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Experimental evidence of a triadic resonance of plane inertial waves in a rotating fluid

Guilhem Bordes1,∗ Frédéric Moisy2,† Thierry Dauxois1,‡ and Pierre-Philippe Cortet2§
1Laboratoire de Physique de l’École Normale Supérieure de Lyon,

CNRS and Université de Lyon, 46 Allée d’Italie, 69007 Lyon, France and
2Laboratoire FAST, CNRS, Univ Paris-Sud, UPMC Univ Paris 06, France

(Dated: December 29, 2011)

Plane inertial waves are generated using a wavemaker, made of oscillating stacked plates, in
a rotating water tank. Using particle image velocimetry, we observe that, after a transient, the
primary plane wave is subject to a subharmonic instability and excites two secondary plane waves.
The measured frequencies and wavevectors of these secondary waves are in quantitative agreement
with the predictions of the triadic resonance mechanism. The secondary wavevectors are found
systematically more normal to the rotation axis than the primary wavevector: this feature illustrates
the basic mechanism at the origin of the energy transfers towards slow, quasi two-dimensional,
motions in rotating turbulence.
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I. INTRODUCTION

Rotating and stratified fluids support the existence of two classes of anisotropic dispersive waves, called respectively
inertial and internal waves, which play a major role in the dynamics of astrophysical and geophysical flows.1–3 These
waves share a number of similar properties, such as a group velocity normal to the phase velocity. Remarkably, in
both cases, the frequency of the wave selects only its direction of propagation, whereas the wavelength is selected by
other physical properties of the system, such as the boundary conditions or the viscosity.2,4,5

Most of the previous laboratory experiments on inertial waves in rotating fluids have focused on inertial modes or
wave attractors in closed containers,6–12 whereas less attention has been paid to propagative inertial wave beams.
Inertial modes and attractors are generated either from a disturbance of significant size compared to the container,6

or more classically from global forcing.7–12 Inertial modes are also detected in the ensemble average of rotating
turbulence experiments in closed containers.13,14 On the other hand, localized propagative inertial wave beams have
been investigated recently in experiments using particle image velocimetry (PIV).15,16

A monochromatic internal or inertial wave of finite amplitude may become unstable with respect to a parametric
subharmonic instability.17–20 This instability originates from a nonlinear resonant interaction of three waves, and
induces an energy transfer from the primary wave towards two secondary waves of lower frequencies. This instability
has received considerable interest in the case of internal gravity waves,20 because it is believed to provide an efficient
mechanism of dissipation in the oceans, by allowing a transfer of energy from the large to the small scales.21–23

Parametric instability is a generic mechanism expected for any forced oscillator. A pendulum forced at twice its
natural frequency provides a classical illustration of this mechanism. Here, the “parameter” is the natural frequency
of the pendulum, which is modulated in time through variations of the gravity or pendulum length. Weakly nonlinear
theory shows that the energy of the excitation, at frequency σ0, is transferred to the pendulum at its natural frequency
σ0/2, resulting in an exponential growth of the oscillation amplitude.

In the case of inertial (resp. internal) waves, the “parameter” is now the so-called Coriolis frequency f = 2Ω,
with Ω the rotation rate (resp. the Brunt-Väisälä frequency N). In the presence of a primary wave of frequency σ0,
this “parameter” becomes locally modulated in time at frequency σ0, and is hence able to excite secondary waves
of lower natural frequency. However, here a continuum of frequencies can be excited, so that the frequencies σ1 and
σ2 of the secondary waves are not necessarily half the excitation frequency, but they nevertheless have to satisfy the
resonant condition σ1 + σ2 = σ0. Interestingly, in the absence of dissipation, the standard pendulum-like resonance
σ1 = σ2 = σ0/2 is recovered both for inertial and internal waves, and the corresponding secondary waves have
vanishing wavelengths.20 Viscosity is responsible here for the lift of degeneracy, by selecting a maximum growth rate
corresponding to finite wavelengths, with frequencies σ1 and σ2 splitted on both sides of σ0/2.

24

The parametric subharmonic instability has been investigated in detail for internal gravity waves.20,24 On the other
hand, this instability mechanism has received less attention in the case of pure inertial waves (i.e., in absence of
stratification), probably because of the lower importance of rotation effects compared to stratification effects in most
geophysical flows. It has been observed in numerical simulations of inertial modes in a periodically compressed rotating
cylinder.10,11 To our knowledge, parametric instability in the simpler geometry of plane inertial waves has not been
investigated so far, and is the subject of this paper. A fundamental motivation for this work is the key role played by
triadic interactions of inertial waves in the problem of the generation of slow quasi-2D flows in rotating turbulence.25–27

The parametric subharmonic instability indeed provides a simple but nontrivial mechanism for anisotropic energy
transfers from modes of arbitrary wavevectors towards lower frequency modes, of wavevector closer to the plane normal
to the rotation axis (i.e., more “horizontal” by convention). Note that this nonlinear mechanism may however be in
competition with a linear mechanism —the radiation of inertial waves along the rotation axis— which has also been
shown to support the formation of vertical columnar structures.28 The relative importance of these two mechanisms
is governed by the Rossby number, defined as Ro = (τnlΩ)

−1, with Ω−1 the linear timescale and τnl = L/U the
nonlinear timescale based on the characteristic velocity U and length scale L. In rotating turbulence with Ro ≪ 1,
the anisotropy growth should hence be dominated by the nonlinear triadic interactions, whereas for Ro = O(1) both
mechanisms should be at play.

