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ABSTRACT 

The terminase motors of bacteriophages have been shown to be among the strongest active 

machines in the biomolecular world, being able to package several tens of kilobase pairs of viral 

genome into a capsid within minutes. Yet these motors are hindered at the end of the packaging 

process by the progressive build-up of a force resisting packaging associated with already 

packaged DNA. In this experimental work, we raise the issue of what sets the upper limit on the 

length of the genome that can be packaged by the terminase motor of phage λ and still yield 

infectious virions, and the conditions under which this can be efficiently performed. Using a 

packaging strategy developed in our laboratory of building phage λ from scratch, together with 

plaque assay monitoring, we have been able to show that the terminase motor of phage λ is able 

to produce infectious particles with up to 110% of the wild-type (WT) λ-DNA length. However, 

the phage production rate, and thus the infectivity, decreased exponentially with increasing DNA 

length, and was a factor of 103 lower for the 110% λ-DNA phage. Interestingly, our in vitro 

strategy was still efficient in fully packaging phages with DNA lengths as high as 114% of the 

WT length, but these viruses were unable to infect bacterial cells efficiently. Further, we 

demonstrated that the phage production rate is modulated by the presence of multivalent ionic 
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species. The biological consequences of these finding are discussed. 

Keywords: bacteriophage lambda, pressure, DNA packaging, terminase  

 

INTRODUCTION 

 Viruses are among the simplest biological organisms. They typically consist of a viral 

genome within a protein container, called a capsid, whose function is to protect the genome and 

to provide a specific strategy for the early steps of infection. Despite their simplicity, viruses 

exhibit extreme diversity and are highly prone to mutations. This limits the efficiency of current 

anti-viral therapies, which are often focused on the specificity of viral replication. The past 

decade has seen the emergence of a new interdisciplinary approach, called “Physical Virology”, 

providing tremendous opportunities for the elucidation of the general physical mechanisms 

involved in virus development and infection. For example, in double-stranded (ds) DNA viruses, 

the genome is often hundreds of times longer than the dimensions of the capsid into which it is 

packaged, and this results in high internal pressure due to the repulsive negative charges on the 

densely packaged DNA. Indeed, high mechanical pressure in dsDNA bacterial viruses (phages) 

has recently been demonstrated (1, 2). During infection, the phage binds to the receptor on the 

bacterial cell surface and the pressure injects the genome into the cell, at least in part, while the 

empty capsid remains outside the cell. This initiates a series of events, eventually leading to 

hundreds of viral genomes, pre-assembled capsids and viral tails that are the direct precursors to 

the assembled, infectious virus. During phage assembly, a motor complex (the terminase 

enzyme), specifically recognizes viral DNA then binds to the portal complex situated at a unique 

vertex of the icosahedral capsid; the portal is a ring-like structure that provides a hole through 

which DNA enters the capsid during assembly and exits during infection (3-6). The terminase 

motors, which utilize ATP hydrolysis to drive DNA into the capsid, are among the most 

powerful biological motors characterized to date (3-6). For instance, the bacteriophage λ 

terminase motor packages DNA to near-crystalline density, which generates an internal pressure 

in excess of 20 atmospheres. Commensurate with this requirement, the λ terminase motor exerts 

forces greater than 50 piconewtons during the terminal stages of genome packaging (2, 4, 7-9). 

Similar features are observed in many bacteriophages and the eukaryotic herpes virus groups. In 

the latter case, genome packaging occurs in the nucleus of an infected cell, following a pathway 

that is remarkably similar to that of the phage system, i.e., a terminase motor specifically 
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packages viral DNA into the interior of a pre-assembled procapsid through a unique portal vertex 

(10-12). 

 Using phage λ, Evilevitch and co-workers provided the first experimental in vitro 

evidence that internal pressure, often greater than 50 atm, ejects viral DNA from the capsid into 

the host cell (1, 13). Since the internal capsid pressure is mainly the result of electrostatic 

repulsion between neighboring DNA strands, we found that the pressure is markedly reduced in 

the presence of multivalent cations (due to the screening of negative charges on the DNA), since 

capsids are permeable to water and salts (14). Similar results have been observed in single-

molecule laser tweezer experiments (4). Consistent with this, we also found that internal pressure 

increases strongly with increasing length of the DNA packaged into the capsid, as the negative 

charge density increases (13). This may explain the observation in vivo that a λ genome can only 

be 8.8 % longer than the wild-type λ genome and still yield an infectious virus in vivo (15).  

