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Rationality and Escalation

in Infinite Extensive Games

Pierre Lescanne∗

Université de Lyon, ENS de Lyon, CNRS (LIP),
46 allée d’Italie, 69364 Lyon, France

Abstract

The aim of this article is to study infinite games and to prove formally

properties in this framework. In particular, we show that the behavior

which leads to speculative crashes or escalation is rational. Indeed it

proceeds logically from the statement that resources are infinite. The

reasoning is based on the concept of coinduction conceived by computer

scientists to model infinite computations and used by rational agents un-

knowingly.
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1 Introduction

The aim of this article is to study infinite games and to prove formally some
properties in this framework. As a consequence, we show that the behavior
(the madness) of people which leads to speculative crashes or escalation can
be proved rational. Indeed it proceeds from the statement that resources are
infinite. The reasoning is based on the concept of coinduction conceived by
computer scientists to model infinite computations and used by rational agents
unknowingly. When used consciously, this concept is not as simple as induction
and we could paraphrase Newton [Bouchaud, 2008]: “Modeling the madness of
people is more difficult than modeling the motion of planets”.

In this section we present the three words of the title, namely rationality,
escalation and infiniteness.

1.1 Rationality and escalation

We consider the ability of agents to reason and to conduct their action according
to a line of reasoning. We call this rationality. This could have been called
wisdom as this attributed to King Solomon. It is not clear that agents act
always rationally. If an agent acts always following a strict reasoning one says
that he (she) is rational. To specify strictly this ability, one associates the agent
with a mechanical reasoning device, more specifically a Turing machine or a
similar decision mechanism based on abstract computations. One admits that
in making a decision the agent chooses the option which is the better, that is no
other will give better payoff, one says that this option is an equilibrium in the
sense of game theory. A well-known game theory situation where rationality of
agents is questionable is the so-called escalation. This is a situation where there
is a sequence of decisions wich can be infinite. If many agents1 act one after the
others in an infinite sequence of decisions and if this sequence leads to situations
which are worst and worst for the agents, one speaks of escalation. One notices
the emergence of a property of complex systems, namely the behavior of the
system is not the conjunction of this of all the constituents. Here the individual
wisdom becomes a global madness.

1Usually two are enough.
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1.2 Infiniteness

It is notorious that there is a wall between finiteness and infiniteness, a fact
known to model theorists like Fagin [1993] Ebbinghaus and Flum [1995] and to
specialists of functions of real variable. Weierstrass [1872] gave an example of
the fact that a finite sum of functions differentiable everywhere is differentiable
everywhere whereas an infinite sum is differentiable nowhere. This confusion
between finite and infinite is at the origin of the conclusion of the irrationality
of the escalation founded on the belief that a property of a infinite mathematical
object can be extrapolated from a similar property of finite approximations.2

As Fagin [1993] recalls, “Most of the classical theorems of logic [for infinite
structures] fail for finite structures” (see Ebbinghaus and Flum [1995] for a full
development of the finite model theory). The reciprocal holds obviously: “Most
of the results which hold for finite structures, fail for infinite structures”. This
has been beautifully evidenced in mathematics, when Weierstrass [1872] has
exhibited his function:

f(x) =

∞∑

n=0

bn cos(anxπ).

Every finite sum is differentiable and the limit, i.e., the infinite sum, is not. In
another domain, Green and Tao [2008]3 have proved that the sequence of prime
numbers contains arbitrarily long arithmetic progressions. By extrapolation,
there would exist an infinite arithmetic progression of prime numbers, which is
trivially not true. To give another picture, infinite games are to finite games
what fractal curves are to smooth curves [Edgar, 2008] and [Paulos, 2003, p. 174-
175]. In game theory the error done by the ninetieth century mathematicians
4 would lead to the same issue. With what we are concerned, a result which
holds on finite games does not hold necessarily on infinite games and vice-versa.
More specifically equilibria on finite games are not preserved at the limit on
infinite games whereas new types of equilibria emerge on the infinite game not
present in the approximation (see the 0, 1 game in Section 2.1) and Section 4.1.
In particular, we cannot conclude that, whereas the only rational attitude in
finite dollar auction would be to stop immediately, it is irrational to escalate
in the case of an infinite auction. We have to keep in mind that in the case
of escalation, the game is infinite, therefore reasoning made for finite objects
are inappropriate and tools specifically conceived for infinite objects should be
adopted. Like Weierstrass’ discovery led to the development of function series,
logicians have devised methods for correct deductions on infinite structures.
The right framework for reasoning logically on infinite mathematical objects is
called coinduction.

The inadequate reasoning on infinite games is as follows: people study finite
approximation of infinite games as infinite games truncated at a finite location.

2In the postface ( Section 6) we give another explanation: agents stipulate an a priori
hypothesis that resources are finite and that therefore escalation is impossible.

3Toa won the Fields Medal for this work.
4Weierstrass quotes some careless mathematicians, namely Cauchy, Dirichlet and Gauss,

whereas Riemann was conscient of the problem.
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If they obtain the same result on all the approximations, they extrapolate the
result to the infinite game as if the limit would have the same property. But this
says nothing since the infiniteness is not the limit of finiteness. Instead of reex-
amining their reasoning or considering carefully the hypotheses their reasoning
is based upon, namely wondering whether the set of resource is infinite, they
conclude that humans are irrational. If there is an escalation, then the game is
infinite, then the reasoning must be specific to infinite games, that is based on
coinduction. This is only on this basis that one can conclude that humans are
rational or irrational. In no case, a property on the infinite game generated by
escalation cane be extrapolated from the same property on finite games.

In this article we address these issues. The games we consider may have
arbitrary long histories as well as infinite histories. In our games there are two
choices at each node5, this will not loose generality, since we can simulate finitely
branching games in this framework. By König’s lemma, finitely branching,
specifically binary, infinite games have at least an infinite history. We are taking
the problem of defining formally infinite games, infinite strategy profiles, and
infinite histories extremely seriously. By “seriously” we mean that we prepare
the land for precise, correct and rigorous reasoning. For instance, an important
issue which is not considered in the literature is how the utilities associated
with an infinite history are computed. To be formal and rigorous, we expect
some kinds of recursive definitions, more precisely co-recursive definitions, but
then comes the questions of what the payoff associated with an infinite strategy
profile is and whether such a payoff exists (see Section A.2).

1.3 Games

Finite extensive games are represented by finite trees and are analyzed through
induction. For instance, in finite extensive games, a concept like subgame per-
fect equilibrium is defined inductively and receives appropriately the name of
backward induction. Similarly convertibility (an agent changes choices in his
strategy) has also an inductive definition and this concept is a key for this of
Nash equilibrium. But induction, which has been designed for finitely based
objects, no more works on infinite6 games, i.e., games underlying infinite trees.
Logicians have proposed a tool, which they call coinduction, to reason on infi-
nite objects. In short, since objects are infinite and their construction cannot
be analyzed, coinduction “observes” them, that is looks at how they “react” to
operations (see Section 2.2 for more explanation). In this article, we formalize
with coinduction, the concept of infinite game, of infinite strategy profile, of
equilibrium in infinite games, of utility (payoff), and of subgame. We verify
on the proof assistant Coq that everything works smoothly and yields interest-
ing consequences. Thanks to coinduction, examples of apparently paradoxical
human behavior are explained logically, demonstrating a rational behavior.

5Those choices are often to stop or to continue.
6In this article, infinite means infinite and discrete. For us, an infinite extensive game is

discrete and has infinitely many nodes.
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Finite extensive games have been introduced by Kuhn [1953]. But many
interesting extensive games are infinite and therefore the theory of infinite ex-
tensive games play an important role in game theory, with examples like the
dollar auction game [Shubik, 1971, Colman, 1999, Gintis, 2000, Osborne and Ru-
binstein, 1994], the generalized centipede game7 or infinipede or the 0, 1 game.
From a formal point of view, the concepts associated with infinite extensive
games are not appropriately treated in papers and books. In particular, there
is no clear notion of Nash equilibrium in infinite extensive game and the gap
between finiteness and infiniteness is not correctly understood. For instance in
one of the textbooks on game theory, one finds the following definition of games
with finite horizon: If the length of the longest derivation is [...] finite, we say
that the game has a finite horizon. Even a game with a finite horizon may have
infinitely many terminal histories, because some player has infinitely many ac-
tions after some history. Notice that in an infinite game with infinite branching
it is not always the case that a longest derivation exists. If a game has only
finite histories, but has infinitely many such finite histories of increasing length,
there is no longest history. Before giving a formal definition later in the article,
let us say intuitively why this definition is inconsistent. Roughly speaking, a
history is a path in the ordered tree which underlies the game. A counterexam-
ple is precisely when the tree is infinitely branching i.e., when “some player has
infinitely many actions”.8

Escalation takes place in specific sequential games in which players continue
although their payoff decreases on the whole. The dollar auction game has
been presented by Shubik [1971] as the paradigm of escalation. He noted that,
even though their cost (the opposite of the payoff) basically increases, play-
ers may keep bidding. This attitude was considered as inadequate and when
talking about escalation, Shubik [1971] says this is a paradox, O’Neill [1986]
and Leininger [1989] consider the bidders as irrational, Gintis [2000] speaks
of illogic conflict of escalation and Colman [1999] calls it Macbeth effect after
Shakespeare’s play. Rebutting these authors, we prove in this article, using
a reasoning conceived for infinite structures that escalation is logic and that
agents are rational, therefore this is not a paradox and we are led to assert that
Macbeth is in some way rational.

This escalation phenomenon occurs in infinite sequential games and only
there. To quote Shubik [1971]:

We could add an upper limit to the amount that anyone is allowed
to bid. However the analysis is confined to the (possibly infinite)
game without a specific termination point, as no particularly inter-
esting general phenomena appear if an upper bound is introduced.

Therefore it must be studied in infinite games with adequate tools, i.e., in a
framework designed for mathematical infinite objects. Like Shubik [1971] we

7Here “generalized” means that the game has an infinite “backbone”.
8In Section 3.3, we define a predicate leads to leaf which we think to characterize properly

the concept of finite horizon which is a property of strategy profiles.
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will limit ourselves to two players only. In auctions, this consists in the two
players bidding forever. This statement of rationality is based on the largely
accepted assumption that a player is rational if he adopts a strategy which
corresponds to a subgame perfect equilibrium. To characterize this equilibrium
most of the above cited authors consider a finite restriction of the game for which
they compute the subgame perfect equilibrium by backward induction9. Then
they extrapolate the result obtained on the amputated games to the infinite
game. To justify their practice, they add a new hypothesis on the amount of
money the bidders are ready to pay, called the limited bankroll. By enforcing the
finiteness of the game, they exclude clearly escalation. In the amputated game
dollar auction, they conclude that there is a unique subgame perfect equilibrium.
This consists in both agents giving up immediately, not starting the auction
and adopting the same choice at each step. In our formalization in infinite
games, we show that extending that case up to infinity is not a subgame perfect
equilibrium and we found two subgame perfect equilibria, namely the cases
when one agent continues at each step and the other leaves at each step. Those
equilibria which correspond to rational attitudes account for the phenomenon of
escalation. Actually this discrepancy between equilibrium in amputated games
extrapolated to infinite extensions and infinite games occurs in a much simpler
game than the dollar auction namely the 0, 1 game which will be studied in this
article.

