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Simplification des expressions booléennes affines

Résumé : Les expressions affines booléennes, qui combinent des inégalités
affines & I'aide d’opérateurs booléens, apparaissent dans de nombreux domaines
de Vinformatique comme 'analyse statique, la génération de code, la synthése
matérielle et le model checking symbolique. Elles permettent de représenter de
facon compacte des ensembles trés grands et méme infinis. Les algorithmes qui
permettent de les manipuler ont tendence a construire des formules fortement
redondantes et de taille croissante; il est donc nécessaire d’utiliser un simpli-
fieur si 'on veut en maintenir la complexité dans des limites raisonables. La
simplification est un probléme difficile, au moins aussi difficile que le test de
satisfiabilité, et donc de complexité exponentielle dans le pire cas. Cet article
propose une nouvelle méthode de simplification, basée sur I’analyse des chemins
dans un diagramme de décision ordonné. Cette méthode est capable d’exploiter
les régularités d’une formule pour en accélérer la simplification. L’algorithme
a été implémenté en Java et testé sur une série d’exemples en provenance de
divers domaines d’application.

Mots-clés : Simplification, inégalités affines, expressions booléennes, diagrammes
de décision, polyédres non convexes
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Simplification of Boolean Affine Formulas

Paul Feautrier

July 19, 2011

Abstract Boolean Affine Formulas, in which affine inequalities are combined by
boolean connectives, are ubiquitous in computer science : static analysis, code and
hardware generation, symbolic model checking and many other techniques use them
as a compact representation of large or infinite sets. Common algorithms tend to
generate large and highly redundant formulas, hence the necessity of a simplifier for
keeping the overall complexity under control. Simplification is a difficult problem, at
least as hard as SMT solving, with a worst case complexity exponential in the number
of affine inequalities. This paper proposes a new method, based on path cutting in
Ordered Binary Decision Diagrams, which is able to take advantage of any regularity
in the subject formula to speed up simplification. The method has been implemented
and was tested on benchmarks from several application domains.

1 Introduction and Motivation

1.1 Boolean Affine Formulas and their Use

An affine atom is a strict f(#) > 0 or non-strict inequality f(Z) > 0, where
f is an affine form f(Z) = c¢.Z + d. The variables (or unknowns) # may take
rational or integer values. Since the coefficients ¢ and d must be represented
in a computer memory, they are rational, and can be assumed, without loss of
generality, to be integers. Boolean Affine Formulas are constructed from affine
atoms by the usual logical connectives, A,V,— and maybe others. A boolean
affine formula in n variables may be taken as the representation of a set of points
in Q™ or Z™. This set is a polyhedron, which may be convex or not.

Boolean affine formulas are found in many fields of computer science, in-
cluding static program analysis [5], symbolic model checking [15], dependence
analysis and scheduling [10], code generation [2, 3] and hardware synthesis [1].
Usually, the authors take pains to restrict their formulas to conjunctions only, or,
equivalently, to convex polyhedra, at the price of conservative approximations.
Most analysis algorithms are iterative. As the iteration progress, formulas have
a tendency to grow without limits, hence the necessity of systematic simplifi-
cations. Here, simplification is understood as the removal of redundant atoms,
even if this entails an increase in the complexity of the boolean skeleton of the
formula. This is especially important in the case of hardware synthesis : while
the cost of a boolean connective is a few transistors, the evaluation of an affine
atom needs adders, multipliers, and possibly several clock cycles.

Boolean affine simplification is a difficult problem. If the simplifier is com-
plete, then an unsatisfiable formula must simplify to false, hence simplification

*Compsys, INRIA, ENS-Lyon, LIP, UMR 5668 CNRS, UCB-Lyon
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4 Paul Feautrier

is at least as difficult as satisfiability testing. Furthermore, a boolean formula, in
which atoms are logical variables, can always be transformed into an equivalent
boolean affine formula by replacing each logical variable p; by the inequality
xz; > 0. Hence, there is small hope of finding a simplification algorithm of less
than exponential worst case complexity. One can either trade completeness for
efficiency, or construct algorithms that take advantage of the peculiarities of
the subject formula to reduce complexity. A similar phenomenon occurs when
boolean formulas are represented by Reduced Ordered Binary Decision Dia-
grams [4]. ROBDDs are a canonical representation, and hence an unsatisfiable
formula is represented by an ROBDD with only one false leaf. However, the
ROBDD for an arbitrary boolean formula may have exponential size. ROBDD
are interesting because most of the formulas one encounters in practice have
small representations.

