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1 Introduction

One of the common applications there is of boolean networks is the modelisation of genetic
networks. Once the architecture of a genetic network is known, it may be interesting to
study its dynamics in order to understand better how the network works. Identifying the
attractors of such a system (that is, its fixed points and limit cycles) may indeed help us to
explain phenomenons such as cellular divisions, destructions and differenciation. In spite
of its rather high level of abstraction, the modelisation of genetic networks by means of
boolean networks may turn out to be very useful because it makes it possible to study the
limit behaviors of such biological systems.

The dynamical properties of a boolean network rely on several different parameters.
During this internship, we have especially been looking at three of them which are very
closely tied to the definition itself of a boolean network : the structure of a network, the type
of local activation functions, and the update schedules. In other words, the dependencies
between the elements of a network, the way each one of these elements is activated as a
function of the other elements of the network and the order according to which the states
of the elements of the network are updated.

The central question that has directed our work naturally followed from the results
presented in [1]. It is related to the idea of the robustness of a boolean network with
respect to perturbations of its update schedule. On one hand, we have studied these
update schedules in terms of signed digraphs (formalism introduced in [1]) and on the
other hand we have examined particular boolean networks whose dynamical behaviors
were identical without the update schedule of the networks being a direct cause of it. This
paper starts with a series of definitions that we will be using extesively later on. Section 3
introduces the problems we have worked on during this internship and the last two sections
present the results that we have obtained and the observations that we have made.

2 Definitions

A genetic network is represented by a digraph G = (V, A). An arc (4,j) means that the
state of the gene or vertice j depends on the state of the vertice i. The state of a vertice ¢
is represented by a boolean variable x; € {0,1}.

Notations 2.1 o [f G is a digraph, we will refer to the set of its vertices as V(G) and
to the set of its arcs as A(G) when these two sets have not already been named.

o Also, in the sequel, we will write [a,b] = {a,...,b} and
[a,b[={a,...,b— 1}, for any integers a and b.

o G = (V,A) being a digraph and i € V one of its vertices, N (i) denotes the set
{j eV |(j,i) € A}. If j € N(i), we say thatl i depends on j.

Definition 2.2 An update schedule of the vertices of a digraph G = (V, A) such that
V| =nis a function s : V. — [[1,n] such that the set of all images of the vertices of V is
a set of consecutive integers containing the integer 1.
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IfVi € V, s(i) = 1, the update schedule is said to be parallel. In this case, we will
write s = sp. If s is a permutation of the set {1,...,n}, s is said to be sequential. And
in all other cases, s is said lo be block sequential.

As mentionned in [4], the number of update schedules associated to a given digraph of
order n is equal to the number of ordered partitions of a set of size n, that is

n—1
7,=Y (Z)Ik
k=0

Notation 2.3 Let G = (V, A) be a digraph and s an update schedule. We define Bf =
{ieV|s(i)=t}.

Definition 2.4 Let G = (V, A) be a digraph and s an update schedule, we define the
function signs : A — {—,+} in the following way :

V(j,1) € A, signs(j,i) = {+ i i Z(i)

= ifs(j) < s(i).
An arc a € A such that signs(a) = + is called a positive arc and an arc a € A such that
signs(a) = — is called a negative arc. Also, a set of positive (resp. negative) arcs will

be said to be a positive (resp. negative) set of arcs. Labeling every arc a of A by signs(a),
we obtain o signed digraph denoted by G°. If this signed digraph contains only positive
(resp. negative) arcs, we will call it a positive (resp. negative) signed digraph.

Notation 2.5 We write N (i) = {j € V| signs(j,i) = +} and Ny (i) = {j € V | signs(j,i) =
—}. Thus, we have N (i) = N} (i) N Ny (4).

s

Figure 1: A digraph G = (V, A) signed by the function signs where Vi € V= {1,...,4},
s(i) = ¢ (this example is taken from the article [1]).

Definition 2.6 Let G = (V, A) be a digraph such that |V| = n, the local activation
function of a vertice i is a function f; : {0,1}" — {0,1} such that if j € N (i), then
dxq, .. s X1, Tj41,--- Ty € {0, 1}”71,

fz'($1, e ,xj,1,0,$j+1, .. .,J}n) 75 fi(.l‘l, e ,wjfl, 1,.%’j+1, e ,an).
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and if j ¢ N (i), then f; is independant of its ;" coordinate. Let s be an update schedule of
the vertices of G. We define the function f? verifying Vo = x1...,z, € {0,1}", fi(z) =
filgi1 (@), ..., g7, (x)) where

s vy sis(d) 2 s() i, if signa(i,) =+
gij(x) = s . N e CN
fi(z)  sis(j) < s(i) e if signg(j,i) = —.

Definition 2.7 We say a function f : {0,1}" — {0,1} is symmetrical if Va1,...,z, €

{0,1}", Vi < j e [L,n], f(z1,..., @i ., x5, ..., 2n) = f(@1,...,25,...,%i,...,2p). If
is symmetrical we will sometimes write f(x) = f(z; | j € [1,n]).

In the sequel, all local activation functions will be supposed to be symmetrical.

Definition 2.8 Let G be digraph such that |V (G)| = n, s an update schedule and {f; | i €
V'} a set of local activation functions. A global activation function is a function F :
{0,1}™ — {0,1}"™ such that Yz € {0,1}", F(z) = (fi(z),..., fi(x)). Thus, F*(x); =
fi(@) = filgi1(2), -, g7, ().

And if f; is symmetrical we write

Fi(@)i = fi(z; | j € NJ() 5 fi(@) | j € NS (i),

Definition 2.9 A boolean network is a triplet R = (G, F,s) where G is a digraph, F
is a global activation function and s an update schedule.

We will say that two networks Ry = (G, F,s1) and Ry = (G, F,s2) have the same
dynamics if F*1 = F*%2,

Definition 2.10 The set of states {0,1}™ being finite, a boolean network can only have
two different types of limit dynamical behavior which we call the attractors of the network:

e ¢ fix point, is a point x € {0,1}" such thal F*(z) =z,

e a (dynamical) cycle of length | > 1, is a sequence of points [2°,... =1 2] such

that ' = 20, Vt,r € [1,1], 2 # 2" and F*(zt) = o'+

3 Preliminary results and motivations

The following result is taken from the article [1].

Theorem 3.1 Let Ry = (G, F,s1) and Ry = (G, F, s2) be two boolean networks that differ
only by their update schedule. If G** = G*2, then R1 and Ro have the same dynamics.
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Remark 3.2 If t* = min{s1(i) | 35 € N(i), signs, (j,i) # signs,(j,i)}, we even have
that Vi € Bj', t < t*, f’* = f7*. Indeed, let i be such a vertice. Since Vj € N(i),

)

signs, (J,1) = signs, (J, i) by induction on s1(i) (j € Ng (i) = 51(j) < s1(i)), the following

holds
fH@) = filesl 5 € NSG) 5 f7'(2)] 5 € N5 (3))
= filz;| j € NLG) 5 f2(@)] j € NS () = [f*(2)

Theorem 3.1 allows us to define equivalence classes with respect to signed digraphs : if
s is an update schedule of the vertices of a digraph G, we write [s] the set of update
schedules ' such that s & s, e, G° = e Thus, an equivalence class, [S]Gs, is a set
of update schedules that all yeild the same signature of a digraph G. Also, we extend this

notation to boolean networks : Ry = (G, F,s1) and Ry = (G, F, s3) being two boolean
networks that differ only by their update schedules, we write R; @ Ry if and only if
S1 Cf:\? 59.