1.4 Coinduction

Like induction, coinduction is based on a fixpoint, but whereas induction is
based on the least fixpoint, coinduction is based on the greatest fixpoint, for
an ordering that we are not going to describe here, since it would go beyond
the scope of this article. Attached to induction is the concept of inductive
definition, which characterizes objects like finite lists, finite trees, finite games,
finite strategy profiles, etc. Similarly attached to coinduction is the concept of
coinductive definition which characterizes streams (infinite lists), infinite trees,
infinite games, infinite strategy profiles etc. An inductive definition yields the
least set that satisfies the definition and a coinductive definition yields the great-
est set that satisfies the definition. Associated with these definitions we have
inference principles. For induction there is the famous induction principle used
in backward induction. On coinductively defined sets of objects there is a princi-
ple like induction principle which uses the fact that the set satisfies the definition
(proofs by case or by pattern) and that it is the largest set with this property.
Since coinductive definitions allow us building infinite objects, one can imagine
constructing a specific category of objects with “loops”, like the infinite word
(abc)ω (i.e., abcabcabc...) which is made by repeating the sequence abc infinitely
many times.10 Other examples with trees are given in Section 2.2.2, with in-
finite games and strategy profiles in Section 3. Such an object is a fixpoint,

9What is called “backward induction” in game theory is roughly what is called “induction”
in logic.

10The notation αω for an infinite repetition of the word α is classical.
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this means that it contains an object like itself. For instance (abc)ω = abc(abc)ω

contains itself. We say that such an object is defined as a cofixpoint. To prove a
property P on a cofixpoint o = f(o), one assumes P holds on o (the o in f(o)),
considered as a sub-object of o. If one can prove P on the whole object (on
f(o)), then one has proved that P holds on o. This is called the coinduction
principle a concept which comes from Park [1981], Milner and Tofte [1991], and
Aczel [1988] and was introduced in the framework we are considering by Co-
quand [1993]. Sangiorgi [2009] gives a good survey with a complete historical
account. To be sure to not be entangled, it is advisable to use a proof assis-
tant which implements coinduction, to build and to check the proof. Indeed
reasoning with coinduction is sometimes so counter-intuitive that the use of a
proof assistant is not only advisable but compulsory. For instance, we were, at
first, convinced that in the dollar auction the strategy profile consisting in both
agents stopping at every step was a Nash equilibrium, like in the finite case, and
only failing in proving it mechanically convinced us of the contrary and we were
able to prove the opposite, namely that the strategy profile “stopping at every
step” is not a Nash equilibrium. In the examples of Section 4, we have checked
every statement using Coq and in what follows a sentence like “we have proved
that ...” means that we have succeeded in building a formal proof in Coq.

1.4.1 Backward coinduction as a method for proving invariants

In infinite strategy profiles, the coinduction principles can be seen as follows:
a property which holds on a strategy profile of an infinite extensive game is an
invariant, i.e., a property which is always true, along the histories and to prove
that this is an invariant one proceeds back to the past. Therefore the name
backward coinduction is appropriate, since it proceeds backward the histories,
from future to past.

1.4.2 Backward induction vs backward coinduction

One may wonder the difference between the classical method, we call backward
induction and the new method we call backward coinduction. The main dif-
ference is that backward induction starts the reasoning from the leaves, works
only on finite games and does not work on infinite games (or on finite strat-
egy profiles), because it requires a well-foundedness to work properly, whereas
backward coinduction works on infinite games (or on infinite strategy profiles).
Coinduction is unavoidable on infinite games, since the methods that consists
in “cutting the tail” and extrapolating the result from finite games or finite
strategies profile to infinite games or infinite strategy profiles cannot solve the
problem or even approximate it. It is indeed the same erroneous reasoning as
this of the predecessors of Weierstrass who concluded that since:

∀p ∈ N, fp(x) =

p∑

n=0

bn cos(anxπ),
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is differentiable everywhere then

f(x) =

∞∑

n=0

bn cos(anxπ).

is differentiable everywhere whereas f(x) is differentiable nowhere.
Much earlier, during the IVth century BC, the improper use of inductive

reasoning allowed Parmenides and Zeno to negate motion and lead to Zeno’s
paradox of Achilles and the tortoise. This paradox was reported by Aristotle as
follows:

“In a race, the quickest runner can never overtake the slow-
est, since the pursuer must first reach the point whence the pursued
started, so that the slower must always hold a lead.”

Aristotle, Physics VI:9, 239b15

In Zeno’s framework, Zeno’s reasoning is correct, because by induction, one can
prove that Achilles will never overtake the tortoise. Indeed this applies to the
infinite sequence of races described by Aristotle. In each race of the sequence,
the pursuer starts from where the pursued started previously the race and the
pursuer ends where the pursued started in the current race. By induction one
can prove, but only for a sequence of races, the truth of the statement “Achilles
will never overtake the tortoise”. In each race “Achilles does not overtake the
tortoise”. For the infinite race for which coinduction would be needed, the
result “Achilles overtakes the tortoise” holds. By the way, experience tells us
that Achilles would overtake the tortoise in a real race and Zeno has long been
refuted by the real world.

1.4.3 Von Neumann and coinduction

As one knows, von Neumann [von Neumann, 1928, von Neumann and Mor-
genstern, 1944] is the creator of game theory, whereas extensive games and
equilibrium in non cooperative games are due to Kuhn [1953] and Nash, Jr.
[1950]. In the spirit of their creators all those games are finite and backward in-
duction is the basic principle for computing subgame perfect equilibria [Selten,
1965]. This is not surprising since von Neumann [1925] is also at the origin of
the role of well-foundedness in set theory despite he left a door open for a not
well-founded membership relation. As explained by Sangiorgi [2009], research
on anti-foundation initiated by Mirimanoff [1917] are at the origin of coinduction
and were not well known until the work of Aczel [1988].

1.4.4 Proof assistants vs automated theorem provers

Coq is a proof assistant built by The Coq development team [2007], see Bertot
and Castéran [2004] for a good introduction and notice that they call it “in-
teractive theorem provers”, which is a strict synonymous. Despite both deal
with theorems and their proofs and are mechanized using a computer, proof



1 INTRODUCTION – 10

assistants are not automated theorem provers. In particular, they are much
more expressive than automated theorem provers and this is the reason why
they are interactive. For instance, there is no automated theorem prover im-
plementing coinduction. Proof assistants are automated only for elementary
steps and interactive for the rest. A specificity of a proof assistant is that
it builds a mathematical object called a (formal) proof which can be checked
independently, copied, stored and exchanged. Following Harrison [2008] and
Dowek [2007], we can consider that they are the tools of the mathematicians of

the XXIth century. Therefore using a proof assistant is a highly mathematical
modern activity.

The mathematical development presented here corresponds to aCoq script11

which can be found on the following url’s:
http://perso.ens-lyon.fr/pierre.lescanne/COQ/Book/

http://perso.ens-lyon.fr/pierre.lescanne/COQ/Book/SCRIPTS/

1.4.5 Induction vs coinduction

To formalize structured finite objects, like finite games, one uses induction, i.e.,

• a definition of basic objects

– in the case of natural numbers, induction provides an operator 0 to
build a natural number out of nothing,

– in the case of binary trees, a tree with non node, written ©,

– in the case of finite games induction provides an operator 〈| |〉 to
build a game out of nothing using an function that attribute payoffs
to agents.

and

• a definition of the way to build new objects

– in the case of natural numbers, induction provides an operation suc-
cessor to build a natural number forma a natural number,

– in the case of binary trees, induction provides a binary operator which
builds a tree with two trees,

– in the case of finite games induction provides an operator to build a
game out of two subgames and a node.

In the case of infinite objects like infinite games, one characterizes infinite ob-
jects not by their construction, but by their behavior. This characterization by
“observation” is called coinduction. Coinduction is associated with the greatest
fixpoint. The proof assistant Coq offers a framework for coinductive definitions
and reasonings which are keys of our formalization.

11A script is a list of commands of a proof assistant.
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2 The concepts through examples

We think that examples are the best way to present concepts. In this section
we present a simple example of an infinite game useful in what follows and two
examples of structures meant to introduce smoothly induction.

2.1 A paradigmatic example: the 0, 1 game

Classically, an extensive game is considered a labelled oriented tree, in which
both nodes and arcs are labelled. In other words, there is a set of nodes and a set
of arcs. An arc connects a node to another node in such a way that there is no
circuit in the graph, i.e., no path which goes from a node to itself when following
the arcs. An internal node is a node which is connected to another node and
an external node or a leaf is a node which is not connected to another. Internal
nodes are labelled by names of players and represents a turn in the game and
the label of the internal node tells us which player has the turn. External nodes
represent the end of the game and are labelled by the function that assigns a
payoff12 to each player. Arcs are labeled by choices, more precisely choices made
by the player who has the turn and show how the choice made by the player
who has the turn leads in another position in the game. In our formalization
we assume that one can go to a position in which the same player has the turn,
like

Alice Alice

x1,y1 x2,y2

c c

s s

but this situation never occurs in examples we consider. In this article, we
propose a presentation of game less descriptive and more structural in the line
of what is done in computer science when describing infinite computations.

Alice Bob Alice Bob Alice

0,1 1,0 0,1 1,0 0,1

c c c c c c c

s s
s

s s s
s

Figure 1: The 0, 1 game.

12or a cost in some cases.
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To illustrate this description we propose a running example of an infinite
extensive game which we call the 0, 1 game (which formal name is zero one)
because the only utilities (or payoffs) are 0 and 1. The game is infinite and is
represented by a kind of infinite backbone (see Figure 1) in which each internal
node is connected to a leaf and to another internal node. We assume that there
are two players, namely Alice and Bob, hence two labels on the internal nodes.
We also assume that players play one after the other. They have two choices,
s for stop and c for continue. The arc labeled s is connected to a leaf and the arc
labeled c is connected to another internal node. The leaves have labels that are
payoff functions. The leaf connected with an internal node labeled with Alice

is labeled with function {Alice 7→ 0,Bob 7→ 1} (meaning Alice’s payoff is 0
and Bob’s payoff is 1) whereas the leaf connected with an internal node labeled
with Bob is labeled with function {Alice 7→ 1,Bob 7→ 0} (meaning the payoffs
are reversed). The 0, 1 game is a specific case of a binary game which are
presented using the formalism for defining infinite objects coinductively. Binary
games have two kinds of labels called ℓ and r . In the 0, 1 game ℓ stands for
c (continues) and r stands for s (stops). In what follows the 0, 1 game will be
formally defined as a coinductive structure defined by a fixpoint, that is

zero one =
Alice Bob zero one

0,1 1,0

c c

s s

2.2 Coinduction through examples

We now leave the descriptive approach for the structural approach. We intro-
duce the concept of coinduction through two examples: histories of sequential
games, i.e., the sequences of choices performed by agents along the run of a
game according to a strategy profile, and binary trees, trees in which there are
two subtrees at each node.

2.2.1 Histories

Infinite objects have peculiar behaviors. To start with a simple example, let us
have a look at histories in games [Osborne, 2004, Chap. 5]. In a game, agents
make choices. In an infinite game, agents can make finitely many choices before
ending, if they reach a terminal node, or infinitely many choices, if they run
forever. Choices are recorded in a history in both cases. A history is therefore
a finite or an infinite list of choices. In this article, we consider that there are
two possible choices: ℓ and r (ℓ for “left” and r for “right”). Since a history
is a potentially infinite object, it cannot be defined by structural induction.13

On the contrary, the type14 History has to be defined as a CoInductive, i.e., by

13In type theory, a type of objects defined by induction is called an Inductive, a shorthand
sWe can for inductive type.

14Since we are in type theory, the basic concept is “type”. Since we are using only a small
part of type theory, it would not hurt to assimilate naive types with naive sets.
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coinduction, that is a mechanism which defines infinite objects and allows to
reason on them. Let us use the symbol [ ] for the empty history and the binary
operator :: for non empty histories. When we write a :: h we mean that the
history starts with a and follows with the history h. For instance, the finite
history ℓr ℓ can be written ℓ :: (r :: (ℓ :: [ ])). If h is the history ℓω (an infinite
sequence of ℓ’s) ℓ :: h or ℓ :: ℓω is the history that starts with ℓ and follows with
infinitely many ℓ’s. The reader recognizes that ℓ :: ℓω is ℓω itself. To define
histories coinductively we say the following:

A coinductive history (or a finite or infinite history) is

• either the empty history [ ],

• or a history of the form a :: h, where a is a choice and h is a
history.

