results in an increase of the aspect ratio 
 [Fig. 5(d)]. Second,
for a given injected volume [Fig. 6(b)], a decrease in χ results
in an increase in the height 	z and in a decrease in the width
	x, which result in a drastic increase in 
. Note that, when
χ is decreased the shape of the invaded region goes from a
half-disk to a parabola or cone. We expect that the air goes
straight up through the system for χ � 1.

The quantitative changes in the shape of the invaded region
can be assessed by reporting 
 as a function of χ [Fig. 5(d)].
For the whole set of experimental data, we observe that
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FIG. 6. Shape of the invaded region vs. N and χ . Con-
tours are reported on average over 2000 paths for f = 2 ‰. (a)
Contours for increasing volumes (N = 2000,4000,6000, and 8000)
for χ = 125. (b) Contours for decreasing effective gravity
(χ = 1.6,5.0,12.5,25,50,100,∞) for the same injected volume
(N = 2000).
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FIG. 7. Analysis of the probability profiles. (a) Superposition of
2000 paths for χ = 166. The gray horizontal lines are associated
to the profiles reported in the right panel. The dashed gray lines
represent three different heights. (b) Profiles of the probability
density at three different altitudes z = 14,65, and 240. (c) Square
σ 2 of the distribution width as a function of the altitude z for
χ = 5,50,166,500,1666, and ∞. The system exhibits a diffusive
behavior for small χ . The curvature of the invaded region near the
outlet is obtained from the slope at z = 0 (N = 8000).


 ∝ 1/
√

χ in a wide range of χ and reaches a plateau value
of the order of the unity 
 	 0.82 for large χ . For a compact
structure (isodensity), one would expect the aspect ratio to
tend to 1 in the absence of gravity, in the absence of a
lower boundary. Taking into account that the density is not
constant within the structure and that the air flow is limited
by the lower edge, we are not thus surprised that the ratio
tends to a value of the order of the unity, but not exactly
to 1. Interestingly, we note a collapse of the measurements
when reporting the 
 as a function of χ/

√
N : the scaling 
 ∝

1/
√

χ holds true for χ � 30
√

N whereas 
 	 0.82 for larger
values.

Additional pieces of information about the invasion process
can be obtained by considering in Fig. 7(a) the probability
density along x for a given altitude z: From the superposition
of 2000 paths, one obtains the number of passages at a distance
x from the axis, for a given altitude z, by considering the
corresponding density profiles [Fig. 7(b)]. From the profiles,
one gets the typical width σ of the region crossed by the
air paths as a function of z [Fig. 7(c)]. We observe that,
for small enough values of χ and z, σ 2 is proportional to z,
which accounts for the parabolic shape of the invaded region
near the outlet. By extension, whatever the value of χ , the
shape of the invasion pattern near the outlet can be accounted
for by its radius of curvature, equivalent to an effective
diffusion coefficient Deff ≡ ∂σ 2/∂z|z=0 [Fig. 8(a)]. We obtain
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FIG. 8. Coefficient Deff and velocity νz vs. parameter χ . The
radius of curvature of the invaded region, near the outlet, is
independent of the injected volume (� : N = 2000, � : N = 4000,
and • : N = 8000) and is given by Deff 	 d χ provided that the
gravity effects are large enough (χ � 30

√
N ). In the same conditions,

the typical vertical size of the structure 	z increases linearly with N .
The velocity (the slope) νz scales like d/

√
χ , the prefactor being of

the order of unity.

that Deff 	 d χ for, again, χ � 30
√

N . Finally, to complete
the description of the invasion pattern, one must consider the
relation between the height 	z and N (the injected volume).
For large enough injected volumes (large N , i.e., χ � 30

√
N ),

	z depends linearly on N so that one can define the typical
vertical growth velocity νz ≡ d	z/dN . One observes that,
numerically, νz ∝ d/

√
χ , the prefactor (about 0.8) being of

the order of unity [Fig. 8(b)].

IV. DISCUSSION AND CONCLUSION

Contrary to classical growth models [11–14], our model
takes into account both a heterogeneous medium (capillary
overpressure distribution) and the effect of an external field
(gravity). Previous studies of fluid invasion in a 2D porous
medium, including the gravity destabilizing effect, focused on
the geometry of a single invasion pattern [18,19]. By contrast,
our work aims at characterizing the morphology of the region
potentially explored by the invading fluid. The numerical
results show that, as expected, the shape of the invaded region
depends drastically on χ (i.e., on the effective gravity). Less
obvious, an increase of N (i.e., of the injected volume) does
not simply lead to a dilation of the invaded region, but to a
change in 
 (i.e., in the geometry).

The present numerical model exhibits a much richer
behavior than that exhibited by our previous analytical
analysis [24]. Indeed, formerly, the side branching and the
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return of the air path to a previous lower position were
not allowed. The path was forced to grow upward. The
main difference in the results is that, formerly, the radius of
curvature (or effective diffusion coefficient) Deff was predicted
to be a complex function of χ whereas the prediction of the
present numerical results is that Deff 	 d χ for χ � 30

√
N . In

addition, we report that the vertical size of the structure is linear
as a function of the injected volume V and we estimate the
dependence of the associated velocity on the control parameter
χ , νz 	 0.8d/

√
χ .

