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Abstract.  

Main indicators of a stress-strain state (SSS) of a rubber-cable belt, the rubber-

cable rope for a random placement pattern and the size of the part with broken ca-

bles, including partially removed cables, with cable breakages and their random 



 215 

amount, different conditions of belt interaction in its cross-sections of connection to 

structural elements of a conveyor and a lifting machine to ensure control of its trac-

tive ability during the life cycle. Performed researches clarify the idea of the interac-

tion mechanism of reinforcing elements in composite materials of layered structure 

with hard and soft layers. Obtained results can be used for development and justifi-

cation of a unified technology of creation and engineering support of operation of 

lifting and transporting machines with flat tractive-bearing elements with increased 

life-span, level of efficiency and operational safety in systems of extraction, trans-

portation and processing of minerals. 
 

Introduction 
Lifting and transporting complexes are the most important link in 

the chain of mineral extraction. The economic efficiency and social 

stability of a mining complex [1, 2] as a whole depend on an uninter-

rupted and safe operation of lifting and transporting complexes [3]. 

Effective and trouble-free operation of lifting and transporting ma-

chines, including ones with flat tractive-bearing elements, can be pro-

vided by creation and realization of bases of scientifically justified 

engineering support throughout the life cycle their operation. 

Rubber-cable flat belts (RCB) are used in lifting and transporting 

engineering. They perform the function of tensile force transmission. 

Transported material is on the conveyor belt. Conveyor belts have a 

closed form. Rubber-cable and rubber-fabric flat belts have a system 

of tractive elements located along its longitudinal axis. Reinforcing 

elements are placed with the same spacing along the belt width. An 

elastic shell provides the structural integrity of tractive elements into 

which they are packed. Tractive elements are broken during opera-

tion. Belts can be used in sifting machines, in conveyors for partial 

water discharge during the transportation of moist lumpy mass. To 

do this, it is enough to make holes in a belt.  

Formation of artificial holes and breakage of tractive elements during 

the belt operation lead to a change in their structure. Changing the struc-

ture leads to a change in a mechanism of interaction of reinforcing ele-

ments. This change leads to a redistribution of loads between the rein-

forcing elements, occurrence of tangential stresses in a belt shell and, 

eventually, to a reduction of tractive ability of a flat belt (rope). 

Reduction of a tractive ability can lead to unpredictable conse-

quences. The variety of possible patterns of changing the structure of 

a belt reinforcement due to a need to adapt the belt to the needs of 

technological process, design features of the machine, the breakage 
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of its elements during the operation process requires the solution of 

the actual task – the development of a single method for determining 

the stress-strain state of a flat elastic belt reinforced with longitudinal 

tractive elements. 

State of Question and Statement of Research Problem 

Conveyors of various designs, including steeply inclined [4], with 

a suspending belt [5, 6], tubular [7], are designed for transportation of 

considerable amounts of material. They are mostly equipped with 

rubber-cable belts. Belt cables can have ruptures of continuity. So the 

continuity of tractive elements is ruptured in butt-joint connections. 

The connections are performed in order to obtain a belt of considera-

ble length, to provide it with a closed form on the conveyor. The rup-

tures of continuity of cables lead to a decrease in endurance and 

strength of belts [8, 9], in particular in butt-joint connections [10]. 

Properties of butt-joint connections of rubber-cable conveyor belts 

that were in operation are investigated in [11]. The holes can be made 

in belts [12]. Cables can break during operation of belts. Tractive 

ability and operational reliability of belts [13] and their butt-joint 

connections [14] are reduced during operation. 

Reduction of a tractive ability of ropes and belts can lead to un-

predictable consequences. Failure of conveyors due to a failure of 

belts and support rollers in the air-salt medium reaches 47% [15]. The 

method for determining the value of a safe load on a belt with defects 

is justified in [16]. It is based on empirical dependency and does not in-

volve the case of removal of cable parts. The issue of determining the re-

duced mechanical characteristics of composite materials reinforced by a 

system of regularly arranged, parallel reinforcing elements of non-

significant rigidity is depicted in [17]. The effect of the geometric parame-

ters of the rubber-cable belt on its stress-strain state in the interaction with 

clamping elements on the driving drum winder is investigated in [18]. 

Paper [19] suggests an algorithm for determining the stress-strain state 

of a flat rubber-cable rope with one broken cable, considering the devia-

tion of a drum generatrix from a straight line. The possibility of considera-

tion of design parameters of a machine by means of assigning certain 

boundary conditions of loading of a rubber belt (rope) is displayed. 