The word “coinductive” says that we are talking about finite or infinite ob-
jects. This should not be mixed up with finite histories which will be defined
inductively as follows:

An inductive history (or a finite history) is built as

• either the empty history [ ],

• or a finite non empty history which is the composition of a
choice a with a finite history hf to make the finite history
a :: hf .

Notice the use of the participial “built”, since in the case of induction, we say
how objects are built, because they are built finitely. The 0, 1 game has the
family of histories c∗s ∪ cω, meaning that a history is either a sequence of c’s
followed by a s, or an infinite sequence of c’s. Consider now an arbitrary infinite
binary game15 with histories made of ℓ’s and r ’s. Let us now consider four
families of histories:

H0 The family of finite histories

H1 The family of finite histories or of histories which end with an infinite sequence of ℓ’s

H2 The family of finite histories or infinite histories which contain infinitely many ℓ’s

H∞ The family of finite or infinite histories

We notice that H0 ⊂ H1 ⊂ H2 ⊂ H∞. If H is a set of histories, we write
ℓ :: H the set {h ∈ H∞ | ∃h′ ∈ H, h = c :: h′}. We notice that H0, H1, H2 and
H∞ are solutions of the fixpoint equation :

H = {[ ]} ∪ ℓ :: H ∪ r :: H.

in other words

H0 = {[ ]} ∪ ℓ :: H0 ∪ r :: H0

H1 = {[ ]} ∪ ℓ :: H1 ∪ r :: H1

H2 = {[ ]} ∪ ℓ :: H2 ∪ r :: H2

H∞ = {[ ]} ∪ ℓ :: H∞ ∪ r :: H∞

15An game which does not have a centipede structure, i.e., which does not have a backbone.
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Among all the fixpoints of the above equation, H0 is the least fixpoint and
describes the inductive type associated with this equation, that is the type of
the finite histories and H∞ is the greatest fixpoint and describes the coinductive
type associated with this equation, that is the type of the infinite and infinite
histories. The principle that says that given an equation, the least fixpoint is
the inductive type associated with this equation and the greatest fixpoint is the
coinductive type associated with this equation is very general and will be used
all along this article.

The Coq vernacular, is more verbose, but also more precise in describing
the CoInductive type History, (see Appendix B.3 for a precise definition). The
word coinductive guarantees that we define actually infinite objects and attach
to the objects of type History a specific form of reasoning, called coinduction.
In coinduction, we assume that we “know” an infinite object by observing it
through its definition, which is done by a kind of peeling. Since on infinite
objects there is no concept of being smaller, one does not reason by saying
“I know that the property holds on smaller objects let us prove it on the object”.
On the contrary one says “Let us prove a property on an infinite object. For that
peel the object, assume that the property holds on the peeled object and prove
that it holds on the whole object”. One does not say that the object is smaller,
just that the property holds on the peeled object. The above presentation is
completely informal, but it has been, formally founded by Christine Paulin in the
theory of Coq, after the pioneer works of Park [1981] and Milner [1989], using
the concept of greatest fixpoint in type theory [Coquand, 1993] (see Sangiorgi
[2009] for a survey). Bertot and Castéran [2004] present the concepts in Section
13 of their book.

Bisimilarity. By just observing them, one cannot prove that two objects
which have exactly the same behavior are equal, we can just say that they
are observably equivalent. Observable equivalence is a relation weaker than
equality16, called bisimilarity and defined on History as a CoInductive (see Ap-
pendix B.3 for a fully formal definition in the Coq vernacular):

Bisimilarity ∼h on histories is defined coinductively as follows:

• [ ] ∼h [ ],

• h ∼h h′ implies ∀a : Agent, a :: h ∼h a :: h′.

This means that two histories are bisimilar if either both are null or for
composed histories, if both have the same head and the rests of both histories
are bisimilar.17 One can prove that two objects that are equal are bisimilar,
but not the other way around, because for two objects to be equivalent by
observation, does not mean that they have the same identity. To illustrate the

16We are talking here about Leibniz equality, not about extensional equality see ap-
pendix A.1.

17Bisimilarity is related with p-morphisms and zigzag relations in modal logic. See [San-
giorgi, 2009] for a survey.
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difference between bisimilarity and equality of infinite objects let us consider
for example two infinite histories α0 and β0 that are obtained as solutions of
two equations. Let αn = c(n) :: αn+1, where c(n) is (if even(n) then ℓ else r),
and βp is ℓ :: r :: βp+1. We know that if we ask for the 5th element of α0 and
β0 we will get ℓ in both cases, and the 2pth element will be r in both cases, but
we have no way to prove that α0 and β0 are equal, i.e., have exactly the same
structure. Actually the picture in Figure 2 shows that they look different and
there is no hope to prove by induction, for instance, that they are the same,
since they are not well-founded. We see that in the first history, for all p, we
have α0 = α2p+1 and, we can see α0 as fixpoint of the system of equations:

xα = ℓ :: xα′ xα′ = r :: xα

and for the second history, for all p we have also β0 = β2p+1 and we can see β0

as the fixpoint of the equation

yβ = ℓ :: r :: yβ.

ℓ r ℓ r ℓ r

α0

ℓ r ℓ r ℓ r

β0

Figure 2: The picture of two bisimilar histories

As we said, we do not consider equality among infinite objects, but only
bisimilarity. Why? The reason is that with the kind of reasoning we use, we
can only prove that two objects ar bisimilar, not that they are equal.18

Always. A property P can be true on an infinite history. For instance “there
exists an ℓ in the sequence”. But we can also say that a property of a history
is always true, that is true for all the sub-histories of the history. For instance,
“there is always an ℓ further in the sequence”, this also means “there exists
infinitely many ℓ’s in the history”. The operator which transforms a property P

in a property always P is called a modality. The modality always is written �

and we write �P instead of always P .

18We can consider a definition of infinite object where objects are equal if they have the
same elements, but such a set of objects is obtained by quotient of the set of histories by the
bisimilarity relation. This way, we loose the structure of the infinite objects as we described
them. For us it is important to keep the structure of the objects.
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2.2.2 Infinite or finite binary trees

As an example of a coinductive definition consider binary tree, i.e., the type of
finite and infinite binary trees.

©

•

© ©

•

• ©

© ©

. . .

•

• •

© © • ©

•

• ©

• ©

• ©

• ©

• ©

. . .

•

© •

• ©

© •

• ©

©

Backbone Zig

Figure 3: Coinductive binary trees

A coinductive binary tree (or a lazy binary tree or a finite-infinite
binary tree) is

• either the empty binary tree ©,

• or a binary tree of the form t ·t′, where t and t′ are binary trees.

By the keyword coinductive we mean that we define a coinductive set of
objects, hence we accept infinite objects. Some coinductive binary trees are
given on Figure 3. We define on coinductive binary trees a predicate which has
also a coinductive definition:

A binary tree is infinite if (coinductively)

• either its left subtree is infinite
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• or its right subtree is infinite.

Can we speak about a specific infinite tree? Yes provided we can define it. This
can be done as a fixpoint, actually a cofixpoint since we speak about an infinite
object. Let us define an infinite binary tree with an infinite path that goes left,
then right, then left, then right, then left, forever (Figure 3). We call zig this
infinite tree. Its definition goes with another infinite tree called zag.

We define two trees that we call zig and zag.

zig and zag are defined together as cofixpoints as follows:

• zig has © as left subtree and zag as right subtree,

• zag has zig as left subtree and © as right subtree.

This says that zig and zag are the greatest solutions19 of the two simultaneous
equations:

zig = © · zag

zag = zig · ©

•

•

© •

zig ©

⇒

•

•

© •

zig ©

zig

Figure 4: How cofix works on zig for is infinite?

It is common sense that zig and zag are infinite, but to prove that “zig is
infinite” using the cofix tactic20, we do as follows: assume “zig is infinite”,
then zag is infinite, from which we get that “zig is infinite”. Since we use the
assumption on a strict subtree of zig (the direct subtree of zag, which is itself
a direct subtree of zig) we can conclude that the cofix tactic has been used
properly and that the property holds, namely that “zig is infinite”. We have
proved that “zig is infinite”’ is an invariant along the infinite binary trees zig and
zag. The cofix reasoning is pictured on Fig.4, where the square box represents
the predicate is infinite. Above the rule, there is the step of coinduction and

19In this case, the least solutions are uninteresting as they are objects nowhere defined.
Indeed there is no basic case in the inductive definition.

20The cofix tactic is a method due to Christine Paulin and proposed by the proof assistant
Coq which implements coinduction on cofixpoint objects. Roughly speaking, it attempts to
prove that a property is an invariant, by proving it is preserved along the infinite object. Here
“ is infinite” is such an invariant on zig.
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below the rule the conclusion, namely that the whole zig is infinite. We let the
reader prove that “backbone is infinite”, where backbone is the greatest fixpoint
of the equation:

backbone = backbone · ©

Interested readers may have a look at Coupet-Grimal [2003], Coupet-Grimal
and Jakubiec [2004], Lescanne [2009], Bertot [2005, 2007] and especially Bertot
and Castéran [2004, chap. 13] for other examples of cofix reasoning.

3 Games and strategy profiles

We start with a formal and inductive presentation of finite games, which is
extended in the next section to a description of infinite games. The section
ends with a presentation of equilibria in infinite games: Nash equilibria and
subgame perfect equilibria.

In classical textbooks, finite and infinite games are presented through their
histories. But in the framework of a proof assistant or just to make rigorous
proofs, it makes sense to present them structurally. Therefore, games are rather
naturally seen as either a leaf to which a utility function (a function that assigns
a utility, a payoff or a cost to each agent, aka an outcome) is attached or a node
which is associated to an agent and two subgames. If agents are Alice and
Bob and utilities are natural numbers, a utility function can be the function
Alice 7→ 3,Bob 7→ 2.

3.1 Finite Games

We restrict to infinite games in which each player has two choices at each turn.
Such finite extensive game can be seen as built by putting together a player a
and two games gℓ and g

r
, which correspond to either choice made by the player.

We write 〈|a, gℓ, gr |〉 this game. We need also a base case, which is actually
what is seen usually as the “end” of a game and which is used here as the basis
which every finite game is based upon. Actually it is a degenerated game where
players do not play but just receive their payoffs. Assume there are two players
Alice and Bob and pA is the payoff for Alice and pB is the payoff for Bob.
This is the utility fonction f ≡ Alice 7→ pA,Bob 7→ pB. We write 〈|f |〉 this
kind of game. A finite binary game is a game obtained by applying repeatedly
applications of 〈|a, , |〉 to games of the form 〈|f |〉. In other words:

The type Finite Game is defined as an inductive as follows:

• a Utility function makes a Finite Game,

• an Agent and two Finite Games make a Finite Game.

Hence one builds a finite game in two ways: either a given utility function f

is encapsulated to make the game 〈|f |〉, or an agent a and two games gl and gr
are given to make the game 〈|a, gl, gr|〉. Notice that in such games, it can be
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the case that the same agent a has the turn twice in a row, like in the game
〈|a, 〈|a, g1, g2|〉, g3|〉.

3.2 Infinite Games

We study games that “can” be infinite and “can” have finite or infinite branches,
like the 0, 1 game.

The type Game is defined as a coinductive as follows:

• a Utility function makes a Game,

• an Agent and two Games make a Game.

