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émanant des établissements d’enseignement et de
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This paper introduces an adaptive time splitting technique for the solution of stiff evo-
lutionary PDEs that guarantees an effective error control of the simulation, independent
of the fastest physical time scale for highly unsteady problems. The strategy considers
a second order Strang method and another lower order embedded splitting scheme that
takes into account potential loss of order due to the stiffness featured by time-space
multi-scale phenomena. The scheme is then built upon a precise numerical analysis of
the method and a complementary numerical procedure, conceived to overcome classical
restrictions of adaptive time stepping schemes based on lower order embedded methods,
whenever asymptotic estimates fail to predict the dynamics of the problem. The perfor-
mance of the method in terms of control of integration errors is evaluated by numerical
simulations of stiff propagating waves coming from nonlinear chemical dynamics models
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as well as highly multi-scale nanosecond repetitively pulsed gas discharges, which allow
to illustrate the method capabilities to consistently describe a broad spectrum of time

scales and different physical scenarios for consecutive discharge/post-discharge phases.

Keywords: Time adaptive integration; error control; operator splitting; reaction-diffusion;
multi-scale reaction waves; multi-scale discharge.

AMS Subject Classification: 65G20, 65M15, 65Z05, 65L04, 35K57, 35A35, 35C07
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1. Introduction

Numerical simulations of multi-scale phenomena are commonly used for modeling

purposes in many applications such as combustion, plasma discharges, chemical va-

por deposition or air pollution modeling. In general, all these models raise several

difficulties created by the high number of unknowns, the wide range of temporal

scales due to large and detailed chemical kinetic mechanisms, as well as steep spatial

gradients associated with localized fronts of high chemical activity. In this context,

faced with the induced stiffness of these time dependent problems, a high performing

numerical strategy for multidimensional simulations considers a time operator split-

ting with dedicated high order time integration methods for reaction and diffusion

problems, in order to exploit efficiently the special features of each problem. Such

a numerical strategy for time discretization has been presented in [9] and extended

in [8] with multiresolution techniques for adaptive space discretization. The main

idea is to use a second order Strang scheme to solve independently reaction and

diffusion problems in three successive fractional steps, taking into account that for

multi-scale phenomena better performances are usually expected while ending the

splitting scheme by the part involving the fastest scales, as it has been proven in [5].

Therefore, based on these theoretical results and on the construction of the splitting

solver, this strategy provides an accurate resolution of such stiff problems even for

splitting time steps much larger than either the fastest time scales involved in the

source terms or the time step restrictions related to spatial grid discretizations.

Up to our days, fixed splitting time step schemes have been largely used in the

literature [16, 24, 22], and the relevance of our numerical strategy [9, 8] has been

evaluated in the framework of stiff reaction waves for which a constant splitting
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time step is more than reasonable to precisely describe the global coupling of the

split phenomena. However, such a fixed time stepping strategy would surely lead

to major difficulties and limitations for problems describing highly non stationary

models with very different dynamics such as flame ignition and propagation or

repetitively pulsed plasmas discharges [23], all the more in the framework of large

scale simulations. It is thus essential to be able to dynamically adapt splitting

time steps for the simulation of such multi-scale problems with strongly evolving

dynamics.

In order to guarantee a precise description of the coupled multi-scale phe-

nomenon, this splitting time step adaptation strategy must rely on a local error

estimate, which can be obtained by considering a lower order embedded method.

This is a common practice for ODEs numerical solution [13], which yields very effi-

cient and eventually high order methods for which time steps can dynamically adapt

according to a given tolerance, to sufficiently small values in order to cope with the

fastest time scales of the problem. However, it is well known that for stiff problems

and larger accuracy tolerances, the order of the methods can degenerate, yielding

non reliable error estimates and possibly, much larger global errors than expected

by the given tolerance. Such a scenario will be all the more valid in the framework of

the resolution of PDEs where fine grid and large gradients coupled with stiff source

terms lead to especially stiff problems. In particular, our numerical strategy [9, 8] is

built in such a way that the main source of error is the splitting error, each building

block relying on high order adaptive and dedicated numerical methods; therefore,

it is essential not only to construct a reliable splitting error estimate, but also to

guarantee an effective error control within the so claimed accuracy tolerance.

In this article, we present a novel strategy to control the local splitting error

with two different splitting schemes, the first one is a second order Strang technique

whereas the second one considers a shifted Strang formula, built with a ε-shift in

time of the classical Strang formula. This second method is embedded because the

first substep is common to both methods to reduce computational cost, and inherits

from the Strang scheme, stability properties and the same numerical behavior in the

context of stiff problems; nevertheless, it is only of order one due to the slightly lack

of symmetry. In the first part of the paper, we conduct a complete error estimate

of this new splitting method in order to characterize the local error estimate that

will be computed out of first and second order splitting resolutions. We define then

a domain of application of the adaptive method in which the local error estimates

guarantee an effective error control of the solution according to the given tolerance.

The key issue is related to the evaluation of a maximum splitting time step, called

the critical splitting time step, as a function of ε, for which local error estimates

are valid. A numerical validation of the theoretical estimates is performed in the

framework of traveling reaction waves for a simple PDE, for which the threshold and

critical time steps can be also theoretically estimated and compared with numerical

results.

However, in order to extend the numerical strategy to more realistic configu-
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rations, for which theoretical evaluation of critical time steps is out of reach, we

develop a complementary and general numerical procedure based on numerical es-

timates, that allows to establish the domain of application of the method by simul-

taneously choosing the appropriate ε for a given tolerance. This procedure is tested

in the framework of nonlinear chemical dynamics of Belousov-Zhabotinsky (BZ)

reactions in a very stiff case in both time and space, yielding satisfactory results.

As a consequence, a final numerical strategy is conceived that considers adaptive

splitting time steps and that evaluates simultaneously critical time steps as well as

best-suited ε, in order to guarantee error control for a given accuracy tolerance of

the simulation with splitting time steps as large as possible. The relevance of the

proposed strategy is first evaluated for the BZ reaction-diffusion equations, whereas

a more complex problem issued from the simulation of multi-pulsed gas discharges

involving several dynamics with very different typical time scales, constitutes the

second test-case. It is shown that for this second very stiff reaction-diffusion sys-

tem, splitting time steps can cover a range of three orders of magnitude and always

guarantee a proper respect of the prescribed tolerance.

The paper is organized as follows: section 2 describes the adaptive time splitting

strategy; in section 3, we perform the numerical analysis of the proposed method

and identify the limit of validity of the local error estimate which is at the heart

of the adapting procedure. Section 4 is devoted to the validation of the previous

theoretical estimates and to a theoretical/numerical study of the critical splitting

time steps in the context of a 1D reaction-diffusion problem featuring traveling

wave solutions. In section 5 we present the final numerical strategy that includes an

additional numerical procedure to evaluate critical time steps and suitable ε. The

potential of the method is illustrated for the proposed two test-cases in section 6.

We end in the last part with some concluding remarks.

2. Adaptive Time Splitting Method

Let us first set the general mathematical framework of this work. A class of multi-

scale phenomena can be modeled by general reaction-diffusion systems of type:

∂tu− ∂x (D(u)∂xu) = f (u) , x ∈ R
d, t > 0,

u(0,x) = u0(x), x ∈ R
d, t = 0,

}

(2.1)

where f : Rm → R
m and u : R × R

d → R
m, with a tensor of order d × d × m as

diffusion matrix D(u).

In the following we will focus on the simplified case of linear diagonal diffusion,

for which the elements of the diffusion matrix are written as Di1i2i3(u) = Di3δi1i2
for some positive indices i1, i2, i3, so that the diffusion operator reduces to the heat

operator with some scalar diffusion coefficient Di3 for component ui3 of u. A scalar

one-dimensional model is considered in order to simplify the presentation, taking
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into account that extension into higher dimensions of x or u is straightforward:

∂tu− ∂2
xu = f(u), x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R, t = 0,

}

(2.2)

where f and u0 are smooth functions. We denote by T tu0 the solution of (2.2).