During this internship, we have taken interest in two distinct series of questions. Sec-
tion 4 deals with the first one. More precisely, it deals with the equivalence relation @,

By studying the equivalence classes of Ci?g, we have worked on a characterisation of the ro-
bustness of boolean networks with respect to their update schedules. The bigger the sizes
of the classes [-]%° and the smaller their number, the more the networks can be considered
as robust with respect to their update schedules.

The second series of questions that prompted section 5 of this account, concerns the

equivalence relation £ defined below
RiRR o Vaoe{0,1}VOI Fsi(z)=F(z)

where Ry = (G, F,s1) and Ry = (G, F,s2). The equivalence classes for this relation are
written! [R]P. Obviously, according to theorem 3.1, it holds that Ry @ Ry = Ry 2 Rs.
However, the example given in figure 3 shows that it is possible to have G° # G¢ and
Fs = F¢ e, Ry 2 Ry but not R; < R (where R; and Ry differ only by their update
schedules). Thus, the converse of theorem 3.1 is not true. The very first question raised
during this internship period was about the conditions that would allow us to formulated
a kind of converse proposition to this theorem. The observations made following this
question are described in section 5.

4 On signed digraphs

In this section, we study the relation & and the signatures of a given digraph G. First,
we give a characterisation of the signature functions signg : A(G) — {+, —} that indeed

!When there will be no ambiguity on the digraph G, neither on the function F, given a priori, we will
also allow ourselves to write [s]”
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Figure 2: Two boolean networks Ry = (G, F,s;) and Ry = (G, F,s2) with the same
underlying digraph G and the same underlying local activation functions all of which being
equal to the boolean function OR. These two networks have different signed digraphs but
their dynamics are identical. Let us write s = zz), ... 2], to denote the update schedule
of a set of n vertices numbered from 1 to n such that s(¢) = 2z}, Vi € {1,...,n}. a.
The network R;. s; = 1234 b. The network Rs. so = 1324. Incidently, note that
[51]9° = {1234,1123}, [s2]9° = {1324,1323,1223} and [s1]” = [51]9 U [s2]".

correspond to the signature functions that are induced by update schedules. Then, we
examine update schedules s that, precisely, are such that signg = signs. The section ends
with some observations that where made to help determine the number of []%° classes and
eventually to enumerate them as well.

We first study digraphs G signed by a signature function signg a priori independant
of all update schedule. The non-signed digraph underlying G is denoted by NS(G).

Definition 4.1 In the sequel, we say that G is a possible signed digraph if there exists
an update schedule s such that Va € A(G), signg(a) = signs(a). We call it an impossible
signed digraph otherwise.

We will also be mentioning possible or impossible signatures designating a function
signg that gives a sign to each arc of a digraph making it a possible or an impossible signed
digraph.

Notation 4.2 Let G be a signed digraph. Z(G) denotes the set of update schedules s of
the set of vertices of NS(G) such that (NS(G))* = G. G is thus possible if and only if
|Z(G)| > 0.

4.1 Possibles signed digraphs

The goal of this section is to determine which are the possible signatures of a digraph.
First, let us give a few more definitions.

Definition 4.3 Let G = (V, A) be a digraph signed by the function signg. We call re-
ducted digraph associated to G, and write RD(G), to refer to the digraph in which each
strongly connected component C; = {v;,...,v;,} TV such that

a = (vi;,vi,,) € ANC; = signg(a) = +
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is reduced to one vertice. That is, if {C; | 1 < i < k} is the set of positive strongly con-
nected components of G and if C = Jy<,<;, Ci is the reunion of all such strongly connected
components, then

V(RD(G)) = {C;|1<i<k}U(V\C) and

ARD(G))) = {(u,v)eA|ué¢Couv¢C} U
{(v,C;)) |1<i<k,v¢C} U {(Cyv)|1<i<k, v¢C(C}

We will say that a signed digraph is reduced if it has no positive strongly connected compo-
nents.

Definition 4.4 Let G = (V, A) be a digraph signed by the function signg. We call reori-
ented graph associated to G, and write RO(G) = (V, A(RO(G))), to refer to the digraph

in which all negative arcs are tnverted :
ARO(G)) ={a € A | signg(a) =+} U {(v,u) | (u,v) € AA signg(u,v) =—}.

In RO(G), an arc (v,u) such that signg(u,v) = — is called a >-arc since any update
schedule s satisfying (NS(G))® = G must be such that s(v) > s(u). Similarily, an arc
(v,u) such that signg(u,v) = + is called a >-arc.

Let G = (V, A) be a signed digraph. We can obtain RD(G) in time O(|A|) with an
algorithm that searches for strongly connected components of a digraph. We also can get
RO(G) in time O(|A]).

Definition 4.5 Let G be a signed digraph. A prohibited circuit is an (oriented) circuit
of RO(G) containing a >-arc.

Theorem 4.6 Let G be o digraph signed by the function signg. G is possible if and only
if RO(G) does not contain any prohibited circuits.

Preuve Let us suppose that RO(G) contains a prohibited circuit C' = (vy, ..., v;,) such
that (vi;,vi;,,) is a >-arc. Then any update schedule s such that (NVS(G))* = G must
satisfy s(vi;) > s(vi;,,). It must also satisfy s(v;;) < s(v;,,,) since there exists in RO(G)
a walk from v;, , to v;;. Thus, we end up with a contradiction.

For the converse of the theorem, first note that if G is an ordinary signed digraph and
H = RD(QG) its associated reduced digraph, then G is possible if and only if H is. Indeed,
let s be an update schedule such that (NS(H))® = H. Then, using again the notations
used in definition 4.3, the update schedule s’ defined below satisfies (NS(G))* = G :

s(v) ifvéglC

s'(v) =
S(CZ) if v e ;.
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Vice-versa, if H is an impossible signed digraph, then G is obviously also an impossible
signed digraph according to the first paragraph of this proof. The fact that a signature is
possible or not is thus independant of the presence or absence of positive strongly connected
components. The converse of theorem 4.6 comes from the algorithm 1 given below which
finds an update schedule corresponding to a given possible, reduced, signed digraph. [

We can notice that if G = (V, A) is a signed digraph, the prohibited circuits of RO(G)
correspond to what we will refer to as alternating circuits of G. That is, they coincide
with walks of G, C' = (vo,v1,...,vx), where vg = vi and either (v;,v;+1) € A in which
case signg(vi, vi41) = +, either (vi41,v;) € A in which case signg(viy1,v;) = — (or vice-
versa). Among these alternating circuits, are in particular circuits such that Vi € [[0, k—1]],
signg(vi, viy1) = — as well as sub-graphs containing two vertices u and v, a walk from u
to v negatively signed and another walk from u to v positively signed.

Incidently, notice that if a = (u,v) € A is an arc such that the edge (u,v) of the
underlying undirected graph does not belong to any cycle of this graph, then the fact that
G is a possible signed digraph or an impossible one is independant of signg(a).

Algorithm 1 is adapted from the famous algorithm [7] gives a topological order on
a digraph without circuits. Given a possible signed digraph H and its reduced digraph
G = RD(H), algorithm 1 works on the graph without prohibited cicuits, RO(G). It
returns in time O(|V| + |4|) an update schedule s such that NS(G)* = G.

Remark 4.7 The update schedule s returned by this algorithm is such that
max{s(v) | v € V} = min{maz{s'(v) |ve V} | s € Z(G)}.

