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A B S T R A C T

The manufacturing of recombinant protein is traditionally undertaken in mammalian cell culture. Today, speed,
cost and safety are the primary considerations for process improvements in both upstream and downstream
manufacturing. Leaders in the biopharmaceutical industry are striving for continuous improvements to increase
throughput, lower costs and produce safer more efficacious drugs. This can be achieved through advances in cell
line engineering, process development of cell culture, development of chemically defined media and increased
emphasis on product characterization. In the first part, this review provides a historical perspective on approved
biotherapeutics by regulatory bodies which pave the way for next-generation products (including gene therapy).
In the second part, it focuses on the application of in vitro and in vivo cell line engineering approaches, modern
process development improvements including continuous manufacturing, recent developments in media for-
mulation, and improvements in critical quality attribute determinations for products produced predominantly in
mammalian cells.

1. General overview of biopharmaceuticals

1.1. Biopharmaceutical history, current market status and perspective

Biopharmaceuticals are prophylactic and therapeutic substances,
inherently derived from biological sources, such as organs, tissues,
microorganisms or animal cells (Kesik-Brodacka, 2018; Rader, 2008;
Ryu et al., 2012). These large and complex biologically active macro-
molecules are produced using biotechnology methods and are generally
used to diagnose, prevent, treat, and cure diseases and medical condi-
tions. They include a diverse category of products such as vaccines,
blood and blood components, allergenics, tissues, cellular or gene
therapy products, and recombinant therapeutic proteins. Since the first
biopharmaceutical, recombinant human insulin, approved by Foods
and Drugs Administration (FDA) for therapeutic use in 1982, bio-
pharmaceuticals have revolutionized the treatment of a wide range of
diseases and are used increasingly in all branches of medicine (Kesik-
Brodacka, 2018).

The global biopharmaceutical market was valued at $237.2 billion
in 2018 and is projected to reach $389.0 billion by 2024, registering a
staggering compound annual growth rate (CAGR) of 8.59% during the

forecast period of 2019 to 2024. As far as therapeutics are concerned,
oncology is forecast to remain the dominant therapy segment with
projected worldwide sales reaching $233 billion by 2024, growing $129
billion in over 2017–2024 (Deloitte, 2020).

The growth of global biopharmaceutical market is driven by various
factors, such as rapid advancements of our understanding of diseases
and how they occur at cellular and molecular level, global population
growth and widespread population aging, and the unmet medical needs
of chronic diseases such as cancer and diabetes. Additionally, bio-
pharmaceuticals offer high specificity and activity, fewer side effects,
and the potential to cure disease rather than merely treating the
symptoms. This has led significantly increased acceptance of bio-
pharmaceutical products. Also contributing to the market growth is the
rise in strategic collaborations among biopharmaceuticals companies
and the increase in adoption of biopharmaceuticals globally (Ecker
et al., 2015).

1.2. Antibodies as the main power horse of the biopharmaceutical industry

In recent years, the biopharmaceutical industry has experienced a
significant growth in the production and approval of biopharmaceutical
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products, and typically 20–30 new products gain approval annually by
the FDA. For instance, during the five year period between January
2014 and Dec 2019, the total number of biopharmaceutical products
approved by FDA for human use has reached 129, and half of them (66)
are monoclonal antibodies or conjugates as shown in Table 1. For
complete information regarding brand name, target and therapeutic
use, please refer to Supporting Information Table S1. It has become
clear that the market of monoclonal antibodies has changed dramati-
cally, and antibodies and their derivatives have emerged as the largest
group of biopharmaceuticals when compared to other biological drug
types (Grilo and Mantalaris, 2019).

In addition to an increase in spending on research and development
for biological drugs, supportive government initiatives and demand for
personalized medicines are contributing to the expectation that the
global monoclonal antibody therapeutics market is projected to reach
over $200 billion by year 2023 (Zion Market Research, 2018). They are
currently utilized in therapies for cancer, inflammatory diseases, car-
diovascular diseases, organ transplantations, infections, respiratory
diseases, and ophthalmologic diseases (Ecker et al., 2015; Kesik-
Brodacka, 2018). As illustrated in Fig. 1, the success of a monoclonal
antibody discovery and development depends upon several aspects,
including cell line development, upstream process, downstream pro-
cess, antibody engineering, bioanalytics, delivery system and quality
control. Many of these aspects translate to all biotherapeutic designs.

1.3. Accelerating the development of next generation biopharmaceuticals

Advances in biotechnology have opened the door to the design of
new types of therapeutic drugs to fight disease and biopharmaceutical
products have now become an integral part of the pharmaceutical in-
dustry. As a result, the portfolio and pipeline of biopharmaceuticals is
becoming increasingly diverse, with many novel biologics being de-
veloped. As well as the rise of biosimilars (McCamish and Woollett,
2012), next-generation biopharmaceutical therapeutics have gained
extensive attention due to the obvious benefits in higher bioavailability,
increased half-life, lower immunogenicity and will eventually create
added value over existing products (Moorkens et al., 2017). As de-
monstrated in Fig. 2, next generation therapeutics covers a variety of
products, including monoclonal antibodies, cellular and gene therapy
products, protein and bioconjugates, peptides and oligonucleotides,

vaccines and microbiome therapeutics (Hanna et al., 2017; Kim, 2013;
Lundin et al., 2015; Mimee et al., 2016; Ramsland et al., 2015;
Stephanopoulos and Francis, 2011; Vlahos and Coghlan, 2005).

One promising emerging area is Chimeric Antigen Receptor (CAR)
T-cell therapy, which is a form of immunotherapy involving genetic
modification of patient’s autologous T-cells via viral-based or nonviral
based gene transfer methods to target specific cancer/autoimmune
cells. It allows for the introduction of a high degree of tumour se-
lectivity into adoptive cell transfer therapies (Androulla and Lefkothea,
2018; Filley et al., 2018). Two autologous CD 19-specific CAR T cell
therapies (Yescarta TM and Kymriah TM, as shown in Table 1) were
approved by FDA in 2017 and offered patients a new strategy to fight
cancer.

Gene therapy is now a cutting-edge therapy with CRISPR/Cas9
(Clustered Regularly Interspaced Short Palindromic Repeats), as an
important tool for gene editing across various species. CRISPR/Cas9 can
disrupt, delete, correct, replace or insert specific genes in the patient’s
DNA (Ceasar et al., 2016; Wang et al., 2019). The possibilities of gene
therapy hold considerable promise in the treatment of cancer, cystic
fibrosis, heart disease, diabetes, hemophilia and AIDS. In 2017, the first
gene therapy, Luxturna TM, an adeno-associated virus vector-based
product was approved by FDA for the treatment of vision loss due to
confirmed biallelic RPE65-mediated inherited retinal disease.

As shown in Fig. 3, it has become clear that clinical trials in cell
immunotherapy and gene therapy have been growing significantly
since 2014. Cumulatively, there have been a total of 861 and 570
clinical trials in cell immunotherapy and gene therapy respectively as
registered in ClinicalTrials.gov (correct in March 2020). Consequently,
it is believed that the explosion in clinical trials along this pipeline will
lead to significant growth in approval and production of novel next
generation biopharmaceutical therapeutics.

1.4. Advances in biopharmaceutical analysis and regulatory quality
requirement

Contaminants related to manufacturing and purification processes
can significantly affect the safety and efficacy profiles of biopharma-
ceutical drugs. As discussed above, the biopharmaceutical industry has
evolved significantly over the past three decades, the emerging of next
generation therapeutics (Barry and Matter, 2006), integration of

Table 1
Glossary of biopharmaceuticals approved by FDA (Jan 2014-Dec 2019)

Category Biopharmaceuticals

Cytokines Peginterferon beta-1a
Hormones Insulin glargine and lixisenatide, Insulin degludec and liraglutide, Parathyroid hormone, Insulin degludec, Insulin human inhalation powder, Metreleptin
Growth factors Antihemophilic factor glycopegylated, Antihemophilic factor PEGylated, Cenegermin, Coagulation Factor IX GlycoPEGylated, Antihemophilic Factor Single

Chain, Coagulation factor Xa inactivated, Sargramostim, Coagulation Factor IX Albumin Fusion Protein, Antihemophilic Factor, recombinant Factor VIII,
Coagulation Factor IX Fc Fusion Protein, Antihemophilic Factor Fc Fusion Protein, Antihemophilic Factor Porcine Sequence

Antibodies Risankizumab, Caplacizumab, human Immune Globulin, Romosozumab, Trastuzumab and Hyaluronidase, Certolizumab pegol, Tildrakizumab, Rituximab,
Fremanezumab, Lanadelumab, Ravulizumab, Emapalumab, Ibalizumab, Burosumab, Erenumab, Galcanezumab, Cemiplimab, Moxetumomab pasudotox,
Mogamulizumab, Avelumab, Dupilumab, Brodalumab, Guselkumab, Inotuzumab ozogamicin, Emicizumab, Tocilizumab, Ocrelizumab, Human Rabies Immune
Globulin, Sarilumab, Durvalumab, Ixekizumab, Lixisenatide, Bezlotoxumab, Obiltoxaximab, Daclizumab, Olaratumab, Atezolizumab, Adalimumab, Reslizumab,
Alirocumab, Evolocumab, Secukinumab, Daratumumab, Idarucizumab, Elotuzumab, Necitumumab, Dinutuximab, Mepolizumab, Pembrolizumab, Nivolumab,
Vedolizumab, Blinatumomab, Siltuximab, Immune Globulin Infusion 10% (Human) with Recombinant Human Hyaluronidase, Alemtuzumab, Bevacizumab,
Ramucirumab, Polatuzumab Vedotin, Venetoclax Plus obinutuzumab, Avelumab Plus Axitinib, Pembrolizumab Plus lenvatinib, Brolucizumab, Crizanlizumab,
Enfortumab Vedotin, Fam-trastuzumab deruxtecan, Luspatercept–aamt