In this paper, we report the first experimental observation of the destabilization of a primary plane inertial wave
and the subsequent excitation of subharmonic secondary waves. To produce a plane inertial wave of sufficient spatial
extent, and hence of well-defined wavevector k0, we have made use of a wave generator already developed for internal
waves in stratified fluids.29–31 Wave beams of tunable shape and orientation can be generated with this wavemaker. We
show that, after a transient, the excited plane wave undergoes a parametric subharmonic instability. This instability
leads to the excitation of two secondary plane waves, with wavevectors which are systematically more “horizontal”
than the primary wavevector. We show that the predictions from the resonant triadic interaction theory for inertial
waves, as described by Smith and Waleffe,25 are in excellent agreement with our experimental results. In particular,
the frequencies and wavenumbers of the secondary waves accurately match the expected theoretical values.
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FIG. 1. (Color online) Schematic representation of the wave generator. The excited plane inertial wave has a frequency σ0, a
downward phase velocity, a negative helicity (s0 = −1), and propagates at an angle θ = cos−1(σ0/f), with f = 2Ω the Coriolis
parameter.

II. INERTIAL PLANE WAVE GENERATION

A. Structure of a plane inertial wave

We first briefly recall the main properties of inertial waves in a homogeneous fluid rotating at a constant rate Ω.
In the rotating frame, the restoring nature of the Coriolis force is responsible for the propagation of the inertial
waves, for frequencies σ ≤ f , where f = 2Ω is the Coriolis parameter. Fluid particles excited at frequency σ describe
anticyclonic circles in a plane tilted at an angle θ = cos−1(σ/f) with respect to the horizontal, and the phase of this
circular motion propagates perpendicularly to this tilted plane.
The equations of motion for a viscous fluid in a frame rotating at a rate Ω = f/2 around the axis z are

∂tu+ (u · ∇)u = −1

ρ
∇p− fez × u+ ν∇2u, (1)

∇·u = 0, (2)

where u = (ux, uy, uz) is the velocity field in cartesian coordinates x = (x, y, z). In the following, we restrict to the
case of a flow invariant along the horizontal direction y. The fluid being incompressible, the motion in the vertical
plane (x, z) may be described by a streamfunction ψ(x, z), such that u = (∂zψ, uy,−∂xψ). Neglecting viscosity, the
linearized equations for small velocity disturbances are

∂t∂zψ = −1

ρ
∂xp+ fuy, (3)

∂tuy = −f∂zψ, (4)

−∂t∂xψ = −1

ρ
∂zp. (5)

These equations may be combined to obtain the equation of propagation for inertial waves,

∂tt(∂xx + ∂zz)ψ + f2∂zzψ = 0. (6)

Considering a plane wave solution of frequency σ and wavevector k = (k, 0,m),

ψ(x, z, t) = ψ0 e
i(k·x−σt) + c.c. (7)

(where c.c. means complex conjugate), we obtain the anisotropic dispersion relation for inertial waves

σ = sf
m

κ
= sf cos θ, (8)

with κ = (k2 +m2)1/2, s = ±1, and θ the angle between k and the rotation axis (see Fig. 1). We see from Eq. (8)
that a given frequency σ lower than f selects a propagation angle ±θ, without specifying the norm of the wavevector
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κ. The corresponding velocity field is given by

ux = imψ0 e
i(kx+mz−σt) + c.c. (9)

uy = sκψ0 e
i(kx+mz−σt) + c.c. (10)

uz = −ik ψ0 e
i(kx+mz−σt) + c.c. (11)

We recover here that the fluid particles describe anticyclonic circular motions in tilted planes perpendicular to k, as
sketched in Fig. 1. The wave travels with a phase velocity cϕ = σk/κ2 and a group velocity cg = ∇kσ normal to cϕ.
The vorticity ω = ∇× u, given by

ω = −sκu, (12)

is associated to the shearing motion between planes of constant phase. Because the velocity and vorticity are aligned,
inertial waves are also called helical waves, and the sign s in Eq. (8) identifies to the sign of the wave helicity u · ω,
with s = +1 for a right-handed wave and s = −1 for a left-handed wave. For instance, in the classical St. Andrew’s
wave pattern emitted from a point source,16 the two upper beams are right-handed and the two lower beams are
left-handed, although the fluid motion is always anticyclonic.

B. Generation of a plane inertial wave

In order to generate a plane inertial wave, we have made use of a wavemaker, introduced by Gostiaux et al.,29

which was originally designed to generate internal gravity waves (see Mercier et al.31 for a detailed characterization
of the wavemaker). This wavemaker consists in a series of oscillating stacked plates, designed to reproduce the fluid
motion in the bulk of an internal gravity wave invariant along y. The use of this internal wave generator for the
generation of inertial waves is motivated by the similarity of the spatial structure of the two types of waves in the
vertical plane (x, z). However, the fluid motion in the internal wave is a simple oscillating translation in the direction
of the group velocity, whereas fluid particles describe anticyclonic circular translation in the case of inertial waves. As
a consequence, the oscillating plates of the wavemaker only force the longitudinal component of the circular motion
of the inertial waves, whereas the lateral component is let to freely adjust according to the spatial structure of the
wave solution.
The wavemaker is made of a series of 48 parallelepipedic plates stacked around a helical camshaft, with the ap-

propriate shifts between successive cames in order to form a sinusoidal profile at the surface of the generator. We
introduce the local coordinate system (ξ, y, η), tilted at an angle θ about y, where ξ is along the wave propagation and
η is parallel to the camshaft axis (see Fig. 1). The group velocity and the phase velocity of the wave are oriented along
ξ and η respectively. As the camshaft rotates at frequency σ0, the plates, which are constrained in the y direction,
oscillate back and forth along ξ. The sign of the rotation of the helical camshaft selects the helicity of the excited
wave, and hence an upward or downward phase velocity. In the present experiment, the rotation of the camshaft is
set to produce a downward phase velocity, resulting in a left-handed inertial wave of negative helicity s0 = −1.
The cames are 14 cm wide in the y direction, and their eccentricities are chosen to produce a sinusoidal displacement