Known algorithms for determining a stress-strain state of a flat 

rubber-cable conveyor belt, a rope of a lifting machine can’t be used 
to determine a tractive ability of a belt with various cable disturb-
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ances, including belts with systematically located holes. 

Rubber-cable belts consist of a system of parallel cables, located 

along the belt in the same plane. Rubber-fabric belts have a system of 

parallel threads located in several planes. In a case of longitudinal 

loading, including the case of formation of through holes, the threads 

are located in parallel planes and deform in the same manner. Mecha-

nisms of deformation of rubber-cable and rubber-fabric belts can be 

considered close. Consider a rubber-cable belt, which is used as a flat 

rope. Along the belt width, the cables are located with a constant spac-

ing and packed into an elastic shell. Longitudinal deformations of ca-

bles are much larger than their deformations in the plane of a belt. The 

elastic shell takes almost only shear stress. Deformations of cables are 

insignificant in the plane of a belt. Neglect the influence of a differ-

ence between the twisting angles of adjacent cables in the plane of a 

belt to the values of tangent stresses in the elastic material. The speci-

fied allows considering rubber-cable belt as a composite material of 

regular layered structure with rigid and soft layers. 

Breakages of a tractive core of the belt, made artificially or those 

that occurred during the operation rupture the regular structure of the 

belt. Belts with random breakages of reinforcing elements partially 

lose a regularity of placement of reinforcing elements. The latter case 

can be considered as a separate case of a regular change in the belt 

structure. Belts interact with elements of conveyors of various designs. 

Mechanical properties of the belt, including its strength, depend on 

the amount, relative placement, mechanical properties of reinforcing 

elements and shell material, and the character of distribution of forces 

between tractive elements. The task of determining the distribution of 

forces between tractive elements is statically indeterminate. The dis-

tribution of forces depends on a character of interaction of the belt 

with individual structural elements of the conveyor. The formation of 

holes in such belts is connected to the partial removal of reinforcing 

elements and the reduction of its tractive ability. 

The task is to create an algorithm for determining the main indica-

tors of the stress-strain state of a rubber-cable belt and a rubber-cable 

rope for a random placement pattern and the size of the part with bro-

ken cables, including partially removed cables, with cable breakages 

and their random amount, different conditions of belt interaction in its 

cross-sections of connection to structural elements of a conveyor and 
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a lifting machine to ensure control of its tractive ability during the life 

cycle. 

Belt with Regular Ruptures of Continuity of Cable Groups 

The main tractive elements of a belt and a rope are cables. A rub-

ber-cable rope of the lifting machine and a rubber-cable belt are 

called a belt henceforth. Belt cables consist of strands. Strands con-

sist of wires. Wires in strands as well as strands in cables are twisted. 

This structure leads to a twisting moment of a cable when it is loaded 

with longitudinal force. In order to balance the twisting, the belt 

structure has an even number of cables. Correspondingly, the number 

of removed tractive elements in a special hole in the belt should be 

even. The number of broken cables in a general case can be random. 

The lengths of conveyors on which rubber-cable belts are installed 

are significant. This allows disregarding the circular (closed) shape of 

a belt. Consider a belt in which two opposite edges are attached to 

structural elements of a conveyor. The load character of a belt on the 

conveyor is determined by its structure. Features of interaction of a 

belt with conveyor drums can be defined by boundary conditions. 

Considering the upper-mentioned and in order to obtain a solution for a 

general case, consider the rubber-cable belt with a length l1 + l2. The belt has 

M+N cables. Broken (removed) group of N cables out of these M+N cables 

is located on the part of a belt with length l2. The group is located at the edge 

of the belt. It is loaded with a tensile force Ɋ at random boundary condi-

tions. Cables have a considerable tensile rigidity. The main deformation of 

the elastic shell is its shear between the cables. 

Cable displacements in a belt, as a layered structure with hard and 

soft layers can be determined by dependency [19], which is obtained 

from the condition of cables equilibrium on a belt part of a constant 

regular structure 

    
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diameter and spacing of cable placement in a belt; E, F - reduced 

tensile rigidity of a cable and its cross-sectional area; G - reduced 

shear modulus of an elastic shell of the belt; kG
 
- the coefficient that 

considers the influence of the elastic shell material shape located be-

tween the cables. 

Rupture of integrity of cables leads to a rupture of a belt structure 

and eliminates the possibility of using (1). Use the method of cross-

sections. Cut the belt into two parts along the location of a cross-

section of cable breakage (along the cross-section of their amount 

change in parts of a belt). Within each of these parts of a belt its 

structure is unchanged. Expression (1) is applicable for each part. For 

the first part the amount of cables Z equals M+N. For the second one 

Z=M. The stress-strain state of the entire belt can be determined if 

the condition of joint deformation of both parts and the condition of 

loading of belt boundaries is ensured. 