 DNA packaging is used for molecular cloning in so-called cell extract “packaging kits”, 

where non-viral genes are inserted into the phage chromosome, packaged in vitro, delivered and 

expressed in bacterial cells (16). This technique has played a revolutionary role in the 

development of molecular biology and nanotechnology (17). However, while powerful, the size 

of an inserted gene is limited by the force of the terminase motor and its capacity to package 

oversized genomes into the capsid interior. During the early steps of the packaging process, the 

repulsive force exerted by the packaged DNA is smaller than the packaging force generated by 

the terminase motor. However, as the length of packaged DNA increases, repulsive forces 

increase and eventually exceed the maximum force that the motor can generate. Thus, the 

efficiency of viral packaging and virion synthesis are strongly dependent on the DNA length, 

ionic strength conditions, and types of cations included in the reaction mixture. Mg2+ and 

spermidine3+ can stabilize condensed DNA by reducing DNA–DNA repulsion. This may 

influence the rate of packaging and thus the number of successful packaging events. To our 

knowledge, no systematic or quantitative in vitro measurements have been made to explore the 

dependence of viral infectivity on the length of the packaged genome and the salt concentration, 

and the consequences for both controlled laboratory viral assembly (e.g. genetic engineering) and 

in vivo virus assembly. Indeed, this is not possible in the commercially available packaging kits 

that utilize crude cell extracts.  

 Catalano and co-workers recently developed an in vitro virus assembly system in which 
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an infectious virus was assembled from purified components in a rigorously defined biochemical 

reaction mixture (5). This allows detailed and quantitative interrogation of each step of the 

assembly pathway and manipulation of the reaction conditions in a strictly controlled manner. In 

this work, we exploit this system to investigate the correlation between the internal genome 

pressure, governed by both the genome length and ionic conditions, and virus infectivity. Our 

goal was to determine the maximum length of the packaged DNA in phage λ by packaging 

oversized DNA, relative to the wild-type (WT) λ genome length of 48,502 bp, under various 

ionic strength conditions. The length of DNA was systematically varied by incorporation of non-

specific plasmid DNA into the WT λ genome, and the packaging rate and efficiency were 

determined by several in vitro and in vivo assays. The results of these studies are discussed with 

respect to viral genome packaging in vivo and molecular cloning in vitro. 

 

RESULTS 

 We constructed three oversized phage λ chromosomes: 51,206 bp (105%), 53,892 bp 

(110%) and 55,340 bp (114%) long, relative to the WT λ-genome length of 48,520 bp 

(corresponding to 100%), as described in Materials and Methods section. Briefly, we inserted 

linearized bacterial plasmids of defined lengths into the XbaI-digested λ chromosome (XbaI is a 

unique restriction site located at bp 24,511 of the λ sequence), without disturbing essential λ 

genes (Figure 1). The inserts contain two markers that allow detection of viral DNA entry into 

the host cell; lacZ for blue-clear bacterial colony detection, and ampR for ampicillin resistance 

(Figure 2). The oversized λ genomes were used as packaging substrates in our defined in vitro 

virus assembly system, as described previously (5). The packaging buffer contained 20 mM Tris-

HCl, pH 7.5, 4.5 mM MgCl2 and 2 mM spermidine3+ (buffer 0), which is optimal for the 

assembly of an infectious virus using a WT (100%) λ genome (5). As anticipated, infection of E. 

coli JM83 cells (ampR-, lacZ-) with the in vitro assembled WT virus did not afford any bacterial 

colonies when plated on ampicillin-containing plates, because the WT genome does not contain 

the ampR gene. We next examined particle assembly and the infectivity of viruses assembled 

with each of the oversized genomes. As before, the genomes were used as packaging substrates 

in our in vitro virus assembly system, and E. coli JM83 was infected with the in vitro assembled 

virus. Successful packaging of the oversized genome into the procapsid, addition of a viral tail, 

and subsequent injection of the viral DNA into the host cell by the infectious assembled virus 
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was indicated by the presence of blue colonies (lacZ) that grow in the presence of ampicillin 

(ampR) (Figure 2). The data presented in Table 1 demonstrate that oversized genomes up to 

114% of the WT genome length can be successfully packaged in vitro, and that the virus is able 

to inject the oversized DNA into the host cell to render them ampicillin-resistant. Importantly, 

control experiments, in which ATP was omitted from the virus assembly reaction, and thus 

cannot package DNA, did not yield any colonies on ampicillin-containing plates, indicating that 

virus particle assembly is required for DNA entry into the cell. Finally, we investigated whether 

salt concentration affected in vitro virus assembly or infectivity, as follows. Each of the genomes 

was used as packaging substrate, as described above, except that spermidine was omitted from 

the reaction (buffer 1), or the concentration of Mg2+ was reduced to 2 mM (buffer 2). (The 

terminase packaging motor has a strict divalent metal requirement, which precluded the complete 

omission of Mg2+ from the reaction mixture (5)). All the oversized genomes could be packaged 

into infectious viruses in vitro under all buffer conditions examined (see below). 