profile, ξ0(η) = ξo sin(κ0η), of wavelength λ = 2π/κ0 = 7.6 cm and amplitude ξo = 0.5 cm at the center of the beam.
The wave beam has a width 30.5 cm with a smooth decrease to 0 at the borders, and contains approximately 4
wavelengths. The generator is only forcing the ξ component of the inertial wave, and the y component is found to
adjust according to the inertial wave structure after a distance of order of 2 cm.
The wavemaker is placed in a tank of 120 cm length, 80 cm width and 70 cm depth which is filled with 58 cm of

water. The tank is mounted on the precision rotating platform “Gyroflow” of 2 m in diameter. The angular velocity
Ω of the platform is set in the range 1.05 to 3.15 rad s−1, with relative fluctuations ∆Ω/Ω less than 10−3. A cover is
placed at the free surface, preventing from disturbances due to residual surface waves. The rotation of the fluid is set
long before each experiment (at least 1 hour) in order to avoid transient spin-up recirculations and to achieve a clean
solid body rotation.
The propagation angle θ of the inertial wave is varied by changing the rotation rate of the platform, while keeping

the wavemaker frequency constant, σ0 = 1.05 rad s−1. This allows to have a fixed wave amplitude σ0 ξo = 0.52 cm s−1

for all angles. The Coriolis parameter has been varied in the range f = 1.004 σ0 to 3 σ0, corresponding to angles θ
from 5o to 70o. For each value of the rotation rate, the axis of the wavemaker camshaft is tilted to the corresponding
angle θ = cos−1(σ0/f), in order to keep the plate oscillation aligned with the fluid motion in the excited wave. As
a consequence, the efficiency of the forcing should not depend significantly on the angle θ. For each experiment, the
fluid is first reset to a solid body rotation before the wavemaker is started.
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FIG. 2. (Color) Horizontal velocity field after 2 and 7 periods from the start of the wavemaker for σ0/f = 0.84. The wavemaker
is on the top-right, forcing a wave propagating along cg with a phase propagating along cϕ.

C. PIV measurements

Velocity fields are measured using a 2D particle image velocimetry (PIV) system32,33 mounted on the rotating
platform. The flow is seeded by 10 µm tracer particles, and illuminated by a vertical laser sheet, generated by a
140 mJ Nd:YAG pulsed laser. A vertical 59×59 cm2 field of view is acquired by a 14 bits 2048×2048 pixels camera
synchronized with the laser pulses. For each rotation rate, a set of 3200 images is recorded, at a frequency of 4 Hz,
representing 24 images per wavemaker period. This frame rate is set to achieve a typical particle displacement of
5 to 10 pixels between each frame, ensuring an optimal signal-to-noise ratio for the velocity measurement. PIV
computations are performed over successive images, on 32×32 pixels interrogation windows with 50% overlap. The
spatial resolution is 4.6 mm, which represents 17 points per wavelength of the inertial wave.
Figure 2 shows typical instantaneous horizontal velocity fields after 2 and 7 periods T = 2π/σ0 from the start of

generator, for an experiment performed with σ0/f = 0.84. A well defined truncated plane wave propagates downward,
making an angle θ = cos−1(σ0/f) ≃ 34o to the horizontal. The front of the plane wave is propagating at a velocity
8.3±0.6 mm s−1, which agrees well with the expected group velocity cg = f sin θ/κ = 8.5 mm s−1. The phase velocity
is downward, normal to the group velocity, and also agrees with the expected value cϕ = σ0/κ = 12.7 mm s−1.
Two sources of noise have been identified, which can be seen in the temporal energy spectrum of the velocity

fields (Fig. 3, described in the next subsection): an oscillatory motion at frequency σ = Ω = 0.5f , due to a residual
modulation of the rotation rate of the platform, and slowly drifting thermal convection structures at frequency
σ → 0, due to slight temperature inhomogeneities in the tank. Both effects contribute to a velocity noise of order of
0.2 mm s−1, i.e. 25 times lower than the wave amplitude close to the wavemaker. This noise could be safely removed
using a temporal Fourier filtering of the velocity fields at the forcing frequency σ0. This filtering however fails in the
particular case where σ0 = Ω, for which the mechanical noise of the platform cannot be filtered out of the inertial
wave signal.
The wavemaker is found to successfully generate well defined plane waves for frequencies σ0 ≥ 0.65f . For lower

frequency, i.e. for steeper angle of propagation [θ = cos−1(σ0/f) > 50o], the wave pattern shows significant departure
from the expected plane wave profile, which may be attributed to the interference of the incident wave with the
reflected wave on the bottom of the tank.

III. SUBHARMONIC INSTABILITY

A. Experimental observations

After a few excitation periods, the front of the inertial wave has travelled outside the region of interest, and the
inertial wave can be considered locally in a stationary regime. However, after typically 15 wavemaker periods (the
exact value depends on the ratio σ0/f), the inertial wave becomes unstable and show slow disturbances of scale slightly
smaller than the excited wavelength.
We have characterized this instability using Fourier analysis of the PIV time series. We compute, at each location

(x, z) of the PIV field, the temporal Fourier transform of the two velocity components over a temporal window ∆t,

ûσ(x, z) =
1√
2π

∫ t0+∆t

t0

u(x, z, t)eiσtdt. (13)
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FIG. 3. (Color online) Temporal energy spectra for two experiments performed at rotation rate Ω = 0.63 rad s−1 with
(continuous line) and without (dashed line) the wavemaker operating at σ0/f = 0.84. The spectrum with the generator
working has been computed on the time interval between 24 and 116 periods after the start of the generator. The peak at
σ/f = 0.5 present in the two spectra is the trace of the mechanical noise of the platform at the rotation frequency σ = Ω,
whereas the low frequencies are due to thermal convection effects (see text).