Give belt parts numbers 1 and 2. The numbers are written in the in-

dexes of parameters related to the first and second parts of the belt. 

The beginning of the x-axis is located on the common boundary of 

both parts. Formulate boundary conditions and condition of joint de-

formation of belt parts. 

Assume that deformations at the belt edges are defined by func-

tions     1 1, 1,
1

cos 0.5
M N

n n

n

f i F i



    and 

    2 2, 2,
1

cos 0.5
M

n n

n

f i F i


  . Formulate boundary conditions: 

in a cross-section 

2x l 
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i

u f i p P
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and when 

1x l
 

 1, 1
1

,
M N

i i

i

u f i p P



  ,   (3) 

where pі - tensile force of cable і. 
Conditions of joint deformation of parts (in a cross-section 0x  ) 
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 (4) 

From the boundary conditions the following dependencies are 

formulated 
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 (5) 

The obtained ratios allow reducing the amount of unknowns in 

expressions for displacements and internal loads of cables in a belt 
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(7) 

Coefficient ɫ1 is assumed zero. Then c2=u1(i,0), (1iM) 
Expressions of displacement (6), (7) include unknown vectors of 

displacements with values N+M-1 and M–1. In order to reduce the 

number of vectors of unknown constants, the first (M-1) constants of 

a vector B1,m are expressed through unknown constant B2,n. The num-

bers of cables are considered as a discrete coordinate axis. Internal 

forces occurring in cables of the first part are written in a form of 

Fourier series on a segment (0<i<M+N+1) 
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 (8) 

In the resulting expression, the sum of members with unknown values 

of a vector of constant B2,n, reproduces the condition of equality of loads 

of cables belonging to the first and second parts in the cross-section ɯ=0. 

The sum of members of an unknown vector B1,j(M≤j≤M+N–1) describes 

the distribution of forces between cables of the first part, the ends of 

which are located in the same cross-section. 

The internal loading forces of cables of the second part are deter-

mined from (7) by Hooke's law 
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Accepted forms of solutions ensure the implementation of condi-

tion of equality of forces in terms of joint deformation of parts of an 

unbroken cable belonging to both parts of the belt (4). The condition 

of equality of displacements of cables with numbers 1iM in a 

cross-section ɯ=0 and the condition where internal forces in cables 

are equal to zero, that were determined in conditions of joint defor-

mation of belt parts (4), allow creating a system of algebraic equa-

tions of order M+N-1. The belt has M+N cables in the first part. 
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Note that the expressions of internal forces (8) and (9) have two 

components. The first depends on a cable number and a value of co-

ordinate x. The second is a constant value. The sum of forces defined 

only by the first components equals zero. This allows not defining 

the condition of load absence for one of the cables with a number 

greater than Ɇ. The specified condition is executed automatically. 

Order of the system of equations M+N-1 is sufficient to determine all 

unknown constants. 

Known values of constants allow determining the distribution of 

forces between cables and their displacements. The displacements 

allow determining the tangential forces transmitted by the elastic 

shell located between the cables. Tangential forces are proportional 

to displacement angles of elastic shell material. Tangents of dis-

placement angles are determined by the difference in displacements 

of adjacent cables related to the distance between them. 

Belt strength is determined by maximum loads of cables and 

forces transmitted by an elastic shell between them. The maximum 

loaded cable is adjacent to the broken one in the breakage cross-

section. Expression (8) makes it possible to find this maximum force 
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The maximum tangential forces are transmitted by an elastic shell 

in the part at the end of a broken cable adjacent to the unbroken one. 

They correspond to the maximum displacement angle. The tangent of 

maximum displacement angle is determined by the dependency 
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A condition, that the group of adjacent cables at the edge of the belt 

is broken (removed) is accepted above. The results obtained are also 

acceptable in a case when a group of broken cables is symmetrically 
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located along the longitudinal axis of the belt. This is due to the fact 

that in the symmetry plane there are no tangential stresses in a rubber 

shell, as they do not occur on the belt side. The difference is in the fact 

that in a case of breakage of a group of cables in the middle of the belt 

the number of broken N and unbroken M cables in the expressions 

above should be taken twice as small as the actual ones. Thus, (10) and 

(11) are also acceptable for the case when broken cables are lo-

cated in the middle of a belt. Locations of breakages at the edge 

of a belt and symmetrically to its axis are extreme cases. Corre-

spondingly, indicators of a stress-strain state for other cases do 

not exceed the indicators specified for two cases. 