This paper is organized as follows : the next section describe notations and
present some related works. A new approach is proposed in Sect. 2. The basic
idea is that simplifications are associated to unfeasible paths in the associated
OBDD. While still of exponential complexity in the worst case, this method
can take advantage of structural properties of the subject formula to be much
faster in practical situations. Sect. 3 reports on a preliminary implementation
and benchmarks.

1.2 Notations

Logical formulas are written using the usual propositional connectives =, A, V,
=, < in that order of precedence. Another useful connective is the ternary if x
then y else z, written ite(z,y, z), which has the truth value of y if x is true,
and that of z if x is false.

In the present work, one is given a fixed list of atoms aq,...,a,, which are
affine inequalities :

m
a(?) = Zcixi +co >~ 0. (1)
i=1
The ¢; can be taken as integers, and the comparator > can be restricted, without
loss of generality, to > or >. The arithmetic variables z1, ...z, may be integral
or rational. Notice that the negation of an affine atom is an affine atom. Also,
when the x; are integral, each inequality can be reduced to lowest terms : if g
is the gecd of the ¢;, the above inequality is equivalent to :

Z %xz + [co/g] >~ 0. (2)

1.3 Related Work

The simplification of pure Boolean formulas has been the subject of much
research since the seminal work of W. V. O. Quine. For an extensive treatment
and applications to logical synthesis, see de Micheli’s textbook [7].

The problem of simplifying conjunctive boolean affine formulas is well known
and has been much studied, especially in the context of Fourier-Motzkin elimi-
nation. A first approach is based on the fact that a,, is redundant in a1 A...Aay,
iff ay A...Aan,_1Aa, is unfeasible. In the second approach, one notices that the
formula to be simplified defines a polyhedron, which can be represented without

INRIA



Simplification of Boolean Affine Formulas 5

redundancy as the convex hull of its vertices and rays. This representation can
be computed by several algorithms, as for instance the Chernikova algorithm,
and a second application of the same algorithm reconstructs a non redundant
system of equivalent constraints. Which method is faster depends on the shape
of the polyhedron.

In the general case, one says that a, can be eliminated from f(aq,...,a,) if
there exists a formula g which does not depends on a,, such that

VZ: flat,...,an) =glat,...,an-1).

Dillig et. al. [8] have proposed another definition of elimination : a, can
be eliminated from f(ay,...,a,) if one of the formulas f(ai,...,a;,—1,true)
or f(ay,...,an_1,false) is equivalent to f. While this is clearly sound, it is
not complete : the reader may care to check that the formula ite(z > 0,2 <
1,2 > —1) cannot be simplified in this way, i.e. that the atom = > 0 cannot be
eliminated, but that this formula is equivalent to —1 < z < 1.

In fact, the two methods are equivalent for pure boolean atoms. If

flar,...;an) =g(a1,...,an-1), (3)

then
flar,...;an) =g(a1,...,an-1) = f(a1,...,true) = f(ai,...,false).

This reasoning is sound, because in the boolean case, equation (3) is uni-
versally quantified over all boolean values for the atoms, and true is a
legitimate value for a,. In the affine case, the formula is quantified over the
Z variables, and (3) does not imply that f(a1,...,true) = g(ai,...,an-1)
for all values of ©. Hence, the present method simplifies all formulas which
are simplified by Dillig et. al., but the reverse is not true.

The work of Scholl et. al. [13] is closest to the present work : they use the
same definition of simplification. They start by devising a formula which, if
unsatisfiable, implies that one of the atoms can be eliminated. This formula
is submitted to an SMT solver. The eventual proof of unsatisfiablility gives
indications on how to build the simplified formula. The disadvantage of this
method is that it necessitates a satisfiability check on a formula of almost double
the size of the original formula. This drawback is also present in Dillig’s method,
but it can be mitigated by a detailed analysis of the subject formula.