Introducing standard decoupling of the diffusion and reaction parts of (2.2), we

denote by Xtu0 the solution of the diffusion equation:

∂tuD − ∂2
xuD = 0, x ∈ R, t > 0, (2.3)

with initial data uD(0, ·) = u0(·) after some time t; and by Y tu0, the solution of

the reaction part where spatial coordinate x can be considered as a parameter:

∂tuR = f(uR), x ∈ R, t > 0, (2.4)

with uR(0, ·) = u0(·).
The two Lie approximation formulae of the solution of system (2.2) are then

defined by

Lt
1u0 = XtY tu0, Lt

2u0 = Y tXtu0, (2.5)

whereas the two Strang approximation formulae [25, 26] are given by

St
1u0 = Xt/2Y tXt/2u0, St

2u0 = Y t/2XtY t/2u0. (2.6)

It is well known that Lie formulae (2.5) (resp. Strang formulae (2.6)) are an ap-

proximation of order 1 (resp. 2) of the exact solution of (2.2). Higher order splitting

schemes are also possible. Nevertheless, the order conditions for such composition

methods state that either negative time substeps or complex coefficients or non con-

vex combinations are necessary [13]. The formers imply usually important stability

restrictions and more sophisticated numerical implementations. In the particular

case of negative time steps, they are completely undesirable for PDEs that are

ill-posed for negative time progression.

An adaptive time stepping strategy is based on a local error estimate which can

be obtained by using two schemes of different order, in this case St
1 or St

2, locally

of order 3, and Lt
1 or Lt

2, locally of order 2. For instance, the Embedded Split-Step

Formulae given in [17] consider St
1 and Lt

2 or St
2 and Lt

1, noticing that

Lt
1u0 = XtY t/2Y t/2u0,

where Y t/2u0 is also used to compute St
2u0. Nevertheless, in the context of multi-

scale phenomena, order reductions may appear due to short-life transients associ-

ated with the fastest variables when one considers splitting time steps larger than

the fastest scales. It has been proved in [5] that better performances are expected

while ending the splitting scheme by the part involving the fastest time scales of

the phenomenon. In particular, in the case of linear diagonal diffusion problems,

no order loss is expected for the Lt
2 and St

2 schemes when fast scales are present in
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the reactive term. Therefore, the embedding procedure must be carefully conceived

taking into consideration these theoretical studies.

We introduce a shifted Strang formula

St
2,εu0 = Y (1/2−ε)tXtY (1/2+ε)tu0, (2.7)

locally of order 2, due to the lack of symmetry, for ε in [−1/2, 0) ∪ (0, 1/2]. In this

way, a local error estimate is computed based on two solutions for which orders are

guaranteed and a potential loss of order is simultaneous, following
(

S∆t
2 u0

S∆t
2,εu0

)

=

(

Y ∆t/2X∆tY ∆t/2u0

Y (1/2−ε)∆tX∆tY (1/2+ε)∆tu0

)

, (2.8)

for some splitting time step ∆t > 0. Embedding is accomplished as long as ε is

different from −1/2, that is S∆t
2,εu0 different from Lt

2u0. On the other hand, if ε is

equal to 1/2, S∆t
2,εu0 is defined as Lt

1u0, which it is not suitable for stiff configurations

as it was previously discussed [5]. Therefore, ε should be contained in (−1/2, 0) ∪
(0, 1/2). Shifted S∆t

1,εu0 is defined in a similar way and depending on the multi-scale

character of the problem, it might be the appropriate choice along with S∆t
1 u0.

Taking into account that

S∆t
2 u0 − S∆t

2,εu0 = S∆t
2 u0 − T∆tu0 + T∆tu0 − S∆t

2,εu0,

= O(∆t3) +O(∆t2) ≈ O(∆t2), (2.9)

for a given accuracy tolerance η,
∥
∥S∆t

2 u0 − S∆t
2,εu0

∥
∥ < η (2.10)

must be verified in order to accept current computation with ∆t, while new time

step is calculated by

∆tnew = υ∆t

√

η
∥
∥S∆t

2 u0 − S∆t
2,εu0

∥
∥
, (2.11)

with security factor 0 < υ ≤ 1 close to one. This comes from a classical adaptive time

stepping procedure for stiff ODEs solution, for which more sophisticated formulae

than (2.11) can be also considered, see [14] for example.

The error control of these adaptive methods is fully guaranteed as long as the

orders of both, the main and the embedded integration methods, remains valid. This

is the case for small enough time steps for which asymptotic theoretical estimates

hold, but remains an open problem for larger time steps for which the validity of the

formers is assumed. This is a key point in this work, because we propose not only a

new splitting strategy with adaptive time steps as described in this section, but we

aim also at applications for which splitting time steps may go beyond the fastest

scales associated with each subproblem in order to obtain important computational

savings. Therefore, a technique that guarantees consistently error control for all

possible separation scales must be pursued, but first of all, a detailed numerical

analysis of the method must be performed. This is the goal of the following part.
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3. Numerical Analysis of the Method

In this part, we develop the numerical analysis of the proposed method. It is mainly

based on the theoretical study of the introduced shifted Strang formula (2.7) and

the domain of validity of the local error estimates. However, first of all, we introduce

the Lie formalism which will be used as mathematical tool of analysis.

3.1. The Lie operator formalism

We introduce the Lie operator formalism in order to generalize the exponential of

a linear operator in the context of nonlinear operators. Let X be a Banach space,

T0 > 0 and F , an unbounded nonlinear operator from D(F ) ⊂ X to X , we consider

the general autonomous equation:

u′(t) = F (u(t)), 0 < t < T0,

u(0) = u0, t = 0.

}

(3.1)

The exact solution of this evolutionary equation is (formally) given by

u(t) = T tu0, 0 ≤ t ≤ T0 (3.2)

where T t is the semiflow associated with (3.1); in particular we can set F (u) =

∂2
xu + f(u) as in (2.2). The Lie operator DF associated with F is then a linear

operator acting on the space of operators defined in X [13, 6]. More precisely, for

any unbounded nonlinear operator G from D(G) ⊂ X to X with Fréchet derivative

G′, DF maps G into a new operator DFG, such that for any v in X :

(DFG)(v) = G′(v)F (v). (3.3)

Hence, by induction on n with solution u of (3.1), we obtain

∂n

∂tn
G(u(t)) = (Dn

FG)(u(t)),

and a formal Taylor expansion yields

G(u(t)) =

+∞∑

n=0

tn

n!

(
∂n

∂tn
G(u(t))

) ∣
∣
∣
∣
t=0

=

(
+∞∑

n=0

tn

n!
Dn

FG

)

u0 =
(
etDF G

)
u0. (3.4)

If we now assume that G is the identity operator Id, we obtain

u(t) = T tu0 =
(
etDF Id

)
u0.

Therefore, the Lie operator is indeed a way to write the solution of a nonlinear

equation in terms of a linear but differential operator. Following (3.4), an important

result obtained by Gröbner in 1960 [12], considers the composition of two semiflows

T t
1 and T s

2 associated with F1 and F2 for any v in X :

T t
1T

s
2 v =

(
esDF2T t

1

)
v =

(
esDF2 etDF1 Id

)
v.
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3.2. Error analysis

In this paragraph, we conduct the error analysis of the approximation of T t by

St
2,ε in a linear framework. Then, we extend these results to a general nonlinear

configuration given by problem (2.2), using the Lie operator formalism. General

estimates for the approximation of T t by St
2 are also drawn. We end in the last part

with a mathematical study that shows the domain of application of the method

described in § 2, for which an effective error control is guaranteed within an accuracy

tolerance. To simplify the notations in what follows, we will denote St
2 by St and

St
2,ε by St

ε.

Assume that A and B are linear bounded operators and define

St
εu0 = e(1/2−ε)tAetBe(1/2+ε)tAu0

as an approximation of et(A+B). The following theorem gives the expansion in pow-

ers of t of the difference between et(A+B) and St
ε. We recall the definition of the

brackets between A and B: [A,B] = AB − BA.

Theorem 3.1. Assume that A and B are linear bounded operators, for t and ε

small enough, the following asymptotic holds

et(A+B)u0−St
εu0 = −εt2[A,B]u0+

t3

24
(
[
A, [A,B]

]
+2
[
B, [A,B]

]
)u0+O(εt3)+O(t4).

Proof. Proof is straightforward by using the Taylor formula with integral remain-

der for a linear bounded operator A:

etA = Id + tA+
t2A2

2
+

t3A3

6
+

∫ t

0

(t− s)3

6
A4esA ds.

We extend now the previous theorem to our nonlinear framework given by (2.2).