Enzymes Elapegademase, Calaspargase pegol, Pegvaliase, Cerliponase, Vestronidase alfa, Sebelipase alfa, Asfotase alfa, Elosulfase alfa
Inhibitors PrabotulinumtoxinA, Human C1 Esterase Inhibitor, Aflibercept, C1 esterase inhibitor, RimabotulinumtoxinB
Vaccines Dengue Tetravalent, Vaxelis1, Hepatitis B Vaccine adjuvanted, Zoster vaccine adjuvanted, Cholera vaccine live oral, Meningococcal Group B Vaccine, Trivalent

influenza vaccine, Smallpox and Monkeypox Vaccine
Cell therapy Axicabtagene ciloleucel, Tisagenlecleucel
Gene therapy Patisiran, Inotersen, Voretigene neparvovec, Nusinersen, Eteplirsen, Defibrotide Sodium, Talimogene Laherparepvec, Onasemnogene Abeparvovec, Givosiran,

Golodirsen
Allergenics Grasteka, Oralaira, Ragwiteka

Toxin Tagraxofusp
Peptide Semaglutide, abaloparatide, Albiglutide, Dulaglutide, liraglutide [rDNA origin], Bremelanotide

a For some biopharmaceuticals brand name is used when non-proprietary name is too long.
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continuous bioprocessing (Rathore et al., 2015), as well as the in-
trinsically complex post-translational modifications (PTMs) of the
therapeutics (Walsh, 2010), are creating the need for timely, sensitive
and accurate analytical techniques (Challener, 2016). A detailed char-
acterization and comparability assessment of the complex and hetero-
geneous biopharmaceuticals mainly includes bioprocess impurities,
metabolites, extractable and leachable, complete amino acid sequen-
cing, molecular weight, conformation, stability, solubility, secretion,
aggregation, heterogeneity, PTMs, protein isoforms, antibody-drug
conjugates, degradants, disulphide linkages, affinity maturation, ef-
fector functions, drug metabolism and pharmacokinetics, antigenicity,
and compatibility of excipients (Kim et al., 2005; Tsuchikama and An,
2018; Van Landuyt et al., 2018; Walsh, 2010; Zhong, 2018). The major
critical safety concern relating to biopharmaceutical drug usage is im-
munogenicity, which can cause hypersensitivity responses, anaphy-
laxis, infusion reactions and a decreased efficacy (Kessler et al., 2006;
Kuriakose et al., 2016; Ryu et al., 2012). Evaluating the im-
munogenicity of biopharmaceuticals is mandatory for regulatory ap-
proval (Pineda et al., 2016).

Currently, there are a variety of methods used throughout the bio-
pharmaceutical development cycle (Fisher et al., 2016; Yu and
Woodcock, 2015), such as immunoassays, real-time, quantitative
polymerase chain reaction (qPCR) (Schmittgen et al., 2000), differential
scanning fluorimetry, dynamic light scattering, high/ultra-performance
liquid chromatography, mass spectrometry (MS) (Kaltashov et al.,
2010; O'Flaherty et al., 2017; Rudewicz, 2013) and nuclear magnetic
resonance (NMR) spectroscopy (Kiss et al., 2018; Wishart, 2013). The
emerging and continued improvement of the new analytical technolo-
gies has advanced biopharmaceutical developments significantly.

As a result, the concepts of process analytical technology (PAT)

(Rathore et al., 2010) and Quality by Design (QbD) (Sangshetti et al.,
2017) are gradually introduced as part of the ‘Pharmaceutical Current
Good Manufacturing Practices (CGMPs) for the 21st Century-a Risk
Based Approach’ initiative, which play a key role in creation of a robust
control and monitoring strategies for bioprocesses to ensure final pro-
duct quality. New manufacturing, compliance, and quality regulations
are likely to be required to keep up with the development of novel
advanced therapies.

2. Expression systems for therapeutic proteins

While high yields of products are desired during biomanufacture,
the structural quality of these molecules determines their therapeutic
efficacy and safety. Therefore, beyond the efforts to drive the devel-
opment of high yielding cell lines, the quality of PTMs, particularly
glycosylation, has to be considered. The choice of expression system
can have a profound impact on the type and degree of this glycosyla-
tion. As such, advances in cell engineering and an inherent knowledge
of expression system characteristics have led to the design of proteins
with defined structure and high yields.

The term expression system refers to the synthesis of recombinant
proteins by a given cell and its transfected DNA vector. This process is
based on the translation of the supplied DNA genetic information into a
sequence of amino acids. Such information is enclosed in the messenger
RNA (mRNA) and posteriorly delivered to ribosomes. Ribosomal RNA
(rRNA) is part of the ribosomes structure and responsible to catalyse the
link between two amino acids, which are carried by a transfer RNA
(tRNA). This process results in the formation of a specific amino acid
sequence characteristic of the protein (Clark and Pazdernik, 2013).
After being translated, these molecules are subject to PTMs. The

Fig. 1. Monoclonal antibody discovery and development.
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frequency and complexity of PTMs can differ substantially between
prokaryotes and nucleated eukaryotes, being much more extensive in
the latter (Walsh et al., 2005).The biotherapeutic glycoforms influence
protein function in various aspects, including immune-response,
folding, aggregation, stability and transport (Rozov et al., 2018; Wang
and Amin, 2014). The machinery necessary for human-like glycosyla-
tion is absent in prokaryotic cells, limiting their pharmaceutical use to
express only simple proteins, such as insulin, hormones, interferon
(Rozov et al., 2018), and non-glycosylated enzymes such as aspar-
aginase and collagenase (Lalonde and Durocher, 2017). Although fungi,
insect and plant cells perform glycosylation, the glycan structures are
significantly different from those of human, a fact that threatens the
onset of unwanted immunogenicity for therapeutics. Consequently, the
majority of currently approved biotherapeutics are expressed in mam-
malian cell lines, most of which at least produce “human-like” glyco-
sylation.

2.1. Vectors

The development of production cell lines starts with the construc-
tion of expression vectors. Vectors are autonomous, self-replicating
DNA elements, into which a fragment of foreign DNA is introduced.
Expression vectors are the vehicles that carry recombinant genes of
interest into the host cell and in addition to the transgene, they usually
consist of expression elements such as promoters, enhancers, multiple
cloning sites (MSC), intron sequences, transcription terminators, se-
lectable markers and DNA elements that modulate chromatin structure
(Lund et al., 2014; Makrides, 1999). In addition, epigenetic elements,
which optimize protein expression and mitigate the silencing effect, are
frequently incorporated into the vector.

The most common locus control elements used are UCOE

(ubiquitous chromatin opening elements), S/MAR (scaffold/matrix at-
tachment region) and STAR (stabilizing and anti-repressor element)
(Lalonde and Durocher, 2017; Durocher and Butler, 2009;
Bandaranayake and Almo, 2014).

Selection of an appropriate vector and delivery method requires a
multifaceted approach that takes into account the cell type, product
quantity and safety, process economics, transition from pilot- to full
scale, turnaround time and regulatory compliance. Vector delivery can
be performed using reagent-based methods such as cationic lipid-based
transfection, calcium-phosphate precipitation, diethylaminoethyl
(DEAE)-dextran polyethylenimine and polymer- or dendrimer-mediated
techniques; instrument-based methods such as electroporation and
microinjection; and finally virus mediated methods such as adeno-as-
sociated viruses and lentiviruses (Kim and Eberwine, 2010). Non-viral
delivery procedures have gained the advantage of regulatory clearance
and are the most preferred methods for protein biomanufacturing
(Nayerossadat et al., 2012).

The common principle of reagent-based transfection methods is that
positively charged chemicals form complexes with negatively charged
nucleic acids, which then are attracted to the negatively charged cell
membrane. The complexes then pass inside the cell by endocytosis or
phagocytosis. Calcium-phosphate precipitation and DEAE-dextran are
the oldest methods of DNA delivery which, although very cost-effective,
often suffer from low transfection efficiency (Mostaghaci et al., 2016)
and high levels of cytotoxicity (Lalani and Misra, 2011). Calcium-
phosphate method requires serum-based media and this constrains its
use in biopharmaceutical manufacturing (Jordan and Wurm, 2004).
Cationic polymers such as Polyethelyenimine (PEI) are widely used,
cost effective, non-cytotoxic reagents that can be scaled up to hundreds
of litres (Backliwal et al., 2008a; Hunter et al., 2019) and generate up to
100% transfection efficiencies (Geisse, 2009). Although PEI is

Fig. 2. Next generation therapeutics: trends in biotechnology.
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incompatible with some growth media components (Hunter et al.,
2019), large scale productions with HEK 293 and CHO cell platforms
have been reported (Delafosse et al., 2016; Raymond et al., 2011;
Thompson et al., 2012), with commercially available reagents such as
jetPEI® frequently used by biopharmaceutical industries (Wong et al.,
2010). Cationic lipid-based techniques belong to another popular ca-
tegory as they are easy to use, require minimum steps and can be scaled
up. Proprietary cationic lipid formulations are commercially available
from many vendors including Biorad, Polyplus transfection, Promega
and ThermoFisher. They offer highly effective transfections, but have
not been frequently used for large-scale due to their comparatively high
cost. They are however the common choice at the early stages of re-
search and development as they are highly efficient in culture dishes
and are adaptable to high-throughput systems (Shen et al., 2005).