2 Binary Decision Diagrams

It has been noticed [4] that the if then else ternary connective and the
constants true and false are complete for Boolean algebra, since :

—~x = ite(x,false,true),
x Ay = ite(x,y,false),
xVy = ite(x,true,y).

A formula using only the ite connective can be seen as a tree whose interior
nodes are decorated with atoms and whose leaves are either 0 or 1 (false or
true, respectively). Such a binary decision diagram is ordered if, on any path
from the root to a leaf, the atoms always occur in the same order. An ordered
BDD is reduced if the following two rules have been applied as much as possible :

RR n°® 7689



6 Paul Feautrier

1. No node has isomorphic left and right subtrees,

2. Isomorphic subtrees are stored only once; if this rule is applied, the dia-
gram is no longer a tree but a DAG.

The important point is that reduced ordered BDDs (ROBDDs) are a normal
form for boolean expressions : two boolean expressions which have the same
truth table have isomorphic ROBDDs.

If the boolean values of all atoms are known, one can evaluate the BDD by
a kind of pointer chasing algorithm : start from the root, and move to the left
son if the current atom has the value true, or to the right son if false, until a
leaf is reached.

Let tt(u) (resp. ff(u)) be the left son (resp. right son) of node u, and let
a(u) be the atom which decorates u. By convention, the left node is associated
to the truth of a(u), and the right node is associated to its falsehood. One can
extract a logical formula from a BDD, simply by converting each node to an ite
operation :

extract(u) = ite(a(u),extract(tt(u)), extract(ff(u))),
extract(0) = false,
extract(l) = true.

However, one can do slightly better by applying pattern matching rules, like :

ite(z,y,0) Ay, (4)
ite(z,y,1) = ==y,

ite(z,1,y) = xVuy,

ite(z,y,y) = .

The last rule may seem to be redundant if the first reduction rule has been
applied consistently. However, this may not be the case after simplification.

A path in a BDD is simply a word on the alphabet {0,1}. To each path w
one may associate a node n(w) in the BDD : the root of the BDD is associated
to the empty path €, n(w.1) = tt(n(w)) and n(w.0) = ff(n(w)). Then , to each
path, one associates a clause 1, by the following recursive definition :

P = true
bur = tuAa(n(w))
Yuo = VuAnaln(w).
A path w is unfeasible if the associated clause 1, is unsatisfiable.
In this work, for reasons that will be clear later (see Theorem 1), reduction
uses only the first rule and the diagram stays a tree. One can see that such an

Ordered BDD is still a normal form for pure boolean formulas, the effect of rule
2 being only to reduce the memory footprint of the diagrams.

2.1 Simplification of OBDDs

For pure boolean formulas, the construction of an OBDD is by itself a sim-
plification algorithm : if f and g are equivalent, and if g does not depends on

INRIA



Simplification of Boolean Affine Formulas 7

1<z 2<zx
2<zx false 1<z false
true false true false
(a) : No simplification (b) : Simplification

FI1GURE 1 — Order and Simplification

atom a.,, then a,, does not occur in the ROBDD for g, and therefore does not
occur in the ROBDD for f since they are isomorphic. For boolean-affine formu-
las, further simplification can be achieved when the atoms are not independent,
i.e. when some conjunction of atoms or their negation is unsatisfiable. In the
context of BDDs, such clauses are associated to unfeasible paths. If a path is
unfeasible, it will never be traversed when evaluating the BDD, and hence can
be cut.

However, the existence of an unfeasible path in a BDD depends on the atom
order. Consider for instance the toy formula > 1 A x > 2. Fig 1(a) represents
the corresponding diagram for the order z > 1 before z > 2. The reader may
care to check that this diagram has no unfeasible path. If the order is reversed
(see Fig. 1(b)), the path 1.0 can be cut and the atom = > 1 can be eliminated.

This should not be taken as meaning that all n! orders are to be tested :

Theorem 1 Assume that atom a, is redundant. If in the subject OBDD a.,,
occurs in the last position (i.e. just above the leaves), then a, can be eliminated
by path cutting.