σ0/f (σ1 + σ2)/f σ1/f σ2/f

0.64 0.64 0.19 0.45

0.71 0.71 0.21 0.50

0.84 0.84 0.25 0.59

0.91 0.94 0.27 0.67

0.95 0.97 0.29 0.68

0.98 0.98 0.32 0.66

0.99 1.00 0.34 0.66

TABLE I. Frequencies of the secondary waves σ1/f and σ2/f , determined from the peaks in the temporal energy spectra, as a
function of the frequency of the primary wave σ0/f . The uncertainty for σ1/f and σ2/f is ±0.03.

The temporal energy spectrum is then defined as

E(σ) = 〈|ûσ|2〉x,z, (14)

where 〈·〉x,z is the spatial average over the PIV field.
If we compute E(σ) over a temporal window ∆t spanning a few excitation periods, we observe, as t0 is increased,

the emergence of two broad peaks at frequencies smaller than the excitation frequency σ0, suggesting the growth of a
subharmonic instability. These two subharmonic peaks can be seen in Fig. 3, for an experiment performed at rotation
rate Ω = 0.63 rad s−1 with the wavemaker operating at σ0/f = 0.84. Here, the temporal window ∆t is chosen equal
to 92 wavemaker periods, yielding a spectral resolution of ∆σ = 2π/∆t ≃ 9 × 10−3 f . The two secondary peaks
are centered on σ1/f = 0.25± 0.03 and σ2/f = 0.59 ± 0.03, and their sum matches well with the forcing frequency
σ0/f = 0.84, as expected for a subharmonic resonance. The significant width of the secondary peaks, of order 0.07 f ,
indicates that this resonance is weakly selective. This broad-band selection will be further discussed in Sec. IVB.
The subharmonic instability of the primary wave is found for all forcing frequencies σ0 ranging from 0.65f to f ; the

measured frequencies σ1,2 are given in Tab. I. The absence of clear subharmonic instability at lower forcing frequency
may be due to an intrinsic stability of the primary wave for σ0 < 0.65f , or to the low quality of the plane wave at
steep angles because of the interference with the reflected wave beam on the bottom of the tank.
Using temporal Hilbert filtering,30,34 the spatial structure of the wave amplitude uo(x) and phase ϕ(x, t) = k·x−σt

can be extracted for each secondary wave. The procedure consists in (i) computing the Fourier transform ûσ(x, z) of
the velocity field according to Eq. (13), with a temporal window ∆t of at least 42 excitation periods; (ii) band-pass
filtering ûσ(x, z) around the frequency of interest σ1 or σ2 with a bandwidth of δσ = 2.0 10−2f , but without including
the associated negative frequency; (iii) reconstructing the complex velocity field by computing the inverse Fourier
transform (including a factor 2, which accounts for the redundant negative frequency, in order to conserve energy),

uH(x, t) = uo(x) e
iϕ(x,t). (15)
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FIG. 4. (Color) Hilbert filtered vertical velocity (a) and phase (b) of the primary wave at σ0/f = 0.84, and phase of the Hilbert
filtered first [(c), σ1/f = 0.25] and second [(d), σ2/f = 0.59] subharmonic waves. The phase is displayed only where the wave
amplitude is larger than 1.3 10−1 σ0ξ0 for (b) and 7.7 10−3 σ0ξ0 for (c) and (d). In (a), the square in dashed lines indicates the
region where the primary wave amplitude A0 has been measured.

The physical velocity field is finally given by Re(uH). The wave amplitude uo and phase field ϕ are finally obtained
from the Hilbert-filtered field uH .

In Figs. 4(c) and (d), for the experiment at σ0/f = 0.84, we show the maps of the phase of the secondary waves,
extracted from Hilbert filtering at frequencies σ1 and σ2 respectively. It is worth to note, as can be verified from
Fig. 3, that the corresponding typical velocity amplitude is at least ten times smaller than for the primary wave [see
Fig. 4(a)]. The spatial structures of the phase of these secondary waves are not as clearly defined as for the primary
wave [Fig. 4(b)]. In particular, dislocations can be distinguished in the phase field. The finite extent of the primary
wave and its spatial decay due to viscous attenuation are probably responsible for this departure of the secondary
waves from pure plane waves. It is also important to note that the monochromaticity of the first subharmonic wave
[Fig. 4(c)] is affected by interferences with its reflection on the wavemaker which is due to the fact this secondary
wave is propagating toward the wavemaker. However, to a reasonable degree of accuracy, the two secondary waves
can be considered locally as plane waves, characterized by local wavevectors k1 and k2.

B. Helical modes

The approximate plane wave structure of the two secondary waves suggests to analyze the instability in terms of
a triadic resonance between the primary wave, of wavevector k0, and the two secondary waves, of wavevectors k1

and k2. This resonance may be conveniently analyzed in the framework of the helical decomposition, introduced by
Waleffe,35,36 which we briefly recall here.