 While the above results demonstrate that oversized genomes can be assembled into 

infectious viruses in vitro, they do not address the question of whether the oversized genomes 

can be replicated and packaged into infectious viruses in vivo. To directly address this question, 

we turned to a standard viral plaque assay. Each of the genomes was used to assemble an 

infectious virus, as described above. The in vitro assembled virus was then used to infect E. coli 

LE392 cells, and the number of infectious virus particles quantified by plating on a bacterial 

lawn (18). Each of the observed plaques results from the infection of a single cell with a virus 

particle (18), and provides a direct method of quantifying the number of infectious virus particles 

in the assembly mixture. Further, the injected genome must be competent for multiple rounds of 

replication and infectious virus particle assembly within the host cell for a plaque to be visible. 

Thus, the generation of a viral plaque requires that the genome is competent for the assembly of 

an infectious virus both in vitro and in vivo. 

 The data presented in Table 1 demonstrate that the 105% and 110% oversized genomes 

provide a functional substrate for DNA replication and virus development in vivo, as evidenced 

by the appearance of viral plaques on the bacterial lawn. In contrast, the 114% genome substrate 

failed to yield visible plaques, despite the fact that the elongated genome can be packaged and 

subsequently delivered to the cell in vitro (Table 1). This indicates that a 114% long λ genome 

can be packaged under defined reaction conditions in vitro, but that the cellular cytoplasm does 
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not provide an environment conducive to the assembly of an infectious virus with this genome, at 

least over the multiple infection cycles required to visualize a plaque. We have thus identified the 

limit of λ genome length that can be efficiently packaged in vivo.  

 While the number of plaques reflects the efficiency of virus assembly in vitro, the size of 

the viral plaque is related to the rate of virus particle assembly in vivo – the faster (more 

efficiently) the virus replicates in vivo, the larger the plaque. Figure 3 shows a direct comparison 

between the 100% and 110% λ genome phages plated on the same LE392 plate, which clearly 

demonstrates a significant difference in plaque size. As all other factors remain unchanged, and 

since genome packaging is the rate-limiting step in the concerted viral assembly process (19), we 

interpret the dramatic reduction in viral replication rate as a reflection of a decrease in the rate of 

genome packaging in vivo. This observation is however not trivial because there are more factors 

contributing to the plaque size at a given time. 

 The above interpretation assumes that the input genome was faithfully replicated and 

packaged in vivo to yield infectious, over-packaged virions. We considered the possibility that 

the oversized genomes were successfully packaged in vitro and injected into the host cell, but the 

duplex length was somehow shortened during replication in vivo to generate a viable virus. To 

directly examine this possibility, the DNA was extracted from the plaques derived from 

packaging the 105% and 110% oversized genomes. The size of the virion DNA was confirmed 

with pulsed-field gel electrophoresis, and Figure 4 shows that the input genome is faithfully 

replicated and packaged into infectious virus particles in vivo. 

 We next quantified the efficiency of virus assembly in vitro as a function of genome 

length. For these studies we utilized our standard reaction buffer 0 (20 mM Tris-HCl pH 7.5, 2 

mM spermidine and 4.5 mM MgCl2), and the assembly reaction was allowed to proceed for 2 

hours to ensure that it had reached completion. Virus assembly was quantified by plaque assay. 

The plates were incubated for 12 hours at 37°C, sufficient for the plaques to appear. As can be 

seen in Figure 5 (red dashed line), the number of plaques, and thus the efficiency of packaging, 

shows an exponential decrease with increasing packaged λ-DNA length. The number of 

assembled virions decreased exponentially by a factor of 100 for 5% extra packaged DNA 

length, relative to the WT. The titer fell by 1000 times when the λ-DNA length was increased 

from 100% to 110%, and would presumably be 10,000 times lower for the 114% λ-DNA sample. 

The latter would reduce the transfection efficiency to less than that required for detection by the 
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plaque assay. Similar relative drop in the packaging efficiency was also found for in vivo 

packaging in ref. (15), when increasing λ-DNA length from 105% to 108.8%. However, the 

initial drop in the efficiency when going from 100% to 105% λ-DNA length was smaller than in 

the present study. This is explained by the fact that salt conditions cannot be controlled in an in 

vivo packaging process unlike in our in vitro packaging study. As we have shown here, 

packaging efficiency will have a strong ionic dependence for smaller variation in the packaged 

DNA length around 100% WT λ-DNA length (see also discussion below).  

 Finally, we quantified the effect of salt concentration on the efficiency of virus assembly 

in vitro. Specifically, we decreased the concentrations of spermidine3+ (Figure 5, green dashed 

line) and Mg2+ (Figure 5, blue dashed line) independently, to ensure that any observed effect was 

the result of a counterion-induced decrease in DNA–DNA repulsion, rather than the effect of a 

specific salt on the viral protein assembly during packaging. In both cases, decreasing the 

counterion concentration significantly decreased the yield of infectious viruses in vitro, with 

spermidine exhibiting slightly stronger effects (Figure 5).  

 

DISCUSSION 

We have examined the assembly of an infectious λ virus in vitro under rigorously defined 

conditions, and have demonstrated that both the rate and extent of particle assembly are strongly 

affected by the length of the genome substrate. We have further demonstrated that while very 

large DNA duplexes (114% of WT genome length) can be packaged into a particle and 

efficiently delivered to a host cell in vitro, there is a more stringent limit on virus development in 

vivo. What limits the efficiency of packaging over-sized genomes? 