Proof If the atom a,(z1,..., %) can be eliminated from a for-
mula f(ay,...,a,), it means that there exists another formula g(ay, ..., a,—1)
such that :
flat,...;an) =glar,...,an—1). (5)

Remember that rule 2 above has not be used, and hence that the
BDD for f is a tree. Consider an occurrence of a,. There exists a
unique path w from the root to this occurence, which is associated
to the clause v,,. If ¥, is unfeasible, so are 1,1 and .9, which
can be cut. Otherwise, i, is a conjuction of atoms which defines a
polyhedron P, in Q™ or Z™. In P, all ay,...,a,_1 have fixed truth
values, so has g, and so has f by (5). If this value is true, then the
path w.0 must be unfeasible and can be cut. The same argument
applies to w.1 if the truth value is false. The same reasoning can be
applied to all occurrences of a,,, and a, has been eliminated. ll

This suggest the following algorithm :
— Construct a BDD for the given formula
— For each atom in the formula :
— Bring all occurrences of the selected atom to the last position
— Cut all unfeasible paths from the root to a leaf throught an occurence
of the selected atom
— Extract the simplified formula from the BDD
Practically, cutting the link from a node to one of its sons is done by having
its father points directly to its other son.

RR n°® 7689



8 Paul Feautrier

2.2 Moving Atoms Around

The present task is to insure that each atom in turn occupies the last po-
sition in the BDD ordering. In [9], the authors study the problem of finding
the best order in term of the BDD size, and propose to move atoms down one
at a time until a local minimum is found. The corresponding programming is
quite complex, as one has to take into account all possible relations between
an occurrence of the moving atom and its two sons. The method which is used
here consists in repeatedly moving the last atom to the top position, using the
following algorithm.

Let B be the BDD to be modified, and let a be the atom to be brought to
the top.

— Build two copies B’ and B” of B. In B’, each a node is replaced by its

left son. In B”, each a node is replaced by its right son.

— Build the BDD for ite(a, B’, B").

Clearly, if the initial BDD is ordered and if a is the last atom, then the new
BDD will also be ordered, with a as the first atom. After n iterations, each
atom will have occupied the last position once (unless it is removed early by the
algorithm).

2.3 Heuristics and Extensions
2.3.1 Special cases

It is worthwhile to detect cases in which the simplification process can be
accelerated. Firstly, if the given formula is a tautology, or is unsatisfiable, it
simplifies respectively to true or false. This can be efficiently checked using
any SMT solver.

Second, if the formula is a conjunction, the reader may check that the pro-
posed algorithm reduces to negating each atom in turn and testing satisfiability.
This can be implemented directly, without recourse to BDDs, with a much lower
overhead. It may happen that a formula does not look like a conjunction, but
is equivalent to one due to boolean cancellation. This can be detected by using
an SMT solver based on semantic tableaux.

2.3.2 Semantic Tableaux

A semantic tableau [14, 6] is a systematic attempt to build a model of a
formula, i.e. to find a valuation that makes the formula true. A tableau is a
tree whose nodes are labeled by formulas (not to be confused with BDDs :
the semantics is quite different). One starts with a one-node tree wearing the
formula to be tested, and extend it by the following algorithm :

— Select a node with an unused formula,

— If the formula is of the form ——¢, extend each branch issuing from the
selected node by a node wearing ¢.

— If the formula is of the form ¢, extend each branch by two consecutive
nodes wearing ¢ and .

— If the formula is of the form —(¢ A1), split each outgoing branch in two,
one extended by —¢ and the other by —.

— A branch is boolean closed if it contains a formula and its negation.

INRIA
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— A branch is affine closed if the conjunction of its atoms is unfeasible. Since
the atoms are affine, this can be checked using any Linear Program solver.
The development rules can be summarized by the following diagrams :

o 2L Ay
oS T

There are many variations on this basic scheme. One may easily introduce
rules for other boolean connectives, or work with signed formulas (see [6] for an
exhaustive discussion). For instance, the signed rules for ite are :

T : ite(¢, x,v) F :ite(¢, x,v)
T:¢| F:¢ T:¢| F:0¢
T:x| T:9 F:x| F:v

The point is that if all branches of a tableau are closed, then the formula at
its root is unsatisfiable. Furthermore, if a tableau has open branches then the
conjunction of the atoms in each open branch is a clause in the disjunctive nor-
mal form of its root formula. As a particular case, a tableau with just one open
branch indicates a conjunctive formula, whose simplification can be accelerated
as indicated above.

