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Abstract.  
The purpose of research is establishment of dependencies of the stress-strain 

state of a rubber-cable rope on its mechanical parameters and geometric parameters 

of a part where a flat rope gets a tubular shape considering the influence of a cable 

base breakage. Research methodology is construction of analytic models of interac-

tion of cables in a rubber-cable rope as a composite structure, created from parallel 

cables regularly placed in one plane that interact through a layer of rubber, using the 

methods of mechanics of composite materials. Obtaining analytical dependencies in 

closed form for establishing the parameters of a stress-strain state of a rope in a part 

where it gets a tubular shape, which allows determining upper and lower boundaries 

of stresses in cables and in a rubber layer of a rope. Mathematical formulation of the 

process is based on the principles of mechanics of layered structures with hard and 

soft layers. Mathematical models were developed and investigated, what allows 

defining the boundaries of a stress-strain state of a flat rubber-cable rope, which gets 

a spatial shape of a cylinder. Obtained results allow predicting running abilities of a 
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rope with a high level of reliability including brakeages of its reinforcing cables. 

Scientific novelty is in obtained analytical dependencies for boundary values of 

rigidity characteristics of rubber inter-cable layer were obtained and solved what 

allows determining basic characteristics of a stress-strain state of the rope, which 

gets a shape of a pipe within the limited length including the case of a cable base 

breakage. Practical application of research is in the possibility to determine the 

boundaries of a stress-strain state of a rope, prediction of its stress state in case of 

cable breakage during operation, allows reasonable choosing of parameters of lifting 

and transporting machines, on which the rope gets a tubular shape. This increases the 

level of their operation safety and contributes to solving the problem of ecological 

compatibility of underwater oil extraction by removing the oil from the area of the 

well damage directly through the rope cavity, which gets a cylinder shape and which 

has a massive oil-receiving unit attached. 

Introduction 
Designs of modern machines, equipment and mechanisms of min-

ing [1-4], transport [5,6] and technology engineering [7-9] are being 

continuously developed and improved in the direction of increasing 

the productivity, reliability, strength and energy efficiency. 

Flat rubber-cable belts (RCB) and ropes (RCR) are widely used in 

mining and metallurgic engineering [10,11]. In particular, ropes in 

special conveyors are provided with a spatial tubular shape [12]. A 

rope of tubular shape is suggested to be used in mineral extraction 

systems [13,14] that use an airlift [15,16] to protect the water envi-

ronment from oil leakage during its underwater extraction [17,18], 

and also in systems of minerals extraction from near-bottom layers of 

reservoirs. Introduction of technical solutions, connected with the us-

age of belts and ropes, which get a tubular shape, is constrained by 

the lack of methods for determining their stress state, including the 

case of cable breakage. 

State of Question and Research Problem 

To simplify the report of the subject, the belt and the rope will 

hence be called ‘the rope’ for convenience. Giving a flat rope tubular 

shape is accompanied by an uneven distribution of forces between its 

cables. An uneven distribution of forces leads to the curvature of flat 

cross-sections of the rope and the occurrence of shear stress in its 

shell. The breakage of the rubber shell is not just dangerous because 

of a lost connection between the cables. It can also lead to aggressive 

water leakage to cables, their corrosion and breakage. 
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The structure of the cable, as a system of twisted wires, leads to a 

twisting moment of the rope. Distribution of forces in a cross-section 

of the rope impacts the strength, twisting equilibrium and operation 

safety of rubber-cable ropes. It depends on the parameters of the rope 

(belt) and the part where it gets a spatial shape. The establishment of 

quantitative characteristics of the stress-strain state (SSS) of a rub-

ber-cable rope during its spatial deformation under the action of ex-

ternal load is an actual scientific and technical problem. The solution 

of it will allow reasonable selection of parameters of the transitional 

part and the entire rope, ensure its strength and operation safety. The 

application of tubular-shaped ropes will contribute to solving the ac-

tual problem of ecological compatibility of underwater mineral ex-

traction, including oil extraction. 

The flat rubber-cable rope consists of a cable system that is put in 

an elastic shell and arranged parallel in one plane. The shell can be 

made of rubber or other elastomer. The shell material will hence be 

called ‘the rubber’. It protects the cables from the influence of exter-

nal environment, the interaction with the material being transported 

and elements of the machine it is installed on. The issue of a strain-

strain state of a flat rope in the part where a flat rope gets a tubular 

shape was investigated in the paper [19]. There are no guidelines for 

calculating a rope and limits of their application. Papers [10, 11] are 

devoted to the issue of a stress state of a flat rubber-cable rope with 

cable breakage. The stress-strain state of a flat rope as a composite 

structure with soft and hard layers was considered there. The hard 

layers take tensile forces, the soft only take a shear stress. 

Construction of Transitional and Tubular-shaped Area Models 

Rubber-cable rope with a part where it gets a tubular shape is de-

picted in the Fig. 1. 

Cables have a significant tensile rigidity compared to rubber. The 

rubber provides constructive integrity and mechanical interaction of 

the tractive element system. It creates a continuous body of the rope. 

The interaction of cables is determined by normal and tangential 

stresses in rubber layers, as in elements of composite material. The 

first appear in the presence of relative displacement of cables in the 

planes normal to them. Tangential stresses appear due to a mutual 
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shift of cables along their axes. The stresses depend on displace-

ments of cables and rigidity of rubber layers. 
 