Figure 4.1 shows the different steps of the algorithm that returns an update schedule
associated to an arbitrary possible signed digraph (not necessarily reduced).

In the end, the following result holds.

Theorem 4.8 Let G be a signed digraph. Both of the following problems can be solved in
polynomial time.

1. Determine whether G is possible or not,

2. Find an update schedule s such that (NS(G))* = G.

Preuve According to theorem 4.6, a signed digraph G is possible if and only if, in RO(G)
no >-arc belongs to a strongly connected component. Thus, the first part of theorem 4.8
holds since the strongly connected components of a digraph can be identified in polynomial
time.

The second part of theorem 4.6 comes from the existence algorithm 1 whose run time
is also polynomial. O
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a) b)
s(2) =2 s(5) =3 s(2) =1 5(5) = 2
@z ® @z ®
S(Cl) =3 S(Cl> —9
c) d)

Figure 3: a. A signed digraph G = ({1,...,5}, 4). b. RO(G). The arcs drawn in dotted
lines are >-arcs. The others are >-arcs. c¢. H = RD(RO(G)) = RO(RD(G)) and the
update schedule computed by algorithm 1 after the while loop. Cy = {1,3,4}. d. The
digraph H and the update schedule returned by algorithm 1 with H as input. e. The
update schedule s such that G = (NS(G))5.
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Algorithm 1: update schedule associated to an signed digraph

Input: G = (V, A) reduced signed digraph, reoriented and sans circuit interdit
begin

ValMax « table of size |V (G)| in which are stocked the maximal possible
values of s(v), v € V(G). n — |V];
H — G;
forall veV do

| ValMax[v] = n;
end

while Jv € V, deg™ (v) =0 do
s(v) « ValMax[v];
forall u € N(v) do
if (u,v) is a >-arc then
| ValMax[u] < min{ValMax[u],s(v) — 1};
else
| ValMax[u] « min{ValMax[u], s(v)};
end
delete the arc (u,v) from H;
end

end

Smin <— min{s(v | v € V)};
forall v € V do

| 8(v) < 5(v) = Smin;
end
end

4.2 Equivalence classes []%°

In this section we study the equivalence classes [-]%°. Finding the size of one these classes
is the same as finding the number of partial orders (not necessarily strict) that we can
associate to a reoriented signed digraph, respecting the « meaning » of its >-arcs and
>-arcs. We are not yet able to say wether or not there exists a formula giving the size of a
class, neither wether it is possible or not to determine in polynomial time if a given class
[s]99 is such |[s]%%| > k,k € N. However, we have the following proposition. Although it
does not answer these questions, it is about a problem that is related to them.

Proposition 4.9 The following problem which we chose to call HOA is §P-complete?.
Input: 4 signed digraph G = (V,A);

How many update schedules s are there such that G =
(NS(G))* and the number of arcs a = (u,v) € A satisfying
signg(u,v) =+ and s(u) > s(v) %s minimum ?

Question:

%See [2] for a definition of the complexity class §P.
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Two other versions of problem fOA as well as the proof of proposition 4.9 are given in
annex B.

Let us now consider the following question : given a digraph G and an update schedule
s, does any udpdate schedule s’ # s such that G5 = G¥ exist? That is, what conditions
need to be satisfied in order for |[s]%%| > 1 to hold?

Lemma 4.10 Let G = (V, A) be a reduced possible signed digraph. Let L be the length
(counting the number of vertices) of the longest walk in RO(G). Then Ym € [L,|V|],
there exists an update schedule s such that max{s(v) | v € V} =m and G = (NS(G))*.

Preuve Let RO(G) = H = (Vy,An). Also, let L(v) designate the length (counting
the number of vertices) of the longest walk in H from a vertice u such that deg™(u) = 0
to the vertice v. In particular, if deg™(v) = 0 then L(v) = 1. Let us first suppose that
Va € Ay, signg(a) = —. We show the result in this specific case by induction on m.

If m = L, then the following function suits our purposes :

{ Vi — [1|Vul]

v +—L—Lv)+1

Indeed, let (v1,...,vr) be a walk of H of length L (Vi < L, (v;,vi+1) € Agr). Then, since
necessarily deg”(v1) = 0, s(v1) = L holds and for any other integer k < L there exists i
such that s(v;) = k. Thus, s is indeed an update schedule such that maz{s(v)|v € V} = L.
On the other hand, let a = (u,v) € Ay and w € Vi such that there exists a walk in H of
length L(u) from w to u. Then the walk (w, ..., u,v) is a walk of length L(u) 4+ 1> L(u)
so s(v)=L—L(v)+1<L—(L(u)+1)+1<s(u)=L— L(u)+ 1. The update schedule
s does satisfy G° = G.

Let m € [L,|V|[. Suppose that there exists an update schedule s such that G®* = G and
maz{s(v) | v € V} = m. Since m < |V|, there exists ¢ € [1,m] such that |B]| > 1. Let
v € B;. The update schedule s’ défined in the following way cleary satisfies the desired
properties :

/() {s(u) +1 if u belongs to a walk from a vertice w such that deg™(w) =0 to v
s (u) =

s(u) otherwise

where a walk can be of length 0, i.e., s'(v) = s(v) + 1.
Now, suppose that the digraph H contains >-arcs. Then obviously, any update schedule

s such that VYa = (u,v) € Ag, s(u) > s(v) is suitable and the result in this case can be
infered from the preceeding proof. O

Corollary 4.11 Let G = (V, A) be possible signed reduced digraph and L the length (count-
ing the number of vertices) of the longest walk in RO(G). Then |Z(G)| > |V|— L+ 1.

10
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Remark 4.12 There exists two cases in which |Z(G)| = 1:

1. If G is linear digraph then L = |V|. Thus, in the case where Ya € A, signg(a) =
—, only one update schedule s satisfies G = (NS(G))®. On the contrary, if Ja €
A, signg(a) = +, there are 2% such update schedules, where k is the number positive
arcs of G.

2. If G 1is strongly connected, RD(G) is reduced to one lone vertice. According to the
previous lemma, only one schedule satisfies G = (NS(G))® : the parallel update
schedule, sp.

Theorem 4.13 Let G = (V, A) be a possible signed digraph. |Z(G)| > 1 if and only if G
is neither such that RO(G) is strongly connected, neither such that RD(G) is linear and
negative.

Preuve If G is neither such that RO(G) is strongly connected, neither such that RD(G)
is linear and negative, then |[L,|V(RD(G))|]]| > 1. Thus, by lemma 4.10, |Z(G)| > 1.
Reversely, if G is of one of these two types of signed digraphs, then by the remark 4.12,
1Z(G)| = 1. O

Finally, because G*7 cannot be a negative linear digraph (G*» is always a positive signed
digraph) and because for any update schedule s, Z(G®) = [s]%°, the following corollary
holds :

Corollary 4.14 Let G be digraph. |[5P}GS| > 1 if and only if G is not strongly connected.

4.3 Digraph signatures

In the previous section, we were given a signed digraph G and we were concerned by the
existence of an update schedule of the vertices of G, s, such that (NS(G))* = G. And, in
the case there did exist one we wanted to know how many there were. Here, we are given
an unsigned digraph and we would like to determine which are the possible signatures of
this digraph. In other words, it is in the number of equivalence classes [] that we are
interested, rather than in their sizes.