2.3.3 BDD Construction

Assume now that a tableau has been constructed for the subject formula. An
OBBD can be constructed from the collection of its open branches. The method
is based on the following tautology :

(aANB)V (-~aANC)V D =ite(a, BV D,CV D).

This can be interpreted as follows : let a be the first atom, aA B be the disjunction
of all branches containing a, —-a A C' the disjunction of all branches containing
—a, and D the disjunction of all branches containing neither a nor —a. Then
the associated OBDD has a as its root node, the left son being an OBDD for
BV D, and the right son an OBDD for C'V D. Incidentally, one sees that
D is duplicated in this construction, and this is the reason why OBDDs may
have a size exponential in the size of the input formula. One possible heuristics
consists in selecting an a such that D is of smallest size. The implementation of
this optimization is left for future work.

2.3.4 Putting Everything Together

All of this can be summarized by the following algorithm :
Build a tableau T for the formula to be simplified, ¢

If T is closed, return false

Build a tableau T for —¢

If T is closed, return true

ATl

Select the simplest of T} and Tg, T, i.e. the tableau with the minimum
number of open branches

RR n°® 7689



10 Paul Feautrier

<1 0<z+1 ~

true false true false

/\
true false true false
(a)
(b)
0<z+1
/xﬁl\ /:cgl\ r<1 false
true 0<z 0<zx false true false
/\ /\
false true true false (d)

FIGURE 2 — Simplification of ite(x > 0,2 < 1,z > —1)

6. If T has only one open branch, simplify it as in Sect. 2.3.1
7. If not, build an OBDD B for T as in Sect. 2.3.3

8. Repeat n times, where n is the number of atoms in ¢
— Cut unfeasible paths in B
— Move the bottom atom of B to the top as in Sect. 2.2

9. Extract a formula ¢ from B
10. Return v if T7 was selected in step 5, and —) if not.

As an example, Fig. 2 presents the successive stages in the simplification
of the formula ite(x > 0,2z < 1,z > —1). Fig. 2(a) corresponds to the order
0 <z,z <1z >-1.In (b), atom z > —1 has been moved to the bottom of
the BDD. In both cases, there are no unfeasible paths. In (c), £ > 0 is now at
the bottom. The path from the root to the true son of the leftmost occurence
of 0 < x is unfeasible and can be removed. Similarly, the path going to the true
son of the other occurrence of 0 < x can be removed. Fig. 2(d) is the simplified
OBDD, which represents x < 1Az > —1.

2.4 Quasts

A quast is similar to a BDD, with the difference that there may be many
different leaves, and that the atoms are not necessarily ordered. Quasts are
naturally constructed by parametric linear programming. In this case, leaves are
affine expressions, and the quast represents a piecewise affine function. Other
applications are to value-based dependence analysis [10] and code generation [3].
The aim of quast simplification is to create an equivalent sequential conditional
(in VHDL parlance), where each leaf has only one occurence, and where the

INRIA



Simplification of Boolean Affine Formulas 11

predicates are as simple as possible. One possibility is to extract from the quast
a reaching condition for each leaf, and to simplify it. One can do better by
noticing that when building the predicate for the k-th leaf, one knows that all
preceding predicates have tested false, and hence that the corresponding leaves
are don’t cares. Don’t cares (here noted 1) are then eliminated by rules like :

ite(x,y, L) = v.

Consider the following example, drawn from a high-level synthesis application
[1] :
ite (co+ces+1<1L,
ite(co+cs+1<L,5,85)
ite(CQ + ¢4 + 1 S Lv‘S’l) 53)

The formula associated to Sy is
ite(cotcs+1 < L,ite(ca + ¢4 + 1 < L, true, false), ite(co + ¢4 + 1 < L, true, false)),
and simplifies to ¢y + ¢4 + 1 < L. Next, the formula for S5 is :
ite(cot+cs+1 < L,ite(ca + ¢4 + 1 < L, L, true),ite(co + c4 + 1 < L, L, false)),
and simplifies to c3 + ¢3 + 1 < L. Lastly, the formula for S5 is :
ite(co+cs+1<Ljite(ca+eca+1<L, 1L, 1) ite(ca+cd+1<L,1, true)),
and simplifies to true. The final result is :

ite (co+cs+1<1L,
Sla
ite(c2 +c3+1< L, Sg, 53)

It is clear that the precise shape of the result will depend on the leaf order, but
this point must be taken care of from outside the simplifier.