 
Fig. 1. Rope with a part of tubular shape: 1 – a flat part of a rope; 2 – a part of a rope 

interaction with a drum; 3 – a part where a flat rope gets a tubular shape;  

4 – a part of a tubular-shaped rope 
 

The problem of determining the stresses in a rubber-cable rope in 

a part where it gets a tubular shape is geometrically nonlinear. It is 

related to the determination of a mechanism of mutual deformation 

of all elements of the rope, including rubber layers, as components of 

a composite structure. In order to simplify the problem, determine 

not the stress-strain state, but the boundaries of possible values of 

stresses that may occur in the elements of the rope by giving it a tub-

ular shape. 

The boundaries of these values are determined by the shape that 

the rope cables get. In the cross-section of the rope running on (off) 

the drum and behind it the centers of cables are located along straight 

lines. The cable placement spacing is constant. The rubber located 

between the cables does not deform in a plane of the rope. The cen-

ters of cables are located on concentric circles in the cross-sections 

of completion of giving a cylindrical shape and the following cross-

sections. The rubber between the cables is deformed along a circle 

arc. The angular spacing of cable placement is constant. 

Significant changes in a distance between the cables in cross-

sections of the rope occur in the part between the part of giving the 

cross-section of the rope a circular shape and the part of running-on 

(off) the drum. In this transitional part the cables get curvilinear 
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shape. There is a compression stress in the rubber located between 

the cables. The rigidity of rubber in such compression affects the 

displacement of cables in a cross-section of the rope, curvature and 

internal forces of their tension respectively. Boundaries of a stressed 

state can be determined by considering two cases, taking the rigidity 

of the rubber between the cables in compression by the cables infi-

nitely large and infinitely small.  

Consider the case where the distances between the centers of ad-

jacent cables remain unchanged in the cross-sections normal to axis 

of the rope. That is, the compression rigidity of rubber layers is con-

sidered infinitely large. 

As indicated above, in a cross-section of running on the drum and 

behind it the cables are located along a straight line. Number the ca-

bles 1, 2, 3, ...,
2

   
M

. Perform the displacement of cables in a 

cross-section of completion of a part of giving a cylindrical shape, in 

a plane normal to the axis of the rope. Turn the centers of cables 

numbered i1 around the first by the angles a=(/M). The cen-

ters of cables numbered i=2 are located along the circle with a radius 

2



tɆ

R . 

Repeat the turns around the next cable centers by the same angles. 

Provide the placement of all the cable centers along the circle (Fig. 2). 
 

 
Fig. 2. Diagram of cable displacement in a part of completion of giving a cylindrical 

shape to the rope 
 

The displacements of ends of discrete cables occur in circle arcs. 

For infinitely small cable placement spacing it occurs along 

evolvents. The distance between them is constant. It is equal to the 
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cable placement spacing. Trace normal cylindrical surfaces through 

the movement trajectories of cable centers. Choose the height of sur-

faces equal to the length of a part of completion of giving a cylindri-

cal shape to the rope - L. 

Pairs of points are located on the formed surfaces that correspond 

to coordinates of placement of cable centers at the boundaries of a 

part of completion of giving a cylindrical shape to the rope. Trace 

geodesic curves between the points - curves of minimum length. 

Note that minimum lengths of deformed cables correspond to the 

minimum work of their deformation. Unfold the formed cylinders 

with the geodesic lines. Involutes of these lines are straight lines. 

Write lengths of the lines in the following form 

 
2

1
2

1

2 



     
  


i

i
j

L t i j L
Ɇ

. 

Relative elongations of cables do not depend on coordinate ɯ 

 
2

1
2

1

1,

2 




 
   

  


i

j

і

t i j L L
Ɇ

L
.    (1) 

Neglect the bending of a rope on a hoisting machine drum. Con-

sider the rope to be located along the x-axis. Repeat the above rota-

tions around the same lines in opposite directions at angles twice 

smaller  2a . At the same time, we rotate the deformed cables as 

absolutely rigid elements. As a result of this rotation, the centers of 

cables, which are located on a line of the rope running on a drum of a 

hoisting machine, will displace. The displacement will take place in a 

plane, which passes through the drum axis and normal to the rope 

axis. The centers of cables in cross-sections of beginning and com-

pletion of giving the rope its cylindrical shape are located on arcs of 

circles with a radius 2R symmetrically with respect to the plane, 

which passes through the middle of a tubular rope section. Projec-

tions of displacement trajectories of cable centers in planes of begin-

ning and end of an area of change of a rope shape are shown in 

Fig. 3. 
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Fig. 3. Diagram of displacement of cables in cross-sections of beginning and com-

pletion of giving the rope a tubular shape 
 

Note that the rotations of cables as rigid elements did not change 

their stress-strain state. The projections of distances between the axes 

of cables along the entire length of a rope also did not change, which 

corresponds to the hypothesis of absence of compression defor-

mations in rubber layers. The relative elongations of the cables (1) 

are distributed symmetrically with respect to the middle (along the 

length) of the rope. 

Consider the symmetry of rope deformation. Expand relative 

elongations in Fourier series in cosines 

  

  

1 1

1, 1,
1 1 1

2 cos 0.51

cos 0.5

Ɇ Ɇ M
k k m

k m ki

m

k
f

Ɇ
i

 

  

         
    

  
, 

where m=(m/M). 

The rope length significantly exceeds the length of the part of in-

teraction with a drum. Neglect it. Consider a rope consisting of two 

infinitely long segments. There is a part between them where a flat 

rope gets a tubular shape that has a length L. As shown above, relative 

elongations of cables are constant along the axis of the rope. Accord-

ingly, the deformation of the rope occurs symmetrically respectively to 

the middle of the part where its cross-section changes the shape. Place 

the beginning of the x-axis in the middle of the specified part. 

