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A B S T R A C T

Electricity load forecasting is an important part of power system dispatching. Accurately forecasting electricity
load have great impact on a number of departments in power systems. Compared to electricity load simulation
(white-box model), electricity load forecasting (black-box model) does not require expertise in building
construction. The development cycle of the electricity load forecasting model is much shorter than the design
cycle of the electricity load simulation. Recent developments in machine learning have lead to the creation of
models with strong fitting and accuracy to deal with nonlinear characteristics. Based on the real load dataset,
this paper evaluates and compares the two mainstream short-term load forecasting techniques. Before the
experiment, this paper first enumerates the common methods of short-term load forecasting and explains the
principles of Long Short-term Memory Networks (LSTMs) and Support Vector Machines (SVM) used in this
paper. Secondly, based on the characteristics of the electricity load dataset, data pre-processing and feature
selection takes place. This paper describes the results of a controlled experiment to study the importance
of feature selection. The LSTMs model and SVM model are applied to one-hour ahead load forecasting and
one-day ahead peak and valley load forecasting. The predictive accuracy of these models are calculated based
on the error between the actual and predicted loads, and the runtime of the model is recorded. The results
show that the LSTMs model have a higher prediction accuracy when the load data is sufficient. However, the
overall performance of the SVM model is better when the load data used to train the model is insufficient and
the time cost is prioritized.
1. Introduction

There are many driving factors that make accurate electricity load
forecasting models a pertinent issue, the most obvious and pressing of
which is climate change. Carbon emissions are one of the most signifi-
cant driving forces of climate change and with data being published [1]
that shows carbon emissions rates are increasing, a solution is urgently
needed. Emissions from electricity generation account for the 25% of
the whole worldwide emissions [2]. Because of physical limitations in
storing electricity, the production, transmission, and consumption of
electricity must be carried out simultaneously with its demand [3],
therefore the power supply and power consumption need to maintain
a dynamic balance.

Considering buildings accounted for an estimated 41.1% of primary
energy and 74% of the electricity, the necessity for accurate energy
prediction models for buildings is obvious. According to [4], more
than 25% of the 713 GW of the U.S electricity demand in 2010 could
be dispatchable, meaning created and used on demand if buildings
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could use advanced building energy systems and employ advanced
forecast techniques. This is massively appealing, not only because it
will slow down climate change, which is projected to wreak irrevocable
damage to the planet, but also partly because of the financial incentive
tied to lowering carbon emissions for governments. The Effort Sharing
Regulation [5] adopted by the European Union in 2018 sets out to
lower carbon emissions across the EU by 30% before 2030. Under
this regulation, if targets are not met for one member state, one
available option is to buy carbon credits from member states who have
exceeded their goals. Therefore, there is not only financial incentive
for governments to reach their emission goals, so as to not have to pay
for extra carbon credits, but also to surpass expectations and generate
revenue through selling surplus carbon credits.

On a more demand node level, the introduction of accurate short
term electricity forecasting will allow building operators to save money
as they are no longer paying to offset wasted energy which could have
been dispatched on-demand instead. Amidst the backdrop of climate
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change, coupled with the granular benefits of load prediction, it is easy
to see why the pursuit of an accurate, scalable, and complete energy
prediction solution is desirable. Accurate electricity load forecasting
contributes to the supply demand stability of the power grid and
it can provide a reference for the planning and operation of power
systems [6], often through demand response programs. Demand Re-
sponse (DR) is one of the Demand Side Management (DSM) measures
that has been promoted as a mechanism to increase the percentage
of renewable energies in the system [7]. It is defined as ‘‘changes
in electricity use by demand-side resources from their normal con-
sumption patterns in response to changes in the price of electricity
or to incentive payments designed to induce lower electricity use at
times of high wholesale market prices or when system reliability is
jeopardised’’ [8]. A DR signals by a demand response aggregator or
Trasmission System Operator (TSO), triggers the intentional reshape of
the electricity demand profile. The variation can be measured as level
of instantaneous demand or total electricity consumption deferred. DR
assets can dynamically change the electricity demand curve, provid-
ing peak shaving, frequency control, load shifting and load forcing
measures [9].

Therefore, predicting peak demand and short term forecasts could
support energy management systems devices to actuate optimal strate-
gies during demand response events [10]. Depending on the time
period, electricity load forecasting can be divided into four types,
which are very short-term, short-term, medium-term and long-term
load forecasting [6,11].