Effect of DNA length on the packaging efficiency and viral infectivity. There is an 

exponential decrease in the yield of infectious viral particles assembled in vitro as a function of 

genome length. The only variable in the assembly reaction is the length of the DNA used as a 

packaging substrate, and we suggest two reasonable explanations of this finding. First, it might 

reflect differences in the rate of assembly of the packaging motor complex. The reactions are 

initiated by terminase, which must bind to the DNA, and the binary complex must then bind to 

the procapsid to initiate packaging. It is unlikely that a change in the genome length would affect 

the activation of the packaging motor once assembled. We consider, however, that the rate-

limiting step in packaging initiation is related to the free diffusion of the DNA coil in the 
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solution in order to first find a terminase and a free procapsid. From classical polymer physics it 

can be estimated that the change in diffusion coefficient for two different DNA lengths, LWT and 

L, scales as 

€ 

D(L) ≈ D(LWT ) LWT /L( )ν , where the exponent of polymer statistics is 

€ 

ν =1/2 or 3/5 

for an ideal Gaussian chain or a swollen chain (20). As a consequence, we anticipate a reduction 

of only 5% in the diffusion coefficient of the DNA coil when its length is increased from the WT 

length to 110% of the WT length. This modest change in diffusion coefficient is unlikely to be 

responsible for the large decrease in virus assembly (of the order of 103) observed in our 

experiments. 

An alternative explanation is that the observed decrease in the rate and extent of 

infectious particle assembly reflect a significant increase in the time required to package the 

oversized duplex, and a decrease in the efficiency of particle completion in the face of an over-

packaged capsid, respectively (Figure 1). As we argue below, this exponential decay is related to 

the dynamic properties of the terminase packaging motor under an external load (i.e. the external 

load does not arise from the motor itself).  

The mechanical properties of viral packaging motors have been characterized 

experimentally at the single molecule level during the past decade (2). Using laser tweezer 

techniques, it has been shown for phage λ (4) and for phage φ29 (21), that if an external load 

challenges the active packaging process of the terminase motor, the leading order relation 

between the packaging rate v and this external load F scales as 

€ 

v ≈ v0 exp −
Fδ
kT

% 

& 
' 

( 

) 
* , where 

€ 

v0  is the 

measured velocity in the absence of the load, and 

€ 

δ  is the step size of the motor, k is 

Boltzmann’s constant and T is the temperature. Note that this relation has been established 

experimentally as a dynamic intrinsic property of the motor, regardless of DNA filling inside the 

capsid. The origin of this exponential behavior is intimately related to the decrease in power 

stroke efficiency of the terminase motor under an opposing external load (22) and the increased 

frequency of slips of the DNA as it is being packaged at higher loading forces (2). The equations 

require an irreversible step, which is the case here because cos-cleavage of λ-DNA is 

irreversible. 

In the absence of an external load, it has also been observed that packaging rate slows 

down dramatically after the first 30% of the WT λ-genome has been packaged. This is the 

signature of the internal force build-up that resists active packaging by the motor, arising from 
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the DNA confinement in the capsid. Slowing of the packaging rate is qualitatively described by a 

similar relation between velocity and force 

€ 

v(L) ≈ v0 exp −
Fint (L)δ
kT

% 

& 
' 

( 

) 
* , where L is the packaged 

length and 

€ 

Fint (L) is the internal force associated with the confinement of DNA of length L 

within the capsid. Therefore, we used this relation to estimate the average time, T(L), required to 

package DNA of length L, 

€ 

T(L) =
dx

1

L
∫ exp Fint (x)δ

kT
$ 

% 
& 

' 

( 
) 

v0
.  

For DNA around the same length as that of WT (48.5kb) or larger, Fuller et al. (4) 

showed that the internal force is large (25 pN at 90% of WT DNA length). Assuming, for the 

sake of simplicity, that the relation between the internal force and the genome length is linear 

above the WT DNA length in the range addressed in our experiments, the average time required 

to package a length L, that is larger than the WT length LWT, scales roughly as suggested both by 

the experimental results of Fuller et al. (4) and by DNA packaging models, such as the inverse 

spool model (23-26): 

€ 

T(L) ≅T LWT( ) +
kT exp A(L − LWT )δ

kT
% 

& 
' 

( 

) 
* 

Av0δ   (Eq. 1) 

where A is the coefficient of the linear relationship between the internal force and the genome 

length. The dynamic properties of the terminase motor therefore predict an exponential increase 

in the time required to fully package oversized genomes. As a consequence, the rate of virus 

assembly 

€ 

J(L) =1/T(L)  will decay exponentially with the genome length. This conclusion 

implicitly assumes that the rate-limiting step for the production of N viruses is the assembly rate, 

such that

€ 

N(L ) ≈ J(L )Texp, where 

€ 

Texp is the duration of the packaging experiment. Provided that 

the incubation time for in vitro phage packaging and assembly was 2 hours for all samples, and 

that the assembly components and enzymes retain their activity during this time period, 

exponential decay in the production rate leads to the exponential decay of the number of 

assembled, infectious phage particles, in agreement with the experimental results presented here. 