We do not yet know whether the problem consisting in deciding if a given digraph can
be signed by at least k different possible signatures (k being an integer) is N P-complete or
polynomial. In annex A figures an algorithm that takes as input a digraph G = (V, A) and
enumerates the possible signed digraphs associated to G. The complexity of this algorithm
is A priori exponential. The algorithm works by trial and error. It tries all 214l signatures

11
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of the digraph G but skips a signature and moves on to the next as soon as it realizes that
it is building an impossible signature because it is about to close a prohibited circuit in
the reoriented graph, The problem of knowing at which moment the algorithm how many
times the algorithm has to skip an impossible signature is a problem that is very close to
the central questions of this section, that is, what are the properties of the digraph that
the possible signatures are related to and how many of these are there. The results and
remarks 4 to 4.17 of this section came from our search of an answer to these questions.

Proposition 4.15 Let G = (V, A) be a digraph and B a set of arcs of A such that there
exists no circuit in G whose arcs all belong to B. Then, there exists an update schedule
such that Ya € B, signg(a) = —.

Preuve Let k = |B| be an arbitrary integer. We prove lemma 4 by induction on m = |A|.

If m = k, by hypothesis, G does not contain any circuit. So if s is the update schedule
such that Va € A = B, signs(a) = —, RO(G?) does not contain any circuits either and
by theorem 4.6, G® is possible.

Suppose that the property to be proven is true for all digraphs G such that |A(G)| =
m > k. Let G = (V, A) be a digraph such that |A| = m+1 and B C A a set of arcs of size
|B| = k such that there does not exist any circuit in G whose arcs are arcs of B. Let ag
be an arc of A\ B. Define G’ = (V, A") where A’ = A\ {ap}. By hypothesis of induction,
there exists an update schedule s’ such that Va € B, signg(a) = —.

Let o be a signature of the arcs of G such that Va € A\ {ap}, o(a) = signyg(a). We
define o(ag) such that the digraph G signed by o is possible, i.e. such that there exists an
update schedule s satisfying signs = o. If, by adding the arc ag in RO( G*'), no prohibited
circuit is closed, then, ag can be signed by a +. Otherwise, suppose that ag = (u,v). Let
C = (v=nuwi,...,uy = u) be a walk of RO(G"') containing a >-arc. If o(ag) = +, then
C U{ap} is a prohibited circuit but if o(ag) = —, the signature o becomes possible : the
digraph G signed by o is then without any prohibited circuit. Indeed, on one hand, the
arc ag = (u,v) having changed direction, C'U{(v, u)} no longer is a circuit in this digraph.
And, on the other hand, if there exists another walk C’ = (u = w1, ..., w, = v) closed by
the arc (v,u), then CUC" = (v =v1,...,v9, = u = wy,...,w, = v) (see figure 4.3) must
be a prohibited circuit of RO(G’"), which is a contradiction. O

Corollary 4.16 Let G = (V, A) be a digraph. For every arc a € A, there exists a way to
sign the arcs of G to obtain a possible signed digraph G such that

signg(a) = —.

Remark 4.17 Let G = (V, A) be a digraph whose non oriented underlying graph is a cycle.
Two different cases are possible :

1. G is a circuit. In this case, the only impossible signed digraph G associated to G is
the signed digraph such that Va € A, signgz = —. The other 241 — 1 signed digraphs
associated to G are therfore possible;

12
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ao

O

a) b) c)

Figure 4: a. The arc ap and a «walk» C' in the associated signed digraph. In these two
examples, only one arc of the walk is signed negatively. b. The same arcs in the reoriented
digraph. ag has been signed in way such that C is not a prohibited circuit. ¢. If there
exists another «walk» C’ closed by the arc ag, then we obtain a contradiction : C'U C’ is
a prohibited circuit.

2. G is not a circuit. Then there exists two impossible signed digraphs associated to G :
one for each possible orientation of a prohibited circuit of the reoriented digraph.

Finally, as it was the case for the number of update schedules associated to a given
signed digraph, that is the sizes of the [|%° classes , we are not yet able to say whether
there exists a formula expressing the number of possible signatures of a digraph, i.e., the
number of [-]GS classes. Neither can we yet say whether there exists or not a polynomial
algorithm that enumerates those classes. To end this section, let us now give the following
proposition 4.18 which is prooved in annex C. Although it does not answer these questions,
it concerns a problem that is however quite close to them.

Proposition 4.18 The following problem, let us call it §G.S, is §P-complete.

Input: 4 couple (G,k) where G = (V,A) is a digraph and
kE<|V| 4s an integer ;

What is the number of signed digraphs G° associated to G
Question: such that there exists a set W CV satisfying :

x [W|=k and

x a = (v1,v2) € AN(W x V) & signgs(a) = — ?

In other words, the question is “How many ways are there to correctly sign the digraph
(G such that there exists a set W of size exactly k containing all vertices that have an
outgoing negative arc as well as, possibly, some vertces with a null out-degree?”

13
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5 On the dynamics of boolean networks

As mentioned above, in addition to the the signed digraph related questions, we also have
been looking to make comparisons between pairs of boolean networks whose dynamics are
identical without the signature of their associated digraphs being the same. In section 5.1,

we start by suggesting a way to construct two networks R and Ry such that R = Rs and

—(Ry @ Ry). Then, in sections 5.2 eand 5.3, we study two simple cases : that of networks
whose associated digraphs are circuits, and that of networks whose associated digraphs are
complete digraphs without loops.

5.1 Construction of boolean networks with identical dynamics

In section 3 we have seen that there exists networks R, and Ry who present the same
dynamical behavior but different signed digraphs. Figure 5.1 shows a way to build two
such networks of arbitrary sizes and associated to the same digraph. The two networks
are in fact identical except for the images of two vertices by the update schedule. In this
example, the update schedules of both networks, respectively s; and so, are sequential
and for almost every vertice i € V, N (i) = 0 (k € {1,2}). Proposition 5.1 following
figure 5.1 is a generalisation of this construction to networks whose update schedules are
not necessarily sequential.

Figure 5: Two networks R; = (G, F,s;), i € {1,2} whose signed digraphs are différent.
The numbers near the vertices indicate the image of the vertices by the update schedule
Siy & € {1, 2}.

Proposition 5.1 Let Ry = (G, F,s1) and Ry = (G, F,s2) be two boolean networks with
the same underlying digraph G = (V, A) without loops and such that

1. The global activation function F is defined by local activation functions that are
all identical, symmetrical, and just as the OR and AND functions, they also are
assoctative, i.e., Vi € V, YV1,Vo CV,

filjljeVisy |jeVe) = filfilzjliecVr); yi|JjeWa)

filz; | JeVLs fily; | § € Vo))
= filfilz; | 5€V); fily; | 5 € Vo))

14
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and if Vi CVa then fi(z; | j € Vi oy | j€Va)= fi(z; | j € Va),
2 By = (1,
8. VieV, Nj(i) C N(1)
4. If n =max{s(i) | i€ V}, B;)' { C N(1) and B C N(1),

5. And so is such that
B ift<n-—1

B ={B%  ift=n—1
B

n—1

ift=n

Then, G # G%2 and F** = F%2.

Preuve Suppose the vertice 1 € V is such that s1(1) = s2(1) = 1 and that Vi € V,
fi = f. Note that N (1) = Ng, (1) = 0.

Consider the network R;. By induction on ¢, we prove that

Vo € {0,1}", Vi€ B, £ (2) = £ (a).