Helical modes have been introduced as a general spectral decomposition basis, which is useful to analyze the energy
transfers via triadic interactions. Although this decomposition also applies for non-rotating flows, it is particularly
relevant for rotating flows, because inertial plane waves have exactly the structure of helical modes.36 Any velocity
field can actually be decomposed as a superposition of helical modes of amplitudes Ask(k, t),

u(x, t) =
∑

k

∑

sk=±1

Ask(k, t)hsk(k)e
i(k·x−σk

sk
t), (16)

where σk
sk

is the frequency associated to a plane wave of wavevector k and helicity sign sk. The helical mode hsk(k)
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is normal to k (by incompressibility), and given by

hsk(k) =
k

|k| ×
k× ez

|k× ez|
+ isk

k× ez

|k× ez|
, (17)

where sk = ±1 is the sign of the mode helicity.37 Injecting the decomposition (16) into the Navier-Stokes equation (1)
yields

(
∂

∂t
+ νκ2

)
Ak =

1

2

∑
C

skspsq
kpq A∗

pA
∗
qe

i(σk+σp+σq)t, (18)

with stars denoting complex conjugate, and Ak, σk being short-hands for Ask(k, t), σ
k
sk . In Eq. (18), the sum is to be

understood over all wavevectors p and q such that k+ p+ q = 0 and all corresponding helicity signs sp and sq. In
the following, the equation k+ p+ q = 0 will be referred to as the spatial resonance condition for a triad of helical
modes. The interaction coefficient is given by

C
skspsq
kpq =

1

2
[sqκq − spκp]

(
h∗
sp(p)× h∗

sq(q)
)
· h∗

sk(k). (19)

C. Resonant triads

The helical mode decomposition (16) applies for any velocity field, containing an arbitrary spectrum of wavevectors.
We restrict in the following the analysis to a set of three interacting inertial waves of wavevectors (k,p,q). Equa-
tion (18) shows that the amplitude of the mode of wavevector k is related to the two other modes p and q according
to (

∂

∂t
+ νκ2

)
Ak = CkA

∗
pA

∗
qe

i(σk+σp+σq)t (20)

where Ck is short-hand for C
skspsq
kpq = C

sksqsp
kqp . Cyclic permutation of k, p and q in Eq. (20) gives the two other

relevant interaction equations between the three waves. We further restrict the analysis to plane inertial waves
invariant along y (i.e., k · ey = 0). The three considered helical modes (17) therefore reduce to

hsr(r) =
mrex − krez

κr
− isrey, (21)

where r stands for k, p or q. From Eq. (21), the interaction coefficients (19) can be explicitly computed,

Ck =
i

2κkκpκq
[mpkq −mqkp] [κ

2
q − κ2p + sqskκqκk − spskκpκk], (22)

and similarly for the two cyclic permutations.
Since in Eq. (20) and in its two cyclic permutations the Ar(t) coefficients have to be understood as complex velocity

amplitudes evolving slowly compared to wave periods 2π/σr, temporal resonance is needed in addition to spatial
resonance for the left-hand coefficients Ar to be nonzero. Using 0, 1, 2 for reindexing the three waves k, p and q, this
leads to the triadic resonance conditions

k0 + k1 + k2 = 0, (23)

σ0 + σ1 + σ2 = 0. (24)

We consider in the following that only the primary wave A0, of given frequency σ0, wavevector k0 = (k0,m0) and
helicity sign s0, is present initially in the system (i.e., A1,2(0) = 0). The two secondary waves (s1, σ1, k1) and (s2,
σ2, k2) which could form a resonant triad with the primary wave may be determined using the resonance conditions
(23) and (24). From the dispersion relation for inertial waves (8), the resonance conditions lead to

s0
m0√
k20 +m2

0

+ s1
m1√
k21 +m2

1

− s2
m0 +m1√

(k0 + k1)2 + (m0 +m1)2
= 0. (25)

For a given primary wave (s0, k0,m0), the solution of this equation for each sign combination (s0, s1, s2) is a curve in
the (k1,m1) plane (see Fig. 5). Without loss of generality, once we have taken s0 = −1 (which corresponds to the
experimental configuration), it is necessary to consider four sign combinations: (−,−,−), (−,+,−), (−,−,+) and
(−,+,+). Notice that the three first combinations always admit solutions, whereas the fourth one, (−,+,+), admits
a solution only if |m0| ≤ κ0/2, i.e. θ > 60o. The exchange of k1 and k2 keeps the (−,−,−) and (−,+,+) resonances
unchanged, but exchanges the (−,−,+) and (−,+,−) resonances. Eventually, three independent sign combinations
remain: (−,−,−), (−,∓,±) and (−,+,+).
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FIG. 5. (Color online) Resonance curves for the primary waves (a) [s0 = −1, σ0 = 0.84f , κ0 = 0.82 rad cm−1] and (b)
[s0 = −1, σ0 = 0.99f , κ0 = 0.82 rad cm−1]. The curves represent the location of k0 + k1 = (k0 + k1,m0 + m1) satisfying
Eq. (25) for the 3 possible combinations of signs. The wavevectors measured experimentally are shown using arrows. The circle
is the theoretical prediction for the location of k0 + k1 obtained from the maximum growth rate criterion, determined using
the experimental primary wave amplitude [A0 = 0.29± 0.07 cm s−1 for (a) and A0 = 0.34± 0.11 cm s−1 for (b)]. The diameter
of the circle measures the uncertainty of the prediction due to the uncertainty on the wave amplitude A0.