Infinitely long packaging times may not even be feasible in vivo as cells may run out of ATP 

required for packaging, and/or the packaging enzymes and viral DNA may be degraded. Indeed, 

the decrease in plaque size as a function of genome size indicates that the rate of particle 

assembly is also dramatically slower in vivo. Thus, a change in the packaged DNA length of 
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even a few percent, accompanied by an increase in the internal pressure, will have dramatic 

consequences for viral reproduction and the spread of infection, decreasing by several orders of 

magnitude.  

Effect of salt on DNA packaging. The data presented here provide further information on 

the influence of ionic species on the efficiency of virus assembly under rigorously defined 

conditions. Our results are consistent with recent single-molecule laser tweezer studies showing 

that polyamines and Mg2+ decrease the internal force resisting packaging (7). Moreover, the 

single-molecule packaging rate is systematically faster in the presence of multivalent ions, at 

least when packaging a unit-length WT genome. The consequence of this observation is that the 

time required to package DNA up to WT genome length should be shorter in the presence of 

multivalent ions. Our data indicate that the time required to package DNA beyond its WT length, 

up to 110% of the natural genome, depends strongly on a combination of the dynamic properties 

of the motor and the force resisting packaging. Examination of Fuller’s measurements (7) 

suggests that the relation between the internal force and packaged DNA length around the WT 

length is still linear and is only slightly dependent on the ionic conditions. Therefore, the 

previous scaling estimation of the time required for packaging of oversized λ-DNA can be 

reproduced.  

These two observations lead to the following conclusion: the initial packaging of DNA 

up to WT genome length is faster in the presence of multivalent ions, but the duration of the later 

stages of packaging beyond the WT genome length should still increase exponentially with 

genome length. As a consequence, our approach predicts that the addition of multivalent ions 

will increase the phage production rate at constant genome length, while maintaining 

approximately the same exponential decay with increasing genome length. This matches our 

experimental data qualitatively (Figure 5) and further confirms our interpretation of the 

overpackaging data. Thus, the phage production rate is increased with more efficient cation 

induced reduction of DNA-DNA repulsive force resisting packaging. This is achieved by higher 

cation charge (as can be seen by comparing spermidine3+ and Mg2+, both naturally present in the 

E. coli cytoplasm) or an increase in the overall ionic strength (Figure 5). Ionic strength values, I, 

for all three buffers were 13.5 mM, 18 mM and 25.5 mM, respectively, excluding the 

contribution from the Tris buffer. 

It is interesting to note that with increasing DNA length, the effect of salt on the 
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packaging efficiency becomes weaker. It can be seen in Figure 5 that the addition of 2 mM 

spermidine3+ (with 4.5 mM Mg2+ in both buffers 0 and 1) increases the titer by ≈20 times for 

100% λ-DNA length, but only by ≈8 times for 110% λ-DNA packaging. In Figure 5, it can be 

seen that increasing the ionic strength from 13.5 mM (buffer 1) to 18 mM (buffer 2), increases 

the titer by ≈1.5 times for 100% λ-DNA but there is no titer change for 110% λ-DNA. Thus, the 

phage titer curves at different ionic conditions shown in Figure 5 are converging with increasing 

DNA length.1 This observation is consistent with well-documented observations using osmotic 

stress experiments (27-29), where it was shown that DNA-DNA interactions in dense hexagonal 

phases of DNA (similar to DNA densities in overpackaged phage λ) are dominated by the 

hydration forces and have little dependency on the identity of the salt. Furthermore, high DNA 

packaging densities lead to several times higher counter-ion concentration at the interior of the 

capsid, compared to the bulk, making the internal forces less sensitive to the external ion content 

(30, 31).  

 

 

 

 

 

 

 

 

 

 

 

 

 
1 It should be noted that y-axis, showing pfu/mL, is plotted on a log-scale, making the lines look 

essentially parallel. However, the differences in phage titer described above between different 

buffers at various DNA lengths are significant as all 3 exponential curves are asymptotically 

approaching zero. 
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CONCLUSIONS 

 Elegant studies by Feiss and co-workers (15) have demonstrated that genomes as long as 

1.08 could be packaged from di-lysogens in vivo, which sets an upper limit on productive virus 

development in the cell. The goal of this work was to (i) define the physical limit of DNA that 

can be inserted into a capsid by the terminase motor and (ii) to elucidate the role of the internal 

genome pressure on virion synthesis and viral infectivity. These studies take advantage of 

biochemically defined in vitro virus assembly assay recently developed in the Catalano lab. The 

genome pressure was varied by changing two parameters: DNA length and salt condition in the 

virus packaging-assembly buffer. The key to these measurements was our recently developed 

system for the in vitro assembly of infectious phage λ, using individually purified components in 

a rigorously defined biochemical assay (5). For the first time, we were able to quantitatively 

measure a dramatic reduction in the phage production rate associated with the packaging of DNA 

longer than the WT genome in the phage λ capsid. These measurements reveal important 

biological implications. The first is that it is possible to package DNA up to 114% of the WT 

genome length for phage λ. Moreover, by using different ionic conditions, we demonstrated that 

overpackaging is a rather robust feature.  