Electroporation (electric field–mediated permeabilization) is an-
other popular technique for introducing foreign DNA into host cells
through a brief electric pulse that generates temporary openings in the
cell membrane (Longo et al., 2013). Under optimal conditions of elec-
tric field strength, pulse length, buffer conductivity, waveform and
pulse number, this technique offers high transfection efficiency, in-
creased viability, ease of use and wide cell line applicability without
altering the biological structure or function or host cells. Electropora-
tion is quite versatile in that it can be used to introduce other biological
molecules such as exogenous proteins, mRNA or siRNA, and is suitable
for both stable transformation and transient gene expression (Luft and

Ketteler, 2015). Equipment to electroporate cells utilizes parallel plate
electrodes separated by a fixed gap width in the form of electroporation
cuvettes or microplates which limit the volume of cell samples pro-
cessed. Microfluidic electropermeabilization approaches where cells
experience electroporation while flowing through an electric field
chamber are reported to offer the capacity for large-scale transfection
with instruments such as the MaxCyte VLX® Scalable Transfection
System claiming a turnout of up to 200 billion cells in a single 30 min
electroporation flow-through run (Steger et al., 2015).

Contrary to chemical and physical transfections, viral delivery relies
on viral mechanisms of cellular infection. These systems vary in their
insert capacity depending on the type of virus or even the same virus
serotype, and are usually applied for transient gene expression (Wurm,
2004; Colosimo et al., 2000). Replication-defective, recombinant viral
vectors were the first enabling tools for efficient, nontoxic gene transfer
into human somatic cells. Owing to their natural ability to invade cells
and their exceptional gene delivery efficiency, viral delivery is currently
the most frequently used method for in vivo gene therapy applications,
with the leading platform being adeno-associated virus (AAV) vectors.
AAVs are persistent viruses, induce low pathogenicity and toxicity, are
available in many serotypes and contribute to long-term transgene ex-
pression through chromosomal integration (Daya and Berns, 2008).
Other viral delivery systems include RNA and DNA viruses with either
single-stranded (ss) or double-stranded (ds) genomes such as adeno-
viruses, alphaviruses, flaviviruses, herpes simplex viruses (HSV),
rhabdoviruses, measles viruses, retroviruses, and lentiviruses. Selection
of the appropriate vector is based on their packaging capacity of foreign
DNA, toxicity, immunogenicity, lytic capacity, long- or short-term
transgene expression and capability to infect non-dividing cells or re-
plicating specifically in tumour cells (Lundstrom, 2018). Non-viral gene
delivery has been overlooked in the past because of poor efficiency and
transient expression of their transgenes, however advancements on
physical transfection methods and delivery vehicles along with their
low immunogenicity have rendered non-viral vectors attractive candi-
dates for a new generation of gene transfer tools (Hardee et al., 2017).

Viral vectors on the other hand dominate the active gene therapy
clinical trials worldwide (79% vs 21% of non-viral therapies), with the
first gene therapy product receiving marketing authorization in Europe
in 2012 (Hardee et al., 2017). Alipogene tiparvovec (Glybera®) is an
adeno-associated virus serotype 1 (AAV1)-based gene therapy for the
treatment of patients with lipoprotein lipase deficiency (Ferreira et al.,
2014). Although viral vectors have been used on numerous occasions in
cell culture for protein production, the disadvantages of virus gene
transfer include more complex cloning strategies, biosafety concerns
related to the bioprocess and health risks related to the possible pre-
sence of viral vector with the recombinant protein (Pham et al., 2006).

2.2. Mammalian expression systems

The vast majority of recombinant proteins on the market, around
70%, are produced by mammalian cells (Durocher and Butler, 2009;
Lalonde and Durocher, 2017; Wurm, 2004). The high costs associated
with culturing this expression system, challenging scale-up processing
and risk of viral contamination (Rozov et al., 2018) are compensated by
its ability to express proteins with complex PTMs. The general process
of producing a recombinant protein in a mammalian expression system
starts with transfection of a recombinant gene integrated in a vector
into the chosen cell. The gene carries structural elements that regulates
transcription. In order to select cells that successfully integrate plasmid
into their genome, a selection system is also added, either, in the same
or in a new plasmid. The most common selection markers used in
mammalian cells are the glutamine synthetase (GS) and the dihy-
drofolate reductase (DHFR) genes, which only allow transformed cells
to grow in a medium lacking glutamine and hypoxantine/thymidine,
respectively. Following transfection and selective growth, single cells
that survive are separated to generate a clonal population. After a

Fig. 3. Clinical trials registered in Clinicaltrials.org (January 2011 to December
2019).
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screening, the most productive and stable clones are selected and banks
of cell lines are created for future protein production (Lalonde and
Durocher, 2017; Wurm, 2004).

Mammalian expression systems can be used to produce proteins
transiently or through stable cell lines. The choice between transient
and stable expression systems affects the expression vector to be used.
During transient gene expression (TGE) the vector never integrates into
the genome of the cell and as result the transfected genes only express
in a limited time span. TGE has been used for many years in labora-
tories for research purposes and only in the last decades has it been
scaled-up and used for rapid screening of large numbers of antibodies or
antibody-like molecules in order to identify promising candidates
(Geisse, 2009; Gutiérrez-Granados et al., 2018). Alternatively, after
TGE, milligrams to grams of protein can be harvested within 2–4 week,
after which the cell lose the expression plasmid with passages and die
(Andersen and Krummen, 2002; Lalonde and Durocher, 2017). For
large-scale production stable cell lines are preferred, where the ex-
pression construct is integrated into the host genome, as they provide
large amounts of proteins with consistent quality and regulatory fa-
miliarity. Following integration of the vector into the host cell genome,
screening is performed to select stable transfected cell lines for pro-
duction of proteins in moderate to large scale, i.e. stable expression.
The establishment of stable clones can be lengthy i.e. take up to 12
months and requires a labour-intensive clonal selection process or
complex and expensive laboratory infrastructure. Recent systems have
dramatically reduced the timelines down to as little as 1–2 weeks by
using novel approaches such as 3rd generation lentiviruses (Tandon
et al., 2018).

CHO (Chinese Hamster ovary) cell lines are the workhorse for the
production of many biopharmaceuticals, most of which are monoclonal
antibodies. CHO cells are derived from Chinese hamster ovarian fi-
broblast cells. Since the original clone was generated, a number of CHO
cell lines has been developed. These cells present many advantages such
as capacity of growing in suspension, high yield production and ability
to grow in serum free medium. Moreover, CHO cells are less susceptible
to human virus infections, reducing biosafety risks. On the other hand,
CHO cells can present some drawbacks. Although the glycans synthe-
sised by these cells are generally characterised as “human-like”, there
are some non-human and potentially immunogenic structures, such as
galactose-α(1,3)-galactose (α-gal) and N-glycolylneuraminic acid
(Neu5Gc). Furthermore, CHO cells are unable to produce α(2-6)-sialic
acid residues which are present in human glycoproteins
(Bandaranayake and Almo, 2014; Dumont et al., 2015; Durocher and
Butler, 2009; Lalonde and Durocher, 2017). The determination of the
genome sequence of CHO-K1 has facilitated cell engineering of CHO
and optimized its use as a platform for efficient protein expression (Xu
et al., 2011). BHK (Baby Hamster Kidney) is another cell line derived
from hamster. Their use is especially common for Factor VIIa, Factor
VIII and vaccine production. Similar to CHO, these cells can express
glycans with immunogenic terminal Neu5Gc and α-gal (Bandaranayake
and Almo, 2014; Dumont et al., 2015; Durocher and Butler, 2009;
Lalonde and Durocher, 2017).

NS0 and Sp2/0 are murine myeloma cells originating from tumour
cells. Since these cell lines were developed they have been extensively
used to produce commercial mAbs. The disadvantage of using these cell
lines is that they can produce the immunogenic glycans α-gal and
Neu5Gc in relatively high levels. (Lalonde and Durocher, 2017). De-
spite the inherent potential immunogenic potential of products from
NS0 and Sp2/0 cell lines, a stringent clone screen can select the cells
that produce a more desirable glycan profile. Moreover, manipulation
of media components and upstream conditions can profoundly impact
glycoform distribution (Goh and Ng, 2018; McCracken et al., 2014).