A Game is either a leaf (a terminal node) or a composed game made of an
agent (the agent who has the turn) and two subgames (the formal definition in
the Coq vernacular is given in the appendix B.3). Like for finite games, we use
the expression 〈|f |〉 to denote the leaf game associated with the utility function
f and the expression 〈|a, gl, gr|〉 to denote the game with agent a at the root and
two subgames gl and gr. For instance, the game we would draw:

Alice 7→ 1,Bob 7→ 2 Alice7→3,Bob7→2

Alice Bob Alice7→2,Bob7→2

is represented by the term:

〈|Alice, 〈|Alice 7→ 1,Bob, 7→ 2|〉, 〈|Bob 〈|Alice 7→ 2, Bob 7→ 2|〉, 〈|Alice 7→ 3, Bob 7→ 2|〉|〉

Concerning comparisons of utilities we consider a very general setting where
a utility is no more that a type (a “set”) with a preference which is a preorder,
i. e., a transitive and reflexive relation, and which we write �. A preorder is
enough for what we want to prove. By using a very general preorder, it makes
extremely easy to go from payoff to cost, we have just to switch the direction
of � keeping the same carrier. We assign to the leaves, a utility function which
associates a utility to each agent.

Like for histories, to describe an infinite game one uses a fixpoint equation.
For instance to describe the 0, 1 game one uses the equation:

zero one = 〈|Alice, 〈|Bob, zero one, 〈|Alice 7→ 0,Bob 7→ 1|〉|〉, 〈|Alice 7→ 1,Bob 7→ 0|〉|〉

3.3 Infinite Strategy Profiles

The main concept of this article is this of infinite strategy profile which is
a coinductive. More specifically, in this article, we focus on infinite binary
strategy profiles associated with infinite binary games.

The type of Strategy Profiles is defined as a coinductive as
follows:
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• a Utility function makes a Strategy Profile.

• an Agent, a Choice and two Strategy Profiles make a Strategy
Profile.

Basically21 an infinite strategy profile which is not a leaf is a node with
four items: an agent, a choice, two infinite strategy profiles. A strategy profile
is the same as a game, except that there is a choice. In what follows, since
we consider equilibria, we only address strategy profiles. Strategy profiles of
the first kind are written ≪ f ≫ and strategy profiles of the second kind are
written ≪a, c, sl, sr ≫. In other words, if between the “≪” and the “≫” there
is one component, this component is a utility function and the result is a leaf
strategy profile and if there are four components, this is a node strategy profile.
For instance, with the game of page 19 one can associate at least the following
strategy profiles:

Alice 7→ 1,Bob 7→ 2 Alice7→3,Bob7→2

Alice Bob Alice7→2,Bob7→2

Alice 7→ 1,Bob 7→ 2 Alice7→3,Bob7→2

Alice Bob Alice7→2,Bob7→2

which correspond to the expressions

≪Alice,r ,≪Alice 7→ 1,Bob 7→ 2≫,
≪Bob,ℓ,≪Alice 7→ 2, Bob 7→ 2≫,≪Alice 7→ 3, Bob 7→ 2≫≫

and
≪Alice,ℓ,≪Alice 7→ 1,Bob 7→ 2≫,

≪Bob,ℓ,≪Alice 7→ 3, Bob 7→ 2≫,≪Alice 7→ 2, Bob 7→ 2≫,≫.
Let us call s0 the first strategy profile and s1 the second one. To describe

an infinite strategy profile one uses most of the time a fixpoint equation like:

t = ≪Alice, ℓ,≪Alice 7→ 0,Bob 7→ 0≫,≪Bob, ℓ, t, t≫≫

which corresponds to the pictures:

t =

Alice

Alice 7→ 0,Bob 7→ 0

Bob

t t

21The formal definition in the Coq vernacular is given in appendix B.3.
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Other examples of infinite strategy profiles are given in Section 4. Usually
an infinite game is defined as a cofixpoint, i.e., as the solution of an equation,
possibly a parametric equation.

Whereas in the finite case we can easily associate with a strategy profile
a utility function, i.e., a function which assigns a utility to an agent, as the
result of a recursive evaluation, this is no more the case with infinite strategy
profiles. One reason is that we are not sure that such a utility function exists
for the strategy profile. This makes the function partial. Therefore s2u (an
abbreviation for strategy profile-to-utility) is a relation between a strategy profile
and a utility function, which is also a coinductive; s2u appears in expression of
the form (s2u s a u) where s is a strategy profile, a is an agent and u is a utility.
It reads “u is a utility of the agent a in the strategy profile s”.

s2u is a predicate defined coinductively as follows:

• s2u ≪f≫ a (f(a)) holds,

• if s2u sl a u holds then s2u ≪a′, ℓ, sl, sr≫ a u holds,

• if s2u sr a u holds then s2u ≪a′, r , sl, sr≫ a u holds.

This means the utility of a for the leaf strategy profile≪f≫ is f(a), i.e., the
value delivered by the function f when applied to a. The utility of a for the
strategy profile ≪a′, ℓ, sl, sr ≫ is u if the utility of a for the strategy profile sl
is u. For s0, the first above strategy profile, one has s2u s0 Alice 2, which
means that, for the strategy profile s0, the utility of Alice is 2.

3.3.1 The predicate “leads to a leaf”

In order to insure that s2u has a result we define a predicate “leads to a leaf”
that says that if one follows the choices shown by the strategy profile one reaches
a leaf, i.e., one does not go forever.

The predicate “leads to a leaf” is defined inductively as

• the strategy profile ≪f≫ “leads to a leaf”,

• if sl “leads to a leaf”, then ≪a, ℓsl, sr≫ “leads to a leaf”,

• if sr “leads to a leaf”, then ≪a, r , sl, sr≫ “leads to a leaf”.

This means that a strategy profile which is itself a leaf “leads to a leaf” and
if the strategy profile is a node, if the choice is ℓ and if the left strategy subprofile
“leads to a leaf” then the whole strategy “leads to a leaf” and similarly if the
choice is r . We claim that this gives a good notion of finite horizon which seems
to be rather a concept on strategy profiles than on games.

If s is a strategy profile that satisfies the predicate “leads to a leaf” then the
utility exists and is unique, in other words:

• Existence. For all agent a and for all strategy profile s, if s “leads to a
leaf” then there exists a utility u which “is a utility of the agent a in the
strategy profile s”.
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• Uniqueness. For all agent a and for all strategy profile s, if s “leads to a
leaf”, if “u is a utility of the agent a in the strategy s” and “v is a utility
of the agent a in the strategy s” then u = v.

We say “the” utility in this case since the relation s2u a is functional. Now,
with an abuse of notation, we will write s2u(s)(a) the utility of the agent a in
the strategy profile s, when s “leads to a leaf’.

3.3.2 The predicate “always leads to a leaf”

We also consider a predicate “always leads to a leaf” which means that every-
where in the strategy profile, if one follows the choices, one leads to a leaf. This
property is defined everywhere on an infinite strategy profile and is therefore
coinductive.

The predicate “always leads to a leaf” is defined coinductively

• the strategy profile ≪f≫ “always leads to a leaf”,

• for all choice c, if ≪ a, c, sl, sr ≫ “leads to a leaf”, if sl “al-
ways leads to a leaf”, if sr “always leads to a leaf”, then
≪a, c, sl, sr≫ “always leads to a leaf”.

This says that a strategy profile, which is a leaf, “always leads to a leaf”
and that a composed strategy profile inherits the predicate from its strategy
subprofiles provided itself “leads to a leaf”.

3.3.3 The � modality

� is a modality, borrowed form temporal logic, i.e., an operator which modifies
a predicate. �P reads always P .

The modality � is defined coinductively by

• P ≪f≫ ⇒ (�P ) ≪f≫

• P ≪a, c, s′l, s
′

r≫⇒ (�P )sl ⇒ (�P )sf ⇒ (�P ) ≪a, c, s′l, s
′

r≫

One has the proposition:

Proposition 1 ∀s, (�“leads to a leaf”) s ⇔ s“always leads to a leaf”.

3.3.4 The bisimilarity

We define also bisimilarity between games and between strategy profiles. For
strategy profiles, this is defined by:
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The bisimilarity ∼s on strategy profiles is defined coinductively

as follows:

• ≪f≫ ∼s ≪f≫,

• if sl ∼s s
′

l and sr ∼s s
′

r then ≪a, c, slsr≫ ∼s ≪a, c, s′l, s
′

r≫.

This says that two leaves are bisimilar if and only if they have the same
utility function and that two strategy profiles are bisimilar if and only if they
have the same head agent, the same choice and bisimilar strategy subprofiles.

3.3.5 The game of a strategy profile

We can associate with a strategy profile a game that is the game underlying the
strategy profile. In other words, s2g(s) is the game in which all the choices are
removed.

The fonction s2g is defined coinductively as follows:

• s2g ≪f≫ = 〈|f |〉

• s2g ≪a, c, sl, sr≫ = 〈|a, s2g(sl), s2g(sr)|〉.

3.4 Subgame perfect equilibria and Nash equilibria

Nash equilibria are specific strategy profiles, but to define them one needs the
concept of convertibility.

3.4.1 Convertibility

Despite it is not strictly defined in textbooks as such, convertibility is an im-
portant binary relation on strategy profiles, necessary to speak formally about
equilibria. Indeed in order to characterize a strategy profile e as a Nash equilib-
ria, it is assumed that each agent compares the payoff returned by that strategy
profile e with the payoff returned by other strategy profiles, which are “con-
verted” from the e by the agent changing his mind. Since this relation plays
a crucial role in formal definition of a Nash equilibrium, it is worth describing,
first informally, then a little more formally, knowing that the ultimate formal
definition is given in the in Coq vernacular on page 41. Convertibility was
introduced for finite games by Vestergaard [2006].

Convertibility informally. Osborne [2004, Chap. 5] presents a Nash equi-
librium as “a strategy profile from which no player wishes to deviate, given the
other player’s strategies”. We have therefore to say what one means by “a player
deviating when the others do not”. In other words, we want to make precise
the concept of “deviation”. For that, assume given an agent a and a strategy
profile s, a strategy profile in which only finitely many choices made by the
given agent a are changed is a “deviation” of a and is said, in this framework,
to be convertible to s for a. The binary relation between two strategy profiles,
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which we call convertibility, can be made precise by giving it an inductive defi-
nition.22 In the previous examples, s0 is convertible to s1 for Alice, since the
only change between s0 and s1 is Alice changing her first choice.

Convertibility as an inductively defined mathematical relation. We
write ⊢a⊣ the convertibility for agent a.

The relation ⊢a⊣ is defined inductively as follows:

ConvBis: ⊢a⊣ contains bisimilarity ∼s, i.e.,

s ∼s s
′

s⊢a⊣ s′

ConvAgent : If the node has the same agent as the agent in ⊢a⊣
then the choice may change, i.e.,

s1 ⊢a⊣ s′1 s2 ⊢a⊣ s′2
ConvAgent

≪a, c, s1, s2≫ ⊢a⊣ ≪a, c′, s′1, s
′

2≫

ConvChoice: If the node does not have the same agent as in ⊢a⊣,
then the choice has to be the same:

s1 ⊢a⊣ s′1 s2 ⊢a⊣ s′2
ConvChoice

≪a′, c, s1, s2≫ ⊢a⊣ ≪a′, c, s′1, s
′

2≫

Roughly speaking two strategy profiles are convertible for a if their difference
only for the choices of a. In the previous example (Section 3.3) we may write
s0 ⊢Alice⊣ s1, to say that s0 is convertible to s1 for Alice. In Figure 11,
page 44, we develop the skeleton of the proof of this convertibility, namely we
give the proof tree of s0 ⊢Alice⊣ s1. Since ⊢a⊣ is defined inductively, this
means that the changes are finitely many. We feel that this makes sense since
an agent can only conceive finitely many issues. For instance for two strategy
profiles associated with the 0, 1 game, we get

A B A B A B A

0,1 1,0 1,0 0,1 1,0 0,1

c c c c c c c c

s s s s s s s
s

⊤B

⊥

A B A B A B A

0,1 1,0 1,0 0,1 1,0 0,1

c c c c c c c c

s s s s s s s
s

22It is also possible to give it a coinductive definition, in which infinitely many choices can
be changed, but we feel that this goes beyond the ability of a rational agent who has finite
capacities to reason.
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3.4.2 Nash equilibria

The notion of Nash equilibrium is translated from the notion in textbooks.
Let us recall it. According to Osborne [2004, chap. 5], A Nash equilibrium
is a“pattern[s] of behavior with the property that if every player knows every
other player’s behavior she has not reason to change her own behavior” in other
words, “a Nash equilibrium [is] a strategy profile from which no player wishes to
deviate, given the other player’s strategies.” As we said, the informal concept
of deviation is expressed formally by the binary relation “convertibility’. The
concept of Nash equilibrium is based on a comparison of utilities. s is a Nash
equilibrium if the following implication holds:

If for all agent a and for all strategy profile s′ which is convertible
to s, i.e., s⊢a⊣ s′, if u is the utility of s for a and u′ is the utility
of s’ for a, then u′ � u.