1

If t = 2, Vi € B3' the following holds thanks to the hypotheses on f and because N, (i) C
{1} -
fit (@) flaj |7 e NS s
Sz |J€N+(l)m
N

( 15" @) 1] € Ny (2))
( 1 (2

f(xj | 5 € NS (i)
( )
i

(z
N(1); ))
N(1); (%lJEN( )

fle; € N

()
Suppose that ¢ > 2 and that Vi, s1(¢) < ¢, f7'(z) = f;'(z). Then, in the same way it holds
that Vi € B;*,

fH@) = flzj|ieNS@) ;s f7'(2) ] 7€ N (i)
= Jn 1€ NIOAN; £
= ().

Now, consider the network Ry. Vt < n —1, Vi € B;* = B2, f7*(z) = f*(z) = fi'(2).
Also, because Vi € By? |, N (i) € By2 {UB? = Bj!UB;' | C N(1) and je Ng (i) =

j € Bf?, t <n — 1, the following holds:

Vie By, [fP(x) = [fxj]jeNG@); f77(=) [ € Ny(d)
- %3gjeNymeup o (x))
= 1 \T)-

3Recall that Bf = {i € V' | s(i) = t} (cf notation 2.3).
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Also, Vi € B2 = B!

n—1»
Nt(w)C B2 =B;" CN(1) and N_ (i) C N_ (i)UB;' =N, (i)UB2,

and for every vertice j € N; (i) U B2, j € B>, t <n—1. Thus, f*(z) = f*(z) and

consequently, "
Vie B, f*(x) = f(zj|jE€NL@); f2(x) | j €N, ()
= [flzj |7 e NGEHNNQ) ;5 fi*(2)
= fi'(2).

5.2 The dynamics of circuits

Let us now look at the case of boolean networks whose underlying digraphs are circuits.
In the sequel, we write C,, = [vp,v1,...,Un—1,V, = vg] to denote the circuit of size n i.e.,
the digraph of order n whose vertices are vy,...,v,-1,v, = vg, and whose set of arcs is

{(vi; viga) [0 € [0, n[}-

Consider the boolean network R = (C,, F,s). f; designates the local activation function
of a vertice v; and x; denotes its state. If all local activation functions are equal to the
same function f: {0,1} — {0,1} which is non constant, Yv; € V' the following holds :

Fay=4"" if signs(vi-1,vi) = +1
K3 . .
fiq(x) if signg(vi—1,v) = —1

if f is the identity function and

T if signg(vi—1,v;) = +1
fi(z) =

—ff (x) if signg(vi—1,v;) = —1.

if f is the negation function. Let iy = max{j < i | signs(vj,vj+1) = +1}. By induction
we can easily prove that in the first case Vv; € V, f#(z) = z;, and in the second :

%, —1 if ¢ — 75 isimpair

fi_1(x) ifi— i, ispair.

Proposition 5.2 Let Ry = (C,, F, s1) and Ry = (Cy, F, s2) be two boolean networks such
that C3' # C32 and such that F is defined by one unique non constant local activation
function f :{0,1} — {0,1}. Then F*' # F*2. In other words, C3' = C52 < F*1 = [*%2,

16



On the dynamics of boolean networks The dynamics of complete digraphs

Preuve If s; and sy are two different update schedules such that C;t # C;2, there exists
v; € V such that signs, (vi—1,v;) = + and signs,(vi—1,v;) = — (or conversely).

Then if f is the identity function and = € {0,1}" is a point such that z;, = ;-1 =1 and
Lig, = 0, et (SU)Z =x;1=1 75 FSQ(:E)Z' = Tj,, = 0.

If f is the negation function, in a simmilar manner, we can prove that there exists a point

z € {0,1}" such that F¥(z); # F*(z),. O

5.3 The dynamics of complete digraphs

Here we study boolean networks whose underlying digraphs are complete digraphs without
loops of order n and whose local activation functions are symmetrical and all equal to
the same function OR, AND, or any other commutative function ® such that Va,b €
{0,1}, (a®b) ®a =a®b. We will, however, chose to take the OR function here as an
example and we will write it V. The goal of this section is to prove theorem 5.5. This
theorem states that the dynamics of a boolean network R = (G, OR, s) associated to a
complete digraph without loops depends on the block By.

Notation 5.3 In order to simplify notations, we will write f7(x) = x} when there will be
no ambiguity as to what update schedule s is being considered.

Lemma 5.4 Let R = (G, F,s) be a boolean network associated to a complete digraph
without loops G = (V, A) of order n.

1. If s is parallel (B; =V (QG)), Vi€V,

/— .
mz‘—\/%

2. If s is sequential or block sequential such that B} = {i*}, Vi€ V,

I .
1‘1‘—\/%

j#i*
3. If s is block sequential and |Bj| > 1,
Vie B, o=\ Vi¢ B, o= \/u
JF#i J

Preuve

1. Trivial.

17



The dynamics of complete digraphs On the dynamics of boolean networks

2. Clearly, the following holds
A
and Vi € By, t > 1, (by induction on t) we have that

= \/ 21V V zl=[VazlVv] zil=\/ ;.

s(j)<t s(j)>t JF#* s(j)>t JF#*

3. The first equality is trivial. The second comes from an induction and from, in

particular,
Vi € B3, x;:[\/ xj]\/[\/x;]:\/xj.
s(j)=2 JjeBy J

O

Let s1 and sg be two different update schedules such that G # G*2. If one of these
two update schedules is parallel and the other sequential or block sequential, it is clear that
there exists x € {0,1}" such that F*!(x) # F*2(x). The same is true if both schedules are
sequential ou block sequential such that |Bj'| = |By?| = 1 and Bj' # Bj>.

Now suppose that s; is sequential or block sequential such that Bj* = {i*}, and s2 is block
sequential. Si 3k # i*, k € B}?, then

Ve e {0,1}", F*'(x)r =] \/ xzj ] V oz, and  F*(z), = | \/ xj] Vo

ik i gk
Considering for example a point € {0,1}" such that Vi # k, z; = 0 and xp = 1, we
can infer that Ry = (G, F, s1) and Ry = (G, F, s2) cannot have the same dynamics unless
By? = {i*}.

Finally, suppose that s; and so are both block sequential update schedules such that
Bt > 1, B{*> > 1 and By # Bj?. Thenifi € B\ B;?, necessarily there exists € {0,1}"
such that
Fsl(.fc)i = \/ T4 75 FSQ(:IZ)Z‘ = \/a;j.
J#i J

From all the previous remarks we infer one of the directions of the following theorem.
The other direction is clear by lemma 5.4.

Theorem 5.5 Let Ry = (G, F, s1) and Ry = (G, F, s2) be two boolean networks associated
to the same complete digraph without loops and such that F = OR or any other one of the
functions satisfying the properties mentioned above. Then, if G*' # G®2,

F*' = [ & B' = B}*.
In particular, the parallel update schedule cannot induce the same dynamical behavior as
that induced by any other update schedule : [s,]P? = {s,}. Also, since there are 2" ways

of choosing the set B, the number of []P classes for boolean networks whose associated
digraph is a complete digraph without loops of order n is 2.

18



Conclusion

6 Conclusion

Thanks to theorem 3.1 of [1], we know that instead of giving an update schedule in the
definition of a boolean network, we can give a possible signature of the digraph associated
to the network. The reason why we are concerned by this notion of possible signature is
that it is closely related to the notion of robustness of the dynamics of boolean networks
with respect to update schedules : the smaller the number of equivalence classes []¢7, i.e,
the bigger the sizes of these classes, the more robust the network can be considered. All in
all, this internship has mainly served to gain a better understanding of possible signatures,
in particular by giving a characterisation of them. In this account, we have also showed
that it is possible to check in polynomial time whether a signed digraph is possible or not.
If it is, there exists a polynomial algorithm that returns an update schedule inducing the
same signature of the underlying unsigned digraph. In addition, theorem 4.13 states that,
subject to certain conditions, for any network R, there exists another network R’ which
is associated to the same digraph and which has the same dynamical behavior. Also,
we have made some observations on the possible signatures of a given digraph and we
have studied the cases of networks having similar dynamics but different signed digraphs.
On one hand, we have showed how to build such networks and on the other hand we
have compared dynamics of networks whose underlying digraphs are circuits or complete
digraphs without loops.