Contrary to hamster and mouse derived cells, human cell lines do
not produce immunogenic glycans. On the other hand, they are sus-
ceptible to human viral infection, a reason why a series of viral in-
activation is required when producing biotherapeutics from these and

all cells (Dumont et al., 2015). HEK293 (Human Embryo Kidney 293) is
a human cell line transfected with viral DNA. This is the most promi-
nent human cell line used for protein expression and clearly produces
human glycan profiles. Since its development, diverse variants of
HEK293 have been generated, for example HKB11, used to produce
factor VIII (Bandaranayake and Almo, 2014; Durocher and Butler,
2009). HT-1080 (human fibrosarcoma) is also a human cell line fre-
quently used for protein expression. The line is derived from fi-
brosarcoma cells with an epithelial-like phenotype. It is known that
epoetin delta produced by these cells has a more preferable glycan
profile when compared to the same molecule produced by CHO cells, as
the latter produces immunoglobulin G (IgG) with traces of the im-
munogenic Neu5Gc in the glycan profile(Dumont et al., 2015; Lalonde
and Durocher, 2017). PER.C6, another cell line human-derived, was
generated from human retinoblast transfected with E1 minigene, ori-
ginally to produce adenovirus vector for vaccine development. How-
ever, the use of these cells has become popular for recombinant protein
expression as they are able to grow in suspension at high density, and
produce high titers of IgG (Bandaranayake and Almo, 2014; Dumont
et al., 2015; Durocher and Butler, 2009). CAP (CEVEC’s Amniocyte
Production) are cells originate from human amniocytes transfected with
an adenovirus type 5 E1 gene. The most well-known advantage of this
system are the high yields and human-like glycosylation profiles of the
proteins (Lalonde and Durocher, 2017; Bandaranayake and Almo,
2014). Lastly, HuH-7 (Human hepatoma) cells are a recently developed
cell line also able to produce human-like glycoproteins, such as factor
IX and recombinant FIX (Dumont et al., 2015).

Beyond cells, transgenic animals are also sources of biotherapeutic
proteins. The development of genetically modified animals for this
purpose has evolved exponentially since the 1920s, when insulin was
extracted from pig pancreas. Almost a century later, in 2006, the first
therapeutic for human use derived from a transgenic animal is ap-
proved in the European Union and later on (2009) in the United States.
ATryn®, is a recombinant antithrombin produced in the milk of trans-
genic goats (Gavin et al., 2008). A second biopharmaceutical, approved
in 2012 in the European Union and 2014 in the United States, under the
trade name Ruconest®, is a recombinant human C1 esterase inhibitor
protein this time produced in the milk of transgenic rabbits (Bertolini
et al., 2016). In addition, egg white obtained from transgenic hens has
been reported as a source of human interferon beta (Houdebine, 2009;
Oishi et al., 2018; Walsh, 2014). Eggs are an attractive source for high
level recombinant protein production as a single hen can lay up to 330
eggs in a year. Transgenic chickens have short generation times and can
achieve increased reproduction rates via artificial insemination
(Farzaneh et al., 2017). Two recently approved products from trans-
genic chicken eggs are a recombinant human lysosomal acid lipase
(Kanuma) used to treat LAL-deficiency, which received approval by the
FDA in 2015, and a recombinant human alpha-N-acetyl-glucosamini-
dase for the treatment of mucopolysaccharidosis, which received ap-
proval by the FDA in 2015 (Bertolini et al., 2016). Apart from simple
proteins, monoclonal antibodies, including variants of currently avail-
able commercial products such as Trastuzumab, Adalimumab and Ce-
tuximab, expressed in goat milk have been reported to exhibit glyco-
sylation patterns that provide equivalent and even enhanced antibody
function compared to their commercial alternatives (Bertolini et al.,
2016).

Besides "pharmaceutical pharming", trangenic animals play an im-
portant role in the pre-clinical discovery of therapeutic proteins.
Transgenic mice are the number one antibody discovery platform with
seven out of the eleven monoclonal antibody drugs approved by the
FDA between 2006 and 2011 deriving from transgenic mice.
Humanized mouse platforms such as AlivaMab® Mouse, MeMo mouse,
Kymouse and VelocImmune® Mice are currently licensed from the
majority of pharmaceutical companies for antibody drug discovery at
various sites around the world (Moran, 2013).
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2.3. Non-mammalian expression systems

Although most of the recombinant glycoproteins approved by the
FDA have been produced by mammalian cells, many factors have led to
the development of alternative non-mammalian expression systems.
Some of them, such as bacteria, yeast, insect and plant cells have
proved to be efficient for high titres of protein expression, scalability
and cost-effective production. In addition, these systems are not prone
to mammalian pathogen infection. However, a common drawback of
these heterologous expression systems is the lack of the required ma-
chinery to synthesize human-like PTM, such as glycosylation (Lalonde
and Durocher, 2017; Yusibov et al., 2016). Nevertheless, if the desired
therapeutic protein is small and does not require human-like glycosy-
lation for its clinical function, then non-mammalian systems are the
definite choice for cost-effective manufacture, a trend that can be seen
across the industry when considering that the types of therapeutic
proteins manufactured in microbial systems are mainly insulins, vac-
cine components and smaller cytokines like interferons (Walsh, 2014).

Bacterial systems are the most commonly used host cells for the
expression of simple heterologous proteins (without PTMs), with
around 30% of the approved therapeutic proteins being currently pro-
duced using a bacterial host (Overton, 2014). They are the most pre-
ferred because their growth requires cost-effective carbon sources, di-
vision of the cells is rapid, process scale-up is simple and produces high
yields. On the other hand, proteins produced by this system often ag-
gregate and are inactive due to the formation of inclusion bodies.
Moreover, PTM in this system is also inefficient for production of more
complex therapeutic proteins (Sahdev et al., 2008). E. coli, the first
expression host used in biopharmaceutical manufacturing, is currently
used as an expression system for large number of simple proteins such
as the long lasting insulin-analog Lantus® (Linnebjerg et al., 2015),
therapeutic enzymes such as the glucarpidase VORAXAZE® (Rattu et al.,
2013) and peptide drugs such as the parathyroid hormone Preotact®
(Möricke et al., 2011) and the granulocyte colony-stimulating factor
Nivestim®(Gascon, 2012).

Similar to bacteria, yeast cells offer advantages such as expression of
high yielding proteins and fast cell division. On the other hand, the high
proportion of oligomannose glycan structures produced by these cells
may result in faster clearance following therapeutic treatment and/or
immunogenicity (Dumont et al., 2015). Recent advances in glycoengi-
neering have enabled yeast to produce humanized sialylated glyco-
protein (Hamilton et al., 2006), but human-like glycosylation profiles
by these organisms are still difficult to produce. Therapeutic re-
combinant proteins obtained by heterologous expression in the baker’s
yeast Saccharomyces cerevisiae include insulin peptides, hepatitis vac-
cines, human serum albumin, and virus-like particles. S. cerevisiae is
used, for example, for the production of the first FDA–approved cyto-
kine sargramostim, (Waller, 2007) and for the GARDASIL®9 vaccine
against Human papillomavirus infection (Marin et al., 2007). Another
yeast system known for its ability to produce gram amounts of re-
combinant protein as secretory or intracellularly products is Pichia

pastoris. Currently P. pastoris is used for the production of small proteins
such as human insulin, human serum albumin and for a α-IL6 receptor
single domain antibody fragment (Nanobody® ALX-0061)(Van et al.,
2015)

The use of insect cell lines, such as Sf9, Sf21 and BTI 5B1-4,
transfected with baculovirus is a well-known expression system able to
produce recombinant protein with complex glycan structures. However,
the platform produces high proportions of suspected immunogenic
sugar structures such as oligomannose and paucimannose glycans.
Another drawback is that the system is not able to produce sialylated
glycan species. On the other hand, through the use of cell engineering,
baculovirus-insect cells have become a powerful platform for vaccines
and virus like particles production. Baculovirus/Sf9 cell production
processes are increasingly adopted by biopharmaceutical companies
such as Voyager Therapeutics and Biomarin, as they produce high yield
of viral vectors per litre of culture, both for clinical or commercial scale
gene therapy products. Biomarin’s gene therapy for the treatment of
Hemophilia A (Valoctocogene Roxaparvovec) is an AAV Vector-
Mediated Gene Transfer of hFVIII produced in the Sf9/baculovirus in-
sect cell system is on track for US and EU Regulatory Submission before
the end of 2019 (Bunting et al., 2018).

Moreover, advances in baculovirus technology has led to the de-
velopment of bacmam, a baculovirus vector containing a mammalian
promoter able to express proteins in diverse mammalian cell types
(Durocher and Butler, 2009; Kost et al., 2005; Lalonde and Durocher,
2017). Three insect-cell manufactured products that have been ap-
proved and released into the market are the trivalent influenza vaccine
(RIV, Flublok™) manufactured with expresSF+® cells (Barr et al.,
2018), an immunotherapy for treatment of prostate cancer (Provenge,
sipuleucel-T) and a bivalent HPV vaccine (Cervarix, GSK), (Monie et al.,
2008).

Similar to insect cells, plants do not produce sialylated glycans. In
addition, immunogenic glycans α(1,3)-fructose and β(1,2)-xylose are
synthetized by this system. However, genetically engineered plants able
to produce glycans lacking such structures, have been used for pro-
duction of FDA-approved recombinant proteins (Durocher and Butler,
2009; Lalonde and Durocher, 2017; Walsh, 2014). The first plant cul-
ture biopharmacutical was approved by FDA in May 2012. Elelyso
(Taliglucerase alfa) is an enzyme (acid β-glucosidase) produced in ge-
netically engineered carrot cells, for treating type 1 Gaucher's disease
(Grabowski et al., 2014).