In order to do this, we introduce the spaces C∞(R) of functions of class C∞ on R,

and C∞
b (R) of functions of class C∞ on R and bounded over R. We consider also

the Schwartz space S(R) defined by

S (R) = {g ∈ C∞(R) | sup
v∈R

|vα1∂α2

v g(v)| < ∞ for all integersα1, α2};

and we define the space S1(R), made out of functions v belonging to C∞
b (R) such

that v′ belongs to S(R). Let us consider now equation (2.2) and give the expansion

in powers of t of the difference between T t and St
ε, given by (2.7).

Theorem 3.2. Assume that u0 belongs to S1 (R) and that f belongs to C∞(R).
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For t and ε small enough, the following asymptotic holds

T tu0 − St
εu0 = −εt2f ′′(u0)

(
∂u0

∂x

)2

+
t3

24
(f ′(u0)f

′′(u0) + f(u0)f
(3)(u0))

(
∂u0

∂x

)2

− t3

12
f (4)(u0)

(
∂u0

∂x

)4

− t3

3
f (3)(u0)

(
∂u0

∂x

)2
∂2u0

∂x2

− t3

6
f ′′(u0)

(
∂2u0

∂x2

)2

+O(εt3) +O(t4). (3.5)

Proof. We introduce the two Lie operators D∆ and Df associated with ∂2
x and f

and write

T tu0 − St
εu0 =

(

et(D∆+Df )Id
)

u0 −
(

e(1/2+ε)tDf etD∆e(1/2−ε)tDf Id
)

u0.

With Theorem 3.1 we can deduce that

T tu0 − St
εu0 = −εt2 ([Df , D∆]Id)u0 +

t3

24

([
Df , [Df , D∆]

]
Id
)
u0

+
t3

12

([
D∆, [Df , D∆]

]
Id
)
u0 +O(εt3) +O(t4). (3.6)

We are not interested in giving the exact form of the terms O(εt3) and O(t4), but

these terms can be computed following the same technique developed in [6]. For the

term in O(t2), we have by definition and with (3.3),

([Df , D∆]Id) u0 = (Df (D∆Id)−D∆(Df Id))u0,

= (D∆Id)
′(u0)f(u0)− (Df Id)

′(u0)
∂2u0

∂x2
,

=
∂2

∂x2
(f(u0))− f ′(u0)

∂2u0

∂x2
.

The last term is by definition the Lie bracket between ∂2
x and f , a simple compu-

tation shows that

∂2f(u0)

∂x2
− f ′(u0)

∂2u0

∂x2
= f ′′(u0)

(
∂u0

∂x

)2

+ f ′(u0)
∂2u0

∂x2
− f ′(u0)

∂2u0

∂x2
,

= f ′′(u0)

(
∂u0

∂x

)2

.

Furthermore,

([
Df , [Df , D∆]

]
Id
)
(u0) = (f ′(u0)f

′′(u0) + f(u0)f
(3)(u0))

(
∂u0

∂x

)2
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and

([
D∆, [Df , D∆]

]
Id
)
u0 = −f (4)(u0)

(
∂u0

∂x

)4

− 4f (3)(u0)

(
∂u0

∂x

)2
∂2u0

∂x2

−2f ′′(u0)

(
∂2u0

∂x2

)2

.

All the terms are now computed and this concludes the proof of Theorem 3.2.

For ε = 0, the next corollary follows directly.

Corollary 3.1. Assume that u0 belongs to S1 (R) and that f belongs to C∞(R).

For t small enough, the following asymptotic holds

T tu0 − Stu0 =
t3

24
(f ′(u0)f

′′(u0) + f(u0)f
(3)(u0))

(
∂u0

∂x

)2

− t3

12
f (4)(u0)

(
∂u0

∂x

)4

− t3

3
f (3)(u0)

(
∂u0

∂x

)2
∂2u0

∂x2

− t3

6
f ′′(u0)

(
∂2u0

∂x2

)2

+O(t4). (3.7)

From (3.5) and (3.7), we can see that

Stu0 − St
εu0 = εt2f ′′(u0)

(
∂u0

∂x

)2

+O(εt3), (3.8)

and thus,

T tu0 − St
εu0 = T tu0 − Stu0

︸ ︷︷ ︸

O(t3)

+Stu0 − St
εu0

︸ ︷︷ ︸

O(εt2)

. (3.9)

Therefore, we are sure that the real local error of the method, T tu0 − Stu0, will be

bounded by the local error estimate, err = Stu0 − St
εu0, when for a given ε,

T tu0 − St
εu0 ≈ O(t2) (3.10)

is verified into (3.9); that is, when the embedded method is really of lower order as it

was assumed in (2.9). This will be always verified for small enough time steps t, for

which T tu0 − Stu0 ≈ O(t3) < err ≈ O(εt2) is guaranteed. Nevertheless, for larger

time steps, err will fail to properly predict T tu0 − Stu0 since we will eventually

have T tu0 − Stu0 ≈ O(t3) > err ≈ O(εt2). When this happens, (3.10) is no longer

true and the previous estimates show that we will rather have T tu0−St
εu0 ≈ O(t3),

and assumption (2.9) will no longer hold.

In order to overcome this difficulty, we must therefore estimate a critical time

step t⋆ > 0 such that for all t in [0, t∗], (3.10) is guaranteed for a given ε. This will

imply that Strang local error, T tu0−Stu0, will be indeed bounded by the local error

estimate, err, and that an effective error control will be achieved for err smaller

than a given accuracy tolerance η. Finally, a suitable choice of ε can be also made

since t⋆ is related to ε following (3.9).
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A natural strategy to predict this critical t⋆ will rely on the previous theoretical

estimates and on a more precise knowledge of the structure of the solutions of the

PDEs; this is for instance illustrated in the next part in the context of traveling

wave solutions.

4. Application to Reaction Traveling Waves

In this part, we will confront the previous theoretical study to a simple reaction

diffusion problem that admits self-similar traveling wave solutions such as the KPP

equation [18]. The main advantages of considering this kind of problems are that

analytic solutions exist and that the featured stiffness can be tuned using a space-

time scaling. Therefore, it provides a first numerical validation of the numerical

estimates of the method and an evaluation of its domain of application; and on

the other hand, a detailed study can be conducted on the impact of the stiffness

featured by propagating fronts with steep spatial gradients.

In what follows, we recast previous estimates in the context of these reaction

traveling waves, to then deduce an estimate of the time step t⋆ that defines the

limit of application of the method for which local error estimates yield effective

error control. We end with a numerical validation of the theoretical results in the

context of the resolution of KPP model.

4.1. Numerical estimates

We are interested in the propagation of self-similar waves modeled by parabolic

PDEs of type:

∂tu−D∂2
xu = kf(u), x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R, t = 0,

}

(4.1)

with solution u(x, t) = u0(x− ct), where c is the steady speed of the wavefront, and

D and k stand respectively for diffusion and reaction coefficients.

Considering Theorem 3.2 we obtain the following estimate for system (4.1).

Corollary 4.1. Assume that u0 belongs to S1 (R) and that f belongs to C∞(R).

For t and ε small enough, the following asymptotic holds

T tu0 − St
εu0 = −εkDt2f ′′(u0)

(
∂u0

∂x

)2

+
k2Dt3

24
(f ′(u0)f

′′(u0) + f(u0)f
(3)(u0))

(
∂u0

∂x

)2

−kD2t3

12
f (4)(u0)

(
∂u0

∂x

)4

− kD2t3

3
f (3)(u0)

(
∂u0

∂x

)2
∂2u0

∂x2

−kD2t3

6
f ′′(u0)

(
∂2u0

∂x2

)2

+O(εt3) +O(t4). (4.2)
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Proof. Proof follows directly from demonstration of Theorem 3.2, using (3.6) and

considering that

[Dkf , DD∆] = kD[Df , D∆],
[
[Dkf , DD∆], DD∆

]
= kD2

[
[Df , D∆], D∆

]
,

[
[Dkf , DD∆], Dkf

]
= k2D

[
[Df , D∆], Df

]
,

where DD∆ and Dkf are the Lie operators associated with D∂2
x and kf .

On the other hand, if we now consider system (4.1) with k = 1 and D = 1, the

following corollary establishes t∗ > 0 such that for all t in [0, t∗] (3.10) is guaranteed

for a given ε.

Corollary 4.2. Assume that u0 belongs to S1 (R) and that f belongs to C∞(R).