Roughly speaking this means that a Nash equilibrium is a strategy profile in
which no agent has interest to change his choice since doing so he cannot get a
better payoff.

3.4.3 Subgame Perfect Equilibria

Let us consider now subgame perfect equilibria, which we write SGPE. SGPE

is a property of strategy profiles. It requires the strategy subprofiles to fulfill
coinductively the same property, namely to be a SGPE, and to insure that the
strategy profile with the best utility for the node agent to be chosen. Since both
the strategy profile and its strategy subprofiles are potentially infinite, it makes
sense to define SGPE coinductively.

SGPE is defined coinductively as follows:

• SGPE ≪f≫,

• if ≪ a, ℓ, sℓ, sr ≫ “always leads to a leaf”, if SGPE(sℓ) and
SGPE(sr), if s2u(sr)(a) � s2u(sℓ)(a) then SGPE ≪a, ℓ, sℓ, sr≫,

• if ≪ a, r , sℓ, sr ≫ “always leads to a leaf”, if SGPE(sℓ) and
SGPE(sr), if s2u(sℓ)(a) � s2u(sr)(a)then SGPE ≪a, r , sℓ, sr≫.

This means that a strategy profile, which is a leaf, is a subgame perfect
equilibrium. Moreover if the strategy profile is a node, if the strategy profile
“always leads to a leaf”, if it has agent a and choice ℓ, if both strategy subprofiles
are subgame perfect equilibria and if the utility of the agent a for the right
strategy subprofile is less than this for the left strategy subprofile then the
whole strategy profile is a subgame perfect equilibrium and vice versa. If the
choice is r this works similarly.

Notice that since we require that the utility can be computed not only for
the strategy profile, but for the strategy subprofiles and for the strategy sub-
subprofiles and so on, we require these strategy profiles not only to “lead to a
leaf” but to “always lead to a leaf”.
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We define orders (one for each agent a) between strategy profiles that lead
to a leaf which we write ≤a.

s′ ≤a s iff s2u(s′)(a) � s2u(s)(a).

We say “the” utility since in this case the relation s2u a is functional.

Proposition 2 ≤a is an order on strategy profiles which lead to a leaf.

The proof is straightforward.

Proposition 3 A subgame perfect equilibrium is a Nash equilibrium.

Proof: Suppose that s is a strategy profile which is a SGPE and
which has to be proved to be is a Nash equilibrium.

Assuming that s′ is a strategy profile such that s⊢a⊣ s′, let us
prove by induction on s⊢a⊣ s′ that s′ ≤a s:

• Case s = s′, by reflexivity, s′ ≤a s.

• Case s =≪ x, ℓ, sℓ, sr ≫ and s′ =≪ x, ℓ, s′ℓ, s
′

r ≫ with x 6= a.
s⊢a⊣ s′ and the definition of ⊢a⊣ imply sℓ ⊢a⊣ s′ℓ and sr ⊢a⊣ s′r.
sℓ which is a strategy subprofile of a SGPE is a SGPE as well.
Hence by induction hypothesis, s′ℓ ≤a sℓ.

The utility of s (respectively of s′) for a is the utility of sℓ
(respectively of s′ℓ) for a, then s′ ≤a s.

• The case s= ≪x, r , sℓ, sr≫ and s′ = ≪x, r , s′ℓ, s
′

r≫ is similar.

• Case s= ≪a, ℓ, sℓ, sr≫ and s′ = ≪a, r , s′ℓ, s
′

r≫, then sℓ ⊢a⊣ s′ℓ
and sr ⊢a⊣ s′r. Since s is a SGPE, sr ≤a sℓ.

Moreover, since sr is a SGPE, by induction hypothesis, s′r ≤ sr.
Hence, by transitivity of ≤a, s

′

r ≤a sℓ. But we know that the
utility of s′ for a is the one of s′r and the utility of s for a is the
one of sℓ, hence s′ ≤a s.

• The case s= ≪a, r , sℓ, sr≫ and s′ = ≪a, ℓ, s′ℓ, s
′

r≫ is similar.

�

The above proof is a presentation of the formal proof written with the help of
the proof assistant Coq. Notice that it is by induction on ⊢a⊣ which is possible
since ⊢a⊣ is inductively defined. Notice also that s and s′ are potentially infinite.

3.5 Escalation

A game is susceptible to escalation or not. Obviously the possibility of an
escalation in a game requires the game to be infinite.
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3.5.1 Escalation informally

Escalation is a property of an infinite game, which says that a game can contain
an infinite path along which players always act rationally. In other words, it
says that at each turn in the game, there exists a strategy profile which is a
subgame perfect equilibrium, in which the player who has the turn continues.
Since at each turn, continuing is rational for each player, this means that there
is a possibility for players acting rationally to continue forever. That there is
an infinite path means that there exists an infinite sequence of games which are
direct subgames of their predecessors. For each game of this sequence, there
exists a strategy profile which has this game as a skeleton, which is a subgame
perfect equilibrium and in which the player who has the turn continues.

3.5.2 Escalation as a formal property

The property of having an escalation can be formalized. A game g has an
escalation if there exists an escalation sequence (gn)n∈N which is a sequence of
subgames of g along the escalation with the following properties: for all n there
are two strategy profiles s and s′ and an agent a such that

• the game associated with the strategy profile ≪a, ℓ, s, s′≫ is bisimilar to
the game gn and is a subgame perfect equilibrium or the game associated
with the strategy profile ≪a, r , s′, s≫ is bisimilar to the game gn and is
a subgame perfect equilibrium

• the game associated with the strategy profile s is bisimilar to the game
gn+1, (this insures that gn+1 is bisimilar to a direct subgame of gn, more
precisely that gn is bisimilar to the game 〈a,gn+1, s2g(s

′)〉 or to the game
〈a, s2g(s′),gn+1〉, according to the choice made in the above condition).

This can be made completely formal, by writing it in Coq:
Definition has an escalation sequence (g seq:nat → Game): Prop :=
∀ n:nat, ∃ s, ∃ s’, ∃ a,
(s2g ≪a,l,s,s’≫ ∼g g seq n ∧ SGPE ≪a,l,s,s’≫ ∨
s2g ≪a,r,s’,s≫ ∼g g seq n ∧ SGPE ≪a,r,s’,s≫) ∧
s2g s ∼g g seq (n+1).

Definition has an escalation (g:Game) : Prop :=
∃ g seq, (has an escalation sequence g seq) ∧ (g seq 0 = g).

4 Case studies

In this section we study several kinds of games that have some analogies, es-
pecially they have a centipede shape, since they have an infinite backbone (on
the “left”) and all the right subgames are leaves. In the two last cases, the
utilities go to infinity, but in the second (dollar auction game) the utilities go



4 CASE STUDIES – 28

to (−∞,−∞) (costs, i.e., the opposites of utilities, go to (+∞,+∞)), whereas
in the third, (infinipede game) the utilities go to (+∞,+∞).

4.1 The 0, 1 game

In the 0, 1 game (Figure 1, p. 11) 0 and 1 are payoffs. The 0, 1 game has many
subgame perfect equilibria, namely the strategy profiles in which Alice continues
always and Bob stops infinitely often and the strategy profiles in which Bob
continues always and Alice stops infinitely often.

4.1.1 Two simple subgame perfect equilibria

For what we are interested in, we can consider two strategy profiles, one in each
category:

• the strategy profile “Alice continues always and Bob stops always”,
which we call z1AcBs and,

• the strategy profile “Alice stops always and Bob continues always”,
which we call z1AsBc.

The reasoning to show that z1AcBs is a subgame perfect equilibrium works as
follows. In this strategy profile Alice gets 1 and Bob gets 0. Assume the
strategy subprofile of z1AcBs after the second turn for Alice23 is a subgame
perfect equilibrium, for which Alice gets 1 and Bob gets 0. The strategy
subprofile that starts at Bob’s turn and which we call sg z1AcBs is a subgame
perfect equilibrium for whichAlice gets 1 and Bob gets 0, since its two strategy
subprofiles are subgame perfect equilibria for which Alice gets 1 and Bob

gets 0. z1AcBs is a subgame perfect equilibrium since its two strategy subprofiles
are two subgame perfect equilibria, one is sg z1AcBs for which Alice gets 1 and
the other is a leaf for which Alice gets 0.

The same reasoning applies to z1AsBc to prove that it is a subgame perfect
equilibrium.

4.1.2 Cutting the game and extrapolating

If one cuts the 0, 1 game at a finite position, to obtain a finite game, one can
cut either after Alice like on the left below or on can cut after Bob like on the
right below:

Alice 1,0

0,1

c

s

Bob 0,1

1,0

c

s

When one cuts after Alice, the backward induction equilibrium is when Alice

continues always and Bob does whatever he wants and when one cuts after Bob,
the backward induction equilibrium is when Alice does whatever she wants and

23which is nothing but z1AcBs!
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Bob continues always. One sees that those equilibria cannot be extrapolated to
the infinity since they are inconsistent except in the only case when Alice and
Bob continue forever. But this strategy profile cannot be a subgame perfect
equilibrium, since it does not fulfill the predicate “always leads to a leaf”. Hence
cutting the game at a finite position gives no clue on what one obtains at the
limit on the infinite game.

4.1.3 The 0, 1 game has a rational escalation

One sees that zero one has a rational escalation. Indeed at each step, the agents
can always make the choice to continue which is rational since this corresponds
to the first choice of a subgame perfect equilibrium. If both agents make the
choice to continue, this is the escalation. Alice continues since she feels that
despite Bob did not stop, he will eventually stop and Bob continues because
he feels that Alice will eventually stop.

4.2 The dollar auction game

The dollar auction has been presented by Shubik [1971] as the paradigm of
escalation, insisting on its paradoxical aspect. It is a sequential game presented
as an auction in which two agents compete to acquire an object of value v

(v > 0) (see Gintis [2000, Ex. 3.13]). Suppose that both agents bid $1 at each
turn. If one of them gives up, the other receives the object and both pay the
amount of their bid.24 For instance, if agent Alice stops immediately, she pays
nothing and agent Bob, who acquires the object, has a payoff v. In the general
turn of the auction, if Alice abandons, she looses the auction and has a payoff
−n and Bob who has already bid −n has a payoff v − n. At the next turn
after Alice decides to continue, bids $1 for this and acquires the object due to
Bob stopping, Alice has a payoff v − (n + 1) and Bob has a payoff −n. In
our formalization we have considered the dollar auction up to infinity. Since we
are interested only by the “asymptotic” behavior, we can consider the auction
after the value of the object has been passed and the payoffs are negative. The
dollar auction game can be summarized by Figure 5. Notice that we assume
that Alice starts.

4.2.1 Equilibria in the dollar auction

We have recognized three classes of infinite strategy profiles, indexed by n:

1. The strategy profile always give up, in which both Alice and Bob stop
at each turn, in short dolAsBsn.

2. The strategy profile Alice stops always and Bob continues always, in
short dolAsBcn.

24In a variant, each bidder, when he bids, puts a dollar bill in a hat or in a piggy bank and
their is no return at the end of the auction. The last bidder gets the object.
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Alice Bob Alice Bob

v+n,n n+1,v+n v+n+1,n+1 n+2,v+n+1

Figure 5: The dollar auction game

3. The strategy profile Alice continues always and Bob stops always, in
short dolAcBsn.

The three kinds of strategy profiles are presented in Figure 6.