Aiming to reduce the complexity and lengthy time of protein ex-
pression by cells, cell-free protein synthesis (SFPS) systems are emer-
ging as an alternative platform to produce simple protein molecules,
with potential future clinical application (Tran et al., 2018).

2.4. Expression systems overview

Each expression system has relative strengths and weaknesses re-
lating to patient safety and therapeutic efficacy for recombinant protein
production. Table 2 represents the reputed advantages and

Table 2
Reputed advantages and disadvantages of the main expression systems for therapeutic protein expression.

Cell line Advantages Disadvantages

Mammalian Human Human PTMs, easily grown in suspension, serum-free growth Susceptible to human viral contamination and capable of producing sialyl-
Lewisx

CHO Easily grown in suspension, serum-free growth, high yields, secreted
proteins

High culture costs, challenging scale-up, risk of viral contamination, α-gal
and Neu5Gc N-glycans, inability to produce a(2-6) sialic acidsMurine

Non-mammalian Bacterial Cost-effective growth, rapid cell division, simple scale-up, high yields
of protein

Protein aggregation, formation of inclusion body, inefficient PTMs for
therapeutic IgG

Yeast Fast cell division, high titres of protein, scalability and cost-
effectiveness production, not prone to mammalian pathogens
infection

High oligomannose production
Plant α1,3-fructose and β1,2-xylose N-glycans
Insect High oligomannose and paucimannose; unable to produce sialylated

glycans
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disadvantages of each system for mammalian and non-mammalian ex-
pression systems. Most notably, mammalian have more human-like
PTMs but have a higher risk of viral contamination whereas non-
mammalian expression systems have higher yields and are faster
growing but may produce immunogenic epitopes potentially dangerous
for patients. The pharmaceutical companies are consistently striving to
improve any perceived weaknesses as well as focus on the higher
throughput of their recombinant product (unless the drug has orphan
status). As such, a balancing act is often needed to choose the best
system for their particular needs.

2.5. Cell line engineering (in vivo) for defined therapeutics

Cell line engineering enables the addition or removal of genes that
may affect the structure of synthesised proteins. The structures enable
physiochemical properties that in turn may produce desirable ther-
apeutic outcomes. Recent advances in genomics have enabled the de-
sign of expression systems with specific features. The process involves
combining a cell with an engineered vector, followed by selection of the
transfected cell lines. Selection systems are employed for this purpose
and, even though other efficient systems, such as OSCAR™, have been
developed, DHFR and GS genes remain the most popular (Lalonde and
Durocher, 2017).

Resistance to antibiotic genes is an alternative selection system. It is
also possible to insert genes that improve cell line production through
diverse approaches, such as genes to express growth factors, to control
the cell cycle, anti-apoptotic genes and proto-oncogenes. Recombinases
have been developed to target integration of transgenes in the active
euchromatin region, aiming at higher expression. The use of new nu-
cleases technology, such as CRISPR/Cas9, has emerged as a potent tool
to facilitate the transgene insertion at hotspots of the host genome, and
consequently, execute higher expression of therapeutics (Lalonde and
Durocher, 2017; Wurm, 2004).

Therapeutic activity of mAbs is often related to an effector function
such as antibody-dependent cellular cytotoxicity (ADCC), complement-
dependent cytotoxicity (CDC) or antibody-dependent cellular phago-
cytosis (ADCP), each of which is associated with a binding interaction
that depends upon the glycan structure. Cell engineering allows the
knock-in or knock-out of genes expressing enzymes involved in the
glycosylation pathway that controls these glycan structures. For ex-
ample, knock-out of fucosyltransferase FUT8 gene in CHO cells has
proved to be efficient for production of afucosylated antibodies, which
presents a dramatically higher ADCC activity (Yamane-Ohnuki et al.,
2004). Moreover, co-expression of ST6Gal1 and β4GalT1 enables pro-
duction of highly sialylated IgG. This way it is possible to rationally
design features on the glycoprotein to enhance its immune function
(Durocher and Butler, 2009; Lalonde and Durocher, 2017).

2.6. In vitro glycoengineering

The structure of N-glycans attached to the Fc portion of recombinant
proteins is of major interest for therapeutic applications. Such structure
has tremendous impact on the function and safety of the protein. It is
known that mAbs have increased ADCC activity when the level of fu-
cosylation is reduced (Umaña et al., 1999; Yamane-Ohnuki et al.,
2004). Increased galactosylation has correlated with increased ADCP
and ADCC under certain circumstances (Chung et al., 2014; Thomann
et al., 2016). Higher galactosylation can also increase CDC (Peschke
et al., 2017). Furthermore, mAbs with higher proportions of oligo-
mannose glycans are cleared faster from the organism (reduced half-
life), which can reduce IgG therapeutic effect. Therefore, diverse stra-
tegies have been developed to control IgG glycan profiles produced by
expression systems (Wang and Amin, 2014). Cell engineering, as dis-
cussed above, optimization of media and in vitro glycoengineering are
the main strategies to control glycosylation in mammalian cells.

In vitro glycoengineering (IVGE) requires the use of enzymes

(glycosyl transferases and glycosyl hydrolases) and respective sub-
strates involved in the glycosylation pathway. The greatest advantage
of this method is its efficiency to produce single and homogeneous
glycoforms. Therefore, in vitro glycoengineering is a valuable tool to
generate a library of N-glycosylated mAbs for enabling specific func-
tions in vivo and in vitro, for the development of next-generation mAbs.
Moreover, the increased availability of new enzymes and substrates can
open a new avenue for the use of IVGE on an industrial scale, delivering
biotherapeutics with improved efficacy, safety and cost-effectiveness,
once it can be integrated to the downstream processing. (Li et al., 2017;
Tayi and Butler, 2018; Tayi and Butler, 2015; Wang and Amin, 2014).
At a research and development level, this strategy provides many ad-
vantages over genetic approaches. For example, this strategy allows
scientists to provide a library of glycoengineered variants which can be
subsequently tested for desirable structure and function whereby the
entire workflow for the starting material (mAb) does not need to be
adapted. Selecting the most efficacious glycovariant would then be used
to direct a chosen path for large-scale manufacturing.

3. Process development for mammalian cell culture

3.1. Cell culture background

Mammalian cells such as CHO are the most common choice in the
production of recombinant protein therapies. Product consistency using
these expression systems is dependent upon a controlled culture based
upon parameter ranges defined by the design space of the process.
Mammalian cells which have been exposed to variable growth condi-
tions may fail to reach desired densities or their productivity may be
significantly reduced. Critical quality attribute changes including pro-
tein misfolding, variations in amino acid sequences or alterations in the
glycosylation pattern can all occur with changes to culture parameters
(Ivarsson et al., 2014). The mode in which CHO cells are grown will
therefore greatly impact their growth and productivity. When moving
towards a continuous upstream process, cell must remain stable and
maintain productivity over the lifespan of the culture. Advancements in
cell line engineering can improve cell stability and may improve pro-
ductivity. An example is the overexpression of the bcl-2/bcl-xL genes
which can impart apoptosis resistance in high density cultures (Krampe
and Al-Rubeai, 2010). Furthermore, the choice in cell culture media
will impact the performance of cells (Palm and Thompson, 2017).

3.2. Cultivation methods

Mammalian cells are typically grown in suspension for industrial
applications. The originator recombinant therapies such as
Trastuzumab®, Infliximab® and Etanercept® which were licenced at the
turn of the century were mostly suspension cultures grown in large
stirred tank reactors (Chu and Robinson, 2001). Cells were grown in
batch systems using poorly defined media, which yielded low titres
compared to today’s enhanced processes. Fed-batch cultures are now in
routine use, prolonging the cell viability by delivering optimised feeds
on specifically chosen days (Bibila and Robinson, 1995). A re-
presentation of a fed-batch culture is presented in Fig. 4. High glucose
feeds extend the period of high cell viability beyond that of a batch
process, up to two weeks. Expected titres from a fed-batch culture re-
mains around 1-5 grams per litre, however yields reaching 10 g/L of
antibody have been described (Birch and Racher, 2006; Huang et al.,
2010).

Perfusion cultures advance this concept by feeding fresh media at a
constant rate which is expressed as reactor volumes per day (RV/day),
whilst retaining cells within the system (Fig. 5). Perfusion cultures are
the primary enabler for continuous manufacturing once integrated with
a multi-column downstream setup.

Shifting towards a continuous platform has advantages; reducing
the residence time of the antibody in the culture results in a more

R. O’Flaherty, et al. Biotechnology Advances 43 (2020) 107552

8



uniform product quality profile. Proteases and secreted enzymes in the
culture broth will interact with the glycan structure on the antibody,
potentially reducing the efficacy of the product. The scale of integrated
continuous processes reduces the scale of operation of these systems,
therefore single-use technologies become a good candidate for use in-
stead of stainless steel equipment (Klutz et al., 2015). In order to fa-
cilitate the advancement in continuous upstream technologies, there
must exist a purification train that can handle the culture volumes that
are been produced (Zydney, 2016). Multi-column skids that can be
switched to prevent product losses through overloading of resin exist,
which in turn returns better resin utilisation when compared to

traditional batch loading cycles. Virus inactivation in continuous sys-
tems remains a challenge however, especially for viral filtration steps
where the potential for filter fouling is high.