For a given ε small enough , define

M1 =

∥
∥
∥
∥
∥
f ′′(u0)

(
∂u0

∂x

)2
∥
∥
∥
∥
∥
L2

(4.3)

and

M2 =

∥
∥
∥
∥
∥

f ′(u0)f
′′(u0) + f(u0)f

(3)(u0)

24

(
∂u0

∂x

)2

− f (4)(u0)

12

(
∂u0

∂x

)4

−f (3)(u0)

3

(
∂u0

∂x

)2
∂2u0

∂x2
− f ′′(u0)

6

(
∂2u0

∂x2

)2
∥
∥
∥
∥
∥
L2

, (4.4)

define t⋆ by

t⋆M2 = εM1. (4.5)

For all t such that 0 < t ≤ t⋆ then

‖T tu0 − St
εu0‖L2 ≈ O(t2).

In a general case, if evaluation of the derivatives of u0 and f is feasible, it

is then possible to predict the domain of application of the method, [0, t⋆], for

a given ε based on the previous result. In the particular case of traveling wave

solutions for (4.1), diffusion and reaction coefficients, D and k, might be seen as

scaling coefficients in time and space. A dimensionless analysis of a traveling wave,

as shown in [11], can be then conducted considering a dimensionless time τ and a

dimensionless space r with

τ = kt and r = (k/D)1/2x.

This analysis allows to find a steady velocity of the wavefront,

c = xt ∝ (Dk)1/2, (4.6)

whereas the sharpness of the wave profile is measured by

ux|max ∝ (k/D)1/2. (4.7)
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Therefore, condition Dk = 1 implies constant velocity for all k = 1/D but greater

k (or smaller D) implies higher spatial gradients, and thus, stiffer configurations.

This study gives complementary information on the solution of (4.1) and in

particular, when condition Dk = 1 is satisfied, it allows to deduce from Corollary

4.2:

kt⋆M2 = εM1, (4.8)

with M1 and M2 given by (4.3) and (4.4). Therefore, stiffer configurations given by

the presence of steeper spatial gradients will restrain the application domain of the

method, according to (4.8). Nevertheless, for larger gradients, smaller time steps are

also required for a given level of accuracy and hence, we can expect a simultaneous

reduction of both critical and accurate splitting time steps.

4.2. Numerical illustration: KPP equation

Let us recall the Kolmogorov-Petrovskii-Piskunov model. In their original paper

[18], these authors introduced a model describing the propagation of a virus and

the first rigorous analysis of a stable traveling wave solution of a nonlinear reaction-

diffusion equation [11]. The equation is the following:

∂tu−D∂2
xu = k u2(1 − u), (4.9)

with homogeneous Neumann boundary conditions. We consider a 1D discretization

with 5001 points on a [−70, 70] region for which we have negligible spatial discretiza-

tion errors with respect to the ones coming from the numerical time integration.

The description of the dimensionless model and the structure of the exact solu-

tion can be found in [11] where the dimensionless analysis shows that in the case

of D = 1 and k = 1, the velocity of the self-similar traveling wave is c = 1/
√
2 and

the maximal gradient value reaches 1/
√
32. The key point of this illustration is that

the velocity of the traveling wave is proportional to (k D)1/2, whereas the maximal

gradient is proportional to (k/D)1/2. Hence, we consider the case kD = 1 for which

one may obtain steeper gradients for the same speed of propagation.

Throughout all this paper, exact solution T tu0 will be approximated by the res-

olution of the coupled reaction-diffusion problem performed by the Radau5 method

[15] with fine tolerances, ηRadau5 = 10−10. This solution will be referred as the refer-

ence or quasi-exact solution. Strang approximations Stu0 and St
εu0 will be computed

with a splitting technique recently introduced [8, 9], which considers Radau5 [15] to

solve locally point by point the reaction term; and the ROCK4 method [1] for the

diffusion problem. Radau5 [15] is a fifth order implicit Runge-Kutta method exhibit-

ing A- and L-stability properties to efficiently solve stiff systems of ODEs, whereas

ROCK4 [1] is formally a fourth order stabilized explicit Runge-Kutta method with

extended stability domain along the negative real axis, well suited to numerically

treat mildly stiff elliptic operators. Both methods implement adaptive time step-

ping techniques to guarantee computations within a prescribed accuracy tolerance.
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In order to properly discriminate the previously estimated splitting errors from those

coming from temporal integration of the substeps, we consider also fine tolerances,

ηRadau5 = ηROCK4 = 10−10.
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Fig. 1. KPP equation with k = 1. Local L2 errors for several splitting time steps ∆t and ε = 0.05
(top left), 0.005 (top right) and 0.0005 (bottom left). Bottom right: critical splitting time steps
∆t⋆ obtained when ‖T∆tu0 − S∆tu0‖L2 ≈ ‖S∆tu0 − S∆t

ε u0‖L2 in the numerical tests.

Figures 1 and 2 show L2 errors between T tu0, S
tu0 and St

εu0 solutions for k = 1,

k = 10 and k = 100 respectively, and several ε. Notice that estimates (3.5), (3.7)

and (3.8) for all three errors in (3.9) are verified and in particular, for ∆t larger than

critical ∆t⋆, the estimated error err = ‖S∆tu0 − S∆t
ε u0‖L2 is no longer predicting

the real local error given by T tu0 − Stu0.

With these results, we can also compare real ∆t⋆, obtained when ‖T∆tu0 −
S∆tu0‖L2 ≈ ‖S∆tu0 − S∆t

ε u0‖L2 in the numerical tests, with theoretically esti-

mated ∆t⋆ following (4.8). Table 1 summarizes these results where computation of

estimated ∆t⋆ in (4.8) is given by the computation of M1 and M2 with Maple c©

according to (4.3) and (4.4). A really good agreement can be observed even though

theoretical results underestimate the real values. The loss of order depicted by the

numerical results, is due to the influence of spatial gradients in the solution, as

it was proven in [3]. This explains the error of the predicted critical ∆t⋆ in (4.8)

whenever one gets close to the order loss region.

Numerical results show also that ‖S∆tu0 − S∆t
ε u0‖L2 ∝ ε according to (3.8)

and consequently, ∆t⋆ ∝ ε; therefore, the working region or domain of application
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Fig. 2. KPP equation with k = 10 (top) and k = 100 (bottom). Local L2 errors for several
splitting time steps ∆t and ε = 0.05 (left). Right: critical splitting time steps ∆t⋆ obtained when
‖T∆tu0 − S∆tu0‖L2 ≈ ‖S∆tu0 − S∆t

ε u0‖L2 in the numerical tests.

of the method, ∆t < ∆t⋆, depends directly on the choice of ε as it can be seen

in Table 1. Finally, in the context of traveling waves, these numerical experiments

show that ∆t⋆ ∝ k−1 ∝ 1/‖∂u0/∂x‖∞ according to Table 1; hence, application

domains are reduced for stiffer configurations but numerical results show also that

smaller time steps are required for the same level of accuracy. These conclusions

are easily extrapolated to more general self-similar propagating waves.

Table 1. KPP equation. Comparison between real ∆t⋆
real

, obtained when ‖T∆tu0 − S∆tu0‖L2 ≈
‖S∆tu0 − S∆t

ε u0‖L2 in the numerical tests, and theoretically estimated ∆t⋆
est

following (4.8).

ε = 0.05 ε = 0.005 ε = 0.0005

k = 1 ∆t⋆real 2.783 0.1274 1.17× 10−2

∆t⋆est 1.107 0.1107 1.11× 10−2

k = 10 ∆t⋆real 0.2803 1.29× 10−2 1.19× 10−3

∆t⋆est 0.1107 1.11× 10−2 1.11× 10−3

k = 100 ∆t⋆real 4.33× 10−2 2.12× 10−3 1.92× 10−4

∆t⋆est 1.11× 10−2 1.11× 10−3 1.11× 10−4
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5. Construction of the Numerical Strategy

We have presented in § 2, a time adaptive numerical scheme fully based on theo-

retical error estimates developed in § 3. We have also studied the necessary general

conditions in order to guarantee an effective error control based on local error esti-

mates. In particular, this has been shown in the case of reaction traveling waves in

§ 4, for which theoretical studies give us some insight into the PDE solution. Never-

theless, this is not always possible and it is usually difficult to carry out such kind

of analysis for more realistic models. Therefore, based on the theoretical analysis

and previous illustrations on the influence of the various parameters of the scheme,

a general numerical procedure that completes the adaptive scheme defined in § 2,

is introduced in the following.