• Very short-term load forecasting (VSTLF) focuses on electricity
load within 1 h in the future. It is mainly used for real-time safety
analysis of power systems and monitoring the operation of power
equipment [12].

• Short-term load forecasting (STLF) refers to one-day ahead and
one-week ahead load forecasting. In the four types of electricity
load forecasting, STLF has important practical significance, which
can help with electricity dispatching and management in power
systems [13,14].

• Medium-term load forecasting (MTLF) focuses on predicting elec-
tricity load in the coming weeks or months. It is used for the
operation and maintenance of power systems [15].

• Long-term power load forecasting (LTLF) is used for long-term
planning of power systems. It is mainly used to predict the
electrical load for the next year or even years. [16].

The work described in this paper focuses on STLF, which is an
ntegral part of the smart grid in order to estimate the future electricity
oads accurately and minimize errors between actual and predicted
oads, which can help to improve the utilization of power generation
quipment and the effectiveness of economic dispatch [14]. Predictive
nergy demand techniques for buildings can be broadly divided into
hite-box model and black-box model [17]. The former is physics-
ased model, which requires expertise in the field of building. The
hite-box model uses building energy simulation software with a set of
etailed physical rules and building information to generate electrical
oad data [18]. The latter is used to find the correlation between elec-
rical load and historical load data [3]. It is also known as a data-driven
odel, which does not require physical information about the building,

ut requires sufficient historical data [19]. Recent research is focused
n exploring predictive techniques for electricity demand, targeting
mproving the accuracy of forecast results, whether using white-box
odel or black-box model. The white-box model is an essential tool

or calculating and analyzing the building energy load and has been
idely used [20]. The core of the white-box model is to transform

he basic physical characteristics of the building into corresponding
imulations [21]. If most of the detailed building information and en-
rgy transfer processes are considered in the BES model, the prediction
ccuracy of these models is high. However, some detailed data may not
2

be available to the user during the simulation process, resulting in poor
prediction performance [22]. The white-box model is computationally
expensive and has a long development cycle. Many researchers have
tried to simplify the white box model, however, the simplifications
cannot solve the above problems and are prone to errors [21]. The
black-box model predicts the electricity load by learning from historical
load data and some external factors. It can avoid the inadequacy of
the white-box model given that detailed building information is not
required [22]. In addition, the high stability and accurate prediction
of the black-box model is also the reason why the increasing number
of research is taking place [19]. In the early stages of black-box model
development, traditional forecasting methods for modeling electricity
load through stochastic processes are widely used. They are the easy-to-
use predictive methods that associate electricity load data with impact
variables. Kalman filter [23], Time series analysis [24] and statistical
regression [25] are typical representatives of such methods. These
algorithms have the advantages of fewer parameters, lower computa-
tional complexity, and greater interpretability. They are able to achieve
good forecast results when dealing with highly stable, periodic elec-
tricity load datasets. With the rise of machine learning, many network
structures and training algorithms have emerged. These algorithms
have powerful learning capabilities and the ability to handle complex
nonlinear functions to adapt to the complex influencing factors [26].
Currently, among the most common technologies for electricity forecast
there are Artificial Neural Networks (ANNs) [22] and Support Vector
Machines (SVM) [27]. In [28], Support Vector Machines (SVM) are
highlighted as the most accurate option for forecasting electricity load,
with similar levels of complexity and accuracy of deep neural networks.
Support Vector Machines (SVM) do suffer from some disadvantages
not seen in ANNs such as low running speed. This is an issue, most
notably in projects with large scope. Unfortunately this is a widespread
issue with models which are accurate to a fair degree requiring a
large computer memory and processing or computation time [29]. The
upside of using Support Vector Machines (SVM)s is that they require
few inputs, so this means the feature selection process is easier. They
are also notable for having a relatively simple training process due to
requiring a few inputs as mentioned earlier [21]. Statistical regression
models are a prominent option for forecasting electricity load. These
models are beneficial for evaluating the importance of potential inputs
for models but struggle with short term predictions, with a relatively
large amount of inaccuracy in this field.

A hybrid model is proposed [30] based on improved empirical mode
decomposition (IEMD), autoregressive moving average (ARIMA) and
wavelet neural network (WNN). The model is said to perform better
in comparison to SVMs based upon case study data from America
and Australia and can provide a robust, stable and accurate prediction
result. A method is introduced [31] based on Gaussian Process Regres-
sion (GPR) which also incorporates physical insights about load data
characteristics. It achieved an accuracy of up to 94.38% and 99.26% for
long- and short-term forecasting, respectively, although interestingly as
training data and forecast length increased, so did prediction error.