D. Experimental verification of the resonance condition

The predictions of the triadic resonance theory are compared here with the measured wavevectors of the secondary
waves. Figure 5 shows the theoretical resonance curves for two forcing frequencies, σ0/f = 0.84 and 0.99. For both
curves, helicity sign and wavenumber of the primary wave are chosen according to the experimental values, s0 = −1
and κ0 = 0.82 rad cm−1.
For both frequencies σ0 considered here, only the three first sign combinations admit solutions. The (−,−,−)

combination gives a closed loop, whereas the two others, (−,∓,±), give infinite branches, tending asymptotically
to constant angles. The limit of large secondary wavevectors is such that |σ1| = |σ2| = |σ0|/2: when a wave k0

excites two waves of wavelength λ ≪ 2π/κ0, both secondary waves have frequency σ0/2, with opposite wavevectors,
leading to a stationary wave pattern. However, such large wavenumbers are prevented by viscosity, as will be shown
in Sec. IVA.
Figure 5 also shows the measured secondary wavevectors k1 and k2. These wavevectors are obtained from the phase

fields ϕ1,2 extracted by Hilbert filtering, using

k1,2 = ∇ϕ1,2. (26)

These measurements are then averaged over regions of about (130 mm)2 where the secondary waves can be considered
as reasonably spatially monochromatic. It must be noted that a same plane wave can be equivalently described by (s,
σ > 0, k) and (s, −σ < 0, −k). Since we always consider primary waves with positive frequency σ0 > 0, according to
Eq. (24), the subharmonic frequencies σ1,2 have to be taken negative. As a consequence, the Hilbert filtering should
be performed for the negative peaks in the temporal Fourier transform, in order to produce phase fields with the
appropriate sign. Practically, the Hilbert filtering has been performed around the positive peaks −σ1,2, and the signs
of the measured wavevectors have been changed accordingly.
The secondary wavevectors k1 = (k1,m1) and k2 = (k2,m2) measured experimentally, shown in Fig. 5, are in

good agreement with the triadic condition (23), forming a triangle such that k0 + k1 + k2 = 0. Moreover, the apex
of the triangle, at k0 + k1, falls onto one of the three resonant curves. The selected resonant curve corresponds
to the sign combination (−,+,−), in agreement with the observed experimental helicities. We actually verify that
s1 = σ1κ1/fm1 is positive (σ1 < 0 and m1 < 0) and that s2 = σ2κ2/fm2 is negative (σ2 < 0 and m2 > 0), confirming
the (−,+,−) nature of the experimental resonance.
Interestingly, the shape of the triangle k0 +k1 +k2 = 0 in Fig. 5 indicates that the group velocity of the secondary

wave k1 is oriented towards the wavemaker. Indeed, we recall that, for a given wavevector k, the group velocity cg
is normal to k, and the vertical projections of cg and k are oriented in the same direction if σ > 0 and in opposite
directions if σ < 0. Accordingly, Fig. 5 shows that cg0 and cg2 are oriented downward, pointing from the wavemaker
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towards the bottom of the tank, whereas cg1 is oriented upward, pointing towards the wavemaker. As a consequence,
the secondary wave k1 is fed by the primary wave, but releases its energy back to the wavemaker.
For all the primary wave angles for which the instability is observed, the secondary waves are systematically such

that |σ1| and |σ2| are lower than |σ0|. The dispersion relation hence yields secondary wavevectors k1,2 more horizontal
than k0, as illustrated in Fig. 5. This property, which actually follows from the conservation of energy and helicity,25

illustrates the natural tendency of rotating flows to transfer energy towards slow quasi-two-dimensional modes. If
the process is repeated, as in rotating turbulence, the energy becomes eventually concentrated on nearly horizontal
wavevectors, corresponding to a quasi-2D flow, with weak dependence along the rotation axis.26,27

IV. SELECTION OF THE MOST UNSTABLE RESONANT TRIAD

A. Maximum growth rate criterion

In order to univocally predict the resonant secondary waves, a supplementary condition must be added to Eq. (25):
we assume that the selected resonant triad is the one with the largest growth rate. Going back to the wave interaction
equations (20) associated to the temporal resonance condition (24), the amplitudes of the secondary waves are governed
by

dA1

dt
= C1A

∗
0A

∗
2 − νκ21A1, (27)

dA2

dt
= C2A

∗
0A

∗
1 − νκ22A2, (28)

with C1,2 given by Eq. (22) taking k = k1,2 (see also Appendix A in Ref. 25). Solving this system with initial
conditions A1,2(0) = 0, and assuming that A0 remains almost constant at short time, lead to the solutions

A1,2(t) = B1,2 (e
γ+t − eγ−

t), (29)

where the growth rates γ± write

γ± = −ν
2
(κ21 + κ22)±

√
ν2

4
(κ21 − κ22)

2 + C1C2|A0|2. (30)

In the following, we consider the primary wave amplitude as real without loss of generality, so |A0| = A0.
The coefficient γ− is always negative, so the stability of the system is governed by the sign of γ+, which we simply

note γ in the following. Interestingly, this growth rate γ depends on the amplitude A0 of the primary wave. As a
consequence, the primary wave is unstable with respect to a given set of secondary waves, selected by the resonance
condition and unequivocally denoted by κ1, only if A0 exceeds the threshold Ac(κ1) = νκ1κ2/

√
C1C2 in which case

γ(κ1) > 0. In other words, for a given couple of secondary waves (denoted by κ1) to be possibly growing, the Reynolds
number based on the primary wave, Re0 = A0/(κ0ν), must exceed a critical value Rec(κ1) = Ac(κ1)/(κ0ν) for the
onset of the parametric instability. This critical Reynolds number is actually an increasing function of κ1 and tends
to zero as κ1 → 0, showing that whatever the value of Re0, there is always a continuum of resonant triads with
Re0 > Rec(κ1), i.e. with a positive growth rate. The main consequence is that, whatever the value of Re0, the most
unstable triad always has a positive (maximum) growth rate and the parametric instability does not have any Re0
threshold to proceed.
If viscosity can be neglected, Eq. (30) reduces to γ =

√
C1C2A0. In the limit of large secondary wavenumbers

κ1,2 ≫ κ0, one has k1 ≃ −k2, and the growth rate γ is found to tend asymptotically toward a maximum value,24

i.e., the selected secondary waves have frequency exactly half the forcing frequency. Taking viscosity into account
reduces the growth rate of the large wavenumbers, and hence selects finite wavenumbers. Equation (30) indicates
that larger wavenumbers are selected for larger primary wave amplitudes A0 and/or lower viscosity, i.e. for larger
Reynolds number Re0.