In a first part, we will settle the theoretical framework and the numerical proce-

dure needed to estimate t⋆, and to define the appropriate ε. This will be illustrated

by numerical tests performed on a more complex model of time-space stiff propa-

gating waves. These theoretical and numerical studies will allow to define, at the

end, a final numerical strategy.

5.1. Numerical procedure to estimate critical t⋆ and ε

Let us consider general system (2.2), based on theoretical estimates (3.7) and (3.8),

we can write

S∆tu0 − T∆tu0 = C0∆t3, (5.1)

where C0 = C1(u0) +O(∆t4), and

S∆tu0 − S∆t
ε u0 = εCε∆t2, (5.2)

where Cε = C2(u0) + O(ε,∆t3); the dependence of Cε on ε is only given in the

higher order terms and it is thus neglected.

For a given ε, in the same spirit as Corollary 4.2, we search for a critical ∆t⋆

such that
∥
∥S∆tu0 − T∆tu0

∥
∥ ≤

∥
∥S∆tu0 − S∆t

ε u0

∥
∥ (5.3)

for all ∆t ≤ ∆t⋆. According to (5.1) and (5.2), we have then the following estimate:

∆t⋆ ≈ εCε

C0
. (5.4)

For a given ε, this gives an upper bound for the time steps for which the local error

estimate, err = ‖S∆tu0−S∆t
ε u0‖, is properly estimating the real Strang local error,

∥
∥S∆tu0 − T∆tu0

∥
∥, following (5.3).

In particular, when ∆t → ∆t⋆, we have that err ≈
∥
∥S∆tu0 − T∆tu0

∥
∥, and the

local error estimate is predicting more accurately the real error of integration. The

critical time step, ∆t⋆, is directly related to ε through (5.4) as we have already

shown in the previous numerical results in § 4.2. Therefore, a suitable ε will define

a critical ∆t⋆ such that the estimated splitting time steps ∆t for a given tolerance η
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will be close enough to critical ∆t⋆, in order to avoid an excessive overestimation of

the Strang local error and thus, larger time steps can be chosen for a given accuracy

tolerance η.

In order to compute ∆t⋆ for a given ε, we must first estimate C0 in (5.4),

since Cε is computed out of the local error estimate, err, for known ∆t and ε in

(5.2). Estimating C0 amounts to directly estimate Strang local error through (5.1)

and thus, the accuracy of the simulation might be controlled in this way without

relying on a local error estimate as proposed in the embedded method strategy in

§ 2. Nevertheless, as we will see in the following, in order to estimate C0 and the

Strang local error, we must define new local estimators and a numerical procedure

that becomes rapidly very expensive if we want to implement such error control

technique. Therefore, we must rely on a local error estimate given by a less expensive

strategy for which the computation of C0 is only performed from time to time to

guarantee the validity of local error estimates.

The next Lemma will be useful to define the numerical procedure to estimate

C0.

Lemma 5.1. Let us consider system (2.2) and assume a local Lipschitz condition

for f :

‖f(u)− f(v)‖ ≤ λ ‖u− v‖ . (5.5)

For a finite ∆t the following holds
∥
∥T∆tu0 − T∆tv0

∥
∥ ≤ ω ‖u0 − v0‖ , (5.6)

with ω = 1 + κ∆t for small enough ∆t.

Proof. Using Duhamel’s formula for (2.2) yields

T tu0 − T tv0 = et∂
2

x(u0 − v0) +

∫ t

0

e(t−s)∂2

x (f(T su0)− f(T sv0)) ds. (5.7)

Taking norms and applying recursively (5.7),

∥
∥T tu0 − T tv0

∥
∥ ≤ ‖u0 − v0‖+ λ

∫ t

0

‖T su0 − T sv0‖ ds,

≤ eλt‖u0 − v0‖, (5.8)

proves (5.6) for t = ∆t finite.

If we define a local estimator, e1 = Sa1∆tu0 − Sb1∆t(Sc1∆tu0), such that a1 =

b1 + c1, we obtain that

Sb1∆t(Sc1∆tu0)− T a1∆tu0 = Sb1∆t(Sc1∆tu0)− T b1∆t(Sc1∆tu0)

+T b1∆t(Sc1∆tu0)− T b1∆t(T c1∆tu0),

= CSc1∆tu0
b31∆t3

+T b1∆t(Sc1∆tu0)− T b1∆t(T c1∆tu0), (5.9)
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where CSc1∆tu0
= C1(S

c1∆tu0) +O(∆t4). Therefore, assuming that CSc1∆tu0
≈ C0

and considering Lemma 5.1, it follows from the difference between (5.1) at a1∆t

and (5.9):

‖e1 − (a31 − b31)C0∆t3‖ ≤ ω‖T c1∆tu0 − Sc1∆tu0‖,
≤ ωC0c

3
1∆t3. (5.10)

Hence, defining a second local estimator, e2 = Sa2∆tu0 − Sb2∆t(Sc2∆tu0), such

that a2 = b2 + c2, we obtain a second expression similar to (5.10) with e2 and

(a2, b2, c2), and we can estimate C0 and ω. In particular, we notice that b1 should

be close to b2 in order to better approximate ω into (5.6) and (5.10), and that c1
and c2 should also be small enough to guarantee CSc1∆tu0

≈ C0 and CSc2∆tu0
≈ C0.

On the other hand, to optimize the required number of extra computations from

a practical point of view, we can use the estimator e2 to compute estimator e1 by

setting a2 = c1, and we can also fix a1 = 1 so we can use Sa1∆tu0 for the time

integration of the problem. In this way, the extra computations needed to compute

local estimators e1 and e2 will be given by Sc2∆tu0, S
b2∆t(Sc2∆tu0), S

c1∆tu0 and

Sb1∆t(Sc1∆tu0) within a time step ∆t. Then, we will be able to compute ω and C0,

by solving two expressions of type (5.10). The next numerical example illustrates

the validity of this numerical procedure.

5.2. Numerical example of evaluation of critical t⋆: BZ equation

We are concerned with the numerical approximation of a model of the Belousov-

Zhabotinski reaction, a catalyzed oxidation of an organic species by acid bromated

ion (for more details and illustrations, see [10]). We thus consider the model intro-

duced in [11] and coming from the classic work of Field, Koros and Noyes (FKN)

(1972), which takes into account three species: HBrO2 (hypobromous acid), bromide

ions Br− and cerium(IV). Denoting by a = [Ce(IV)], b = [HBrO2] and c = [Br−],

we obtain a very stiff system of three partial differential equations:

∂ta−Da ∂
2
xa =

1

µ
(−qa− ab+ fc),

∂tb −Db ∂
2
xb =

1

ǫ
(qa− ab+ b(1− b)) ,

∂tc −Dc ∂
2
xc = b− c,







(5.11)

with diffusion coefficients Da, Db and Dc, and some real positive parameters f ,

small q, and small ǫ, µ, such that µ ≪ ǫ.

The dynamical system associated with this system models reactive excitable

media with a large time scale spectrum (see [11] for more details). Moreover, the

spatial configuration with addition of diffusion generates propagating wavefronts

with steep spatial gradients. Hence, this model presents all the difficulties associ-

ated with a stiff time-space multi-scale configuration. The advantages of applying

a splitting strategy to these models have already been studied and presented in [4].
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We consider the 1D application of problem (5.11) with homogeneous Neumann

boundary conditions in a space region of [0, 80] with a spatial discretization of 4001

points, good enough to prevent important spatial discretization errors, and the

following parameters, taken from [11]: ǫ = 10−2, µ = 10−5, f = 3 and q = 2× 10−4,

with diffusion coefficients Da = 1, Db = 1 and Dc = 0.6. Reference solution and

Strang approximations are defined in the same way as in the KPP application with

the same tolerances for the time integration solvers.

First of all, we validate theoretical order estimates (3.5), (3.7) and (3.8) and ver-

ify relation (3.9). Figure 3 shows L2 errors between T tu0, S
tu0 and St

εu0 solutions

for several ε and the real ∆t⋆ such that ‖T∆tu0 −S∆tu0‖L2 ≈ ‖S∆tu0 −S∆t
ε u0‖L2 ,

obtained after treating the numerical results. Maximum L2 error considers the max-

imum value between normalized local errors for a, b and c variables; in these nu-

merical tests, it corresponds usually to variable b.
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Fig. 3. BZ equation. Maximum local L2 errors for several splitting time steps ∆t and ε = 0.05
(top left), 0.005 (top right) and 0.0005 (bottom left). Bottom right: critical splitting time steps
∆t⋆ obtained when ‖T∆tu0 − S∆tu0‖L2 ≈ ‖S∆tu0 − S∆t

ε u0‖L2 in the numerical tests.