Obtained expressions of maximum internal forces taken by 

cables and the maximum values of tangents of displacement an-

gles determine the maximum values of indicators of a stress-

strained state of a rubber-cable belt. 

Consider using the offered method on an example of a belt type 

RCB-3150. In order to remove moisture from washed agricultural 

products, holes are made in a conveyor belt with a removal of parts 

of longitudinal tractive elements. Tractive elements, in general, may 

not be metallic. But their longitudinal deformations greatly exceed 

their normal displacements in the belt plane. Elastic shell transfers 

shear stresses. Uniform moisture drainage, regardless of the location 

of holes in a belt, that moves and has a closed form, can be provided 

with a uniform hole placement along the length and width of the belt. 

Assume that the holes have dimensions l2b. Place ɯ-axis along the belt. 

The start of axis is on the boundary of a random row of holes (Fig. 1). 

 
Fig. 1. Diagram of placement of tractive elements and holes  

with dimensions l2b on a belt 

Give numbers to cables from one to M+N. Value M+N deter-
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mines the amount of cables in a symmetrical part of a repeating ele-

ment of the belt. Value of the amount of cables N depends on a hole 

width and a cable placement spacing and is determined by the formu-

la N=b/2t. Cables are shown with thickened lines. Show the symmet-

rical part of a repeating belt element with a system of holes arranged 

with a constant spacing, along the belt and along its width using dash 

lines. The symmetry of the specified element leads to the following 

features of its deformation. Cross-sections in planes of symmetry, 

located normally to ɯ-axis, don’t curve. Displacements of reinforcing 
elements located symmetrically to the edge of the hole of parallel 

axis are equal. Tangential stresses do not occur in the rubber between 

specified tractive elements during the belt loading with tensile forces. 

There are no tangential stresses in the area near a hole. 

In a part 0x   the amount of tractive elements is Ɇ+N. In a part 

0x  –Ɇ. As performed before, split the belt into two parts by a 

cross-section ɯ = 0. Indicate them with numbers 1 and 2. The num-

bers are used as indexes to indicate the values of the corresponding 

belt part. 

Formulate boundary conditions 

ɚ) in a cross-section 

1x l
   2 1, 1 1,, ,i i i

P
u u p

M N
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   (12) 

b) in a cross-section 

2

2

l
x 

     2 2, 1.i iu u 
   

 (13) 

At boundary (12) we have  1, 0 1nF n M N    . From condi-

tion (13) - A2,n=0 (1nM).  
Displacements and internal loading forces of cables are deter-

mined from (6)-(9) and appear as shown in (14)-(17). 

Using Hooke’s law in (8), determine displacements of cables of 
the first belt part. 

Use the conditions of joint deformation of belt parts (4). Con-

struct a system of algebraic equations of order Ɇ+N-1 (18). 
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 (18) 

The width of holes b is proportional to the amount of tractive el-

ements. Set their amount equal to two and four. Solve the system of 

equations for these conditions. Find unknown constants. Determine 

the internal tensile forces of belt cables, their displacements, tangents 

of displacement angles of elastic material of a belt shell. 

The concept of stress concentration factor is used in engineering 

practice. Analogically, define the tensile load concentration factor of 

tractive elements. The load concentration factor is the internal tensile 

force of a tractive element related to their average value on a belt part 

with Ɇ + N cables. The load concentration factor depends on a change 

of the amount of cables in the belt part and a character of redistribution 

of forces between them. Considering the specified, the value of load 

concentration factor is considered a product of a relative load concen-

tration factor kr and the coefficient of change of the amount of cables 

in the belt part with a reduced amount of cables, namely 

n
M N

k
M


 .     (19) 

Then  
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r nk k k .       (20) 

Similarly, values of cable displacements, values of tangents of 

displacement angles are considered as products of relative displace-

ments, relative tangents of shear angles of the elastic layer and the 

coefficient of change in the number of cables in the belt part with a 

reduced amount of them, namely: 

r nu u k ,     (21) 

r nk .    (22) 

Fig. 2 shows the distribution of relative load concentration fac-

tors, displacements and tangents of shear angles for the case l1=1 m, 

l2=1 m, M=7, N=3, in the cross-section ɯ=0. 

According to the graphs, the load concentration factors, and the shear 

angles achieve maximum values for cables adjacent to the broken cables 

and in the elastic shell between the continuous and broken cables. This is 

a consequence of the maximum gradient of displacements of adjacent 

unbroken and broken cables. The value of the relative load concentration 

factor is 1.17, and the load concentration factor is 1.671. 