Boundary Conditions of Model 
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Deformed, and respectively, stressed state of the rope has two planes 

of symmetry. This allows determining the state of the fourth part of a 

rope. This rope part has a part where a rope gets a tubular shape. Give it 

the number 1, and give the adjacent one number 2. These numbers are 

used to indicate the parameters related to respective parts. Formulate 

boundary conditions for the accepted physical model 

1,

2,1 2,2 2, 2,

0, 0;

, ... , ,

 

    

i

M i

x u

x u u u p P
   (2) 

and the conditions of joint deformation of rope parts 

1, 2, 1, 2,/ 2, , ,  i i i ix L u u p p    (3) 

where Ɋ is the average force of tension of cables – a part of an exter-

nal load, that affects one cable. 

Assumed Forms of Solutions 

Considering the generally accepted assumptions concerning the 

character of deformation of rubber-cable rope components as a com-

posite material with significantly different moduli of elasticity of its 

components [19] and boundary conditions (2), accept the following 

forms of solutions 

    
1

1,
1

cos 0.5 ,
  


     m m

M
x x

i m m
m

Px
u A e e i

EF
  (4) 

 
  

  

1

11,
1

1,
1

2
cos 0.5

cos 0.5 ,

m mx x
m mM

Mi
m

k m
k

m

A e e

p EF
k

Ɇ

i P

 







   
 

  
    
 
   


   (5) 

  
1

2,
1

cos 0.5 ,
 


    m

M
x

i m m
m

Px
u B e i

EF
  (6) 

  
1

2,
1

cos 0.5 ,m
M

x
i m m m

m

p P EF B e i
 


       (7) 

where ui, ip - displacement of a cross-section of cable i along the rope 

and its inner force of tension resistance; M - the amount of cables in a 

rope; E,F - reduced modulus of elasticity of cable material and its 
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cross-section area; 2 [1 cos( )]   G
m m

Gbk

h E F
; G - rigidity modulus 

of elastic (rubber) rope shell material; h - distance between cables; b - 

rope thickness; kG - coefficient that considers the influence of rubber 

shape between the cables on the rigidity of their connection; Am, Bm - 
unknown constants of integration; 1, 2 - part number. 

In dependencies (47) the components, which include constants of 

integration , Am, Bm reproduce the mechanism of deviation of defor-

mations and forces from mean values. Their sums are zero, which is 

a consequence of the equality of the sum of internal forces and exter-

nal load. Find unknown constants using the conditions of joint de-

formation of parts (3) 

  
1

1,
1

/ 2

cos 0.5

,






  
 





m

M

k m
k

m L
m

k

A
Ɇ e

  
 

1

1,
/ 2 / 21

cos 0.5

.



 
  

  



m m

M

k m
L Lk

m
m

k

B e e
Ɇ

 

Stress State Calculations in Transitional Area 
Calculations of internal forces in cables of the fourth part of a part 

where a rope gets a tubular shape for a rope with parameters match-

ing a rope type RCB-3150 are executed. 

Figs. 4-5 indicate graphs of cable displacements u and a ratio of 

internal forces to the permissible tensile force in a rope P=10 kN. 

Note that deformations (cable elongations) in Fig. 4 increase both 

along the width and length of the rope. Deformations increase along the 

rope width due to the redistribution of forces between the cables for a spa-

tial rope. Deformations increase along the rope length due to the action of 

an external load on a rope as a working force. The longitudinal defor-

mations also change due to the redistribution of forces between the cables. 

Fig. 5 indicates these rope deformations, when it is not conditionally load-

ed by external forces in order to determine this component. 

The figure shows that the deformations of some cables are nega-

tive - they are compressed in the absence of an external load. The 

assumed external load of the rope with a force of 10 kN almost bal-
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ances the compression loads of the cables, which can be seen from 

the graph of distribution of tensile forces of the rope cables, related 

to average (working) force values (Fig. 6). 

 
Fig. 4. Displacement of cables u with numbers i along the rope x-axis, loaded with 

external forces 

 
Fig. 5. Displacement of cables u with numbers i along the rope x-axis, not loaded 

with external forces 
 

Fig. 6 shows the graph of a ratio of internal forces to the average 

force P=1 kN applied to rope cables. The ratio of actual stresses in 

the components of machines is the coefficient of stress concentration. 

Analogically, call the ratio above a coefficient of concentration of 

forces. The figure shows that internal forces in cables of the middle 

part of the rope are less than average. They are the smallest in cables 

with numbers i1, in the cross-section ɯ=0. The coefficient of con-

centration of forces for the considered case in this point is 0.746. Ac-

cordingly, in the absence of an external load, compressive forces 

would occur in them. 
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Fig. 6. A surface that reproduces the character of distribution of coefficients of con-

centration of forces distributed along the x-axis between cables with numbers і 
 

Thus, in order to avoid the compression forces of cables to occur, 

the external load must not be less than the compression force of ca-

bles with numbers 1і   . That is, the following condition must be 

fulfilled 

  

 

1

1 1,
1

1 / 2

cos 0.5
2 cos

2
1 m

M

M k m
mk

m L

k
PɆ EF

e





 

           
    


 .  (8) 

According to Fig. 6, internal forces that occur in cables of a 

symmetrical part of a rope are decreasing. Overload coefficient of 

the extreme cable decrease from 3.582 in a cross-section of sym-

metry of the spatial deformation part to 2.765 at its edge. The de-

creasing character is caused by the influence of adjacent parts of a 

rope with unchanging cross-section geometry. This is a consequence 

of a perturbation locality due to a local deformation of rope cables. 