Let us now define the two sets (a1, b1, c1) and (a2, b2, c2), and compute local

estimators e1 and e2 in order to obtain C0 according to (5.10) with ∆t = ∆t0 =

10−5; that is a time step for which there is no order loss yet, as seen in Figure

3. As it was previously detailed, we consider a1 = 1 and a2 = c1 to avoid some

extra computations. Furthermore, b2 should be close to b1, and c1 and c2 small

enough. Setting b1 larger than 1/2 would yield more different b2 since c1 = a2. On
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the other hand, for b1 smaller than 1/2 we can even set b2 = b1 but in this case c1
will be larger than 1/2. Therefore, we reach a compromise by setting b1 = 1/2 that

yields c1 = a2 = 1/2, so we can choose for instance b2 = 2/5 close to b1, and thus,

c2 = 1/10.

With the local error estimate, err = ‖S∆tu0 − S∆t
ε u0‖L2 , for the various time

steps and several ε shown in Figure 3, Figure 4 presents the estimated critical ∆t⋆

calculated with (5.4) from the estimated C0(∆t0) and err. These critical time steps,

∆t⋆, estimated with (5.4) are in good agreement with numerically measured ∆t⋆ in

Figure 3, and depend on the value of ε. Hence, the domain of application or working

region of the method, ∆t ≤ ∆t⋆, might be settled depending on the desired level

of accuracy by means of an appropriate choice of ε. For instance, if we consider

the case ε = 0.05 in Figure 3, for ∆t = 10−6, the local error estimate is given by

err ≈ 10−10 whereas the real Strang local error is ∼ 10−12. This overestimation of

the local error will certainly imply an underestimation in the required size of the

time steps for a given tolerance. Therefore, for a given tolerance η a more suitable

configuration should consider an ε such that ∆t ≈ ∆t⋆ in order to reduce excessive

overestimations of local errors.
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Fig. 4. BZ equation. Working region of the method ∆t ≤ ∆t⋆ with ∆t⋆ calculated with C0

estimated at ∆t0 = 10−5 and err obtained for several splitting time steps ∆t and ε (left). Right:
predicted Strang error calculated with C0 estimated at ∆t0 = 10−5 and locally at several splitting
time steps ∆t.

In the illustration shown in Figure 4, C0 was estimated in the third order region

of the method and therefore, all values are well approximated as long as ∆t remains

in this region. In particular, critical ∆t⋆ will be progressively underestimated for

larger ε and consequently, it will impose smaller time steps for a given tolerance;

this is already the case for ε = 0.05, for which ∆t⋆ is in the transition zone towards

the lower order region. Even though the computation of C0 with small time steps

will be less expensive, a much more accurate procedure considers current time step

as shown in Figure 4. In particular, by estimating locally C0, we are estimating real

Strang error and thus, ∆t ≤ ∆t⋆ guarantees prescribed accuracy even if asymptotic

order estimates are no longer verified. This allows to properly extend the domain
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of application over the whole range of possible time steps for a given accuracy; an

extremely important issue for real applications for which splitting time steps may

go far beyond asymptotic behavior including the potential order reduction region

associated with the stiffness of the problem.

5.3. Numerical strategy

Previous studies conducted in § 5.1 and § 5.2 allow to properly complete the adaptive

splitting strategy introduced in § 2. In this part we conduct the final description of

the numerical strategy.

Let us consider general problem (2.1) for u ∈ R
m, for which we use St

2 in (2.6) as

resolution scheme. Depending on the problem, the adaptive method will be applied

considering time evolution of l ≤ m variables: ũ ∈ R
l. Let us denote Ωl the set of

indices of these variables. In order to consider only l < m variables, the formers

must be decoupled of the remaining m − l variables in the reactive term f(ũ) in

(2.1). To simplify the presentation, we will only consider ε ∈ (0, εmax), εmax < 1/2.

We set the accuracy tolerance η, an initial time step ∆t0 and initial ε0, and

perform the time integration of (2.1) with the Strang scheme St
2 and the embedded

shifted one St
2,ε given by (2.7). We compute local error estimate err and new time

step ∆tnew according to (2.11). If err is smaller than η, current time step solution

is accepted and simulation time evolves; otherwise, current solution is rejected and

the time integration is recomputed with ∆tnew. In particular, it is better to choose

rather small ∆t0 to avoid initial rejections.

In order to guarantee an effective error control, we define the working region

∆t ≤ ∆t⋆ by estimating the corresponding ∆t⋆ for current ε. This is done for the

first time step ∆t0 and then periodically after N accepted time steps depending on

the problem, based on the numerical procedure introduced in § 5.1. Computation

of critical ∆t⋆ is also performed with ũ, and a rather large initial ε0 is suitable to

initially guarantee ∆t ≤ ∆t⋆.

We define then a suitable working region ∆t ∈ [β∆t⋆, γ∆t⋆] with 0 < β < γ ≤ 1,

for which splitting time steps are close to ∆t⋆. A new ε is then computed if ∆t is

much lower than ∆t⋆ (∆t < β∆t⋆) in order to avoid unnecessary small time steps;

or if ∆t is very close or possibly larger than ∆t⋆ (∆t > γ∆t⋆) with γ close to one, in

order to increase upper bound of the domain of application. This guarantees that ε

is dynamically computed and properly adapted to the dynamics of the phenomenon.

Finally, the numerical resolution strategy can be summarized as follows, where

U ∈ R
m×n stands for the spatial discretization of u over n points, U := (u(j,k))

such that j ∈ [1,m] and k ∈ [1, n].

• Input parameters. Define accuracy tolerance η, time domain of study

[t0, T ], initial time step ∆t0, initial ε0, and period of computation of ∆t⋆:

N .

• Initialization. Set iteration counter i = 0 and t = t0, U = U0, ∆t = ∆t0,

ε = ε0. We define a flag estimate initialized as .false.. Throughout the
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whole computation, we need to store U, an array of size m× n.

• Time evolution. If t < T :

(1) Only if
i

N
=

⌊
i

N

⌋

or estimate is .true.:

Computation of critical ∆t⋆ I: For the sets (a1, b1, c1) and

(a2, b2, c2) with a1 = 1 and a2 = c1, we compute successively:

– Ũ1 = Sc2∆tŨ0, where Ũ0 is built out of U, Ũ0 = (u(j,·))j∈Ωl
;

– Ũ1 = Sb2∆tŨ1;

– Ũ2 = Sc1∆tŨ0;

– e1 = maxj∈Ωl
‖ũ(j,·)

2 − ũ
(j,·)
1 ‖;

– Ũ2 = Sb1∆tŨ2;

– estimate is set to .true..

These operations needs to store Ũ1 and Ũ2, two arrays of size l×n.

(2) Time integration over ∆t: We compute successively:

– for each k ∈ [1, n], u
(·,k)
new = Y ∆t/2u(·,k);

– for each k ∈ [1, n], ũ
(·,k)
1 = Y ε∆t u

(j,k)
new

∣
∣
∣
j∈Ωl

;

– U⋆ = X∆tU⋆, with U⋆ = t(Unew, Ũ1);

– for each k ∈ [1, n], u
(·,k)
⋆ = Y (1/2−ε)∆tu

(·,k)
⋆ ;

– for each k ∈ [1, n], u
(·,k)
new = Y ε∆tu

(·,k)
new ;

– err = maxj∈Ωl
‖ũ(j,·)

new − ũ
(j,·)
1 ‖.

We need to store Unew, an array of size m× n.

(3) Only if estimate is .true.:

Computation of critical ∆t⋆ II: We compute successively:

– e2 = maxj∈Ωl
‖ũ(j,·)

new − ũ
(j,·)
2 ‖;

– C0 using (5.10) with e1 and e2;

– estimate ∆t⋆ out of (5.4) and set ∆t⋆ = ζ∆t⋆ with security factor

0 < ζ ≤ 1 close to one;

– estimate is set to .false..

– If ∆t /∈ [β∆t⋆, γ∆t⋆] with 0 < β < γ ≤ 1: estimate is set to

.true..