Many of the traditional fed-batch bioreactor design concepts can be
applied to perfusion cultures. Inputs for control of critical process
parameters and a robust feedback loop must be present. Examples of
critical process parameters that will have an impact on product quality
include temperature, dissolved oxygen content, pH and agitation (del-
Val et al., 2010). The complexity of a perfusion reactor is increased
however when we consider the recirculation of cells. The method of cell
separation must not be prone to fouling/shearing or else the efficiency
of the perfusion system may be lost over time. An increased emphasis
must also be placed on monitoring cell viability and density values. If
the viability of the culture does not remain constant then productivity
can be severely impacted. Chemostat cultures maintain a constant
culture volume over an indefinite amount of time. The system is kept in
steady-state by setting a media flow in-rate that matches the removal
rate of cells and spent media. Nutrient availability governs the specific
growth rate; cells will maintain a density where there are enough nu-
trients to support growth but none in excess.

Notwithstanding the challenges currently facing downstream con-
tinuous processing, the genetic instability of cells over a period of time
is therefore the new limiting factor when determining culture duration
(Kim et al., 2011). The replenishment of fresh nutrients and the removal
of cellular by-products such as ammonia and lactate allow for a more
consistent product quality profiles in chemostat cultures. To increase
product titre values however, the cell density must be increased beyond
what is possible in a chemostat culture. A “closed” system is preferred,
where cells are retained within the system whereas spent media is re-
moved. Perfusion cultures build upon the chemostat principle by re-
taining cells that would otherwise be lost through bleeds through the
use of a hollow fibre membrane. Cell densities exceeding 6x107 cells/
mL are commonly reported (Chotteau et al., 2014; Karst et al., 2017; Xu
and Chen, 2016). The residence time of the product in culture is re-
duced significantly, this is especially important for fragile products
which may be prone to degradation. In the case of mAbs where the
residence time is not as crucial, perfusion rates as low as 0.5 RV/D are
typical.

Fig. 4. A representation of a batch (left) and fed-batch culture (right). Batch
cultures are favoured during scale-up steps in a bioprocess, whereas batch
cultures are employed during the final upstream step. A feed source is added to
the production bioreactor on pre-determined days to prolong the viability of the
culture beyond that of a batch system.

Fig. 5. A representation of a perfusion system. To produce a similar quantity of antibody in comparison to batch and fed batch models, the required perfusion
bioreactor is much smaller. However, a large media hold vessel is needed to supply perfusion media at the required rate over the duration of the culture.
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There exist a few different methods for implementing a perfusion
system (Voisard et al., 2003). The most common method of separating
cells in a perfusion setup is through the use of porous membranes. Spin
filters were previously used for perfusion applications, however they
have lost popularity due to scale up difficulties associated with filter
fouling (Deo et al., 1996). The authors observed that expected versus
actual flow rates across the filter were not consistent as the duration of
the culture increased, and the pore size of the filter had to be increased
due to fouling, resulting in excessive product loss. To reduce the po-
tential of filter fouling, a self-clearing membrane was devised. Examples
of membrane systems include tangential filtration flow (TFF) and al-
ternating tangential flow (ATF) (Karst et al., 2016). Both methods work
on a similar principle; culture broth is fed tangentially onto a mem-
brane of a defined pore size. The pore size of the membrane allows
media to flow through (filtrate) whereas cells (retentate) continue to
pass along the feed stream. The retentate stream is fed back to the
bioreactor whereas the filtrate is captured offline. The flow of the cul-
ture across the membrane tangentially reduces the potential for filter
fouling. In TFF applications, the feed stream travels in a single direction
across the membrane. ATF systems include a pump that can create a
bidirectional flow across the membrane, further reducing the potential
for filter fouling. Evidence suggests that TFF systems are prone to re-
taining significant levels of produced mAb (up to 50%) when compared
to an identical ATF system (Clincke et al., 2013). Both systems are
scalable with proven success.

3.3. Scale up/scale down considerations

The scaling of cell cultures is a delicate process that must be per-
formed sequentially over a number of passages. Mammalian cells pro-
duce growth factors which activate metabolic pathways such as glucose
and amino acid transporters (Palm and Thompson, 2017). In the ab-
sence of sufficient growth factors due to a non-optimised scale up
system, cell proliferation may be reduced. The challenges associated
will process scaling are further heightened when considering that they
are often cell line and process specific. A high throughput experimental
screening design should be developed to analyse process variables. In
essence, the cells should be grown and passaged in conditions that are
uniform throughout all steps in the scale-up train. However, equipment
design and volume changes will have an effect on how these parameters
are controlled (Nienow, 2006).

Although the focus of industry is to increase the scale of processes to
meet market demands, there is also a justification for scaling-down
processes to allow for the use of disposable technologies. 20,000 L
stainless steel production bioreactors are common in single product
manufacturing facilities, whereas agile single use technologies are often
10-fold smaller in scale and allow for greater flexibility (Jacquemart
et al., 2016). Fed-batch processing in stainless steel was used as a
platform for the originator drug products, but they are inefficient in
terms of their productivity output. Furthermore to cope with increased
flow rates, downstream columns are oversized to ensure no loss in
product. Single use bioreactors allow for a more flexible process, con-
sidering multi-product facilities.

3.4. Process monitoring

Next generation manufacturing aims to automate or eliminate the
need for offline sampling through the use of robust process analytic
technologies (PAT). This data should be collected in real time and to
identify process variability to a high degree of accuracy (Read et al.,
2010). The control strategy that is in place should be robust enough to
maintain all critical process parameters within their characterised
ranges. Current dissolved oxygen, pH and temperature probes are
capable of continuous monitoring with a high degree of sensitivity.
Routine offline sampling is typically sufficient for monitoring cell
health and productivity in batch cultures but this can prove problematic
in perfusion when bleeding of the bioreactor is dependent on cell
density values. Non-optimised cell bleeds can lead to excessive product
loss or increased media losses, therefore an online sensor capable of
measuring cell biomass or density in order to feed back into the process
control loop would be desirable.

Cell measurements are a fundamental aspect of cell culture that is
performed at development and commercial scale. An overview of
measurement techniques are provided in Fig. 6. The viability and
density of cells is a key indicator as to how the process is performing.
Trypan blue dye exclusion testing is a widely accepted standard for the
analysis of cell density and viability (Cadena-Herrera et al., 2015).
Trypan blue is excluded from cells which have an intact membrane; loss
of membrane integrity is an indicator of cell death, resulting in the
inclusion of the dye. Automated cell counters can distinguish live and
dead cell populations based on this principle. Basic standardised pro-
tocols are available in the literature to perform a trypan blue exclusion
test (Strober, 2015). Due to the destructive nature of adding dye to
cells, offline samples of the culture must be taken to perform counts.
The loss of membrane integrity is a late stage apoptotic event.

The measurement of cell capacitance to measure bulk biomass has
shown comparable results to trypan blue exclusion during the ex-
ponential growth of cells (Braasch et al., 2013). Biomass probes work
on the principle of measuring electrical capacitance (C). Cell cytoplasm
is highly conductive due to the high salt and ion concentration. The cell
membrane is non-conductive, therefore the cells act as small capacitors.
When an electric field is applied, the positively charged ions will

Fig. 6. Methods of analysing cell culture viability. (Top) In-line capacitance
probes measure the bulk capacitance of the biomass in a cell culture. Live cells
will build a charge on their outer membrane as the ions within the cell migrate
towards the poles of the probe. When the cell has become compromised, this
ability to hold charge in the cell is lost. (Middle) Optical systems can image cells
in real time, allowing for classification of physical cell parameters such as the
circularity and size of cells. Cells which have entered apoptosis will exhibit
different physical attributes in comparison to a healthy specimen. (Bottom)
Trypan Blue exclusion is the current industry standard. Cells which have been
dyed blue have a compromised outer membrane which allows the Trypan Blue
to penetrate. A digital counter is then used to count both the live and dead cell
populations in a sample.
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migrate in the direction of the electric field whereas the negatively
charged ions will flow in the opposite direction. The ions within the cell
cytoplasm will travel until they reach the membrane, which acts as an
insulator. A charge separation is formed within the cell; the greater
number of cells results in a higher capacitance reading (Carvell and
Dowd, 2006). The frequency of the electric field will have an effect on
cell capacitance; capacitance readings will drop dramatically if ions
cannot reach the cell membrane due to high frequency values. It is
important to optimise the frequency at which measurements are taken.
The critical frequency (fc) is the frequency at which ΔC = 0.5. A fre-
quency sweep is performed, and the readings are taken at a suitable
frequency that provides a stable capacitance reading. The use of a
commercially available biomass probe has been cited in literature
(Karst et al., 2017), with additional emphasis on their application of
controlling the cell bleed from a perfusion process.

Given the multiple methods of examining the health of cell cultures,
we must examine the best methods used throughout academic and in-
dustrial applications. At what phase of apoptosis should we consider a
cell as no longer viable? The late stage of apoptosis is the current in-
dicator that is routinely analysed through the use of trypan blue ex-
clusion, however the use of novel techniques may provide an earlier
reading that the culture is losing its viability. Furthermore, optical
systems have reached the market that will capture images of cells in
real time which will allow for in-depth analysis of morphological shifts.