3 Experimental Results

3.1 Implementation

The algorithm of Sect. 2.3.4 has been implemented as a library of Java
classes. The basic SMT solver is a home-made implementation of the Seman-
tic Tableau method, using the signed formula variant. Rules for many logical
connectives (implication, equivalence, if then else) have been added to sup-
plement the basic A and —. This tool is used for satisfiability checking and for
DNF construction.

The feasibility of a conjunctive affine formula is decided by the all-integer lin-
ear programming tool PIP !. PIP can handle both integer and rational variables
at the turn of a switch. Basically, PIP handles only the non-strict comparator
>. A strict comparison z > 0 is replaced by = > € where € is a new positive
parameter. In that case, PIP returns the solution as a piecewise affine function
of €, in which one has only to make ¢ tend to zero.

1. www.piplib.org
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12 Paul Feautrier

name | size | before [ after | time
Small

glg2.dat 3 2 1]0.012
g213.dat 5 3 2 | 0.015
split-centered.dat 4 3 2 | 0.030
dillig.dat 40 5 2| 0.10
scholl2.dat 7 4 3| 0.018
Quasts

matmul-3.quast2.dat 10 4 4 | 0.039
poly-1.quast1.dat 142 9 3| 0.14
poly-1.quast2.dat 62 8 2 | 0.062
poly-1.quast3.dat 131 8 4| 0.16
poly-1.quast4.dat 33 6 3| 0.051
poly-3.quastl.dat 18 4 1 0.023
poly-5.quast1.dat 8 4 2 | 0.012
poly-6.quast1.dat 11 4 2 | 0.033
choles-Q2.dat 2918 10 1] 0.22
choles-Q4.dat 5291 11 3] 046
choles-Q5.dat 5033 10 6| 041
choles-Q6.dat 1196 9 1 0.12
thomr-C23.dat 4105 11 6| 0.54
thomr-SX3.dat 2298 13 6| 0.53
thomr-WC3.dat 3275 16 3| 0.56
thomr-Z12.dat 2298 13 1 0.45
thomr-Z15.dat 1814 15 1 0.28

TABLE 1 — Experimental results

The BDD package is also home-made. It uses the standard unique hash-table
method [9] for detecting isomorphic diagrams.

Several frontends to the library have been implemented. They differ in their
input syntaxes, among which are a C-like form, the SMTLib smt2 syntax, and
the Mathematica syntax. There is also a quast simplifier with an ad-hoc syntax.

3.2 Benchmarks

The method has been tested on many benchmarks of various origins. The
experimental results are given in Table 1 and 2. All source files can be found
at URL http://www.ens-1lyon.fr/LIP/COMPSYS/Tools/Simple. The size of a
formula is the sum of the number of connectives and the number of atoms.
The “before” and “after” columns give the number of atoms before and after
simplification. These columns must be interpreted with care, as the method
may introduce atom negations, or split equalities. The time for simplification is
given in seconds, and was measured on an Intel Centrino 2 clocked at 2.5 GHz
with 2 GBytes of memory, running Ubuntu 10.10 and the Sun 1.5 JVM. On
repeating the experiments, the time variability was found to be quite large. The
reported value is the best of a serie of 8 experiments, and has been rounded to
two significant figures.
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name size | before | after | time
formula-026.m 19 10 8 | 0.60
formula-142.m 19 10 91| 0.65
formula-151.m 25 13 11 1.9
formula-192.m 25 13 10 1.3
formula-107.m 27 14 13 7.1
formula-069.m 27 14 12 11
formula-147.m 29 15 11 37
formula-011.m 29 15 14 11
formula-124.m 31 16 14 28
formula-115.m 31 16 14 81
formula-227.m 33 17 11 8.6
formula-263.m 33 17 13 40
formula-094.m 33 17 12 67
formula-228.m 33 17 0| 0.12