(4) Only if estimate is .true. and i > 0:

Computation of ε: According to (5.4) with err, C0 and ∆t⋆ = ∆t:

– ε = min{θε, εmax} with θ ≥ 1 as security factor;

– computation of ∆t⋆ with new ε;

– estimate is set to .false..

(5) Computation ∆tnew: According to (2.11) with security factor 0 <

υ ≤ 1 close to one.

– If ∆t > ∆t⋆: set err = tol + C with C > 1. Used to potentially

reject initial ∆t = ∆t0.

– If ∆tnew > ∆t⋆ and ε 6= εmax: estimate is set to .true..
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– ∆t = min{∆tnew,∆t⋆}.
– If err ≤ tol: t = t + ∆t, i = i + 1, ∆t = min{∆t, T − t} and

U = Unew.

In this strategy, reaction is always integrated point by point if the reactive term

is modeled by a system of ODEs without spatial coupling. This integration can

be performed completely in parallel [9, 7]. On the other hand, for linear diffusion

problems, another alternative considers a variable by variable resolution, for each

j ∈ [1,m]
⋃
Ωl:

u
(j,·)
⋆ = X∆tu

(j,·)
⋆ , (5.12)

that can also be performed in parallel [9].

Depending on the problem, either the computation of critical ∆t⋆ (steps (1),

(3) and (4)), or the computation of ε (step (4)) can be potentially removed if one

considers large enough ε0 and fine enough η. Finally, the whole strategy with all

steps needs to store at worst two arrays of size l × n and other two of size m× n,

beyond memory requirements of diffusion and reaction solvers.

6. Final Numerical Evaluation of the Method

In this last part, we evaluate the performance of the method in terms of accuracy

of the simulation, and show that an effective control of the simulation error is per-

formed in the context of two different problems. First, we will consider a propagating

wave featuring time-space multi-scale character. Then, the potential of the method

is fully exploited for a more complex configuration of repetitive gas discharges gen-

erated by high frequency pulsed applied electric fields followed by long time scale

relaxation, for which a precise description of discharge and post-discharge phases is

achieved.

6.1. BZ equation revisited

Coming back to BZ model, we perform a time integration of (5.11) with several

accuracy tolerances η. First of all, we consider the numerical strategy detailed in

§ 5.3 without taking into account steps (1), (3) and (4), that is without computation

of neither critical ∆t⋆ nor ε. We set ∆t0 = 10−7 and ε0 = 0.05 in all cases, with

t ∈ [0, 2]. In this example, a rather small initial splitting time step is chosen to avoid

initial rejections even though this initial rejection phase usually does not take many

steps as it will shown in the next example. On the other hand, we have chosen a

intermediary value for ε in order to clearly distinguish the different behaviors of

the strategy in terms of prediction of the local errors depending on the proposed

tolerance.

Figure 5 shows time evolution of accepted splitting time steps ∆t. In this case,

BZ equation models a propagating self-similar wave, so splitting time step stabilizes

once the overall phenomenon is solved within the prescribed tolerance η. Local error
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estimates err are also shown, which naturally verify prescribed accuracy, since we

impose time steps for which err is limited by η through (2.11).
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Fig. 5. BZ equation. Time evolution of accepted splitting time steps ∆t (left) and local L2 error
estimates err = ‖S∆tu0 − S∆t

ε u0‖L2 (right), for several tolerances η and ε = 0.05.

Table 2 summarizes global L2 errors between splitting and reference solutions

at the end of the time domain of study, t = 2. For a fine enough η and consequently,

small enough time steps, a precise error control is achieved by the local error control

strategy as we could have expected from previous results in Figure 3 for ε = 0.05.

Nevertheless, for η = 10−4 we can see rather high global errors even if this configu-

ration considers naturally less time integration steps and thus, less accumulation of

local approximation errors. If we take a look at Figure 3, we note that for ε = 0.05

and local errors of about 10−4, the local error estimate, err, is not predicting prop-

erly real Strang errors, as it was previously discussed, since ∆t > ∆t⋆. Therefore,

a strategy that introduces a more precise description of errors for a larger range of

time steps must be considered, whenever the required accuracy casts the method

away from its asymptotic behavior. This is an under covered difficulty of any time

adaptive technique based on a lower order embedded method, and to our knowl-

edge, an open problem that has not been studied much, and that this work tries to

overcome.

Table 2. BZ equation. L2 errors at final time t = 2 for a, b, c variables and several tolerances η.

η L2 error a L2 error b L2 error c

10−4 7.97× 10−3 1.07× 10−2 4.72× 10−3

10−6 1.71× 10−6 1.83× 10−6 7.98× 10−7

10−8 1.45× 10−8 1.54× 10−8 6.78× 10−9

10−10 1.74× 10−10 1.75× 10−10 1.08× 10−10
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Let us now consider the entire strategy with all steps for several tolerances with

∆t0 = 5× 10−7 and ε0 = 0.05. In the following illustrations we have considered the

following parameters: εmax = 0.999; a1 = 1, b1 = c1 = a2 = 1/2, b2 = 2/5 and c2 =

1/10 for intermediary time steps evaluations; ζ = 0.9 as security factor of critical

∆t⋆ estimate; β = 0.1 and γ = 0.95 to define the working region ∆t ∈ [β∆t⋆, γ∆t⋆];

θ = 10 as security factor of ε estimate; C = 10 to potentially reject initial time step

∆t0; and υ = 0.9 as security factor of ∆tnew estimate. All local estimators, err, e1
and e2, are computed with normalized L2 norms.

Considering the propagating phenomenon, we set N = 10, but we estimate ∆t⋆

only twice for i = 0 and i = N . Figure 6 shows time evolution of splitting time

steps; there are different scenarios depending on the required accuracy. In all cases

for ε0 = 0.05, we estimate initially ∆t⋆ ≈ 1.4× 10−4. For η = 10−4, this limitation

implies smaller time steps than what is required for the prescribed tolerance. Thus,

∆t increases until ∆tnew > ∆t⋆ and a new ε is estimated: ε ≈ 0.43. No substantial

changes are made when i = N , since ∆t ∈ [β∆t⋆, γ∆t⋆] for the current η.
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Fig. 6. BZ equation. Time evolution of accepted splitting time steps ∆t (left) and local L2 error
estimates err = ‖S∆tu0 −S∆t

ε u0‖L2 (right), for several tolerances η, considering critical ∆t⋆ and
computation of ε.

For η = 10−6, we keep initial ∆t⋆ and ε0 since ∆t ∈ [β∆t⋆, γ∆t⋆] as we can

see in Figure 3. Finally, for η = 10−8 and η = 10−10, ∆t < β∆t⋆ and thus, ε is

recomputed, giving respectively ε ≈ 0.016 and 0.0016. In particular, we consider

larger splitting time steps for which Strang local errors are better predicted. Table

3 shows that error control is this time guaranteed for all values of tolerance η, and

thus, for a larger range of time steps. Compared with previous results in Table 2, we

correct completely the errors in the prediction of local error estimates, which yields

more accurate resolutions for the largest tolerances; whereas slightly less accurate

results are obtained for the smallest tolerances since larger splitting time steps are

considered.
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Table 3. BZ equation. L2 errors at final time t = 2 for a, b, c variables and several tolerances η,
considering critical ∆t⋆ and computation of ε.

η L2 error a L2 error b L2 error c

10−4 6.85× 10−5 9.04× 10−5 4.06× 10−5

10−6 1.71× 10−6 1.83× 10−6 7.98× 10−7

10−8 4.53× 10−8 4.84× 10−8 2.12× 10−8

10−10 4.48× 10−9 4.77× 10−9 2.15× 10−9

6.2. Simulation of multi-pulsed gas discharges

In this section, we consider a simplified model of plasma discharges at atmospheric

pressure for which we analyze the performance of the proposed numerical strategy

in a configuration of nanosecond repetitively pulsed discharges. This kind of phe-

nomenon is studied for plasma assisted combustion or flow control, for which the

enhancement of the gas flow chemistry or momentum transfer during typical time

scales of the flow of 10−4 − 10−3s, is due to consecutive discharges generated by

high frequency (in the kHz range) sinusoidal or pulsed applied voltages [23]. As a

consequence, during the post-discharge phases of the order of tens of microseconds,

not only time scales are very different from those during discharges of a few tens

of nanoseconds, but a complete different physics is taking place. Then, to the rapid

multi-scale configuration during discharges, we have to add other rather slower

multi-scale phenomena in the post-discharge, such as recombination of charged

species, heavy-species chemistry, diffusion, gas heating and convection. Therefore,

it is very challenging to efficiently simulate this kind of highly multi-scale prob-

lems and to accurately describe the physics of the plasma/flow interaction between

consecutive discharge/post-discharge phases.