4. Cell culture medium development

Culture medium is a crucial part of cell culture which can simply be
defined as a liquid or gel that supports the growth of cells and provide
them with suitable amount of growth factors, vitamins, minerals, glu-
cose, and amino acids. Basically, culture media are classified into nat-
ural and synthetic media (Arora, 2013). The natural media rely on the
presence of the naturally occurring biological materials including bio-
logical fluid such as serum, human placental cord serum, and amniotic
fluid. The second types of natural medium includes tissue extracts such
as hepatic, spleen, tumours, bone marrow, the bovine embryo, and
chick embryo extracts. Plasma clots and coagulants can be another form
of natural media. The main shortcomings are the complex and un-
defined nature of these media which makes the outcomes poorly re-
producible (Morgan et al., 1950). On the other hand, the synthetic or
the artificial media provide a fruitful avenue for research and devel-
opment.

Essentially, media are sub-categorized into four groups. Serum
containing medium is the one of the most frequently used culture media
which is based on using fetal bovine (calf) serum (FBS) as the sole or
main added component to basal media. Generally, serum from small
animals is superior over the adults due to the fact that it contains less γ-
globulin content which induces less antibody interactions and thus less
negative impact on cell growth (Astori et al., 2016). Serum provides a
plethora of bioactive components including proteins, vitamins, mi-
nerals, growth factors and hormones that supply cells with all the es-
sential nutrients as well as boost cell proliferation and improve specific
cells function (Gstraunthaler et al., 2013). Furthermore, it contains
several carrier mediators such as albumin and transferrin which deliver
a variety of vitamins, hormones, and lipophilic molecules into the cells.
In addition, serum can improve cells’ anchor and adhesion to substrates
by the pivotal role of fibronectin. The presence of protease inhibitors
and some metals such as calcium, iron, zinc, and magnesium protect
cells against proteolysis. Serum is a viscosity enhancer that can protect
cells against shear stress, particularly in suspension culture. It also acts
as a buffering agent (Arora, 2013; Yang and Xiong, 2012). However, the
main disadvantages of serum include lack of reproducibility due to
batch to batch variation. This variation is due to the fact that serum
contains ill-defined amounts of bioactive components including growth
factors, trace elements, hormones, and proliferation-driving transcrip-
tion factors. These components are quite variable among different

batches of serum which can cause inconsistent cell growth, as well as,
altering cellular response to chemicals. Subsequently, the comparison
among different research groups and laboratories are unreliable
(Dimasi, 2011). Serum represents an important source of contamination
caused by microbes with such bacteria like mycoplasma, viruses,
prions, fungi, and yeasts, as well as endotoxins (Doucet et al., 2005;
Urbano and Urbano, 2007). In addition, some of FBS components can
be metabolically incorporated into the culture cells and expressed as
surface-linked molecules such as antibodies or receptors which ad-
versely affects the interaction and response of cells to surrounding en-
vironments (Bauman et al., 2018). The other important drawback of
serum is the ethical considerations due to the inhuman and harsh way
to collect the serum from calves via cardiac puncture which is asso-
ciated with suffering and pain. Reports refer that more than a million
calves are sacrificed each year to get 500,000 litres of FBS (Jochems
et al., 2002; Tekkatte et al., 2011). Economically, serum costs and de-
mands have been constantly rising despite the shift of industrial com-
panies to produce serum free medium for recombinant protein pro-
duction (Brindley et al., 2012). Logistically, the production cost of
serum has also increased due to the implementation of the good man-
ufacturing practice (GMP) on the infrastructure and animal breading
facilities. As an approximate 3 calves are needed to get 1 L of serum,
breeding animals for serum production is not a cost efficient business
for farmers (Bauman et al., 2018). Although serum is well-known to
have a growth stimulatory components, some components in serum can
interact with other media additives forming highly toxic compounds.
For instance, polyamine oxidase can interact with added polyamines
such as spermine and spermidine forming highly toxic poly-spermine
(Yang and Xiong, 2012).

The second type is culture media without serum which are further
classified into serum-free media, animal-derived components free
media, protein-free media, and chemically-defined media. While serum-
free media refer to the use of supplements other than serum such as
discrete large proteins from plant or animal tissues, they contain several
undefined components, for instance, animal or plant hydrolysates. The
animal-derived components free media are free from any animal or
human components, instead they contain catalysts, nutrient broth, en-
zymes, plant hydrolysates and cell-culture derived recombinant pro-
teins such as hormones, growth factors, and cytokines (Grillberger
et al., 2009; Karnieli et al., 2017). Protein free media contain only
hydrolysates or digested proteins or low-molecular weight proteins
such as insulin. These media, in addition to supporting cell growth and
productivity, facilitate the downstream processing of protein isolation
and purification. However, they may contain some poorly identified
components such as lipids, therefore they are not deemed as chemi-
cally-defined media (Karnieli et al., 2017; Valk et al., 2010). Chemi-
cally-defined media contain chemically and structurally defined organic
or inorganic components. They also contain recombinant proteins such
as hormones, growth factors and cytokines that are manufactured by a
specific cell line or produced in bacteria or yeast. The main advantages
are good reproducibility, no ethical issues, and defined composition.
For this reason, many biopharmaceutical companies are now shifting
from their existing manufacturing processes with animal derived pro-
ducts to chemically defined media. However, the main drawbacks are
the potentially higher costs, cell-type specificity and need for longer
periods of cellular adaptation (Bauman et al., 2018).

4.1. New approaches in culture media developments

Several novel approaches have been introduced into the field of-
culture media optimization, including multi “omics” technologies such
as proteomic, genomic, epigenomic, metabolomic, transcriptomic and
glycomics that enable better understanding of cell metabolism and
provide novel insight into the molecular mechanisms which may help
in developing strategies to improve cellular production machinery
(Stolfa et al., 2018). A study by Schaub et al compared the gene
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expression of mAb-producing cell line under two different media for-
mulations. The study showed that different media formulations of lipid
can affect gene expression causing high or low antibody titres. Fur-
thermore, based on the transcriptomic data, optimization of lipid me-
tabolism resulted in a significant improvement of the differential gene
expression and therefore, increased antibody titre by 20% (Schaub
et al., 2010). The use of a proteomic approach to optimise media
composition plays an integral role in minimising the accumulation of
toxic byproducts and growth inhibitors. Some studies used high per-
formance liquid chromatography (HPLC) combined with mass spec-
trometry (MS) to characterise media components, intracellular and
extracellular metabolites of amino acids, and growth-related pathways
that detrimentally affected cells proliferation and productivity (Chong
et al., 2009; Chong et al., 2011; Constantin et al., 2007; Selvarasu et al.,
2012). Another study used nuclear magnetic resonance (NMR) and MS
to qualitatively and quantitatively analyze the toxic metabolites that
were accumulated in spite of well controlled lactate, NH3, and osmol-
ality levels (Emwas et al., 2019). The use of such powerful -omics
techniques necessitate a careful titration of certain monoacids including
aromatic amino acids such as phenylalanine, tyrosine, tryptophan, as
well as methionine, leucine, serine, threonine, and glycine which were
found to produce toxic end by-product, therefore, they should be added
at a level matches the rate of consumption (Mulukutla et al., 2017).

As the accumulation of toxic metabolites and depletion of nutrients
induce the activation of signalling pathways such as autophagy or
apoptotic cell death, addition of autophagy inhibitors (Baek et al.,
2016; Kim et al., 2013) or apoptosis inhibitors (Butler, 2005; Tintó
et al., 2002; Zanghi et al., 2000) can improve cell longevity. However,
these inhibitors are quite expensive and add more cost for the overall
media formulation costs. The newer approach involves adding growth
factors such as Insulin, IGF−1, and LongR3 which have been found to
counteract apoptosis, thus improve cells growth and productivity
(Adamson and Walum, 2007; Morris and Schmid, 2000).

The addition of certain chemicals such as histone deacetylase in-
hibitors, namely, valproic acid and sodium butyrate to the culture
media can improve cell growth via making the growth genes more
accessible for transcription as well as, improve cell productivity due to
the fact they can arrest cells at G1 phase and thus increase the popu-
lation of cells at the productive phase (Backliwal et al., 2008b; Chen
et al., 2011; Mimura et al., 2001; Yang et al., 2014). However, a careful
titration of concentration and timing is required for those chemicals as
they can induce detrimental effects to the overall cell growth and
productivity (Ritacco et al., 2018).

Recently, some feeding strategies have successfully improved the
overall growth rate and antibody titre by manipulating the amount of
nutrients consumed by cells and thus reducing the overall inhibitory
metabolites and waste products. For instance, implementation of a
glucose feeding pump called HIPDOG (Hi-End pH-Controlled Delivery
of Glucose) was shown to significantly increase cells proliferation,
specific and overall antibody productivity (Hiller et al., 2017). In-
creased lactate consumption by the cells and the subsequent rise of the
media pH activates the pump and delivers more glucose to the media,
which is then consumed by cells and lactate is produced thus re-bal-
ancing the pH (Gagnon et al., 2011). This technique was successfully
applied for the hybrid perfusion and fed-batch process in which the rate
of perfusion is regulated by pH (Hiller et al., 2017). Another study
provided a fruitful avenue for dynamic feeding strategy based on
adding optimised medium at a specific rate calculated based on online
capacitance cell density measurement or glucose monitoring which was
associated with a substantial increase of antibody production (Lu et al.,
2013). Other researchers have shown that the use of lactate and pyr-
uvate along with fully optimised media formulation can markedly
minimize the accumulation of toxic CO2 and NH3, as well as synergis-
tically increase the population of growing cells and subsequently, their
antibody productivity (Li et al., 2012).