A new framework based on Long Short-Term Memory (LSTM) Net-
work moving window-based technique is described by [32]. LSTMs
are a form of Recurrent Neural Network, which excel at time-series
forecasting due to ‘‘maintaining a memory cell to determine which
unimportant features should be forgotten and which important features
should be remembered during the learning process’’. This approach is
said to outperform regression models, Support Vector Machines and
Artificial Neural Networks. Recurrent Neural Networks can be used to
predict electricity demand efficiently. There are numerous advantages
such as handling non-linear complexities, minimum prediction errors
and ease of generalization. Research into Long Short Term Memory
(LSTM) shows promise, with many studies being conducted to show
the efficacy of the model in handling time-series [32–34]. One such
study cites the use of Convolutional Neural Network (CNN) layers in

conjunction with LSTM layers as a method of improving accuracy [34].
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The ability of Recurrent Neural Networks, and more specifically LSTMs
alongside CNNs to make proven accurate predictions using time-series
data makes them a model for consideration.

The aforementioned papers reproduce and improve the forecast
models’ accuracy using LSTM methods and compare with the perfor-
mance of ANN and SVM on historical energy demand dataset. In the
literature, the applicability of the methods on existing demand response
programs is limited. The novelty of the current work is the use of
the forecast models to predict both the electricity demand, daily peak
load and valley load to dynamically optimize the local generator, the
thermal storage and the demand for a new highly efficient commercial
building equipped with advanced control systems, which is also a
demand response unit. Additionally, the work explores the model’s
adaptability through multiple cases — on one-hour ahead load forecast-
ing and one-day ahead peak and valley load forecasting that could be
used to schedule demand response measures in response to grid signals.
Such an objective has been validated comparing the performance of
forecasting techniques and adapt the test cases for specific demand re-
sponse programs such as day-ahead scheduling, and secondary reserve
time resolution. The effects of outliers’ processing and feature selection
on prediction accuracy are also discussed. The paper is organized
as follows: Section 2 provides the principles of these two common
forecasting methods Artificial Neural Networks (ANNs) and Support
Vector Machines (SVM) for STLF. An overview of the experiment is
provided in Section 3. Section 4.1 describes the commercial building
used for the experiment. Section 4 denotes the experimental setting,
dataset details, and evaluation metrics. The experimental results are
discussed in Sections 5 and 6 summarizes the work described in this
paper.

2. Background work

2.1. Artificial Neural Networks

The design of ANNs is inspired by the structure of the human
brain [21]. Typically, ANNs consists of the input layer, the hidden
layer, and the output layer. Each layer contains multiple neurons
and their corresponding activation functions. Multiple hidden layers
can improve the ability to handle non linearities, making them more
accurate for electricity load forecasting [22]. The Recurrent Neural
Networks-based model has become an important technique for dealing
with nonlinear and short-term dependence in sequence data in recent
years [35]. However, during model training, the multiple uses of matrix
multiplication lead to gradient disappearance or explosion.

Long Short-term Memory Networks (LSTMs) technique is a special
type of RNNs. It retains the recursiveness of RNNs while having selec-
tive memory. The LSTMs avoids the problem of gradient disappearance
and gradient explosion through the forgetting mode [36]. Like other
neural network structures, the LSTMs consists of the input layer, the
hidden layer, and the output layer. However, the internal structural
unit of the LSTMs is a cell, also known as a memory unit. This memory
unit contains the forget gate (blue circle), the input gate (orange circle)
and the output gate (red circle), as shown in Fig. 1.

The LSTMs decides which information to discard through the forgot
Gate. The function of the input gate is to determine the value of the
updated memory state. The output gate is used to determine the output
value of the current memory unit.

Bouktif et al. use the genetic algorithm to select the optimal time
lag and the number of LSTMs layers to forecast short- and medium-term
electrical loads [35]. The remaining parameters, such as the number of
neurons in the hidden layers, activation functions, and optimizers, are
determined experimentally. The main purpose of Bouktif et al.’s study
is to compare the performance of LSTMs model and other machine
learning models. This study initially evaluates the performance of
various machine learning models, such as random forest, ridge and
extra trees regressor. Secondly, the model with the best prediction
3

result is selected as the benchmark model. Feature engineering and
parameter tuning are used to improve the performance of the bench-
mark model further. Finally, Bouktif et al. compare the performance
of this benchmark model with the LSTMs model. Experimental results
show that the performance of the extra tree regression model is best in
other machine learning models besides ANNs. Therefore, the extra tree
regression model is used as the benchmark model for comparison with
the LSTMs model. Through further comparative analysis, the prediction
error of the LSTMs model is lower than that of the reference model. The
authors conclude that the designed LSTMs model is more accurate and
stable [35].