 
Fig. 2. Distribution of relative load concentration factors (kr), that occur in cables with numbers 

і, relative displacements (ur) and tangent of shear angles of elastic inter-cable layer (αr) in a 

cross-section ɯ=0 

 

The stress-strain state of the belt under given boundary conditions 

depends on a number of factors such as size of belt parts, the amount 

of cables, including the broken. Fig. 3 shows the graphs of depend-

encies of maximum values of relative load concentration factors and 

relative shear angles tangents for the case l2=1 mm. The length of the 

first one is 1 mm, 1,2,3,…,10 m. The amount of cables M=7, N=3. 
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Fig. 3 shows an increase in the load concentration factors and 

shears with increasing length of the first belt part if the length of the 

latter does not exceed 10 m. This character of change of these pa-

rameters is a consequence of a joint effect of a local change in a belt 

structure and a limited belt deformation in the cross-section ɯ=l1. 

 
Fig. 3. Dependency of maximum values of relative internal load concentration 

factors (kr), that occur in cables and maximum shear angles tangents of elastic inter-

cable layer (αr) in a cross-section ɯ = 0 on the length of the first belt part and the 

length of the second part of 1 mm

 

 

Consider the case of a constant length of the first part l1=10 m. The 

length of the second one is 1 mm, 1,2,3,...,10 m. According to St. Ve-

nant's principle, with increasing distance from the place of local pertur-

bation of the stress-strain state, the latter approaches the uniform state. 

Belt cross-section that passes through the middle of the second part is 

the most distant from a cross-section of cable amount change. Consider-

ing this fact, determine the values of load concentration factors in the 

cross-sections ɯ=0 and ɯ=l2, and maximum values of coefficients and 

shear (Fig. 4). 

Shown calculation results indicate that the values of maximum 

stresses in the belt decrease with increasing length of the part where ca-

bles are partially removed. Maximum shears and load concentration 

factors decrease provided that the length of the belt part with removed 

cables does not exceed 5 m. Maximum load concentration factors in the 

middle part are smaller than the corresponding concentration factors in 

the cross-section x=0. They decrease provided that the length of the belt 

part with removed cables does not exceed 11 m. Tangential stresses in 

the middle section of the second belt part are absent. 
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Fig. 4. Dependency of values of relative internal load concentration factors (kr=0) that 

occur in cables in a cross-section ɯ=0, kr (x=l2) in a cross-section ɯ=l2 and maximum 

shear angle tangents of elastic inter-cable layer (αr) on the length of the second belt part 

and the length of the first part of 10 m 
 

The influence of the amount of partially removed cables on the 

stress state of the belt is shown in the Fig. 5. 
 

 
Fig. 5. Dependency of values of relative internal load concentration factors kr (x=0) 

that occur in cables in a cross-section ɯ=0, kr (x=l2) in a cross-section ɯ=l2 and maxi-

mum shear angle tangents of elastic inter-cable layer (αr) on the amount of broken 

cables N 
 

Fig. 5 shows the calculated values of concentration factors with 

the length of the second part of 3 m, the first one – 10 m. The amount 

of broken cables was chosen within the range from zero to 10, and 
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unbroken - 10. The graphs show that, in the absence of partially re-

moved cables, the load concentration factors are equal to 1. The mu-

tual shear of cables is absent. The increase of the amount of partially 

removed cables leads to a nonlinear increase in the relative load con-

centration factors and shears, provided that the amount of partially 

removed cables does not exceed the number of unbroken. Absolute 

values of the load concentration factors and shear values in the case 

of quantitative excess of partially removed cables over the amount of 

unbroken cables practically linearly increase with an increase of the 

amount of partially removed cables. 

Fig. 6 shows the values of concentration factors with the length of 

the second part of 3m, the first one - 10 m. The amount of partially 

removed cables is 5, and unbroken - from 10 to 30.  
 

 
Fig. 6. Dependency of values of relative internal load concentration factors kr (x=0) 

that occur in cables in a cross-section ɯ=0, kr (x=l2) in a cross-section ɯ=l2 and maxi-

mum shear angle tangents of elastic inter-cable layer (αr) on the amount of unbroken 

cables Ɇ 
 

Graphs show that the increase of the amount of unbroken cables, 

like in the previous case, with the increase of the amount of partially 

removed cables, leads to a nonlinear increase of relative load concen-

tration factors and shears. At the same time, the absolute values of 

the load concentration factors and shear values nonlinearly reduce 

with the increase of the amount of unbroken cables. 