 The results of our investigations have implications with respect to the presence and the 

origin of a maximum length of DNA that can be packaged within a viral capsid. Indeed, we 

found that longer DNA than WT genome length can be packaged. However, the rate of 

packaging, and thus the number of phages produced in a given time, decreases exponentially 

with increasing genome length. More precisely, a 1% increase in the length of the packaged 

genome above WT, leads to ten-fold decrease in the viral titer. Moreover, since salt decreases the 

internal pressure, adding extra salt increases the titer. With higher packaging density (above 

110% of WT λ-DNA) the hydration force dominates the DNA-DNA interaction and the pressure 

is only weakly affected by the addition of counterions, making the packaging rate essentially 

insensitive to salt conditions. As a consequence, we found that the maximum length of DNA that 

could be packaged is not limited by the salt conditions of the virus assembly environment. 

Instead, it is limited by the maximum force that the terminase motor can exert. Remarkably, we 

also found that maximum length of DNA that can be packaged in vivo is between 110 and 114% 

of WT λ-DNA, however the packaging efficiency was very low. 

 These observations illustrate that the dynamics of the viral packaging motor is 
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exponentially dependent on the genome length. The motor packaging rate approaches zero 

asymptotically as the internal pressure increases. Thus, there is no mechanical limit on the length 

of DNA that can be packaged (assuming that the capsid can withstand any force). This has 

interesting implications on DNA packaging by the “headful” phages. These viruses initiate 

packaging at a specific “pac” site in the concatemer, but package longer than unit length 

duplexes (102-104% genome length). The mechanism that defines the downstream cut site 

remains unclear, but slowing of the terminase packaging motor certainly plays a major role. 

Indeed, a simple model is that upon packaging a headful of DNA, the terminase motor slows to 

essentially zero as the pressure of the packaged DNA overcomes the power of the motor. This 

provides time for the slow endonuclease activity of terminase to cut the duplex to complete the 

packaging process.   

In the case of unit-length genome packaging viruses such as λ, the packaging time 

becomes infinitely long as DNA length exceeds WT, preventing viruses from assembling within 

reasonable time (or at all) to complete their replication cycle. This suggests that the length of the 

packaged genome has been evolutionarily optimized to packaging densities where the effect of 

salt on the motor efficiency is minimized, making packaging more robust and less prone to 

changes in the cellular environment. Most importantly, these findings demonstrate that slight 

changes in the internal pressure induced by variation in the DNA length, will have fatal 

consequences for virus synthesis and the spread of infectious particles. This was demonstrated by 

the dramatic reduction in the number (efficiency) and size (rate) of plaques. These observations 

strengthen the role of internal pressure in the infectivity process, in agreement with several in 

vivo studies (32, 33). This study also suggests new strategies for interfering with viral infectivity 

through small changes in the internal genome pressure in the case of motor-packaged DNA 

viruses.  

At the same time, the fact that overpackaging is possible in various environments might 

be considered as a potential evolutionary advantage: as phage λ would therefore have the ability 

to modulate its genome length, since both its terminase motor characteristics and its host (the 

bacteria) are capable of packaging a genome larger than the WT length. More precisely, our 

finding of an effective upper limit for packaging of the oversized 114% WT DNA means that 

modulation of genome length is possible up to an extra length of 6.8 kb. Considering that the 

typical average size of a gene is of the order of 1 kb, phage λ therefore has the ability to increase 
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its genome by at least one or two genes. This is a remarkable feature with respect to the 

adaptation of the virus to its environment. 

Based on recent results obtained in our studies (34, 35) and those at other labs (4), on the 

physical properties of phage λ, we speculate that λ WT length is the optimal result of a balance 

between a large number of genes, in order to function properly, a long genome length in order to 

be able to efficiently initiate passive ejection of the genome into the host bacteria, and a genome 

length short enough that efficient virus production is compatible with the time frame of the cell 

cycle. 

 

MATERIALS AND METHODS 

Construction of oversized phage λ chromosomes. Oversized phage λ chromosomes, 105%, 110% 

and 114% of the length of the wild type, were constructed by insertion of linearized bacterial 

plasmids of defined length into the XbaI-digested λ chromosome. XbaI is a unique restriction site 

that is located at 24511 base pairs in an inert gene that seemingly does not affect phage 

replication. 200 µg of λ DNA (dam- dcm-) was digested with 20 units XbaI at 37 ºC during a 

period of 12 hours. Digested λ DNA was treated with calf intestinal alkaline phosphatase at 37 

ºC for 5 hours. The λ DNA was then purified using a phenol-chloroform purification technique.  