B. Selection of the most unstable wavenumbers

In Fig. 6, the predicted growth rates γ are plotted for the three possible sign combinations, for the primary wave
defined by s0 = −1, σ0 = 0.84f , κ0 = 0.82 rad cm−1. These growth rates have been computed using the primary wave
amplitude averaged over the area where the secondary wavevectors have been measured (see the square in Fig. 4(a)),
A0 = 0.29 cm s−1. For the 3 types of resonance, the growth rates tend to zero when k1 → −k0/2 and k1 → ∞
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FIG. 6. (Color online) Growth rates γ as a function of k1, computed from Eq. (30), for the three possible resonances for a
primary wave (s0 = −1, σ0 = 0.84f , κ0 = 0.82 rad cm−1). The growth rates have been computed using the average value
A0 = 0.29 cm s−1 for the primary wave amplitude. For resonance (−,+,−), an additional curve (continuous line) has been
computed using a wave amplitude 25% larger.

(because of viscosity). If the secondary waves k1 and k2 are exchanged, which amounts to exchange the (−,−,+)
and (−,+,−) resonances, the same growth rates are obtained: the curves for (−,−,+) and (−,+,−) are symmetrical
with respect to k0/2.
Interestingly, the growth rate is positive for a broad range of wavenumbers. Together with the broad subharmonic

peaks observed in the temporal spectrum of Fig. 3, this confirms that the parametric resonance is weakly selective in
this system. Values of k1 corresponding to significant growth rates are of the same order of magnitude as the primary
wavenumber κ0 = 0.82 rad cm−1, indicating that the viscosity has a significant effect on the selection of the excited
resonant triad. For the value of σ0/f considered in Fig. 6, the maximum growth rate is obtained for the (−,+,−)
resonance, for kmax

1 = 0.75 rad cm−1. The corresponding predicted wavevector k1 is represented as a circle in the
resonance curve of Fig. 5(a), and is found in excellent agreement with the experimental measurement of k1 (shown
with an arrow).
Because of the viscous attenuation, the primary wave amplitude A0 actually depends on the distance from the

wavemaker. In the measurement area shown in Fig. 4(a), spatial variations of ±25% are found around the average
A0 = 0.29 cm s−1. Since the growth rate (30) depends on A0, this introduces an uncertainty on the predicted value
of γ, and consequently on the selected secondary wavenumbers. In order to appreciate the influence of the measured
value of A0 on the predicted triadic resonance, we also plot in Fig. 6 the growth rate of the selected (−,+,−)
resonance, but for a value of A0 increased by an amount of 25% (continuous line), which corresponds to the wave
amplitude in the close vicinity of the wavemaker. The maximum growth rate is actually found to strongly depend on
A0, with an increase of 30%, indicating that the onset of the parametric instability will take place first close to the
wavemaker. This strong sensitivity would make any direct comparison with an experimental growth rate too difficult.
On the other hand, the selected wavenumber kmax

1 is quite robust, showing a slight increase of 6% only when A0 is
increased by 25%. As a consequence, the uncertainty in the measurement of A0, which is unavoidable because of the
viscous attenuation of the primary wave, does not affect significantly the prediction for the most unstable secondary
wavevectors.
The size of the circles in Figs. 5(a) and (b) illustrates the uncertainty in the determination of the most unstable

wavevectors due to the spatial variation of A0. The relative uncertainty lies in the range 5−15% for the range of wave
frequencies considered here. In spite of this uncertainty, we can conclude that the secondary wavevectors predictions
from the maximum growth rate criterion are in good agreement with the observed resonant triads.

C. Dependence of the secondary waves properties on the primary wave frequency

We finally characterize here the evolution of the secondary wave properties (frequencies and wavenumbers) as the
frequency of the primary wave is changed. For a given primary wave amplitude A0, the secondary frequencies σ1,2
and wavenumbers κ1,2 have been systematically computed according to the maximum growth rate criterion, and
are reported in Fig. 7 as a function of σ0/f ∈ [0, 1]. The dotted lines correspond to the (−,−,−) and (−,+,−)
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FIG. 7. (Color online) Normalized frequencies σ1,2/σ0 (a), and wavenumbers κ1,2/κ0 (b) of the secondary waves, as a function
of the primary wave frequency σ0/f . Filled circles and squares with errorbars correspond to experimental measurements.
Predictions from the triadic resonance instability are represented with dashed thick lines (using absolute maximum growth
rate criterion) and dotted lines (using maximum growth rate criterion for the (−,−,−) and (−,+,−) resonances). Predictions
for the most unstable resonance are (−,−,−) for σ0/f < 0.79, and (−,+,−) for σ0/f > 0.79. These predictions have been
computed with a typical amplitude A0 = 0.30 cm s−1 for the primary wave. Continuous solid lines show the allowed range
around the (−,+,−) curves, determined by considering an uncertainty of ±50% on A0.