2.1.1. Support Vector Machines
SVM is a kernel-based machine learning algorithm with the ability

to solve nonlinear classification and regression problems [22]. The
process of SVM to solve nonlinear problems can be divided into two
steps. SVM firstly determines the appropriate function for projecting
nonlinear problems into high dimensional space. Secondly, the kernel
function is used to make the complex nonlinear mapping a linear prob-
lem. It is worth mentioning that the SVM is outstanding in accuracy and
can maintain good performance with only a small amount of training
data [28].

Khan et al. use support vector machines and artificial neural net-
works as short-term electricity load forecasting models to compare
their performance [27]. In the model design phase, the authors firstly
select the Feed-Forward Neutral Network (FFNN) as the representative
of ANNs. Secondly, Support Vector Regression (SVR) is used, which
indicates SVM for solving regression problems. Then, three SVM mod-
els with different kernel functions are designed, which are Linear,
Quadratic and Cubic SVM. It ensures that the best performing SVM
model can be found because different kernel functions have an im-
pact on their performance. Expressions of these three different kernel
functions are as following:

𝐿𝑖𝑛𝑒𝑎𝑟 𝐵
(

xr , xq
)

= x′rxq (1)

𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝐵
(

xr , xq
)

=
(

1 + x′rxq
)2 (2)

𝑢𝑏𝑖𝑐 𝐵
(

xr , xq
)

=
(

1 + x′rxq
)3 (3)

here xr , xq stand for two input vectors. The transformation function,
hich are x′rxq,

(

1 + x′rxq
)2, and

(

1 + x′rxq
)3, map the input vector to a

igher dimension space.
According to Khan et al. the experimental results show that the

erformance of SVM-based models is better than that of ANNs model.
owever, the authors only select the FFNN model as a benchmark

o compare with the SVM model, which does not prove that the
VM model performs better than all neural networks-based models. In
ddition, the prediction of the Cubic SVM is the most accurate among
he above three SVM-based models.

. Methodology

This paper studies the existing electricity load forecasting models
n order to improve the prediction accuracy, and applies the effective
nput features and prediction models for the actual electricity load of
he commercial building described in Section 4.1. The workflow of the
xperimental methodology is shown in Fig. 2.

The pre-processing phase includes missing data processing, outlier
rocessing, and normalization. Firstly, a suitable filling method is used
o complement the missing data in order to ensure the integrity of the
ower load sequence. Secondly, the purpose of outlier processing is to
dentify and modify the random errors present in the electricity load
y the characteristics of the actual load data. Finally, normalization is
sed to eliminate the effects of the order of magnitude of the data.
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Fig. 1. LSTM internal structure [36]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Experimental methodology.

Many factors affect the performance of electricity load forecasting,
and these factors can be divided into internal factors and external fac-
tors. Specifically, historical load data is an internal factor, and weather,
date type, and economic are external factors. Correlation coefficients
evaluate these factors in the feature selection phase because not all
factors positively affect predictive accuracy. Following the correlation
analysis, the appropriate influencing factors are selected as the input
features of the load forecasting model. In terms of experiment setup,
this paper uses the selected factors to create multiple cases to study the
impact of different input features on the performance of the electrical
load forecasting model.

As for model building and evaluation, this paper builds LSTM-based
model and SVM-based model with appropriate model parameters and
evaluates the predictions in the different cases.

3.0.1. Normalization
Machine learning models are sensitive to the scale of input data,

therefore normalization is used to avoid the impact of data magnitude
on them [35]. Therefore, the raw data is linearly transformed by min–
max normalization, so that the data size is constrained between [0,1].
The min–max normalization formula is as follows:

𝑥𝑛 =
𝑥 − 𝑥min
𝑥max−𝑥min

(4)

where x is the data to be processed, xn stands for the normalized
data, xmax and xmin are the maximum and minimum values in the load
data, respectively.

After the data has been trained and predicted, a denormalisation
operation is required. The formula is as follows:

𝑥 = (𝑥max−𝑥min
)𝑥𝑛 + 𝑥min (5)

where 𝑥 𝑥 represents denormalized data.
4

In addition, in the normalization phase, the training set and test set
use a uniform normalization standard. Therefore, the maximum and
minimum electricity loads of the training set and the test set are the
same.