Bacterial plasmid pUC19 (AmpR and LacZ+, 2686 base pairs) was used for construction of the 

105% and 110% λ chromosomes. Firstly, it was made compatible for the ligation with the 

digested λ DNA. An adaptor was inserted into its unique PscI site. The adaptor (5'-

CATGGCTAGCAACCTAGGAAACTAGT-3' and 5'-CATGACTAGTTTCCTAGGTT 

GCTAGC -3') carries three restriction sites (NheI, AvrII and SpeI), all of which produce sticky 

ends compatible with those of XbaI. Thus, modified-pUC19 was generated. This was 

consequently used for the construction of double-pUC19, which is basically two fused copies of 

the same plasmid. Modified-pUC19 was digested with NheI, purified from 0.8% agarose gel and 

ligated with itself. Ligation products, amplified in E. coli, were enzymatically linearized and 

separated on 0.8% agarose gel electrophoresis. The DNA fragment corresponding to twice the 

size of pUC19 was extracted, purified and circularized with T4 DNA ligase. Thus double-pUC19 

(5372 base pairs) was created. For the  construction of the 114% λ chromosome, plasmid pSV-b-

galactosidase (AmpR and LacZ+, 6820 base pairs) was used. This plasmid has a unique XbaI site, 

which is conveniently located in an inert region.  
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In order to construct the 105%, 110% and 114% λ chromosomes, 50 µg of each of the 

modified-pUC19, double-pUC19 and pSV-β-galactosidase plasmids were digested separately 

with 10 units of SpeI (for modified-pUC19 and double-pUC19) and XbaI (for pSV-β-

galactosidase) at 37 ºC over the course of 12 hours. DNA was subsequently separated on 0.8% 

agarose gel electrophoresis, and fragments corresponding to 2686, 5372 and 6820 base pairs 

were extracted and purified. Ligation reactions were subsequently performed with XbaI-digested 

and dephosphorylated λ DNA. 0.8 µg of λ DNA was used per 50 µl of ligation reaction, into 

which 1 unit of T4 DNA ligase was introduced. A molar ratio of 1:8 (1 for λ DNA, 8 for 

plasmid) was employed. Reactions were performed at 16 °C for 12 hours. Ligation was 

accompanied by four negative control reactions, in which the reaction components were 

sequentially removed: 1) no plasmid insert, 2) no T4 ligase, 3) no λ DNA, and 4) no λ DNA and 

no T4 ligase. The phenol-chloroform-purified total DNA product from ligation reactions was 

used as packaging substrate.  

Assembly of oversized λ–DNA phages. Phage λ was built from scratch from its recombinantly 

produced protein components in a two-step process. In comparison to the initially described 

method (1), we have slightly modified this process in terms of DNA and packaging buffer. In the 

packaging step, the following viral components were sequentially mixed in 25 µl reaction in a 

controlled ionic environment: 8.48 mM ATP, 95 µM gpD, 424 nM gpFI, 2 µM IHF, 208 nM 

procapsids, 1 µM terminase and DNA. The packaging process was performed under three 

different sets of ionic conditions:  

Buffer 0 20 mM Tris-HCl pH 7.5, 2 mM spermidine and 4.5 mM MgCl2 

Buffer 1 20 mM Tris-HCl pH 7.5 and 4.5 mM MgCl2 

Buffer 2 20 mM Tris-HCl pH 7.5, 2 mM spermidine and 2 mM MgCl2 

The quantities of DNA used for this step were empirically determined (as described below). 

After incubation for 2 hours at 25 ºC, the packaging process was considered complete.   

Prior to the subsequent assembly step, the viral tail segment was constructed by mixing 

417 µM gpFII, 413 µM gpW and 320 nM tail in 10 µl reaction, with 20 mM Tris-HCl pH 7.5, 2 

mM spermidine, 3 mM MgCl2, 7 mM β-mercaptoethanol and 25 mM potassium glutamate. This 

mixture was then added to the packaged viral shells from the previous step and incubated for 2 

hours at 37 ºC. This step resulted in a fully infective phage. Subsequently, the complete λ phage 
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was used for in vivo assays. Positive controls were similarly prepared using wild-type λ DNA.  

In vivo assays using E. coli 

In order to test our viral assembly system, we performed phenol-chloroform extraction of 

DNA from the packaged viral heads (directly after the packaging step). Extracted DNA was 

separated on 0.8% agarose gel for qualitative determination. However, this approach was 

successful only for the wild-type phage, as the DNA yield from the overpackaged phages was 

too low to be detected at this stage. Therefore, we performed two complimentary in vivo tests.  