Alice Bob Alice Bob

v+n,n n+1,v+n v+n+1,n+1 n+2,v+n+1

dolAsBsn aka Always give up

Alice Bob Alice Bob

v+n,n n+1,v+n v+n+1,n+1 n+2,v+n+1

dolAsBcn aka Alice abandons always and Bob continues always

Alice Bob Alice Bob

v+n,n n+1,v+n v+n+1,n+1 n+2,v+n+1

dolAcBsn aka Alice continues always and Bob abandons always

Figure 6: Three strategy profiles

In the figures like in the Coq implementation, we use costs25 instead of
payoffs or utilities, since it is simpler in the Coq formalization to reason on
natural numbers.

We have shown26 that the second and third kinds of strategy profiles, in
which one of the agents always stops and the other continues, are subgame
perfect equilibria. For instance, consider the strategy profile dolAsBcn. Assume
SGPE (dolAsBcn+1). It works as follows: if dolAsBcn+1 is a subgame perfect
equilibrium corresponding to the payoff −(v + n+ 1),−(n+ 1), then

≪Bob, ℓ, dolAsBcn+1,≪Alice 7→ −(n+ 1),Bob 7→ −(v + n)≫≫

25Recall that cost is the opposite of utility.
26The proofs are typical uses of the Coq cofix tactic.
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is again a subgame perfect equilibrium (since −(n+1) ≥ −(v+n)) and therefore
dolAsBcn which is

≪Alice, r ,≪Bob, ℓ, dolAsBcn+1,≪Alice 7→ −(n+1),Bob 7→ −(v+n)≫,

≪Alice 7→ −(v + n),Bob 7→ −n≫≫

is a subgame perfect equilibrium, since again −(v + n) ≥ −(v + n + 1).27 We
can conclude that for all n, dolAsBcn is a subgame perfect equilibrium. In other
words, we have assumed that SGPE (dolAsBcn) is an invariant all along the
game and that this invariant is preserved as we proceed backward, through
time, into the game.

With the condition v > 1, we can prove that dolAsBs0 is not a Nash equilib-
rium, then as a consequence not a subgame perfect equilibrium. Therefore, the
strategy profile that consists in stopping from the beginning and forever is not
a Nash equilibrium, this contradicts what is said in the literature [Shubik, 1971,
O’Neill, 1986, Leininger, 1989, Gintis, 2000], with a finite game to approximate
an infinite game (the escalation).

4.2.2 Escalation is rational in the dollar auction

Agents are rational when they choose at each step, what they feel to be their
best option. Many authors agree28 that rationality is choosing a subgame perfect
equilibrium. Aumann [1995] is one of the strongest advocate of this position.
His principle in the dollar auction says that a rational agent will choose at each
step one of the strategy profiles which is a subgame perfect equilibrium, namely
dolAsBcn or dolAcBsn. Suppose Alice is in the middle of the auction, she has
two options that are rational: one option is to take Bob’s threat seriously and
to stop right away, since she assumes that Bob will continue always (strategy
profile dolAsBcn). But in her second option, she admits that from now on Bob

will stop always (strategy profile dolAcBsn) and she will always continue: this
is a subgame perfect equilibrium, hence she is rational. If Bob acts similarly
this is the escalation. So at each step an agent can stop and be rational, as well
as at each step an agent can continue and be rational; both options make sense,
and the escalation as well.

We claim that human agents reason coinductively unknowingly. Therefore,
for them, continuing always is one of their rational options at least if one con-
siders strictly the rules of the dollar auction game with no limit on the bankroll.
If at all steps, both agents continue always, this is the escalation. Many expe-
riences (see [Colman, 1999] for a survey) have shown that human are inclined
to escalate or at least to go very far in the auction when playing the dollar
auction game. We propose the following explanation: the finiteness of the game
was not explicit for the participants and for them the game was naturally infi-
nite. Therefore they adopted a kind of reasoning similar to the one we develop
here, probably in an intuitive form and they conclude it was equally rational
to continue or to leave according to their comprehension of the threat of their

27Since the cofix tactic has been used on a strict strategy subprofile, the reasoning is correct.
28See however [Halpern, 2001, Stalnaker, 1998].
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He bluffs! • • • • •

She bluffs! • • • • •

Alice Bob

Figure 7: What Alice and Bob might think

opponent. Actually our theoretical work reconciles experiences with logic,29 and
human reasoning with rationality.

If agents would have a global view, they would notice that escalation is scar-
ring and ruining and should be avoided. Since it is rational it looks ineluctable,
but there are a few ways to avoid it. First, the game can be stopped by the
action of an external observer, a kind of master of ceremony who declares the
game over, something similar to the finite payroll. Second, since it is a conse-
quence of the absence of communication between agents, it can be avoided, if
the agents communicate, like Kennedy and Khrushchev did with the Moscow-
Washington hotline. Third, escalation can be stopped by introducing another
challenge, like building Europe by Adenhauer and de Gaulle.

4.3 The infinipede

Often studied, the extensive game called centipede30 has been introduced by
Rosenthal [1981] (see also Binmore [1987], Colman [1998], Osborne and Ru-
binstein [1994]). In Rosenthal [1981, p. 96] the game is pictured as shown in
Figure 8.

This finite game has one Nash equilibrium obtained by backward induction,
namely by agent A stopping immediately. This game has been extended to

29A logic which includes coinduction.
30A centipede has hundred legs, whereas a millipede has thousand. All belong to the group

of myriapods which means “ten thousand legs”.
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A B A B A B A B A B (0,10)

(0,0) (−1,3) (2,2) (1,5) (4,4) (3,7) (6,6) (5,9) (8,8) (7,11)

Figure 8: The genuine Rosenthal game

hundred, thousand nodes, but all those extensions are finite and all authors
conclude that there is a unique Nash equilibrium in which the agents give up
immediately.

Since we had noticed, in the case of 0, 1 game and the dollar auction, a
discrepancy between Nash equilibria when going from finite games to infinite
games, it is challenging to see whether the same phenomenon occurs when going
from the centipede (a finite game) to the infinipede (an infinite game).

The infinipede is an infinite game in extensive form in which agent A has the
choice to continue or to end the game with both agents receiving a payoff 2n and
agent B has the choice to continue or to end the game with agent A receiving
2n − 1 and agent B receiving 2n + 3. The generalization is an infinite game
which can be pictured as follows (we use subtraction over naturals in which
2 ∗ 0− 1 = 0):

A B A A B A

(0,0) (0,3) (2,2) (2n,2n) (2n−1,2n+3) (2n+2,2n+2)

Figure 9: The infinipede

In infinipedes, we have identified only one subgame perfect equilibrium,
namely this where both agents abandon at each turn (Figure 10). We call
it cent agu n. This shows that even in the infinite generalization, agents are

A B A A B A

(0,0) (0,3) (2,2) (2n,2n) (2n−1,2n+3) (2n+2,2n+2)

Figure 10: Subgame perfect equilibrium for the infinipede

rational if they do not start the game and abandon from the beginning. We have
actually shown this property for each value of n, namely for all n, cent agu n

is a subgame perfect equilibrium. In Coq we have proved the theorem:

Theorem SGPE cent AGU : ∀ (n:nat), SGPE le (cent agu n).

Hence the paradox remains: the agents do not get the somewhat better pay-
off, they would get if they would be more flexible with respect to rationality.
However, there remains a problem for the agents in the infinipede game: when
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they start an infinite game, they do not know when to stop. After all, ending
immediately is perhaps a good choice to solve this dilemma.

5 Related works

To our knowledge, the only application of coinduction to extensive game theory
has been made by Capretta [2007] who uses coinduction to define only common
knowledge not equilibria in infinite games. Another strongly connected work is
this of Coupet-Grimal [2003] on temporal logic. Other applications are on rep-
resentation of real numbers by infinite sequences [Bertot, 2007, Julien, 2008] and
implementation of streams (infinite lists) in electronic circuits [Coupet-Grimal
and Jakubiec, 2004]. An ancestor of our description of infinite games and infinite
strategy profiles is the constructive description of finite games, finite strategy
profiles, and equilibria by Vestergaard [2006]. Lescanne [2009] introduces the
framework of infinite games. Infinite games are introduced in Osborne and Ru-
binstein [1994] and Osborne [2004] using histories, but this is not algorithmic
and therefore not amenable to formal proofs and coinduction. Exercice 175.1 of
Vestergaard [2006] is the dollar auction and no infinite subgame perfect equilib-
rium is considered.

Many authors have studied infinite games (see for instance Martin [1998],
Mazala [2001]), but except the name “game” (an overloaded one), those games
have nothing to see with infinite extensive games as presented in this article.
The infiniteness of Blackwell games for instance is derived from a topology,
by adding real numbers and probability. Sangiorgi [2009] mentioned the con-
nection between Ehrenfeucht-Fräıssé games [Ebbinghaus and Flum, 1995] and
coinduction, but the connection with extensive games is extremely remote.

This work started after this of Vestergaard [2006] on finite games and finite
strategy profiles. We first developed proofs on finite strategy profiles, but unlike
Vestergaard who based his formalization on fixpoint definitions of predicates, we
used only inductive definitions of predicates. Like Vestergaard, we were able to
prove the main lemma of finite extensive games, namely that backward induction
strategy profiles are Nash equilibria; the script is available at http://perso.

ens-lyon.fr/pierre.lescanne/COQ/INFGAMES/SCRIPTS/finite_games.v.
Overall, this “induction based” presentation allowed us to switch more eas-

ily to coinduction on infinite games. Beside this, a development in Coq of
finite games with an arbitrary number of choices at any node has been made by
Le Roux [2008, p. 83 and following] and an exploration of common knowledge,
induction and Aumann’s theorem on rationality has been proposed by Vester-
gaard et al. [2006]. In Lescanne [2007], there is a presentation of a somewhat
connected development in Coq, namely this of the logic of common knowledge.

Since we are talking about some computational aspects of games, people
may make some analogies with other works, let us state what extensive games
are not.

• Extensive games are not semantic games as presented in Abramsky and
Jagadeesan [1994], Lorenz and Lorenzen [1978], Girard [2001], van Ben-
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them [2006].

• Extensive games are not logical games used in proving properties of au-
tomata and protocols Merz [2000], Affeldt et al. [2007].

• This work has only loose connection with algorithmic game theory Nisan
et al. [2007], Daskalakis et al. [2009], which is more interested by the
complexity of the algorithms, especially those which compute equilibria,
than by their correction, and does not deal with infinite games.

• Extensive games are not Ehrenfeucht-Fräıssé games, but as reported by
Sangiorgi [2009] they are related to coinduction trough bisimilation.

The book of Dowek [2007] gives a philosophical perspective of using a proof
assistant based on type theory in mathematics.

6 Postface

In a world of finite resources escalation is irrational.

In a world of infinite resources escalation is rational.

Two words are more or less synonyms: escalation and (speculative) bubble
which both lead to a crash. They all yields the same outcome: a violent change
in the economy, from a growth to a sudden drop. The main question is to know
whether this attitude is wise or whether this is a consequence of the madness
of men that Newton was unable to explain. Rationality depends on the view
agents have of the world. This view is in terms of availability of resources.

6.1 Finite resources vs infinite resources

The preceding discussion shows that the relation between rationality and esca-
lation is connected with the perception of the finiteness of the world and/or the
(finite or infinite) quantity of available resources. Actually people can be split
into two categories:

• People who view the resources as finite take escalation as irrational.

• People who view the resources as infinite take escalation as rational.