3.1. Evaluation metrics

The difference between the predicted load and the actual load is
called the prediction error. This section lists several commonly used
methods for measuring the prediction error and their values can reflect
the performance of the forecast model. These measurement standards
are defined as follows:

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖| (6)

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑦𝑖 − 𝑦𝑖
)2 (7)

𝑀𝐴𝑃𝐸 = 100%
𝑛

𝑛
∑

𝑖=1
|

𝑦𝑖 − 𝑦𝑖
𝑦𝑖

| (8)

Mean Absolute Error (MAE) [14,35] is one of the most commonly
used average error metrics, calculated by the average of the sum of
absolute errors. Root Mean Squared Error (RMSE) [14,27,35] is used
to describe one of the most common metrics of uncertainty. It is worth
mentioning that RMSE amplifies the value of larger error terms in the
calculation process. Mean Absolute Percentage Error (MAPE) [14,27]
represents the average absolute error percentage.

4. Experiment setup and dataset exploration

This section describes the case study and provide an analysis of the
dataset used for training the models. Next section will describe the test
case building.

4.1. Building description

The test bed building [20] is a building with a strong commercial
profile, variability of HVAC systems, space usage and occupancy pat-
terns and is located on the UCD campus in Dublin, Ireland. The building
is used as a sports/entertainment center, consists of three floors with
a total floor area of 11,000 𝑚2 and includes a 50 m 𝑥 25 m swimming
pool, with related ancillary areas such as a wellness suite, fitness center,
aerobics and dance studios, drama theater, multimedia and seminar
rooms, offices, shops and cafe space. A front view of the building is
depicted in Fig. 3.

The building electrical and space-conditioning requirements are
provided by two identical CHP units (506 kW thermal and 400 kW elec-
trical output each), two gas boilers (1146 kW each) and an air-cooled
water chiller (865 kW). Additionally, heat is provided as well, when
necessary, by the campus district heating installation (500 kW). The
space conditioning delivery equipment consists of eight air handling



Energy and AI 7 (2022) 100121F. Pallonetto et al.
Fig. 3. SLLS building located at University College Dublin, Ireland.
Fig. 4. The typical week of electricity load.
units, fan coil units, underfloor heating and baseboard heaters, while
the ventilation throughout the building is mechanical.

The building energy rate is B2, which is a benchmark for excellent
performance in a commercial building with such equipment and in-
tended use [37]. An Energy Management System controls and monitors
all the primary and ancillary HVAC equipment in the building. Opera-
tional EMS data has been recorded at 15 min intervals from September
2012 onwards. Total electricity and gas consumption are monitored and
there are sub-meters on individual HVAC components (i.e., boilers, CHP
units, and the chiller). Pressure, humidity, air temperature and 𝐶𝑂2
levels are measured at different points of the HVAC systems. Moreover,
air temperature, relative humidity and 𝐶𝑂2 concentration are measured
at zone level. The experimental data in this paper includes historical
electrical load data and weather factor data from January 1, 2013, to
December 31, 2018.

4.2. Data pre-processing

The data collection period of the electricity load is 15 min with
96 points per day, and a total of 220,336 data points in 6 years. The
hourly outdoor temperature, wind speed and relative humidity are
used as weather data, which is available on the Irish Meteorological
Agency website [38]. A data pre-processing procedure has been applied
to the time series to reduce abnormal prediction errors. The process
has selected outliers and missing data. Both missing data and outliers
5

can be caused by communication system failure or equipment mainte-
nance. Some errors can also be caused by errors in the data collection
hardware infrastructure.

4.2.1. Missing data processing
The dataset used in this paper contains 644 missing data, which ac-

count 0.3% of the entire dataset. As illustrated in Fig. 4, the electricity
load curve can be divided into weekdays and non-working days based
on the day type.

In particular, electricity loads at the same time point between
different working days are similar, and that of non-working day also
have the same characteristics. Special days such as national and local
holidays have been analyzed to assess if they could have been clustered
and used for data interpolation to fix missing data. However, demand
profiles of special days are similar to non-working days. As per best
practice, missing data are filled with the average of the electricity load
at the same time point of the same day type.

4.2.2. Outliers processing
Outliers are those in which the data at some time point deviates

from the range of most other data. A standard procedure described
in [39] has been used to identify outliers in the dataset. The methodol-
ogy uses the five statistical components, which are minimum, the first
quartile (Q1), the median, the third quartile (Q3), and the maximum to
describe the distribution of the data. Data should be allocated between
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Fig. 5. The comparison the distribution of the box plot and the probability density
function of the standard normal distribution [39].