TABLE 2 — Random Formulas

The method has first been tested on a set of small examples, including those
which were used to illustrate this article. The following example from Dillig et.
al. [8] :

op=0V(op#O0ANop=1)V(op#O0ANop#1ANop=2)
V(iop£ONop#1NANop#2ANy#0)
V(op#£OANop#£1ANop#2Aop+#3)

is interesting in that its negation is a conjunction which can be simplified triv-
ially. An example from Scholl et. al. [13] :

20Ny >0 Az+y>0NAx+2y>0

shows that simplification is not a convergent process : it has two distinct out-
comes, none of which can be simplified further.

The method was then used to simplify quasts obtained from the code genera-
tion backend of a high level synthesis tool [1] and of an automatic parallelization
tool [11]. While all other examples were solved in rationals, the quasts exam-
ples, whose variables are loop counters or array subscripts, were simplified in
positive integers. Some of the formulas were large and had many atoms, but
simplification was found to be easy and very effective.

Lastly, the method was applied to the random formulas generated by David
Monniaux for testing a new quantifier elimination algorithm [12] (see Table 2).
Since these formulas? are in prenex normal form, it was easy to remove their
quantifier prefix and to attempt simplifying their body. Not surprisingly, these
examples were much more difficult to solve and did not simplify often. It is
likely that, on random examples, the algorithm runs at or near its worst case
complexity. This is borne out by the observation that problems of equivalent
size that have many simplifications run faster that those that do not : removing
an atom divides the worst case complexity by two.

2. also available on http://www-verimag.imag.fr/ monniaux/download/
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4 Conclusion

4.1 Contributions

The simplification method presented here is complete, and can be imple-
mented easily using known techniques. It leverages and combines several ap-
proaches : semantics tableaux for fast detection of tautologies and unsatisfiable
formulas, OBDD for boolean simplification, and a new technique, path cutting,
for the final effort. It would be easy to build a parallel version of the algorithm,
since the evaluation of a path in the OBDD is independent of all other paths.

While simplification is a global problem, it has been found that applying
local simplifications like ¢ A true = ¢ or ¢ V ¢ = ¢ is a cheap way of greatly
improving performance. In the integer case, simply replacing atoms by their
strengthening (2) may reduce the running time by more than a factor of 2.

The method is agnostics to the underlying theory, provided that this theory
is closed under negation — that the negation of an atom is still an atom — and
that it has an elementary satisfiability tester. To pursue the metaphor, it would
be possible to replace atoms by molecules — composite formulas — thus replacing
the Linear Program Solver by a full SMT solver. However, how to group atoms
into significant molecules is a difficult problem, which probably can only be
solved in the light of outside knowledge.

4.2 FExtensions

One should not assume that the present proposal is the ultimate in simpli-
fication. The restriction that the simplified formula uses only atoms from the
original precludes some interesting simplifications. Consider for instance the for-
mula z =0V x > 1, x an integer variable. It is obviously equivalent to x > 0,
but this cannot be found by the present method. What is needed here is an
oracle to propose the missing atom. It can then be introduced artificially in the
original, for instance as ite(z > 0,2 =0V > 1,2 =0V x > 1) which can then
be simplified to the expected result, provided one is careful in ordering atoms.

Since simplification is not a convergent process, there is no guarantee at
present that the result is minimal. Obtaining such a guarantee may need the
construction of a full simplification tree. In the same way, while logic synthesizers
may be indifferent to the boolean structure of their input, in code generation
applications this is not true for ordinary compilers : a post-optimization phase
or more comprehensive extraction rules (4) may be indicated.

Both in the case of code generation and of hardware synthesis, simplification
occurs in contexts which may allow further optimizations, for instance in the
form of strength reduction.

The present implementation has not been optimized in any way and is clut-
tered by many different internal representations which must be inter-converted
as the algorithm proceeds. A more streamlined version is needed.

Lastly, the great variability in performance is disturbing and warrants further
investigations. Whether it is due to the JVM and its garbage collector, or to
the operating system and its scheduler and memory manager, or even to the
processor power management module is unknown at present.
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