Following the work we have done during this internship some questions remain to be
answered. The main ones concern the complexity of the four problems given below as well
as possible alternative wordings of them

e Given a digraph G, are there at least k different possible signatures of G7

e Given a signed digraph G° or a digraph G and an update schedule s, are there at
least k different update schedules s’ such that G* = G¥'?

e Given a boolean network R = (G, F, s), are there at least k other boolean networks
R = (G, F,s") (or even possibly R’ = (G', F', s')) having the same dynamics as R?

e Given a digraph G and a global activation function F', are there at least k different
boolean networks R = (G, F, s) each having distinct dynamics?

Note that the second of these problems raises combinatoric questions and questions
of order theory which are independant of boolean networks and of their dynamics. In
particular, this problem is related to the number non strict partial orders that we can
associate to a digraph and which, in addition, satisfy some special conditions (some arcs
of the digraph must necessarily mean ‘>’ whereas others can mean ‘>’ as well as ‘=").
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A An algorithm enumerating the possible signatures of di-
graph

In the following algorithm, if v a vertice of a digraph G = (V, A),

At(v) = {a=@w,w)eA|weV and SIGN(a)=+} U
{a =(w,v) € A|weVand SIGN(a)=—}

and
A= (v) = {a=(w,v)€A|weV and SIGN(a)=+} U
{a =(v,w) € A]weVand SIGN(a)=—}.

We suppose here that the arcs of the inputted digraph G = (V, A) are numbered from 1
to |A]. For an arc a = (v,w) € A, beg(a) = v and end(a) = w. Also, algorithm 2 uses the
function o : N x N — {—, +} defined in the following mannar:

—  sik/.(2™7) =0 mod 2

o(k,i) = . :
+ sik/.(2™7") =1 mod 2

where a/.b the quotient of the euclidian division of a by b. Finally, algorithm 2, while
visiting in depth the digraph G, fills in a table « DONE » such that Ya € A, DONE[a] =NO
if the arc a hasn’t yet been visited, DONE[a] =IP if a is « in process », i.e. a has been
visited and the current arc can be reached by following a walk in G starting by arc a.
And, DONE[a] =YES if the all arcs b reachable from arc a have been seen and are such that
DONE[b] =YES.



ANNEXES An algorithm enumerating the possible signatures of digraph

Algorithm 2: Enumeration of the possible signed digraphs associated to
a given digraph
Input: a digraph G = (V, A)
begin
n—|[V];
m «— |Al;
MAT «— matrix of size m X n;
DONE «— table of size m;
SIGN « table of size m;
forall a € A do DONE[a] «NGO;
for k=0a2"—1do
for i =1 a m do SIGN[a;] «— o(k,i);
while Ja € A, DONE[a] =N0 do
a < any arc of A such that DONE[a] =NO;
ALGO-AUX(a);
if Ya € A, DONE[a] =YES then
return table SIGN;
REGRESS(MAT,DONE);
go on to next k;
end
if Ya € A, DONE[a] =N0 (signature k is impossible) then
| go on to next k;
end

end

end
end

Algorithm 3: « REGRESS »(MAT,DONE)
begin
Empty table MAT;
forall a € A do DONE[a] «NO
end

i



ANNEXES An algorithm enumerating the possible signatures of digraph

Algorithm 4: « ALGO-AUX »(a)

begin
if SIGN[a] = — then
v «— deb(a);
if 3be€ A" (v) such that DONE[D] = IP then
| REGRESS;
else
DONE[a] « IP;
MAT[a][v] «S;
end
else
v« fin(a);
if
( 3b € AT (v) such that DONE[D] =IP ) et ( 3b e A, MAT[b|[deb(a)] =S )
then
| REGRESS;
else
DONE[a] « IP;
if 3b € A,MAT[b][deb(a)] =S then MAT[a|[v] «S;
end
end

while 3b € AT (v) such that DONE[b] =N0 do
| ALGO-AUX(D);

end

DONE[a] «— YES;

end
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ANNEXES

An algorithm enumerating the possible signatures of digraph

Proof of the signed digraphs enumeration algorithm

In algorithm 4, two calls to algorithm REGRESS are made. The first call coincides with
the situation illustrated by figure A b. and the second one corresponds to the situation
illustrated by figure A a.

fin(a) B deb(a) EC
O———0
deb(a) S fin(a) £C
@ ; O fin(a) - deb(a) EC
® O
a) b)

Figure 6: a. Situation encountered during the run of ALGO-AUX when the second call to
REGRESS is made. b. Situation encountered during the run of ALGO-AUX when the first call
to REGRESS is made.

The letter S labelling a vertice v (3a € A,MAT[a][v] =S) indicates that any arc leaving
this vertice, i.e., any arc of AT (v), belongs to a walk that contains a >-arc in the reoriented
digraph corresponding to the signed digraph being built. Thus, it is clear that when the
algorithm encounters one of the configurations represented in figure A it is building an
impossible signature. Indeed, since the digraph is scanned in depth, if the algorithm finds
an arc in the process of being dealt with (IP), it means that it has just covered a circuit
of the corresponding reoriented digraph. In that case, if this circuit contains a >-arc, then
the reoriented digraph contains a prohibited circuit. Therfore, we claim that any possible
signature of the inputed digraph is effectively enumerated by the algorithm.

Conversely, no impossible signature is enumerated by the algorithm. More precisely,
any impossible signature causes the algorithm to come upon one of the situations of figure A
and to call algorithm REGRESS. Indeed, at any time, before it comes upon such a situation,
no prohibited circuit of the reoriented digraph H corresponding to the signed digraph being
built, has yet been seen. If C' was such a circuit and a € A(H) the last arc of C dealt with
by the algorithm, then,

e Either C'\ {a} would contain a >-arc b and this arc would be such that DONE(b) =IP
when a is seen for the first time (a being a descendant of b). But then the label S
generated when b was being processed would have been passed along the walk from
b to a and the algorithm would have encountered the situation of figure A a;

e Either C'\ {a} would contain only >-arcs and SIGN(a) = —. But then, by definition

of a = (v,u), there would exist an arc b € AT (v) belonging to the circuit C such that
DONE(b) = IP wich precisely is the situation of figure A b.

v



ANNEXES An algorithm enumerating the possible signatures of digraph

The following figure illustrates five steps of algorithm 2. The first one pictured is not
the very first step of the algorithm (k = 20). In the caption of this figure, we improperly
use the term signature since it is the reoriented digraphs that are represented (the arcs
drawn in full lines are >-arcs and the arcs in dotted lines are >-arcs).

7 7

% 1 7 NON TR,M'I‘E
» »

Figure 7: a) The digraph G input of algorith 2. The numbers are that of each arc. b)
The 20% « signature » built during the run of algorith 2. It is a possible signature. c)
The 21°¢ signature. Here, we represent the « state of the digraph » when arc 5 is being
dealt with.The situation corresponds to that of figure A a). The signature is impossible.
d) The 22™ signature. This figure pictures the state of the digraph when arc 5 is being
dealt with. The present situation is similar to that pictured by figure A b). The signature,
again, is impossible. ) The 23" signature, impossible again (situation of figure A a)).
f) The 24" signature. It is a possible signature.
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B A problem relating to the sizes of the equivalence classes
165

We prove proposition 4.9 of section 4.2 by reduction of the problem fCycle Cover. This
problem consists in determining the number of spanning sub-digraphs of a digraph such
that every vertice belongs to exactly one cycle.