Compare the results for a belt with limited boundary defor-

mations, if there are two parts in which the belt has unbroken cables 
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and on a given length partially removed cables under different condi-

tions. The most unevenly distributed forces between cables and the 

greatest tangential stresses in the elastic layers between cables occur 

when a length of the part with partially removed cables is approach-

ing zero. The increase of a ratio of the amount of unbroken cables to 

their amount, which is removed on some length, leads to a nonlinear 

decrease in maximum tensile forces of cables and maximum shear of 

elastic layers located between cables. 

The case of limited boundary deformations of a belt allows de-

termining its stress state when it has a regularly variable structure. In 

the operation process of belts, there may be local, non-regular cases 

of belt breakage. Consider the case of a load of infinitely long belt, in 

the middle of which several cables are partially removed on a limited 

length. From (4) 

F1,n=0    (23) 

Fig. 7 shows the distribution of relative load concentration fac-

tors, deformations and tangents of shear angles in the cross-section 

x=0 for a case similar to (Fig. 2), but for l1 

According to the graphs in Fig. 7, the load concentration factors 

and the shear angles reach the maximum values for cables adjacent 

to broken cables and in the elastic shell between the unbroken and 

broken cables. This is a consequence of the maximum gradient of 

displacements of adjacent unbroken and broken cables. The value of 

the relative load concentration factor is 1.387, and the load concen-

tration factor is 1.982. 

Consider the dependency of the stress state of the belt on a length 

of the second belt part. The results are shown in Fig. 8. 

The given calculation results allow drawing the following conclu-

sions. The values of maximum stresses in a belt with cables partially 

removed on a limited length depend on the amount of cables in the 

belt, the amount of partially removed cables, and the length of a part 

of their removal. So the minimum values of the load concentration 

factors are obtained in the case of removal of 3 cables from 10 in the 

belt with a length of the cable removal part of 1m. Minimum tangen-

tial stresses are realized for the length of the specified part of 0.5 m. 

The presence of a minimum of maximum tensile forces and shear 

angles is the result of overlapping edge effects due to the change of 
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the amount of cables on boundaries of the part of partial cable re-

moval. This effect occurs with any amount of removed cables and 

their total amount in the belt. 
 

 
Fig. 7. Distribution of relative load concentration factors (kr), that occur in cables with 

numbers і, relative displacements (ur) and tangent of shear angles of elastic inter-cable layer 

(αr) in a cross-section ɯ=0 for l1→∞ 

 

The effect of reduction of maximum tensile load concentration 

factors of cables is also observed in the case of breakage of the same 

cable in two cross-sections [20]. This effect can be used to increase 

the tractive ability of the belt with broken cables. For this, it is ap-

propriate to artificially cut broken cables at a certain distance, or par-

tially remove them. The latter may allow the removal of parts of ca-

bles in which the strings and wires lost their mutual connection, the 

connection formed by their twisting. 

Note that the length used in studies above corresponds to mechan-

ical characteristics of the belt RCB–3150. Indicators for this belt are 

indexed b. Indicate mechanical characteristics without a correspond-

ing index. Considering the indicated designations, the obtained re-

sults can be extended to belts with other mechanical characteristics 

provided that they are proportional to the coefficient 

 
 

b

b b b bG

b G

t d E FGk
k

t d EF G k





.   (24) 

This is a consequence of the fact that the values of forces, dis-

placements (1) are proportional to exponential functions. The argu-
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ments of functions are the product of values of a characteristic index 

ȕn and linear dimensions. 
 

 
Fig. 8. Dependency of values of relative internal load concentration factors kr 

(x=0) that occur in cables in a cross-section ɯ=0, kr (x=l2) in a cross-section ɯ=l2 and 

maximum shear angle tangents of elastic inter-cable layer (αr) on the length of the 

second belt part when l1→∞ 
 

Belt with Irregularly Located Ruptures of Continuity of Cables 

Above we have considered the stress-strain state of a rope (belt) 

with regularly spaced cable breakages. During operation, the possible 

occurrence of a significant number of breakages of cables is possible. 

Their complex impact cannot be predicted. It must be determined 

considering the discrete values of numbers of broken cables and the 

location along the rope length. The number of breakages may be less 

than or equal to the number of cables in the rope. The most common 

case is the case of breakage of all cables. It corresponds to one of the 

possible schemes of butt-joint connection of rubber-cable belts. We 

will determine the displacements of cables, and the forces that occur 

in them using the expressions [19]. 

First, construct a model for the case of rupture of continuity of an 

arbitrary j-th rope (belt) of infinite length. Let the cross-section of the 

break have the coordinate x=0. Cut the rope into two parts. Give the 

parts numbers 1 (x0) and 2 (x0). As in previous cases, the part 

numbers are included in the indexes of quantities. The following 

conditions must be met in the cross-section x=0 
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Consider the location symmetry of the cable breakage. Consider 

the part of the rope (belt) where x0 From condition (26) we have 

Am=0. 