The manifestation of a local redistribution of forces in a part, which 

is their source, indicates insignificant length of parts of redistribution 

of forces. Thus, a deviation of maximum forces from their mean val-

ues does not exceed 5% in cross-sections with coordinates x=3L. 

The length of a part where a rope gets a tubular shape is much small-

er than its total length. Accepted assumption about boundless parts of 

a rope with unchangeable shape of cross-sections can be considered 

acceptable. Obtained results are quite reliable. 

Fig. 6 shows that the most loaded are extreme rope cables. Maxi-

mum loads are in the cable Ɇ in a cross-section ɯ=0. It is determined 

by a dependency 
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   
  

1 1
/ 2

max 1,
1 1

2 cos 0.5 1

cos 0.5 .

m
M M

L
k m

m k

m

E F
p k e

M

M P

  

 

       
 
   

 
 (9) 

According to Hooke's law, the intensity of a tangential force, dis-

tributed along the length of a rope, is determined by a dependency 

   1 , 1 1 .     i G i i

Gb
k u u i M

h
   (10) 

The figure shows the distributed tangential forces transmitted by 

the rubber in a part where a rope gets a tubular shape. 

According to calculations, the maximum tangential distributed 

forces are not in the extreme rubber layers. 

In the process of designing a part where a rope gets a tubular 

shape, there are problems of determining geometric parameters of 

such a part – the diameter of a formed pipe and a length of a part of 

its formation. Diameter of a formed tubular shape is determined by 

the rope width. In order to obtain the results suitable for comparison, 

consider a rope type RCB-3150. The length of a part where a rope 

gets a cylinder shape is 10 m. Change only the amount of cables in it 

from 20 to 200 (from 10 to 100 cables in a half of the rope). Deter-

mine the ratio of the largest to the smallest internal forces of the load 

of extreme ropes (Kr) for a middle part of a part of rope shape change 

and in a cross-section on its boundary. The results are shown in Fig. 7. 

 
Fig. 7. Distribution of tangential forces transmitted by the rubber in a part where a 

rope gets a tubular shape 
 

The given graphic dependency has its maximum at 75 cables. 

Growth of number of cables for the considered case will not lead to a 

significant decrease in a relative coefficient (Kr). The specified al-
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lows determining the maximum forces in the cross-section, which 

corresponds to half the length of a transitional part. To apply the in-

dicated conclusions to other types of ropes, it is necessary to deter-

mine the length of a transitional part as a value in the expression, m 

2 2 2 1 1 1
2

2 2 2 1 1 1

10 G

G

G b k h E F
L

h E F G b k
. 

In this expression, indexes indicate the attribute of a rope parame-

ter. For the rope RCB-3150 the index is 1. Index 2 refers to the rope, 

for which it is necessary to determine the length at which the results 

shown in Fig. 8 are realized. This is the result of dependency of forces 

and displacements from the exponent of the product of magnitude of 

the characteristic index ȕm and coordinate ɯ. 
The intensity of the maximum tangential forces distributed along 

the rope length significantly increases with increasing number of ca-

bles (Fig. 9). 

The analysis shows that as the length of a part where a rope gets a 

tubular shape increases the indicators of the stress state decrease as cur-

vature and relative deformations of cables decrease. The results obtained 

above correspond to the values of the upper boundary of stress. 

 
Fig. 8. Dependency of a relative coefficient (Kr) on the amount of cables in a rope Ɇ 

 

 
Fig. 9. Dependency of intensities of maximum tangential forces T distributed along 

the rope length on the number of cables M in it 
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Case of Infinitely Small Compression Rigidity of Rubber 

We considered the case of absolute high compression rigidity of 

rubber above. Accordingly, we accepted the condition of constant 

distances between the centers of cross-sections of adjacent cables in 

a rope. In case of infinitely small compression rigidity of rubber, 

flexible cables in a part where a rope gets a tubular shape, remain 

straight. The distances between them decrease, with exception for the 

cross-sections of the beginning and the end of a part where a rope 

cross-section changes. Adjacent cables receive different elongations, 

except for cables located in the middle of a rope. These elongations 

are smaller than the elongations in the case above. Shear rubber ri-

gidity, as in the previous case, will cause redistribution of forces be-

tween the cables. Accordingly, the relative elongations of cables, 

their mutual shear will take smaller possible values. 

Projections of axes of cables on a plane normal to the axis of the 

rope are shown in Fig. 10 with solid straight lines. 

 
Fig. 10. Projection of a rope and its axes centers on a plane, normal to the axis of a 

rope 
 

For comparison, dash lines also show the projections of cylinders 

formed by the corresponding equidistant evolvents and on which ca-

bles are located, provided the constant distances between them. 

Known lengths of projections of cables and the length of a part 

where a rope gets a tubular shape allow determining the relative 

elongations of cables 

 Relative elongations (11), as well as elongations (1), increase 

upon the increase of nominal values of cable numbers from zero - for 

cables with numbers i1 . Boundary conditions (2) determine the 

conditions of loading and deformation of ropes in cross-sections x=0, 
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x. They have not changed, as well as a condition of joint defor-

mation of parts (3). Leave accepted forms of solutions (4-7) un-

changed. Recalculations lead to forms of rope stress state similar to 

expressions (8-10). The only difference is that instead of the relative 

extensions 1,i in the upper-mentioned expressions it is necessary to 

substitute for2,i .  