Let G = (Vi, Ag) be a digraph instance of § C'ycle Cover. Below, we show in a relatively
informal manner how to transform G into a signed digraph H = (Vy, Ag) which is an
instance of fOA.

1. To each arc a = (u,v) € Ag we associate four vertices, u, uy,, v, and v, and six arcs
amongst which the arc a,, = (u,v,) and the arc a, = (u,,v) that both «represent»
the arc a (cf figure 1);

U U A Uy
O O« + O
a A Oy |+ ay |+
/L&
v Uy v
Dans G Dans H

Figure 8:

2. For each vertice v € V, we define the sets A7 (v) = {a, = (u,vy) € A} and
AT (v) = {ay = (vy,u) € Ay} and we arrange the arcs of both these sets in a
way that they form a walk. In other words, we build a walk composed of the arcs
representing ingoing arcs of v and another composed of the arcs representing outgoing
arcs of v, for every vertice v of G. Doing so, some vertices created at step 1 merge;

3. For each of these walks we add a negative arc starting at the end of the walk and
finishing at its beginning. In RO(H), these arcs being reversed, they become >-arcs
that are oriented in the same direction as the walks.

Remark B.1 The knowledge of an update schedule s such that (NS(H))®* = H is equiv-
alent to the knowledge of the «meanings of every >-arc of RO(H), that is, for every
a = (u,v), whether s(u) > s(v) or s(u) = s(v).

Suppose that s is an update schedule such that H = (NS(H))*®. Then, on one hand,
s must satisfy
Va = (u,v) € Ag, s(uy) =s(u) et s(v) = s(vy).

On the other hand, the existence of the negative arcs imposes that at least one of the
>-arcs a,, of every set A~ (v) (resp. AT (v)) be such that s(u) > s(vy) (resp. s(vy) > s(u)).

vi
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Notation B.2 Given an update schedule s such that (NS(H))® = H, let us call D%, the
following set of arcs of H : {a = (u,v) € H | signg(u,v) =+ et s(u) > s(v)}.
Note that a, € Dy < a, € Dy

If Cq is cycle cover of G, note that Cy = {a, = (u,vy), ay = (uy,u) | a = (u,v) €
Cg}. Define the update schedule s such that Cy = Dj; and for every other negative
arc, a = (u,v) € Ag \ Cu, s(u) = s(v). Then s satisfies the properties required by
problem #OA. Indeed, on one hand, by construction, H = (NS(H))*. On the other, the
set D%, is minimal because only one arc of each walk A~ (v) or A" (v) belongs to Cy
(otherwise, in Cg a vertice would be covered by more than one arc). Incidently, we have
that |D§| = 2|Cq| = 4|V (one ingoing arc and one outgoing arc for each vertice of Vi in
the cycle cover, each of them being represented twice in Cpy).

Conversely, if s is an update schedule such that H = (NS(H))® and D%, is minimal
(necessarily |D%| = 2|Vg|), let us define the set Cg = {a = (u,v) € Ag | Ja, et a, € Cy}.
Then, since by minimality of Dj; the following holds,

ay = (uy,v) €CE = Yw#u, (w,v) € Ag, ay = (wy,v) ¢ Cy

ay = (v,v,) €CE = Yw#u, (v,w) € Ag, ay = (v,vy) ¢ C,
no vertice of G is covered more than once. And because of the negative arcs, every one of

them is covered at least once. Therefore, Cg is a cycle cover of G.

Remark B.3 With the same reduction as the one just described, we can show that the
following problems (very close to problem $OA) also are §P-complete.

Input: 4 signed digraph G = (V,A) and a set {V; CV |1<i<k} of
parts of V;

Question: What is the number of update schedules s such that G =

" (NS(G))* and Vi € [1,k], there ezists a unique arc (u,v) €

AN (V; xV;) satisfying signg(u,v) =+ and s(u)>s(v) 2

Input: 4 signed digraph G = (V,A) and an integer k ;

What is the number of update schedules s such that G =
(NS(G))® and amongst the m positive arcs a = (u,v) of G,
there are ezactly k of them such that s(u) > s(v) 2

Question:

vil



ANNEXES A problem relating to the sizes of the equivalence classes [-]&°

>
_____ _ /;\
O O = 0_ =0
<
O—=0 = O—0O
>
O—0 = O—0O
a) b)
e St
AB AB CD c
\
O{---0{---O}--o| @---Q Q--—-Q Q-
o1 TR OXTR X Q
AD| C CB A EA E BC] B D DE
\ X X y \
O S O O O QL Ol Q1291 .©
AFE E ED B BA D D AE
O mmm oo Od S ST I

Figure 9: a. A digraph G, instance of §Cycle Cover. b. Caption of figure ¢. ¢. Trans-
formation of G into the digraph H, instance of fOA. Here, we represent RO(H). In the
intention of keeping the figure simple, we only have labelled the arcs representing an arc

of G.
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C A problem relating to the number of equivalence classes
165

We prove proposition 4.18 by reduction of problem §Perfect Matching for a bipartite graph
(§PM). This problem consists in finding the number of perfect matchings of a bipartite
graph?.

Notation C.1 Let G = (V,A) be a signed digraph. We define deg} (v) = [{(v,u) €
A | signg(v,u) = +1}| and deg] (v) = [{(u,v) € A | signg(u,v) = +1}|. Similarily, we
define deg™ (v) and deg” (v).

Let G = (V3 U Vo, E) be a bipartite graph such that V; and V, are independant sets satis-
fying |V1| = |Va| = n € N (otherwise the answer to problem §PM is trivially 0).

Let H = (E, A) be the digraph such that (e1,e2) € A and (e2,e1) € A if and only if the
edges e; and ey are adjacent in G.

Remark C.2 |A| = ZUEV,deg(v)>1 2(d€92(v)).

Let us show perfect matchings P of G corresond bijectively to possible signatures of H
and in a way such that the set W = P C E satisfies |W| = |Vi| = |Va] = n as well as
a=(e1,e2) € AN (W x V) & signgs(a) = —.

Let H? be the signed digraph associated to H such that :

—1 ifeiePandey € E\P
Vei,ea € E, signps(er,e2) =< +1 ife; € E\ Pand ey € P
+1 ifej,eg € P

Note that if e; and es both belong to P then (e1,e2) ¢ A since by definition of P, they are
non adjacent. Therfore, the only arcs a € A such that signgs(a) = —1 are the outgoing
arcs of a vertice representing an edge of P i.e., the arcs between a vertice of H representing
an edge e; € P and an other vertice representing an edge es € E '\ P.

Also, by construction of H?®, a vertice which is the starting point of a negative arc has an
outdegree equal to 0 in RO(H?®). Thus, in this graph, a >-arc cannot belong to a circuit.
H? is therefore a possible signed digraph.