The difference of displacements of edges of a broken cable is 

formulated as a sum of Fourier series 
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Displacements and internal loading forces on cables of the sample 

in accordance with [19] with arbitrary breakage will take the form 
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From (25) and (29) we determine the coefficient of proportionali-

ty and the expression for determining the distribution of forces be-

tween the cables 
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   (30) 

The numbers of broken cables, the distances between the cross-

sections of gaps are combined into two sets J and L. The cross-

sections with breakages are given the numbers i. We combine them 

into the set I. From the expression of the distribution of forces be-

tween the cables (29) we find the formula for the distribution of forc-

es in the cross-sections of breakages of the cables 
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 (31) 

where j  is the vector of proportionality coefficients. 

The vector of proportionality coefficients is determined from the 

condition of absence of cable loads in the cross-sections of their 

breakages. Expression (27) in its expanded form is an algebraic sys-

tem of equations. The solution of the system allows determining the 

vector of proportionality coefficients. Note that for an infinite dis-

tance between cable breakages, the components of the vector are 

equal to ones. 

From expression (31) the displacements of cables in the cross-

sections of their breakages 
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 (32) 

Displacements of the cables (32) allow finding the maximum val-

ues of the tangents of shear angles of elastic material of rope shell in 

the local part, where the distance between points belonging to two 

adjacent cables in one cross-section is minimal. 

Expressions (31) and (32) allow determining the SSS of a rope 

with any number of cables M in the cross-sections of cable breakage. 

For example, consider a rope with five cables. All cables have gaps. 

The placement spacing of cross-sections with gaps is equal to l. The 

rope is loaded with a force that creates a single average load of ca-

bles (Fig. 9). 
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Fig. 9. Scheme of breakages of cables: 1 - layers of rubber, 2 - cables 

 

Displacements, as well as loads of cables, are symmetrical with 

regard to the middle of a sample. The plane of symmetry of the belt 

coincides with the plane of symmetry of the middle cable when the 

number of cables is odd. The middle cable with an odd number of 

them will be considered the first one. In a rope with an even number 

of cables, the cables that are the closest to the middle of the rope are 

considered the first ones. Fig. 10 shows the ratios of coefficients of 

non-uniformity of force distribution in the extreme and middle cables 

for distances between the planes of breakages of 0.4 m, 0.5 m and 

0.6 m and the variable number of cables in the sample. 

 
Fig. 10. Distribution of the ratio of the coefficients of non-uniformity of force distri-

bution in the extreme and middle cables K0 for the distances between the breakages 

0.4 m, 0.5 m and 0.6 m and different numbers of cables M: the upper curve is for 

600 mm, middle curve - 500 mm, the lower curve - 400 mm 
 

The obtained dependencies show that the reduction of distances 

between the planes of discontinuities of cables leads to a decrease in 

the limits of changes in the coefficients of uneven distribution of 

forces between the cables. The outermost cables remain the most 

loaded. The coefficient of non-uniformity of force distribution for 

these cables is much higher than such coefficients for adjacent ca-
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bles. Further, consider the equal distances between the planes of the 

discontinuities of cables to be basic. Fig. 11 shows the ratios of the 

coefficients of non-uniformity of force distribution similar to the 

above for the case of reducing the lengths of the first and last cross-

sections of the sample relative to the basic by 20 and 30%. 

In the sample with an odd number of cables, the cross-section of 

the breakage of the middle cable coincides with the plane of sym-

metry. The sample of three cables has two areas located between the 

cross-sectional planes of the damaged cables. Changing the lengths of 

these areas is equal to changing the basic lengths. This case was from 

consideration. The graphical dependencies show that the reduction of 

lengths of the extreme areas leads to a decrease in the coefficients of 

unevenness of the loads of the extreme cables relative to the average. 

At the same time, it is even possible to exceed the maximum loads of 

the middle cables over the extreme ones. This pattern can be used to 

reduce the extreme loads of the cables of composite material with 

damage, such as in the butt-joints of the belts. 