General model to study gas discharge dynamics is based on the following

drift-diffusion equations for electrons and ions, coupled with Poisson’s equation

[2, 20]:

∂tne − ∂x · ne ve − ∂x · (De ∂xne) = neα|ve| − neη|ve|+ nenpβep + nnγ,

∂tnp + ∂x · npvp − ∂x · (Dp ∂xnp) = neα|ve| − nenpβep + nnnpβnp,

∂tnn − ∂x · nnvn − ∂x · (Dn ∂xnn) = neη|ve| − nnnpβnp − nnγ,






(6.1)

ε0 ∂
2
x
V = −qe(np − nn − ne), (6.2)

where x ∈ R
d, ni is the density of species i (e: electrons, p: positive ions, n: negative

ions), V is the electric potential, vi = µiE (E being the electric field) is the drift

velocity.Di and µi, are diffusion coefficient and absolute value of mobility of charged

species i, qe is the absolute value of electron charge, and ε0 is permittivity of free

space. α is the impact ionization coefficient, η stands for electron attachment on

neutral molecules, βep and βnp accounts respectively for electron-positive ion and
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negative-positive ion recombination, and γ is the detachment coefficient. Electric

field E and potential V are related by

E = −∂xV. (6.3)

Nevertheless, in this paper, we will consider a simplified reaction-diffusion 1D

model based on (6.1):

∂tne −D∂2
xne = neα|ve| − neη|ve|+ nenpβep,

∂tnp −D∂2
xnp = neα|ve| − nenpβep + nnnpβnp,

∂tnn −D∂2
xnn = neη|ve| − nnnpβnp.






(6.4)

As in (6.1), all the coefficients of the model are functions of the local reduced

electric field E/Ngas, where E is the electric field magnitude and Ngas is the air

neutral density. Transport parameters and reaction rates for air are taken from

[21], with attachment coefficients taken from [19].

In this numerical illustration, we consider an air gap of 0.5 cm where we have a

high initial distribution of electrons and ions over the region [0, 0.01] cm. A constant

electric field of ∼ 40 kV/cm is then applied over this region during 10 ns with a pulse

period of 1µs. All parameters in (6.4) are computed with the imposed field without

solving neither (6.2) nor (6.3). Finally, we consider a constant diffusion coefficient:

D = 50 cm2/s and a spatial discretization of 1001 points. Figure 7 shows the spatial

distribution of electron density just before and after each pulse. Globally, there

are at least two completely different physical configurations given either by high

reactive activity whenever the electric field is applied, or rather by the propagative

nature of the post-discharge phase.
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Fig. 7. Repetitive gas discharge model. Spatial distribution of electron density before (left) and
after (right) each pulse, starting from initial distribution (left) and for a duration of ten pulses.

Considering the adaptive strategy described in § 5.3 with ∆t0 = 10−10, ε0 = 0.05

and the same parameters used for the previous BZ simulation, computation is ini-

tialized with a time step included in the pulse duration. Figure 8 shows the corre-

sponding splitting time steps for a tolerance of η = 10−3. Splitting time step features
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a periodic behavior and succeed to consistently adapt itself to the discharge/post-

discharge phenomena. This yields high varying time steps going from ∼ 10−10 to

∼ 10−7. Therefore, after each post-discharge phase, since the new time step is com-

puted based on the previous one according to (2.11), this new time step will surely

skip the next pulse. In order to avoid this, each time we get into a new period,

we initialize time step with the length of the pulse: ∆t = 10 ns; this time step is

obviously rejected as seen in Figure 8, as well as the next ones, until we are able to

retrieve the right dynamics of the phenomenon for the required accuracy tolerance.

No other intervention is needed neither for modeling parameters nor for numerical

solvers in order to automatically adapt time step to describe the several time scales

of the phenomenon within a prescribed accuracy.
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Fig. 8. Repetitive gas discharge model. Time evolution of accepted and rejected splitting time
steps, and imposed electric field for t ∈ [0, 10]µs (top left), during pulse t ∈ [5, 5.01]µs (top
right) and post-discharge t ∈ [5.01, 6]µs (bottom left). Bottom right: global L2 errors at the end
of the pulse (t = 5.01 µs) and the post-discharge phase (t = 6µs) with and without ∆t⋆ and ε

computation.

For this application, we compute critical ∆t⋆ and possibly ε, for N = 10 and

N = 100 in each period in order to perform these computations at least once

during the discharge and post-discharge regimes. For example, for t ∈ [5, 6]µs as

in Figure 8, ε = εmax with ∆t⋆ ≈ 4.3 × 10−9 during the pulse, and ε ≈ 0.26

with ∆t⋆ ≈ 1.6 × 10−7 for the rest of the period. Similar values are found for the

other periods. Notice that after each pulse, ∆t⋆ is automatically updated because
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∆t increases and then ∆t gets equal to ∆t⋆. In particular, the important difference

between ∆t⋆ for each region, comes naturally from the completely different modeling

parameters and hence, physics description of each regime.

An effective error control is achieved for each part of the phenomenon, as we can

deduce from the global error between splitting and reference solutions at the end of

the pulse (t = 5.01µs) and at the end of the post-discharge phase (t = 6µs). If we

compare these results with the ones obtained without estimating neither ∆t⋆ nor

ε with ε = ε0 = 0.05, we can draw the same conclusions as in the BZ application.

For less accurate resolutions with high tolerances, the proposed strategy corrects

the error in the local error estimates made with ε = ε0 = 0.05; in particular, for

η = 10−3 there is a ratio of about 10 between both solutions. For higher tolerances,

η ≥ 10−2, both methods yield a time step equal to the pulse duration, ∆t = 10 ns.

On the other hand, for the smallest tolerances, slightly more accurate solutions are

obtained with a fixed ε = ε0 because smaller splitting time steps are used.

7. Conclusions

The present work proposes a new resolution strategy for stiff evolutionary PDEs

based on an efficient splitting scheme previously developed [9, 8] that considers high

order dedicated integration methods for each subproblem in order to properly solve

the fastest time scales associated with each one of them, and in such a way that

the main source of error is led by the operator splitting error. Then, to control

the error of the resolution, it relies on an adaptive splitting time technique that

allows to discriminate the global time scales related to the coupled phenomenon,

given a required level of accuracy of computations. Compared with a standard

procedure for which accuracy is guaranteed by considering time steps of the order

of the fastest scale, the error control featured by our method implies an effective

accurate resolution for problems modeling various physical scenarios, independent

of the fastest physical time scale, and an important improvement of computational

efficiency whenever highly unsteady phenomena is simulated. In particular, we have

successfully applied the proposed strategy to a simplified model of plasma discharges

that nevertheless exhibits a broad time scale spectrum coming from the modeling

equations and also important and discontinuous variation of parameters in time and

in space that notably increase the numerical complexity of the problem.

A numerical analysis of the method has been developed in order to settle a

solid mathematical background, and a complementary numerical procedure was con-

ceived in order to overcome classical restrictions of adaptive time stepping schemes

whenever asymptotic estimates fail to predict the dynamics of the problem. A both

mathematical and numerical detailed study of the method has thus led to a fully

complete adaptive time stepping strategy that guarantees an effective control of the

errors of integration for a large range of time steps; a key issue for problems for

which splitting time steps can go beyond the fastest physical scales of the problem.

The contribution of this paper is then mainly given by a dedicated adaptive time
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splitting method for stiff PDEs, and by a complete study of the behavior of time

stepping schemes based on lower order embedded methods, for the whole set of

potential time steps. In this paper we have always considered fine enough spatial

discretizations in order to perform an evaluation of the theoretical estimates intro-

duced for the proposed time integration scheme. For higher dimensional problems,

fine spatial discretization becomes a critical issue in terms of computational costs

and a technique of local grid refinement might be a good solution to guarantee the

theoretical behavior of the splitting schemes (see for instance [8]). Nevertheless, a

mathematical study on the splitting errors with discretized operators will certainly

be an useful tool to yet improve the performance of these techniques. This and other

related theoretical aspects are particular topics of our current research.
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diffusion avec croissance de la quantité de matière et son application a un problème
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