Calculations of deformations and internal forces of loads of ca-

bles on a fourth part of an area of giving it a tubular shape are exe-

cuted for the rope type RCB–3150. Fig. 11 and Fig. 12 indicate 

graphs of cable displacements u and the ratio of internal forces to the 

permissible tensile force in a rope P=10 kN in the area of change in 

the shape of a rope cross-section. 

The obtained graphical dependencies (Figs. 11-13) are consistent 

with the distributions of deformations, internal tensile forces and 

tangential forces (Figs. 4, 6-7) in the absence of rubber compression. 

Quantitatively, the elongation, tensile forces and tangential forces are 

smaller, which is a consequence of shorter lengths of trajectories of 

cable centers in the planes normal to the rope axis. 

 
 

Fig. 11. Surface that indicates the character of displacements u of cables with num-

bers i and along the x-axis 
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Fig. 12. Surface that indicates the character of distribution of tensile forces of cables 

between the cables with numbers i and related to permissible force P along the x-

axis of the rope 

 

 
Fig. 13. Distribution of thickness-averaged tangential forces in the rubber-cable rope 

in an area of giving it a tubular shape 

 

Insignificant difference in dependencies of rope stressed states for 

extreme cases of rigidity of rubber layers determines their qualitative 

coincidence. Thus, minimum force concentration coefficient (in ca-

bles numbered i1, in cross-section ɯ=0) K=0.821, whereas in the 

previous case - 0.746. Differences between the forces and stresses 

that occur at boundary rigidity for rubber layers referred to maximum 

values are 35% and 44%. 
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Considering two cases of a deformed state of a rope with extreme 

values of rigidity of rubber layers, located between cables, we can 

make the following inequality 
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The resulting inequality (12) allows determining the possible 

boundaries of values of additional force Pad that occurs in the most 

loaded rope cables in a part where a rope gets a tubular shape. 

Shear rigidity of rubber layers depends on a cable placement 

spacing in a rope. It infinitely increases with decreasing of a cable 

placement spacing to a minimum, equal to a diameter of cables. In 

rubber-cable ropes, provided that the rope weight is minimized, 

smaller cable placement spacing is used. The values of maximum 

cable tension forces in rubber-cable ropes are closer to the upper lim-

it. The functional purpose of conveyor belts is dual. They perform 

the function of carrying the transported object on the belt during 

movement, and also transfer the traction force. The latter raises the 

problem of appropriateness of use of ropes with increased cable 
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placement spacing. Increasing the thickness of a rubber layer be-

tween the cables reduces compressive rigidity of rubber and leads to 

a decrease in values of extreme tension forces of cables. 

The condition of constant shape of all cables must be fulfilled to-

gether with a condition of strength. The fulfillment of the condition 

is possible by preventing the occurrence of compression forces of 

cables – the fulfillment of condition (8), considering the value of rel-

ative elongation described by dependency (11). 

Stress State in Tubular-shaped Rope with Broken Cable 
Tubular shape is provided to a rope via connecting its edges by 

special locks. The pulling capacity of a rope, including one of tubular 

shape, is ensured by its design, in particular the number of cables in 

it. Rope cable breakage is possible during operation. Breakage also 

affects strength of a rope. Strength loss caused by cable breakage 

must be taken into account when allocating a safety margin to avoid 

emergency situations. 

Determine the stress-strain state of such tubular-shaped rope with 

a broken random cable k. Trace a plane through the axis of this cable 

and the axis of the tubular rope. It divides the tubular rope into two 

symmetrical parts. In case when the number of cables M is not even, 

the plane will pass in the middle between the cables, as shown in 

Fig. 14. Taking this into account, consider a rope, which consists of 

an odd number of cables M. Number the cables from one to M. 

Unfold this cut tubular rope. As a result, we have a stress-strain 

state of the rope that is symmetrical relatively to the broken cable. 

Displacements and loads of cables with numbers 1 and M are the 

same. Shear stress in a rubber layer between them is absent. This 

shows that the breakage of any single cable leads to an identical 

stress state of the rope of tubular shape, relatively to a location of the 

cable. This state according to the computable model is characterized 

by the fact that specifically the middle cable is always broken. This 

allows us to apply a known form of solution for determining the SSS 

of a tubular tractive rope with a broken cable 



 453 

 
  

1

1

cos 0.5 ,

  


  

    

 m m
M

x x
i m m

m

m

u A e B e

P
i x c

EF M

   (13) 

 
  

1

1

cos 0.5 , 1 ,

  


   

     

 m m
M

x x
i m m m

m

m

p EF A e B e

P
i i M

M

    (14) 

 
      

1

1

cos 0.5 cos 0.5 , 1 1,

  


   

        

 m m
M

x xG
i m m

m

m m

Gbk
A e B e

h

i i i M

  (15) 

where ɫ - unknown constant. 

 
Fig. 14. Cross-section of a tubular-shaped rubber-cable rope 

 

Consider a rope loaded with an external force P as infinitely long 

one with a broken cable in the middle. Place the start of x-axis in a 

cross-section of cable breakage. Given the symmetry, consider a part 

of the rope in an interval 0x. The condition of symmetry indi-

cates that in the cross-section x = 0 there is no cable displacement 

except for the broken one. Edges of the broken cable are not loaded. 

Given the infinite growth of coordinate x, internal resistance forces 

of cables and displacements of their cross-sections cannot grow infi-

nitely. Formulate this as boundary conditions 
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The last condition is provided by acceptingAm=0. Consider that 

dependencies (13-15) are constructed using cable numbers as a dis-

crete coordinate axis. The boundary condition (16) has a form of a 

discontinuous - delta function. Take this into consideration. Calculate 

unknown constants in the form 
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where Ɋ - average internal force in rope cables.  