In the first category, we can put the environmentalists, the Club of Rome,
Al Gore31 and in the second category the speculators, the gamblers, the risk
takers, the Concorde project managers, Lyndon Johnson and Robert McNa-
mara, Bernard Madoff, John Allen Paulos, Bernie Ebbers (WorldCom CEO),
Kim-Jong-Il, Muammar Gaddafi, Bashar al-Assad, the Greece rulers, to cite a

31This division exists among specialiste of set theory, i.e., among those who accept the
axiom of well-foundedness [von Neumann, 1928] and those who reject it [Aczel, 1988].
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few. We claim that the pros and cons of infinite resources are the same as the
pros and cons of escalation. Perhaps, the reader like the author may think that
opting for the first category is wise, but the second option has also many fans,
since escalation is everywhere in the current world. Those persons are not mad
and have their own rationality.

6.2 Ubiquity of escalation

Escalation appears in many fields.

In economy The most amazing example of escalation is speculative or eco-
nomic bubble, a well-known and old phenomenon [Kindleberger and Al-
iber, 2005]. Blanchard and Watson [1982] analyse the rationality of such
bubbles, but their perpective is slightly different. Let us assume like them,
that rationality is the way agents take into account rational expectation
from uncertainty. For us, uncertainty is non determinism or more precisely
what lies between a fully non deterministic future and a fully stochastic
one. Since Blanchard and Watson [1982] base their analysis on probability
only (a full stochastic future), the accuracy of their approach is unsure.
In our framework, agents know only a non deterministic future and we ex-
plain how they reason based on this uncertain knowledge. Their reasoning
uses especially sequential game theory and coinduction.

Paulos [2003] presents a case study on escalation, namely how despite
being a mathematician he kept buying WorldCom stock from early 2000,
when it was $47 per share, till April 2002, when it was $5. Incidentally,
he noticed that following an escalation process WorldCom acquired Digex
in June 2001 for more than 120 times its actual value.

In evolution theory The red queen hypotheses and the survival of species.
Assume two species are living together and compete for resource. The
only way for both species to survive is to increase their fitness. This lead
to a kind of arm race or a kind of escalation. In other words, for species to
survive (in an infinite world), it is necessary to escalate, which is sensible
in a presentation of the species competition by game theory.

In justice It is often the case that in court, a succession of cases and appeals
lead to an escalation. The British case McDonald’s Restaurants vs Morris
& Steel [Vidal, 1997] is typical in this respect. The more McDonald’s kept
suiting, the more it was loosing.

Polemology Perhaps war and conflict is where the concept of escalation was
first developed. Hitler’s trajectory from the Beer Hall Putsch to the Bat-
tle of Stalingrad and eventually to his suicide was a typical escalation.
Muammar Gaddafi and Bashar al-Assad Are contemporary examples.
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6.3 Escalation and cognitive psychology

It is worth to wonder whether the agents we consider are really rational and
whether they are as rational as we would like them to be. Stanovich [2010]
discusses rationality from the point of view of cognitive psychology. Roughly
speaking a rational agent owns a mindware which refers to the rules, knowl-
edge, procedures and strategies that a person can retrieve from memory to aid
decision making and problem solving. Of course we suppose that the mindware
contains coinduction or at least a set of deduction rules which covers the power
of coinduction, that is which is able to reason on infinite mathematical objects
as coinduction does.

We distinguish two kinds of rationality, from the more elementary one to the
more elaborate one. Instrumental rationality is behaving in the world so that
you get exactly what you most want, given the resources (physical and mental)
available to you. Economist and cognitive scientists have refined the notion of
optimization of goal fulfillment into the technical notion of expected utility. On
the other hand, epistemic rationality lies above instrumental rationality and
interacts with it. It tells how well the beliefs map onto the actual structure of
the world. More roughly, epistemic rationality is about what is true and instru-
mental rationality is about what to do. The first kind of rationality corresponds
to algorithmic mind and the second form of rationality corresponds to reflexive
mind. Among others, a reflexive mind is able to analyze the way it reasons.

An escalating agent has an algorithmic mind, but lacks a reflexive mind,
which would allow him to change his beliefs. In particular, he should revise his
belief in infinite resources. Of course, at first, this gives him the power to go on
and does not inhibit him in his rush forward, but as we know “ Errare humanum
est, perseverare diabolicum”. There is a time when he should understand that
believing into an infinite world of resources leads to a dead-end and it is better-
off for him to revise his belief. Acting so the agents shows his full rationality.

6.4 Conclusion

Thanks to coinduction, we have reconciled human reasoning with rational rea-
soning in infinite extensive games. In other words, we claim that human agents
reason actually by coinduction when faced to infinite games and are rational.
Moreover we have shown once more the threshold between finiteness and in-
finiteness and that reasoning on infinite objects is not the limit when the size
goes to infinity of reasoning on finite objects.

A Two subtle points of coinduction

A.1 Equalities

Leibniz equality says that x = y if and only if, for every predicate P , P (x)
implies P (y). Extensional equality says that f = g if and only if, for all x,
f(x) = g(x). In general, knowing a (recursive) definition of f and a (recursive)
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definition of g is not enough to decide whether f = g or f 6= g. For instance,
no one knows how to prove that the two functions:

f(1) = 1

f(2x) = f(x)

f(2x+ 1) = f(3x+ 2).

and
g(x) = 1

are equal, despite it is more likely that they are. More generally, there is no
algorithm (no rigorous reasoning) which decides whether a given function h is
equal to the above function g or not. Thus extensional equality is not decidable.
Saying that two sequences that have equal elements are equal requires exten-
sional equality and it makes sense to reject such an equality when reasoning
finitely about infinite objects, like human agents would do.

A.2 Why in infinite runs, agents do not have a utility?

In an infinite play, a play that runs forever, i.e., that does not lead to a leaf, no
agent has a utility. People might say that this an anomaly, but this is perfectly
sensible. In arbitrary long plays, which lead to a leaf, all agents have a utility.
Only in plays that diverge, it is the case that agents have no utility. This fits well
with Binmore [1988] statements “The use of computing machines (automata) to
model players in an evolutive context is presumably uncontroversial ... machines
are also appropriate for modeling players in an eductive context”. Here we
are concerned by the eductive context where “equilibrium is achieved through
careful reasoning by the agents before and during the play of the game” [Binmore,
1988, loc. cit]. By automaton, we mean any model of computation32, since all
the models of computation are equivalent by Church thesis. If an agent is
modeled by an automaton, this means also that the function that computes the
utility for this agent is also modeled by an automaton. It seems then sensible
that one cannot compute the utility or the cost of an agent for an infinite
play, since computing is a finite process working on finite data (or at least
data that are finitely described). Since the agent cannot compute the utility
of an infinite play, no sensible value can be attributed to him. If one wants
absolutely to assign a value to an infinite play, one must abandon the automaton
framework. Moreover this value should be the limit of a sequence of values,
which does not exist in most of the cases.33 For instance, in the case of the
dollar auction (Section 4.2), the costs of Alice associated with the infinite play
are the sequence ..., v + n, n+ 1, v+ n+ 1, n+ 2, ... In the case of the 0, 1 game
the payoff of Alice is 0, 1, 0, 1, .... Therefore considering that in infinite plays,
agents have no utility or costs is perfectly consistent with a modeling of agents

32Our model of computation is this of the calculus of inductive construction, a kind of
λ-calculus behind Coq [Turing, 1937].

33If utilities are natural numbers, it exists only if the sequence is stationary, which is not
the case in escalation.
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by automata. By the way, does an agent care about a payoff he (she) receives
in infinitely many years? Will he (she) adapt his (her) strategy on this?

B About the Coq development

B.1 The notation of functions in the Coq vernacular

In traditional mathematics, the result of applying a function f to the value x is
written f(x) and the result of applying f to x and y is written f(x, y), this can
be considered as the result of applying f to x then to y and written f(x)(y).
In the Coq vernacular, as in type theory, one writes f x instead of f(x) and
f x y instead f(x)(y) or instead of f(x, y) and f x y z instead f(x)(y)(z) or
f(x, y, z), because this saves parentheses and commas and because the concept
of functions is the core of the formalization. But after all, this is just a matter
of style and Coq accepts syntactic shorthands to avoid these notations when
others are desirable.

B.2 Coinduction in Coq

As we have said the proof assistant Coq (The Coq development team [2007])
plaid a central role in this research.

Why should we formalize a concept in a proof assistant?. To answer
this question we like to cite Donald Knuth [Shustek, 2008]:

People have said you don’t understand something until you’ve
taught it in a class. The truth is you don’t really understand some-
thing until you’ve taught it to a computer, until you’ve been able to
program it.

We claim that we can appropriately replace the last sentence by “until you’ve
taught it to a proof assistant, until you’ve code it into Coq,34 Isabelle,35 or
PVS36” as it seems even more demanding to “teach” a proof assistant like Coq

than to write a program on the same topics. Actually without Coq, which has
coinduction features, we would not have been able to capture the concepts of
Nash equilibrium and Subgame Perfect equilibria presented in this article. This
is indeed the result of formal deduction, intuition and try and error in Coq since
proving properties of infinite games and infinite strategy profiles is extremely
subtle. Moreover by relying on a proof assistant, we can free this article from
formal developments and tedious and detailed proofs, knowing anyway that they
are correct in any detail and that the reader will refer to the Coq script in case
of doubt. Therefore, we can focus on informal explanation. However, Coq

proposes a readable, rigorous, and computer checked syntax, the vernacular,

34The Coq development team [2007].
35Nipkow et al. [2002].
36Owre et al. [1992].
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for definitions, lemmas and theorems and when we provide definitions in this
article, they are associated with expressions stated in the vernacular provide
in the appendix. The vernacular should be seen as a XXIst century version of
Leibniz’ characterica universalis or Frege’s Begriffsshrift [Frege, 1967].

Decomposing an object. The principle of coinduction is based on the great-
est fixpoint of the definition, that is a coinduction defines a greatest fixpoint (see
[Bertot and Castéran, 2004]). There are two challenges when one works with
such a principle: the difficulty of decomposing infinite objects and the invoca-
tion of coinduction. They are both presented in detail by Bertot and Castéran
[2004], but let us describe them in a few words. For the first problem, suppose
one has a strategy profile s, which is not a leaf; one knows that s is of the
form ≪a, c, sl, sr≫ for some agent a, some choice c and some strategy pro-
files sl and sr. To obtain such a presentation, one uses a mechanism which
consists in defining a function identity on strategy profile which is a “clone” of
fun s ⇒ s end:

Definition Strategy identity (s :Strategy): Strategy :=
match s with
— ≪f≫ ⇒ ≪f≫
— ≪a,c,sl,sr≫ ⇒ ≪a,c,sl,sr≫
end.

In other words, the strategy identity function is, computationally speaking, the
function which associates ≪f≫ with ≪f≫ and ≪a,c,sl,sr≫ with ≪a,c,sl,sr≫
and not the function which associates s with s. We can prove the strategy
decomposition lemma:

Lemma Strategy decomposition: ∀ s : Strategy,
Strategy identity s = s.

Thus when one wants to decompose a strategy s, one replaces s by Strat-
egy identity s and one simplifies the expression, and one gets ≪a, c, sl, sr≫ for
some a, c, sl and sr.

Invoking coinduction. The principle of coinduction is based on a tactic37

called cofix. It consists in assuming the proposition one wants to proof, provided
one applies it only on strict sub-objects. In the current implementation of Coq,
the user has to ensure that he invokes it on “strict” sub-objects. This is not
always completely trivial and requires a good methodology. However the proof
checker (a piece of software which accepts only correct proofs) verifies that this
constraint is fulfilled at the time of checking the proof.

37A tactic is a tool in Coq used to build proofs without using the most elementary con-
structions.
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B.3 Excerpts of the Coq development

The full development is in the url
http://perso.ens-lyon.fr/pierre.lescanne/COQ/ER/SCRIPTS/

with a description in
http://perso.ens-lyon.fr/pierre.lescanne/COQ/ER/HTML/.

B.3.1 Infinite binary trees

CoInductive InfFinBintree : Set :=
— InfFinBtNil : InfFinBintree
— InfFinBtNode: InfFinBintree → InfFinBintree → InfFinBintree.