 
 

Fig. 11. Graph of the ratios of the coefficients of uneven force distribution in the ex-

treme and middle cables K0 for the base distances between the planes of the location of 

the gaps 400 mm, 500 mm and 600 mm and the different number of cables in the sam-

ple M. Denotations: 1 – 600 mm, 20% (black curve with circles); 2 – 500 mm, 20% 

(black dashed curve with rhombi); 3 – 600 mm, 30% (thicker red curve with circles); 

4 – 500 mm, 30% (red dotted curve with rhombi); 5 – 400 mm, 20% (black dotted 

curve with squares); 6 – 400 mm, 30% (red dotted curve with squares) 

According to the graphical dependencies of the displacement of 
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the cables in the sample with breakages are different. Different dis-

placements of cables lead to shear stresses in the inter-layers of elas-

tic material. They are proportional to the tangents of the shear angles 

of elastic material between the cables. Expression (32) allows defin-

ing them in cross-sections of damage of cables 
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Expressions of forces, displacements are the product of functions 

dependent on the cable number and the value of the x coordinate. The 

last function in the obtained solution has decreased. The parameters 

of stress-strain state for cross-sections that do not coincide with the 

cross-sections of the damage are less important. The strength of the 

material is determined by the strength of the most loaded elements. 

In our case, these are the cables adjacent to the broken cable. 

Strength conditions of rubber-cable belt with random location of 

broken cables 
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Strength conditions must be fulfilled for both adjacent cables in 

all cross-sections of their breakage. In the general case, the total 
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number of such conditions is four times the number of damages. Ex-

treme cables have only one adjacent cable. The left parts of the 

strength conditions are given by symmetric functions. They are zero 

for j=1j=M. In the case of damage to the extreme cables, the total 

number of conditions is less than twice the number of damaged ex-

treme cables. 

Fulfillment of the established conditions of strength allows making 

the reasonable decisions concerning conditions and admissibility of 

use of composite materials, in particular rubber-cable conveyor belts 

with the cables damaged in the course of operation, what provides 

safety of their use and utilizing their full resource. 

Conclusion 
Performed researches clarify the idea of the interaction mecha-

nism of reinforcing elements in composite materials of layered struc-

ture with hard and soft layers. Boundary conditions significantly af-

fect the stress-strain state of the belt.  

An increase of the amount of partially removed cables leads to a 

nonlinear increase of relative load concentration factors and shears, pro-

vided that the amount of partially removed cables does not exceed the 

amount of unbroken cables. Absolute values of load concentration fac-

tors and shear values in the case of quantitative excess of partially re-

moved cables over the amount of unbroken cables practically linearly 

increase with an increase of the amount of partially removed cables. 

An increase of the amount of unbroken cables with the increase of 

a partially removed amount leads to a nonlinear increase of relative 

load concentration factors and shears. Absolute values of load con-

centration factors and shear values are nonlinearly reduced with an 

increasing amount of unbroken cables. 

Values of maximum stresses in the belt with cables partially removed 

on a limited length depend on the amount of cables in the belt, the amount 

of partially removed cables, and the length of cable removal part. 

The developed method allows determining the stress-strain state of the 

flat, reinforced with longitudinal tractive elements, belt of elastic material 

with various breakages of tractive elements, including the rupture of con-

tinuity and in the case of partial removal of elements under various 

boundary conditions. Method can be used in a control system of the con-

veyor belt during the belt life cycle. 
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Further researches should be directed to a development of a 

method for determining the stress-strain state of the belt with dam-

age, considering the design features of the conveyor base. 
Using the methods of composite mechanics, a mathematical mod-

el of interaction of any number of soft and hard layers with the sys-
tem of breakages to the latter is solved. 

Analytical expressions of stress-strain state indicators of layered 
composite material with a given number of layers and local defects 
are obtained in a closed form. 

The following is established by the analysis of the obtained solutions. 
The rupture of continuity of a cable leads to distortion of cross-sections of 
a belt. Damaged cable has larger displacements than the other ones. The 
uniform distribution of external loads between the cables is disturbed. The 
disturbance of the stress-strain state is localized both along the sample and 
along its thickness. Damage to the extreme cable leads to an increase in 
the tensile forces of the adjacent cable over 60% of the average load. The 
two cables closest to the damaged one are loaded with a force that exceeds 
their average total load by almost 80%. The breakage of the middle cable 
leads to less disturbance. 

The character of local stress disturbances also depends on the number 
of cables in the belt. As the total number of cables increases, the extreme 
forces occurring in the sample with the damaged cable decrease to almost 
constant values if the number of cables in a belt is not less than ten. 

The linear formulation of the problem and the principle of super-
position allows using the obtained dependencies in the case of apply-
ing force to one cable and fixing others. 

The obtained solutions allow determining a stress-strain state of a rub-
ber-cable belt and create conditions for making reasonable decisions re-
garding the conditions and admissibility of using rubber-cable belts with 
broken cables during operation, which ensures their operation safety and 
maximum utilization of their resource. 
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