Displacements of cross-sections of cables, internal forces and 

tangential stresses that occur in them when a single cable breaks de-

pend on the number of cables and the properties of rope components 

according to expressions (13-15). 

Using the dependencies (16)-(18), the obtained unknown differen-

tiation constants were determined. The rope parameters with the fol-

lowing values were taken as a basis: M=9; G=5 MPa; h=5 mm; 

b=30 mm. The ratio 
10 2

8

10

Gk

EF d



 took into account the incomplete 

filling of a cable cross-section with metal, the value of a coefficient, 

which considers the influence of a rubber shape between the cables on 

the rigidity of their connection, lower rigidity of a cable compared to 

the rod. In the calculations, it was assumed that the average load on 

one cable is 1 N. This allows the value of internal forces occurring in 

the cables to be considered as related to the average ones, i.e. equal to 

the coefficients of unevenness of their distribution. 
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According to expression (13), the displacements of cable cross-

sections depend on three components – the sum of products of con-

stants and cosines, the constant multiplied by the coordinate x and the 

constant c. The latter regulates the rope displacement as a rigid body. 

The pre-last component represents the longitudinal rope deformation 

with a constant force. And only the first component describes the re-

distribution of displacements. Since the second component does not 

affect the redistribution of displacements, it was conditionally omitted 

in the calculations. The results are shown in Figs. 15-17. 

 
Fig. 15. Coefficients of uneven distribution of internal tensile strength of tubular 

rubber-cable ropes with nine cables in a cross-section and in case of breakage of one 

of them 

 
Fig. 16. Displacements of cables of a tubular rubber-cable rope with nine cables in a 

cross-section and in case of breakage of one of them 
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Fig. 17. Dependency of intensities of distributed tangential forces in rubber layers located 

between cables in a case of tension of tubular rubber-cable rope with one out of nine 

broken cables in its cross-section 

According to the graphical dependencies, in the cross-section of 

the cable breakage, the values of displacements, internal forces of 

deformation of cables and tangential forces that occur in layers of 

rubber located between the cables change. The specified values reach 

the maximum values in a cross-section of breakage. This indicates 

the dependency of maximum displacements, internal forces of tensile 

strength of cables, and tangential forces on a total number of cables 

in a rope of tubular shape. 

Fig. 18 and 19 show the dependencies of maximum values of co-

efficients of uneven distribution of forces K and values of distribu-

tion intensity of tangential forces T in layers of rubber, located be-

tween cables on the number of cables in a rope M. 

  
Fig. 18. Dependency of maximum values of coefficients of uneven distribution of 

forces K on the number of cables in a rope M 
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Fig. 19. Dependency of distribution intensity of tangential forces T in layers of rub-

ber, located between cables on the number of cables in a rope Ɇ 
 

According to graphic dependencies (Fig. 18, Fig. 19), the maximum 

forces and tangential stresses are significantly dependent on the number 

of cables in a rope, if it is less than ten. This is a consequence of a local 

influence of a cable breakage on the stress-strain state of a tubular rope 

and the implementation of St. Venant's principle on the locality of influ-

ence of local load changes or a component design. 

Consider the redistribution of forces across the width of a rope, 

depending on the number of cables in it. Fig. 20 shows the distribu-

tion of forces in a cross-section of a rope with different number of 

cables M in case of the middle cable breakage. 

In the figure, the number of cables is conditionally unchanged and 

is nineteen. The actual number of cables which is from two to eight-

een was supplemented by conditional cables. Coefficients of forces 

concentration in imaginary cables are equal to zero. The figure 

shows that the growth of the number of cables in a tubular rope does 

not significantly affect the redistribution of forces between them. The 

same conclusion can be reached by examining problems regarding 

the quantitative part of the force perceived by adjacent cables from 

the value of the force that was perceived by the broken cable before 

its breakage. The indicated dependency is shown in Fig. 21. 

The graph shows the quantitative dependency of a force part transmit-

ted by the broken cable before its breakage from the number of cables in a 

rope. The middle cable takes place with an odd number of cables. The 

minimum number of cables in a rubber-cable rope is three. In this case, 

damage to one cable can lead to an additional load of only two cables. 

And just these cables take the load that occurred in the broken cable be-

fore its breakage. Accordingly, if there are only three cables in a tubular-

shaped rope, cables adjacent to the broken one will take the entire load; 
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coefficient K=1. As the number of cables increases, the mentioned pro-

portion decreases and does not get lower than 0.6. 

 
Fig. 20. Distribution of coefficients of forces concentration in ropes with Ɇ cables in 

case of the middle cable breakage 

 

 
Fig. 21. Relative load part, perceived by two cables adjoining the middle broken one 

in a rope with Ɇ cables 
 

 

 

Established dependencies of maximum values of coefficients of 

uneven distribution of forces K, tangential forces T in layers of rub-

ber, located between the cables on the number of cables in a rope M, 

caused by the breakage of any cable of a flat rubber-cable rope, 

which gets a tubular shape, allow taking into account possible cable 

breakages during the design of lifting and transporting machines with 

a rubber-cable tractive rope of a tubular shape. 
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Calculation of Twisting Moments in Rope with Broken Cables 

The basis of a rubber-cable rope is cables. They are made of a 

twisted cable system. This structure of a cable leads to a distribution 

of a twisting moment while stretching throughout cable length. To 

avoid a twisting moment in a rope an even number of cables is used. 