resonances, whereas the dashed thick lines are computed from the absolute maximum growth rate among all the
possible resonances. For σ0/f > 0.79, the growth rate is maximum on the (−,±,∓) branch, whereas for σ0/f < 0.79
it is maximum on the (−,−,−) branch.
In Fig. 7, we also show the experimental measurements of σ1,2 and κ1,2 for the range of primary wave frequencies for

which a subharmonic instability is observed, 0.65 < σ0/f < 0.99. The errorbars show the uncertainties computed from
the measured frequencies and wavenumbers. The agreement with the predictions from the triadic resonance theory
is excellent for the (−,+,−) branch. However, it is not clear why all the measurements actually follow the (−,+,−)
branch, although the (−,−,−) branch is expected to be more unstable for the two data points at σ0/f < 0.79.
The limited spatial extent of the primary wave along its transverse direction (which represents 4 wavelengths only)

and its amplitude decay along its propagation direction (because of viscous attenuation) may be responsible for this
unexpected stability of the (−,−,−) branch at low σ0/f . Indeed, the (−,−,−) branch is associated to wavelengths
significantly larger than the primary wavelength, so that a large spatial region of nearly homogeneous primary wave
amplitude is required to sustain such large wavelength secondary waves. On the other hand, the (−,+,−) resonance
generates lower wavelengths, which can more easily fit into the limited extent of the primary wave. Finite size effects
may therefore explain both the preferred (−,+,−) resonance at σ0/f < 0.79, and the unexpected global stability of
the primary wave for σ0/f < 0.65. Confinement effects are not described by the present triadic resonance theory,
which assumes plane waves of infinite spatial extent. Apart from this open issue, we can conclude that, at least for
sufficiently large forcing frequency, the observed secondary frequencies and wavenumbers are in good quantitative
agreement with the predictions from the triadic resonance theory.

V. DISCUSSION AND CONCLUSION

Using a wavemaker initially designed to generate beams of internal gravity waves in stratified fluids, we have
successfully generated well-defined plane inertial waves in a rotating water tank. Spectral analysis, performed on
particle image velocimetry measurements of this plane inertial wave, has revealed the onset of a parametric instability,
leading to the emergence of two secondary subharmonic waves. The wavevectors and frequencies of the primary and
secondary waves are found in good agreement with the spatial and temporal resonance conditions for a resonant triad
of inertial waves. Moreover, using the triadic resonance theory for inertial waves derived by Smith and Waleffe,25 the
growth rate of the instability has been computed, yielding predictions for the secondary wavevectors and frequencies
in agreement with the measurements. At low forcing frequency, we observe a departure from these predictions which
may be associated to the finite size of the primary wave. These finite size effects cannot actually be described within
the triadic resonant theory, which relies on plane waves of infinite extent.
Triadic resonant instability for inertial and internal waves share a number of common properties. In particular,
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equations governing the wave amplitudes equivalent to Eqs. (27) and (28) may also be derived for a triad of internal
waves, but in this case, they concern the amplitude of streamfunctions and not of velocities.24 The interaction
coefficients for internal waves C̃r (with r = 0, 1, 2) can be readily obtained from the interaction coefficients for inertial
waves Cr through a simple exchange of the vertical and horizontal components of the wavevectors, and introducing a
prefactor:

C̃r(k,m) =
κpκq
κr

Cr(m, k). (31)

The κpκq/κr prefactor between the two types of coefficients comes from the fact the wave amplitude is directly given

by the velocity u in the case of inertial waves, whereas it is given by the streamfunction ψ̃ ∼ u/κ in the case of internal
waves. The exchange of the vertical and horizontal components of the wavevectors comes from the comparison between
the dispersion relations for inertial and internal waves, σ/f = sm/κ and σ/N = sk/κ respectively, with f = 2Ω the
Coriolis parameter and N the Brunt–Väisälä frequency. The inviscid growth rate of the parametric instability γ̃ for
the internal waves is actually equal to the one of inertial waves γ through

γ̃ =

√
C̃1C̃2Ã0 =

√
C1C2κ0Ã0 = γ, (32)

where Ã0 is the primary internal wave amplitude (homogeneous to a streamfunction). Here, the inertial wave amplitude

A0 (homogeneous to a velocity) identifies with κ0Ã0. This equality between inertial and internal growth rates finally
shows that the predicted secondary waves should be identical for the two types of waves.
Interacting inertial waves are of primary importance for the dynamics of rotating turbulence. In the limit of low

Rossby numbers Ro = U/ΩL, where U and L are characteristic velocity and length scales, rotating turbulence can be
described as a superposition of weakly interacting inertial waves, whose interactions are directly governed by triadic
resonances. This is precisely the framework of wave turbulence as analyzed in Refs. 38 and 39 in the context of rotating
turbulence. The parametric instability between three inertial waves can be seen as an elementary process by which
energy is transferred between wavevectors in rotating turbulence. This anisotropic energy transfer takes place both
in scales (or wavenumbers) and directions (or angles). The angular energy transfer is always directed towards more
horizontal wavevectors, providing a clear mechanism by which slow quasi-2D motions become excited.25 However, the
nature of energy transfers through triadic resonance in terms of wavenumbers (or scales) —i.e., whether the energy
proceeds from large to small scales or inversely— is found to depend on wave amplitude and viscosity. Indeed, it can
be shown theoretically, within the present triadic resonance framework, that waves of amplitude large compared to νκ0
are unstable with respect to secondary waves of large wavenumbers, producing a direct energy cascade towards small
scales. On the other hand, waves of amplitude much lower than νκ0 are found to excite secondary waves of smaller
wavenumber, hence producing an inverse energy cascade towards larger scales. The net result of this competition is
delicate to decide, and may contain an answer to the debated issue concerning the direction of the energy cascade in
rapidly rotating turbulence.
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