One of the newer approaches of culture media development

involves the addition of nucleotides such as deoxyuridine to fed-batch
culture of CHO cells to maximise IgG production. Furthermore, a sy-
nergistic improvement of cell productivity was reported following the
addition of pyrimidine nucleosides including deoxycytidine, deoxyur-
idine, and thymidine to the fed-batch culture with subsequent increase
of cell productivity to more than 9g/L of mAb producing CHO cells and
more than 4g/L of Fab fragment concentration in a fed-batch culture
containing Fab fragment expressing CHO cells during 16 days of culture
(Takagi et al., 2017).

5. Critical quality attributes

The International Conference for Harmonisation (ICH) defines cri-
tical quality attributes (CQAs) as a physical, chemical, biological, or mi-
crobiological property or characteristic that should be within an appropriate
limit, range, or distribution to ensure the desired product quality. CQAs have
been identified both for biological drugs and the process that have been
used to manufacture them (Yu et al., 2014).

The heterogeneity of biopharmaceuticals has already been discussed
at length in the literature (Sandra et al., 2014; Tejwani et al., 2018).
Originally, the identification and characterisation of CQAs has provided
a standardised approach to ensuring that each batch of drug had the
same efficacy as previous batches. However, as many patents on bio-
pharmaceutical drugs have expired and biosimilars have entered the
market, the analysis of CQAs arguably has become even more im-
portant. Biosimilars closely mimic the original drug product and can
offer more affordable treatment for patients. The analysis of CQAs is the
first step in demonstrating the biosimilar is safe for consumer use and
shows equivalent (or better) efficacy (Gaughan, 2016).

The required testing to assess CQAs for biological drugs has been
broken down into three main areas: analytical testing (glycosylation,
aggregation, fragmentation), binding assays (e.g. enzyme-linked im-
munosorbent assay (ELISA)), and cell based potency tests. Analytical
testing has also been used to evaluate process CQAs. Any media buffer
components or supplements must be tested to confirm purity and the
absence of any contaminants. In addition, host cell proteins must be
removed from the culture media. The ICH has produced guidelines that
relate to identification and testing CQAs (European Medicines Agency,
2011).

5.1. Glycosylation

As mentioned above, glycosylation has been identified as CQA for
biopharmaceutical drugs. The glycosylation profile has the ability to
alter the stability, half-life, bioactivity and other physiochemical
properties of the drug (Zhang et al., 2016). Glycosylation of a protein
produced by a mammalian cell involves PTMs. The process in which
glycans are attached is complex and involves a host of cellular ma-
chinery, this process has been described elsewhere in the literature
(Tejwani et al., 2018; Dang et al., 2019). Glycan heterogeneity can be
attributed to many factors: cellular processes in the endoplasmic re-
ticulum and golgi apparatus, availability of substrates, and enzymatic
functions such as glycosyl transferases and glycosyl hydrolyazes. An-
other reason is that glycosylation is also affected by the conditions in
which the cells are cultured (Hossler et al., 2017). Differences in media
composition, pH, agitation, and media supplementation have been
shown to alter the glycan profile (Sha et al., 2016). Mammalian cells,
such as CHO cells are used to produce therapeutic proteins that have
human-like glycans. However, they also have the ability to produce
non-human glycans that would have a negative immunogenic effect to
human such as αGal epitope (Ramm et al., 2015) and NGNA (N-glycoyl
neuranimic acid).

The variation discussed above relates to variation of the glycan
pattern at a specific site; this is termed micro-heterogeneity. Macro-
heterogeneity is used to describe variation of the location of the gly-
cosylation and also the number of glycans present on the protein
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(Zhang et al., 2016). Given the inherent heterogeneity in glycan profiles
and the risk of producing non-human glycans, the glycan profile must
be accurately determined and warrants its designation as a CQA.

5.2. Challenges of modern therapeutics

As stated previously, biopharmaceutical drugs are complex proteins;
and as such evaluating CQAs presents a significant challenge. In addi-
tion to heterogeneity, the molecular weight of the drugs can span 3
orders of magnitude, for example insulin has a molecular weight of
approx. 5 kDa while mAbs can have a molecular weight in excess of
100 kDa. Traditional techniques used for small molecule drugs have
limited application to their biopharmaceutical counterparts.

NMR has been used extensively for the structural elucidation of
small molecules but the large molecular weights of modern bio-
pharmaceutical drugs exceed the capabilities of traditional NMR.
However, modern approaches using solid phase NMR may open up
more avenues in the future. One limitation of NMR is it only provide the
average signal across the entire protein. Conventional 1D NMR would
not detect areas that have been folded incorrectly or contaminants in
low concentrations. 2D NMR can be used to determine primary, sec-
ondary, tertiary and quaternary structures of therapeutic proteins
(Sauve et al., 2008). Typical experiments include heteronuclear 1H,
15N- or 1H, 13C correlated NMR (Brinson et al., 2019; Sauve et al.,
2008).

In addition to ensuring that any therapeutic protein produced
matches the appropriate CQAs, care must be taken to confirm that in-
process impurities in the final drug formulation are below the accepted
limits. An example of typical contaminants arising from biopharma-
ceutical production are host cell proteins (HCP)(Gilgunn and Bones,
2018). The presence of HCP in biopharmaceutical batches can reduce
product purity, which is another CQA. Interestingly, neither the
American or European regulatory guidelines do not specify what an
acceptable level of HCPs are, although industry strive for total HCP
value of less than 100 ppm in the final drug product (Vanderlaan et al.,
2018). Currently the gold standard for HCP detection is ELISA, although
this test does not provide information on specific HCPs (Tscheliessnig,
et al., 2013); alternatively LC-MS may be used. This approach has
several advantages including, specific identification of HCP, high sen-
sitivity, and quantitative results. However, development of methods can
require significant experience, and the cost of an LC-MS instrument may
be prohibitive for smaller labs (Thompson et al., 2014).

Analysis of CQAs must be conducted before the drug enters Phase I
clinical study. The cell line must be fully evaluated to ensure that
mutations have not occurred during routine cell culture. The cell line
must also be sterile and free from mycoplasmic contamination.

5.3. Recent trends in techniques

As the assessment of CQAs can increase batch release times, recent
trends in techniques have attempted to shorten analysis times
(Alekseychyk et al., 2017). This has been accomplished in several ways:
improvement of instrumentation, development of high-throughput
sample preparation methods.

Reversed-phase and HILIC (Hydrophilic Interaction
Chromatography) chromatography separations have been used ex-
tensively for analysis of biopharmaceuticals (Ikegami, 2019; Stockmann
et al., 2015). They have been applied across each CQA from de-
termining the sequence of amino acids in the protein to assessing the
glycan profile. In a standard instrument set up, samples are analysed by
only one stationary phase at a time. 2D-LC has gone some way to im-
prove this by “heart-cutting” sections of the chromatogram and di-
verting them to a second, orthogonal stationary phase (Sandra et al.,
2017).

The development of high-throughput methods has also received
increased attention in an effort to cut analysis time, particularly for N-

glycan analysis (Varadi et al., 2014). Typically, glycans are analysed by
enzymatic cleavage from the mAb before being derivatised by 2-ami-
nobenzamide (2-AB) to increase detectability by fluorescence detection
or mass spectrometry. One approach that has recently been developed
is the parallel analysis of transferrin and sample preparation of its as-
sociated N-linked glycans on a microfluidic compact disc platform with
subsequent analysis by MALDI-MS (Quaranta et al., 2016). Samples
loaded on a single CD can be processed in 3.5 hours, and showed good
reproducibility with %RSD less than 15%. In the future miniaturised
techniques like these could be used as a complementary analysis to the
traditional LC based approach.

6. Conclusion

Advances in manufacturing of recombinant proteins have moved at
a swift pace over the past decade. Mammalian cells still remain the
most popular choice at present, in part due to historical reasons as
biopharmaceutical companies seek to harness/reemploy existing facil-
ities, processes from other products and also due to the fact that their
glycosylation closely mimics that of human glycosylation.
Glycosylation of a recombinant protein is tightly linked to biological
function and can impact on its safety and efficacy. If however, new
advances using other expression systems can mimic human glycosyla-
tion or generate favourable glycosylation for therapeutic efficacy, there
may be dramatic shift in the landscape. Notwithstanding the advances
in cell line engineering, development of chemically defined media and
product characterization, one of the most prominent trends in bioma-
nufacturing of mammalian cells is the shift towards continuous bio-
processing to enhance product throughput, process speed and minimize
costs. Continuous upstream processing has been well adapted by in-
dustries and is now well established in many biopharmaceutical in-
dustries in their research and development sites and is incrementally
being introduced into their manufacturing sites. However downstream
continuous culture remains the bottleneck and warrants some more
time and cost investments. Lastly, the bioprocesses for next generation
therapeutics including fusion proteins, bispecifics and cellular and gene
therapy products will all benefit from current advances in mammalian
cell production and will also present new unique challenges to over-
come in the future.
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