Cables of opposite twist directions are arranged alternately in the 

rope. The balance of a rope is disturbed due to cable breakage. The 

locality of redistribution of forces in case of cable breakage leads to 

localization and distributed rope twisting moment. Assume that a 

cable twisting moment is directly proportional to the internal force of 

its load with a coefficient of proportionality Ȗ. Determine a value of 
intensity of an unbalanced moment of a rope in the cross-section of 

cable breakage and in the cross-section which is remote from it by 

0.5 m. Fig. 22 shows dependencies of an unbalanced moment, related 

to an average load force of cables on their number in a rope. The 

values of moments are shown for breakage cases of the extreme ca-

ble and the most distant cable from the edge. 

The figure shows insignificant dependence of maximum intensity 

of rope twisting moment on the location of a cable in it (when an ex-

treme or a middle cable is broken) in the breakage cross-section 

(curves 1 and 2). The placement of a broken cable in a rope affects the 

length of a part of stress-strain state perturbation more significantly 

(curves 3 and 4). Thus, in case of breakage of a cable that is the far-

thest from the edges of a rope, the intensity of the unbalanced moment 

in a rope system is close to 10% of its maximum value (curve 4). A 

similar indicator is practically twice as large for a case of an extreme 

cable breakage (curve 3). This feature is fulfilled because the intensity 

of distributed twisting moments of a rope at a distance of 0.5 m is a 

whole degree smaller than their values in a part of cable breakage.  

This character of distribution of moments of imbalance of system 

of cable ropes is caused by the placement scheme of cables with the 

opposite twisting direction. The twist direction determines the direc-

tion of twisting moment. Breakage of the extreme cable leads to a 

significant increase in the internal tensile force of only one adjacent 

cable. Non-extreme cable breakage leads to growth of internal tensile 

forces of two adjacent cables. In this case, as shown above, adjacent 

cables perceive at least 60% of a cable load, which it perceived be-
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fore the breakage. A similar ratio is accurate in case of extreme cable 

breakage. As a result, the breakage of one cable significantly in-

creases twisting moments of adjacent cables. 
 

 
Fig. 22. Relative twisting moment of a rope with Ɇ cables in the cross-section of 

cable breakage Ȗ0  and Ȗ0,5 at a distance of 0.5 m: 1 – in the cross-section of extreme 

cable breakage, 2 – in the cross-section of middle cable breakage, 3 – in the cross-

section at a distance of 0.5 m from the cross-section of extreme cable breakage, 4 –
 in the cross-section at a distance of 0.5 m from the cross-section of middle cable 

breakage 

 

According to a scheme of alternating placement of cables of the 

opposite direction the moments of one direction increase substantial-

ly (at least by 60%). It is possible to decrease the mentioned growth 

provided the forces are distributed between the cables of the opposite 

direction. This distribution can be arranged in such a way that, any 

cable is adjacent to two other cables of the opposite twist direction. 

This can be ensured by placing cables in a rope according to a 

scheme, where two cables of one direction are alternately placed 

with pairs of cables of another twisting direction. Fig. 23 shows the 

dependencies similar to those shown in Fig. 22, but in a scheme of 

alternate placement of cable pairs of one twist direction. 

According to Fig. 23, the placement of a broken cable in a rope 

more significantly affects the values of maximum intensity of a rope 

twisting moment (curves 1 and 2). At the same time, the maximum 

values during the middle cable breakage are almost one third less. In 

case of the extreme cable breakage, this indicator reaches 50%. 
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Fig. 23. Relative twisting moment of a rope with Ɇ cables in the cross-section of 

cable breakage Ȗ0 and Ȗ0,5 at a distance of 0.5 m in a scheme of alternate placement 

of cable pairs of one twisting direction: 1 – in the cross-section of extreme cable 

breakage, 2 – in the cross-section of middle cable breakage, 3 – in the cross-section 

at a distance of 0.5 m from the cross-section of extreme cable breakage, 4 – in the 

cross-section at a distance of 0.5 m from the cross-section of middle cable breakage 

 

Reduction of a twisting moment in the cross-section of cable 

breakage is accompanied by an increase in length of a perturbation 

part. Thus, in case of extreme cable breakage, an unbalanced twisting 

moment at a distance of 0.5 m from the cross-section of breakage 

decreased to 0.25Ȗ. In case of middle cable breakage, practically, 

down to 0.1Ȗ which is 2.5 and two times more than in a previous 
case. The specified confirms an increase in length of imbalance oc-

currence part to rope twisting. 

The balancing of cable twisting moments happens due to the oc-

currence of additional deformations and stresses in a rubber of a 

rope. Reduction of intensities of maximum twisting moments of a 

rope leads to a decrease of stresses in rubber and improvement of its 

operation conditions. But keep in mind that in a rope with a scheme 

of alternate placement of cable pairs of one twisting direction the 

number of cables must be a multiple of four. 

Stress-Strain State of Tubular Rope With Spatial Curvature 

of Axis 

Operation of hoisting machines on a ship, underwater currents, 

determine a possibility of displacement of a drum axis, and rope axis 
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in space. As a result, the rope axis can get a spatial shape. Spatial de-

formation can be represented as a sum of possible rotations of rope 

cross-sections and their longitudinal displacements along its length. 

Stresses in material of cables, considering the strength condition, 

are less than the stresses that lead to plastic (residual) deformations. 

Within such stresses, the deformations depend linearly on them. The 

indicated linear dependency allows applying the hypothesis of inde-

pendence of action of external forces – the principle of super-

position in a study of the stress-strain state of the rope. Accordingly, 

allows considering the various factors of its deformation inde-

pendently. Distribution of forces in a rope when giving it a tubular 

shape is studied above. Spatial deformation, accompanied by the ac-

quired spatial curved axis in the tubular rope, can be represented as a 

sum of rotations of the cross-section in the plane normal to the axis 

of the rope and in the plane tangent to it. 