CoInductive InfiniteInfFinBT : InfFinBintree → Prop :=
— IBTLeft : ∀ bl br, InfiniteInfFinBT bl → InfiniteInfFinBT (InfFinBtNode
bl br)
— IBTRight : ∀ bl br, InfiniteInfFinBT br → InfiniteInfFinBT (InfFinBtNode
bl br).

CoFixpoint Zig: InfFinBintree := InfFinBtNode Zag InfFinBtNil
with Zag: InfFinBintree := InfFinBtNode InfFinBtNil Zig.

B.3.2 Infinite games

CoInductive Game : Set :=
— gLeaf : Utility fun → Game
— gNode : Agent → Game → Game → Game.

B.3.3 Infinite strategy profiles

CoInductive StratProf : Set :=
— sLeaf : Utility fun → StratProf
— sNode : Agent → Choice → StratProf → StratProf → StratProf.

Inductive s2u : StratProf → Agent → Utility → Prop :=
— s2uLeaf : ∀ a f, s2u (≪ f≫) a (f a)
— s2uLeft : ∀ (a a’ :Agent) (u:Utility) (sl sr :StratProf ),

s2u sl a u → s2u (≪ a’,l,sl,sr≫) a u
— s2uRight : ∀ (a a’ :Agent) (u:Utility) (sl sr :StratProf ),

s2u sr a u → s2u (≪ a’,r,sl,sr≫) a u.

Lemma Existence s2u: ∀ (a:Agent) (s :StratProf ),
LeadsToLeaf s → ∃ u:Utility, s2u s a u.

Lemma Uniqueness s2u: ∀ (a:Agent) (u v :Utility) (s :StratProf ),
LeadsToLeaf s → s2u s a u → s2u s a v → u=v.

Inductive LeadsToLeaf : StratProf → Prop :=
— LtLLeaf : ∀ f, LeadsToLeaf (≪ f≫)
— LtLLeft : ∀ (a:Agent)(sl : StratProf ) (sr :StratProf ),
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LeadsToLeaf sl → LeadsToLeaf (≪ a,l,sl,sr≫)
— LtLRight : ∀ (a:Agent)(sl : StratProf ) (sr :StratProf ),

LeadsToLeaf sr → LeadsToLeaf (≪ a,r,sl,sr≫).

CoInductive AlwLeadsToLeaf : StratProf → Prop :=
— ALtLeaf : ∀ (f :Utility fun), AlwLeadsToLeaf (≪f≫)
— ALtL : ∀ (a:Agent)(c:Choice)(sl sr :StratProf ),

LeadsToLeaf (≪a,c,sl,sr≫) → AlwLeadsToLeaf sl →AlwLeadsToLeaf sr →
AlwLeadsToLeaf (≪a,c,sl,sr≫).

B.3.4 Convertibility

Inductive IndAgentConv : Agent → StratProf → StratProf → Prop :=
— ConvRefl : ∀ (a:Agent)(s : StratProf ), IndAgentConv a s s
— ConvAgent : ∀ (a:Agent)(c c’ :Choice)(sl sl’ sr sr’ :StratProf ),
(IndAgentConv a sl sl’) → (IndAgentConv a sr sr’) →
IndAgentConv a (≪a,c,sl,sr≫) (≪a,c’,sl’,sr’≫)

— ConvChoice : ∀ (a a’ :Agent) (c: Choice) (sl sl’ sr sr’ :StratProf ),
IndAgentConv a sl sl’ → (IndAgentConv a sr sr’) →
IndAgentConv a (≪a’,c,sl,sr≫) (≪a’,c,sl’,sr’≫).

Notation ”sl ⊢a⊣ sr” := (IndAgentConv a sl sr).

B.3.5 SGPE

CoInductive SGPE : StratProf → Prop :=
— SGPE leaf : ∀ f :Utility fun, SGPE (≪f≫)
— SGPE left : ∀ (a:Agent)(u v : Utility) (sl sr : StratProf ),

AlwLeadsToLeaf (≪a,l,sl,sr≫) →
SGPE sl → SGPE sr →
s2u sl a u → s2u sr a v → (v �u) →
SGPE (≪a,l,sl,sr≫)

— SGPE right : ∀ (a:Agent) (u v :Utility) (sl sr : StratProf ),
AlwLeadsToLeaf (≪a,r,sl,sr≫) →
SGPE sl → SGPE sr →
s2u sl a u → s2u sr a v → (u �v) →
SGPE (≪a,r,sl,sr≫).

B.3.6 Nash equilibrium

Definition NashEq (s : StratProf ): Prop :=
∀ a s’ u u’, s’⊢a⊣s → (s2u s’ a u’) → (s2u s a u) → (u’ �u).

B.3.7 Dollar Auction

Notation ”[ x , y ]” :=
(sLeaf (fun a:Alice Bob ⇒ match a with Alice ⇒ x | Bob ⇒ y end))
(at level 80).
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B.3.8 Alice stops always and Bob continues always

Definition add Alice Bob dol (cA cB :Choice) (n:nat) (s :Strat) :=
≪Alice,cA,≪Bob, cB,s,[n+1, v+n]≫,[v+n,n]≫.

CoFixpoint dolAcBs (n:nat): Strat := add Alice Bob dol l r n (dolAcBs (n+1)).

Theorem SGPE dol Ac Bs : ∀ (n:nat), SGPE ge (dolAcBs n).

B.3.9 Alice continues always and Bob stops always

CoFixpoint dolAsBc (n:nat): Strat := add Alice Bob dol r l n (dolAsBc (n+1)).

Theorem SGPE dol As Bc: ∀ (n:nat), SGPE ge (dolAsBc n).

B.3.10 Always give up

CoFixpoint dolAsBs (n:nat): Strat := add Alice Bob dol r r n (dolAsBs (n+1)).

Theorem NotSGPE dolAsBs : (v>1) → ˜(NashEq ge (dolAsBs 0)).

B.3.11 Infinipede

Definition add Alice Bob cent (cA cB :Choice) (n:nat) (s :Strat) :=
≪Alice,cA,≪Bob, cB,s,[2×n-1, 2×n+3]≫,[2×n,2×n]≫.

CoFixpoint cent agu (n:nat): (Strat) :=
add Alice Bob cent r r n (cent agu (S n)).

Lemma AlwLeadsToLeaf cent agu: ∀ (n:nat), AlwLeadsToLeaf (cent agu n).

Lemma LeadsToLeaf cent agu: ∀ (n:nat), LeadsToLeaf (cent agu n).

Theorem SGPE cent AGU : ∀ (n:nat), SGPE le (cent agu n).

Lemma NashEq cent agu: ∀ (n:nat), NashEq le (cent agu n).

B.3.12 Escalation

Definition has an escalation sequence (g seq:nat → Game): Prop := ∀ n:nat,
∃ s, ∃ s’, ∃ a,
(s2g (≪a,l,s,s’≫) =gbis= g seq n ∧ SGPE (≪a,l,s,s’≫) ∨
s2g (≪a,r,s’,s≫) =gbis= g seq n ∧ SGPE (≪a,r,s’,s≫)) ∧
s2g s =gbis= g seq (n+1).

Definition has an escalation (g:Game) : Prop :=
∃ g seq, (has an escalation sequence g seq) ∧ (g seq 0 = g).

Theorem Zero one game has an escalation:
has an escalation Alice Bob nat ge zero one game.

Theorem Dollar game has an escalation:
has an escalation Alice Bob nat ge (dollar game 0).
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ConvRefl

≪Alice 7→ 0, Bob 7→ 1≫ ⊢Alice⊣ ≪Alice 7→ 0, Bob 7→ 1≫

ConvRefl

≪ . . .≫ ⊢Alice⊣ ≪ . . .≫

ConvAgent
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ConvRefl
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ConvChoice
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Figure 11: An inductive proof of convertibility



INDEX – 45

Index

0, 1 game, 5, 9, 26

Achilles and the tortoise, 7

binary tree, 14

coinduction, 3, 5, 11

dollar auction, 4, 27

escalation, 3, 5, 27

finite game, 16

game, 17

history, 3

infinite word, 6
infinite binary tree, 14
infiniteness, 2

Shubik, 4, 27
strategy profile, 18

Weierstrass, 2, 7



REFERENCES – 46

References

S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative
linear logic. Journal of Symbolic Logic, 59:543–574, 1994.

P. Aczel. Non-well-founded Sets, volume 14 of CSLI Lecture Notes. CSLI Pub-
lications, Stanford, California, 1988.

R. Affeldt, M. Tanaka, and N. Marti. Formal proof of provable security by
game-playing in a proof assistant. In Willy Susilo, Joseph K. Liu, and Yi Mu,
editors, ProvSec, volume 4784 of Lecture Notes in Computer Science, pages
151–168. Springer, 2007. ISBN 978-3-540-75669-9.

R. J. Aumann. Backward induction and common knowledge of rationality.
Games and Economic Behavior, 8:6–19, 1995.

Y. Bertot. Filters on coinductive streams, an application to Eratostenes’ sieve.
In Typed Lambda Calculus and Applications’05, volume 3461 of Lecture Notes
in Computer Science, pages 102–115. Springer-Verlag, 2005.

Y. Bertot. Affine functions and series with co-inductive real numbers. Mathe-
matical Structures in Computer Science, 17(1):37–63, 2007.
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G. Frege. From Frege to Gödel, chapter Concept Script. Harvard Uni. Press.,
1967.

H. Gintis. Game Theory Evolving: A Problem-Centered Introduction to Model-
ing Strategic Interaction. Princeton University Press, 2000.

J.-Y. Girard. Locus solum: From the rules of logic to the logic of rules. Mathe-
matical. Structures in Comp. Sci., 11(3):301–506, 2001. ISSN 0960-1295. doi:
http://dx.doi.org/10.1017/S096012950100336X.

B. Green and T. Tao. The primes contain arbitrarily long arithmetic progres-
sions. Annals of Mathematics, 167(2):481–547, 2008.

J. Y. Halpern. Substantive rationality and backward induction. Games and
Economic Behavior, 37(2):425–435, 2001.

J. Harrison. Formal proof – theory and practice. Notices of the American
Mathematical Society, 55:1395–1406, 2008.

N. Julien. Certified exact real arithmetic using co-induction in arbitrary integer
base. In Jacques Garrigue and Manuel V. Hermenegildo, editors, FLOPS,
volume 4989 of Lecture Notes in Computer Science, pages 48–63. Springer,
2008. ISBN 978-3-540-78968-0.



REFERENCES – 48

C.P. Kindleberger and R.Z. Aliber. Manias, panics, and crashes: a history of
financial crises. Wiley investment classics. John Wiley & Sons, 2005. ISBN
9780471467144.

H. W. Kuhn, editor. Classics in Game Theory. Princeton Uni. Press, 1997.

H. W. Kuhn. Extensive games and the problem of information. Contributions
to the Theory of Games II, 1953. Reprinted in Kuhn [1997].

S. Le Roux. Abstraction and Formalization in Game Theory. PhD thesis, École
normale supérieure de Lyon (France), January 2008.

W. Leininger. Escalation and cooperation in conflict situations. J. of Conflict
Resolution, 33:231–254, 1989.

P. Lescanne. Deconstruction of infinite extensive games using coinduction.
CoRR, abs/0904.3528, 2009.

P. Lescanne. Mechanizing epistemic logic with Coq. Annals of Mathematics
and Artificial Intelligence, 48:15–43, 2007.

P. Lescanne and M. Perrinel. On the rationality of escalation. CoRR,
abs/1004.5257, 2010.

K. Lorenz and P. Lorenzen. Dialogische Logik. Darmstadt, 1978.

D. Martin. The determinacy of Blackwell games. The Journal of Symbolic Logic,
63(4):1565–1581, 1998.

R. Mazala. Infinite games. In Erich Grädel, Wolfgang Thomas, and Thomas
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