It is particularly interesting to interpret the parameter
χ ≡ σP /ρgd, which compares the width of the distribution
of the capillary overpressure within the pores to the variation
of the hydrostatic pressure over the grain size. On the one
hand, for a given injected volume N , the air inside the
existing path being connected, one can consider the path
as an isobar. On the other hand, the pressure in the liquid,
outside the air path, increases from the path tip (its highest
point) downward, which makes the formation of the side
branches more and more difficult at depth, below the path
tip. Considering the meaning of χ , one can estimate that side
branches cannot form at a distance larger than d χ below the
tip. As a consequence, the gas injection results either in the
formation of side branches in a region of typical height d χ

(in a local increase of the gas fraction or in the widening of
the structure) or in the growth of the tip upward. The result of
such complex dynamics is a complex path exhibiting more or
less side branches depending on the value of χ . Interestingly,
on average, the gas occupies an elongated region whose radius
of curvature near the outlet is d χ , as shown by the numerical
results.

From the dependence of the height 	z and typical width√
Deff	z, we can estimate the typical gaseous fraction F in-

side the invaded region. Estimating the corresponding surface
area

√
Deffh

3/2, one gets from simple algebra F ∼ χ1/4/
√

N ,

thus dependent on χ and on the injected volume (on N ). The
fraction F slightly increases when χ increases (i.e., when the
gravity effects are reduced and the side branching enhanced).
In addition, denoting w the typical relative variation of the pore
size as proposed in Ref. [24], one can estimate further that σp ∼
wγ/d and, thus, that χ ∼ wγ/(ρgeffd

2). Thus, considering
that the pore volume vp ∝ d2 and taking into account the
result obtained for νz, we are taught that the maximum height
reached by the gas within the granular does not depend on
the grain size and scales like V/(lc

√
w) where lc ≡ √

γ /ρgeff .
Thus, provided that the proposed estimate of χ is correct, for
a given volume V , the maximum height is controlled by the
capillary length lc and the relative width w, which account for
the heterogeneity of the capillary overpressure.

In conclusion, we reported results of a numerical study
which makes it possible to predict from the knowledge of
one single control parameter χ the typical height, width, and
gaseous fraction of the region invaded by a given volume of
gas liberated at the base of an immersed granular bed. Such
results could be of practical importance: For instance, gas can
be trapped on purpose in an underground natural container
below a granular slurry. Our results can help in predicting if
the gas is likely to reach the free surface and escape the system
if the container presents a defect (hole or fracture). The present
study will be extended, from the theoretical point of view, to
a slightly different geometrical situation, especially to the 3D
case and, from the experimental point of view, to the case of a
horizontal liquid flow.

ACKNOWLEDGMENTS

G.V. acknowledges a grant by CONICYT (Comisión
Nacional de Investigación Cientı́fica y Tecnológica, Gobierno
de Chile). The authors thank F. Vittoz for the technical
support.

[1] T. Mörz, E. A. Karlik, S. Kreiter, and A. Kopf, Sediment. Geol.
196, 251 (2007).

[2] L. Naudts, J. Greinert, Y. Artemov, S. E. Beaubien, C. Borowski,
and M. De Batist, Mar. Geol. 251, 253 (2008).

[3] I. N. Tsimpanogiannis and P. C. Lichtner, Phys. Rev. E 74,
056303 (2006).

[4] A. Mazzini, A. Nermoen, M. Krotkiewski, Y. Podladchikov,
S. Planke, and H. Svensen, Mar. Petrol. Geol. 26, 1751 (2009).

[5] L. A. Porrit, R. A. F. Cas, and B. B. Crawford, J. Volcanol.
Geotherm. Res. 174, 90 (2008).

[6] L. A. Porrit, R. A. F. Cas, and B. B. Crawford, J. Volcanol.
Geotherm. Res. 178, 851 (2008).

[7] R. J. Brown, M. Field, T. Gernon, M. Gilbertson, and R. S. J.
Sparksa, J. Volcanol. Geotherm. Res. 178, 847 (2008).

[8] R. Semer, J. A. Adams, and K. R. Reddy, Geotech. Geol. Eng.
16, 69 (1998).

[9] K. R. Newman et al., Earth Planet. Sci. Lett. 267, 341 (2008).
[10] H. Svensen, S. Planke, A. Malthe-Sørenssen, B. Jamtveit,

R. Myklebust, T. R. Eldem, and S. Rey, Nature (London) 429,
542 (2004).

[11] M. Eden, in Proceedings of the Fourth Berkeley Symposium on
Mathematical Statistics and Probability, edited by J. Neyman,
(University of California Press, Berkeley, CA, 1961), p. 223.

[12] M. J. Vold, J. Colloid Sci. 18, 684 (1963).
[13] D. N. Sutherland, J. Colloid Interface Sci. 22, 300 (1966).
[14] T. A. Witten and Jr., L. M. Sander, Phys. Rev. Lett. 47, 1400

(1981).
[15] P. Meakin, J. Colloid Interface Sci. 96, 415 (1983).
[16] H. Martı́n, J. Vannimenus, and J. P. Nadal, Phys. Rev. A 30, 3205

(1984).
[17] M. Chaouche, N. Rakotomalala, D. Salin, B. Xu, and Y. C.

Yortsos, Phys. Rev. E 49, 4133 (1994).
[18] A. Birovljev, L. Furuberg, J. Feder, T. Jøssang, K. J. Måløy, and
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(2011).

[25] L. Gostiaux, H. Gayvallet, and J.-C. Géminard, Granular
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