Rotating the rope cross-section around the axis causes it to twist. 

Twisting a rope with tubular cross-section, in a case when the end of the 

rope is connected to the mechanism of extracting minerals, as a support 

for unilateral action, does not resist such displacement. Accordingly, it 

does not change the rope tension – does not affect its stress state. 

Bending in the plane tangent to the rope axis leads to a redistribu-

tion of tensile forces of cables in a cross-section of a rope. Consider-

ing a possibility of arbitrary direction of underwater currents, a sys-

tem of deep-water lifting of minerals with a hoisting rope of tubular 

shape is suggested. The tubular (cylindrical) shape of a rope is sym-

metrical with respect to the axis. Its resistance to underwater currents 

and the distribution of forces between the cables, provided that they 

are placed evenly, do not depend on the direction of bending. Con-

sider rope bending in the plane xy. The x-axis coincides with the rope 

axis of the tubular shape. Assume that the cross-section x = 0 is ro-

tated around the y axis by an angle Ȗ, the rope is infinitely long. De-

termine the influence of rotation of a plane of attachment of a load 

on distribution of forces between the rope cables. We do not consider 

the force of tension of the rope evenly distributed between the cables. 

Considering the principle of Saint-Venan of the locality of redistribu-

tion of forces due to the action of local perturbations, the displace-

ment of the cross sections of the cables u and the forces of their ten-

sion p determine the dependencies 
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located in a rope with a spacing t; G - elasticity modulus of a cable; 

E - elasticity modulus of cable material with a cross-sectional area F; 

kG - coefficient, which considers the dependency of shear rigidity of 

rubber located between cables on a shape of its cross-section. 

Assume that the rope has 2M cables. An even number of cables 

assumes that there is no zero cable, and cables with numbers 
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ing to the accepted conditions of deformation, the end of an arbitrary 
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; R is radius of a circle, on which the centers of cross-

sections of cables of a tubular-shaped rope are located. 

Dependency (19) is expanded in Fourier series in cosines 
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Dependencies (17)–(20) represent a mathematical model of a 

stress-strain state of a rubber-cable rope, which is given a tubular 

shape during its deformation. Considering the dependencies (17)–
(20) we have 
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According to dependences (21) and (22) and Saint-Venant’s prin-

ciple, the uneven distribution of displacements and forces is realized 

over a limited length, which is due to the negative degree of the ex-

ponent, the maximum value of which is for the case x = 0. Maximum 

tensile force of cable located at the greatest distance from the axis of 

the rope is 
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 (23) 

where P/2M - part of the tensile force of the cable due to the tensile 

force of the rope. 

Since the force of the most loaded cable is caused by the local ro-

tation of the rope cross-section, and decreases with increasing dis-

tance from the bend cross-section and acts only in the farthest cable, 

the rotation of the cross-section in another plane and in another 

cross-section will not lead to greater cable loads than when bending 

the rope in the plane. This allows accepting the distribution of rela-

tive elongations of cables of a tubular-shaped rope, bent in a plane of 

radius  , according to the hypothesis of flat cross-sections 
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1 2
sin .

2
i

R M i
a

       
    (24) 

The known distribution of relative elongations (24) allows deter-

mining the distribution of internal forces occurring in cables of a 

rope loaded with tensile force P 

1 2
sin .

2 2
i

R M i P
p E F a

M

      
   (25) 

In turn, expression (25) allows determining the force acting on the 

maximum loaded cable, when bending along the radius   of an in-

finitely long rope loaded with tensile force P 

max .
2

R P
p E F

M
 


 

According to the condition of strength 

 
2

R P
E F P

M
 


, 

where [P] - tensile force allowed from the strength condition. 

Hence, the minimum permissible bending radius of a rubber-cable 

rope, which is given a tubular shape, must satisfy the following con-

dition 

 
min .

2

E F R

P
P

M

 


 

In the area of giving the rope a tubular shape, the maximum forc-

es occur in the extreme cables, so installing the drum of a hoisting 

machine so that its axis is located at right angles to the direction of 

the forces of horizontal resistance of the aquatic environment is im-

practical. The location of drum axis parallel to the direction of total 

horizontal resistance of aquatic environment should be considered 

the best. The vessel movement leads to a clear direction of one of the 

components of resistance. The second component of resistance is due 

to underwater currents. In the general case, the direction of its action 

is random, so the axis of rotation of the drum, in terms of strength, is 

advisable to be placed parallel to the axis of the vessel. The constant 

spacing of placement of cables in a rope, including in its lock, en-

sures the independence of resistance of a tubular rope and values of 
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the maximum tensile forces in cables from a random direction of a 

force of water pressure normal to the axis of the rope. 

Conclusion 

Determination in analytical form of boundaries of a stress-strain 

state of a rope which gets a tubular shape, that occur including the 

case of broken cables, establishment of a mechanism of a rope bal-

ance disturbance to twisting, implementation of the system of cable 

placement in a rope as two cables of one twist direction after two 

cables of an opposite twist direction, establishment of dependencies 

of a stress-strain state of a cylinder-shaped rope during a spatial cur-

vature of its axis, allow reasonable selection of the parameters of a 

rope of lifting and transporting machines, in which a rope gets a cyl-

inder shape. This ensures its operation safety and contributes to solv-

ing the problem of ecological compatibility of underwater oil extrac-

tion. 
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