Blue-clear screening was performed in order to confirm the integration of the plasmid 

DNA into the phage λ chromosome. Assembled phages were used to infect E. coli JM83 (AmpR- 

LacZ-), grown to an OD600 of 1.0 in LB medium supplemented with 10 mM MgSO4 and 0.2% 

(w/v) maltose. Infected cells were spread on LB agar plates containing 100 µg/ml ampicillin, 40 

µg/ml X-gal and 0.5 mM IPTG (isopropyl β-D-1-thiogalactopyranoside). Plates were incubated 

at 37 ºC for 12 hours. E. coli JM83 infected with overpackaged phage λ yielded blue colonies, 

whereas E. coli JM83 infected with the wild-type phage λ did not yield any colonies. This in vivo 

test clearly demonstrated that the presence of phage-delivered AmpR and LacZ genes provides E. 

coli JM83 with ampicillin resistance and blue pigmentation. It is thus an indicator of the 

successful construction of oversized phage λ chromosomes.  

Plaque assay was performed for quantitative determination of packaging efficiency and in 

vivo infectivity of the overpackaged phages. Assembled phages were diluted 10, 100 and 500 

times and mixed with 100 µl E. coli LE392, which was grown to an OD600 of 1.0 in LB medium 

supplemented with 10 mM MgSO4 and 0.2% (w/v) maltose. Infected cells were spread on LB 

agar plates. The plates were incubated at 37 ºC for 12 hours. Pulsed-field gel electrophoresis was 

used to visualize the DNA and assess the difference in size, using CHEF DR II electrophoresis 

equipment (Bio-Rad). Purified DNA samples were loaded into 1% agarose gel. The gel was run 

for 26.5 hours in 0.5x TBE buffer using the following conditions: initial switch of 2.9 seconds, 

final switch of 4.5 seconds and voltage of 6 V/cm. The gel was later stained with SYBR Gold 

nucleic acid dye and visualized under 302 nm UV. We observed a clear size difference between 

wild-type, 105% and 110% λ DNA bands.  

DNA saturation experiments: The amount of DNA used for the assembly of overpackaged λ 

phages affected the final yield, i.e. the number of plaques, as was previously shown (1). 

Therefore, we had to establish saturation levels for 105% and 110% DNA empirically. Since the 
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ligation product used as packaging substrate was a mixture of various DNA products, including 

the oversized DNA product, we used weight units (µg) of total DNA used for saturation level 

experiments. We designed phage assembly experiments (as described above) where various 

weight units, between 3 and 40 µg, of DNA substrate were used. Packaging buffer 0 was used 

for this experiment. These phages were subsequently used for plaque assay, as described above. 

Plaque numbers were counted and used to estimate the DNA load per packaging reaction that 

would ensure the oversaturation of packaging mixture with the DNA substrate. These saturation 

levels were later used in further experiments for the determination of the dependence of 

packaging efficiency on the ionic strength.  
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FIGURE LEGENDS: 

 

Figure 1: Over-sized phage λ chromosomes of length 105%, 110% and 114% were built by 

insertion of linearized bacterial plasmids of defined length into the XbaI-digested λ chromosome. 

All plasmids contained AmpR and LacZ genes providing ampicillin resistance and blue 

pigmentation upon infection of E.coli JM83. It is an indicator of successful construction and 

packaging of oversized phage λ chromosomes in vitro. In parallel, efficiency of the in vivo phage 

assembly after the bacterial cell infection is monitored by plaque assay, revealing the number of 

assembled and infectious phage particles determined by the number of plaques per plate. 

Figure 2: Blue-clear screening was performed in order to confirm integration of the plasmid 

DNA into the phage λ chromosome. Assembled phages were used to infect E.coli JM83 (AmpR- 

LacZ-). Infected cells were spread on LB-agar plates. E.coli JM83 infected with overpackaged 

phage λ yielded blue colonies, whereas E.coli JM83 infected with wild-type phage λ did not 

yield any colonies. This in vitro assembly test clearly demonstrated that presence of phage-

delivered AmpR and LacZ genes provides ampicillin resistance and blue pigmentation to E.coli 

JM83 (Petri dish photo is shown next to the cartoon). Plaque assay was performed as a 

quantitative test of the virion assembly efficiency in vivo. Assembled phages were mixed with 

E.coli LE392. Infected cells were spread on LB-agar plates and after 12 hours incubation at 37 

°C plaques could be observed (Petri dish photo is shown next to the cartoon).  

Figure 3: Plaque assay for WT (100%) and 110% λ-DNA phages on E. coli LE392 plate, 

illustrating large plaques for 100% DNA phage and small plaques for 110% DNA phage.  

Figure 4: Pulsed-field gel electrophoresis of DNA extracted from plaques carrying oversized λ 

genomes. 

Figure 5: Efficiency of packaging monitored by plaque assay. pfu/mL is plotted on a log-scale 

versus % of packaged DNA length (100% corresponds to the wild-type λ-DNA length).  
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