Injectivity :

Let P and P, be two perfect matchings of a same bipartite graph G = (V3 U Va, E). Let
e € P\ P». e must be adjacent to at least one other edge of E because if not, in order
to cover its endings it must necessarily belong to all prefect matchings of G. So there

“i.e., a set of edges covering all vertices and not containing any pair of adjacent edges.
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Figure 10: a. A bipartite graph G = (V, E) such that V = {a1,...,a4}U{b1,...,bs}. The
edges in bold form a perfect matching of G. b. On the left, the arcs used in figure ¢, in
the center their meaning in terms of signed digraphs and on the right their meaning in
terms of reoriented digraphs. c¢. The digraph resulting from the reduction of the instance
of problem PM pictured in figure a.

exists an edge ¢’ € E'\ P which is adjacent to e. If Hj is the signed digraph corresponding
to P, and Hy the one that corresponds to Ps, we find that signg,(e1,ea) = —1 and
signm,(e1,e2) = +1. Thus, H; # Ho.

Surjectivity :
In addition, there is no possible signature of H that does not correspond to a perfect
matching of G :

Let H® be a possible signed digraph associated to H such that the set W € E satisfies
the conditions of §GS. If two edges e; and ey of W are adjacent, then signgs(e1,e2) =
signgs(e2,e1) = —1 and necessarily, there is a prohibited cycle of length two between
e1 and es in the reoriented graph of H®. This contradicts the fact that H?® is possible.
Moreover, every vertice of V is covered by an edge of W since this set contains n non
adjacent edges and G is bipartite.
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D Some observations on the equivalence classes [-]”

D.1 Ordinary boolean networks

Let Ry = (G, F, s1) and Ry = (G, F, s2) be two boolean networks with the same underlying
digraph G = (V, A) and whose local activation functions are symmetrical. In the sequel,
we suppose that G £ G®2.

Notations D.1
D={ieV |3je€N(i), signs (j,i) # signs,(4,i)},
t* =min{si(i) | i € D},
VieV, NT(@) = N;t(z) ﬂNt(i) et N~ (i) = Ng (i) N Ns;(i),

s S1

By remark 3.2, Vi ¢ D such that s;(i) < t*, f* = f* since such vertices satisfy
Vj € N(1), signs, (7,1) = signs,(4,17).
Also, Vi € D, Vx € {0,1}",

i) = filyi@) s 25 1§ € NS NN (@) 3 f71 ()] j € Ny, (6) N NG (4))
f2@) = filyi@) s £72(2)] § € NS NN (6) 5 w5 | j € Ny, (6) N NG (4))

where y;(z) = NT(i) U N~ (i). Therfore, in the case where F*1 = F2 the two expressions

above must be equal. And in the specific case where all local activation functions are equal

to the function f, these two expressions must even be equal Vi € V.

If Ry and Ry share a dynamical cycle C' = (2°,..., 271, 2! = 29), then any i € D such

that
o N NN, =0and N, NN #0ie, NT(i) =N} C N, or

2

o Ny NNG =0and NN N, # 0 de, N7(i) = N € N

satisfies 2/t = 2t vt € [[0,1].

D.2 R, and other boolean networks

Here, we study the equivalence class [RP}D , where R, = (G, F,s,). In particular we are
interested in finding what other boolean networks may belongs to this class.

Notations D.2 For a given boolean network, R = (G, F,s), and for any set E of points
z € {0,1}", we write C**(E) = {i € V(G) | Vx € E, ff(z) =z;}. We also define
D={ieV |3jeN(i), signs(j,i) = —}.

The following theorem taken from [6] partially answers the question :

x1
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Theorem D.3 Let G = (V, A) be a digraph without loops® and F a local activation func-
tion. Then, if s is a sequential update schedule, R = (G, F,s) and R, cannot share the
same dynamical cycles.

Preuve Let C = (2,...,27 1 2! = 2°) be a dynamical cycle such that V¢ € [0,1[,
Vi e V, 2ttt = f5(at) = f7(at). Let i* be a vertice such that s(i*) = max{s(i) | 3t €
[0,1], 2+ # 2}, Then

ot = (2
= fir(@} | J € N@)NCHC) 5 aj | j € N(i) \ C*(C))
= fi()
= fie@f | JENGINCT 5 af | j € NFE)\CHC) =05 afth | j € Ny (%) \ C(C)
= fir(a | j € N@*)NC*(C) s 2™ | j € Ny (i) \ C*(0))
fir(at)
We obtain a contradiction with the fact that zl. ¢ C5(C). O

Remark D.4 If s is block sequential such that (N(i*)\ C*(C)) N B = 0 orif
B \ C(C) = {i*}, the proof above and theorem D.3 still hold.
Let us now look at the case where s is block sequential.

1. Foralli e V\ D, Ny (i) =0 and ff = f;” (cfremark 3.2).

2. Let E C {0,1}" and i € D such that N; (i) C C*(E).

Then, Vz € F,
file) = fila; | € NFG) ;5 fj(x) =25 | je NS ())
= (e | € NGD)
= fi"(2).

In particular, if in G® all vertices ¢ that are the starting point of a negative arc have
null indegree or are such that N(i) = {i}, then R, R R,,. However, to know whether

there exists other interesting cases of networks such that Vi € D, N; (i) C C*'(E),

we would need to study the situations in which a vertice can have a constant state.
3. Let E C {0,1}" and i € D such that N; (i) \ C*'(E) # 0. Then

i (@) = fi(zj | j € CHE)NN(i) 5 2] j € NJ(\C(E); fi(x) | j € Ny (i)\C*(E)).

If furthermore N; (i) C C*(E) and Vz € E, F*(x) = F®(x) then i € C*(E).
Indeed, Vz € FE the following holds

fi@) = fi(z; |j€CHE)NN(G); f(@)] j € Ny (i) \ C*(E))
= fi'(@) = fiz;|jeCHE)NN(); aj] j € Ny (i) \ C*(E)).

5In reality, without non monotonous loops is enough.
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This implies that Vo € E, ff(z) = f;*(F*(x)) = f;*(x) = z;. Thus, if for all vertice

(2 (2
iof D, N7 (i)\C®*(E) # 0 and N} (i) C C*'(E), then R R R, and the only possible
limit behaviors that these two networks can have are fixed points and cycles such
that the only vertices 4 satisfying N (i) = N1 (i) have a non constant state.

4. Let E C {0,1}"™. Suppose that for all i € D such that N; (i) \ C*Y(E) # 0, f; is
associative, i.e., VE1, Fs CV

filwj |j € Er; xj | j€Ea)= fi(filzy | j€Er); filz; | € Er)),
Suppose also that
filzj | j € NS (@)\ CU(E)) = fi(fj(z) | § € Ny (i) \ C*(E)).

In these conditions and if E = {0,1}", R 1Y R,.

+

oA
3

+

Figure 11:

Figure 4 represents a boolean network R = (G, F| s) associated to a graph of order 4.
The set D in this example is reduced to vertice 1. Also, the vertices 2 and 3 which

belong to N (1) have a non constant state. Suppose all local activation functions

are equal to the same symmetrical function whose infix notation is x. Then
ffp =T % X9 % T3
fT =z f3(x) x f3(x)
o =[5 = w31y
3 =[5 =xo %y
V= fi=
If x =V (OR function), then since 4 € N(2) \ N(1), x4 appears in the development
of f;(z) but not in that of f;”(z):

ffp:xl\/xg\/:ﬂg#ff:xl*(xg\/x4)\/(x2\/x4):xl\/arg\/wg\/:m

xiil
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and thus R ¢ [Ry]P. If x = @ (XOR function), then on the contrary, R € [R,]P
because x4 appears a pair number of times in the development of the expression

fi(@):

=2 @ xS as = ff =21 % (13D 14) B (22 B 24).
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