Q1 − 1.5 ∗ 𝐼𝑄𝑅 and Q3 + 1.5 ∗ 𝐼𝑄𝑅, and data outside this range can be
considered an outlier.

The outliers have been flagged, by comparing the distribution of the
box plot and the probability density function of the standard normal
distribution, as shown in Fig. 5. It can be seen that the outliers account
for approximately 0.7% of the entire dataset. Through the box plot test,
2.9% of the data in the dataset have been flagged as outliers. The source
of error can be correlated t sensor calibration for the electricity load
data. These outliers are corrected using the same method as filling the
missing data.

4.3. Feature selection

This paper evaluates the applicability of the factors as input features
by correlation. According to Kapetanakis et al. the Pearson and the
Spearman correlation coefficient can be used to measuring the linear
correlation and monotonic relationship between these factors and the
output [40]. While the Pearson correlation coefficient identifies a linear
correlation between the variables, the Spearman correlation assesses if
two variables are monotonically related. Both Pearson and Spearman
correlation coefficients range between −1 and +1. The absolute value
of the correlation coefficient is equal to 1, which represents a positive
or negative correlation between the influencing factor and the output
variable. There is no correlation between the influencing factor and
the output variable when the correlation coefficient is equal to 0. The
threshold for determining the influence factor suitable as an input
feature is 0.5 [41]. As illustrated in [42], there are three main types of
external factors that affect the commercial electricity load forecasting,
which are weather, day type and economic factors. Among them, eco-
nomic factors include population growth, power system regulations and
economic development trends, which mainly impact on medium-term,
long-term load forecasting [42]. Therefore, for VSTLF and STLF, these
economic factors can be ignored. In terms of weather factors, some
commonly used weather variables, including the outdoor temperature,
wind speed and relative humidity, are evaluated for their applicability
as input features. As for date types, this paper mainly considers the
difference between workdays and non-workdays. The date type has
a value of 0 and 1, which is marked as 1 from Monday to Friday
6

and 0 on Saturday and Sunday. In addition, the correlation coefficient
between the historical load and the output variable is calculated. Fig. 6
shows Pearson and Spearman correlation coefficients, respectively. In
these figures, red indicates that the correlation coefficient exceeds
the threshold, and the correlation coefficients that do not exceed the
threshold are filled with green.

It can be seen that Pearson and Spearman correlation coefficients
between the electrical load and external factors are very low, whether
it is hourly load or daily peak and valley load. The absolute value of
Pearson and Spearman correlation coefficient for most external factors
is less than 0.2. However, the historical load is highly correlated with
the output. Therefore, this paper only uses historical load data as input
features for electricity load forecasting.

4.4. Daily peak and valley load analysis

For day-ahead scheduling the prediction of daily demand peaks and
valleys could facilitate demand response programs behind the meters.
In the current work, the number of peak or valley load occurrences per
day for 2018 has been assessed. The result is shown in Fig. 7.

As illustrated in Fig. 7, although the peak and valley values of daily
electricity load are not fixed at a certain moment, the distribution of
their occurrence times is concentrated. At 1200 h and 1600 h daily,
the peak load occurred the most, accounting for 33.9% of the total,
while the daily valley load appeared at 1500 h and 2300 h, accounting
for 36.2% of the total. In addition, daily peak and valley loads hardly
appear at the same time, except between 1800 h and 1900 h. These two
moments of the weekdays and the weekends have different meanings.
In other words, the two moments are working hours during the week-
days and non-working hours at the weekends. Therefore, both peak
loads and valley loads can occur at these two moments.

4.5. Experiment setup

For the purpose of the research described in this paper, various cases
are created to compare the performance of the LSTM-based model and
SVM-based model. These cases are divided into two parts, one for one-
hour ahead load forecasting and the other for one-day ahead peak and
valley load forecasting. The former is conducted using the historical
hourly load data from 2013 to 2018, with a total of 52,584 data. The
latter is based on the maximum and minimum daily load from 2013 to
2018, with 2191 data. All data is re-sampled from the original dataset.

According to Khan et al. this paper selects load sequences of dif-
ferent lengths as input features based on the auto-correlation func-
tion [27].

In terms of one-hour ahead load forecasting, Fig. 8 shows the auto-
correlation between the load of 200 h in the hourly load dataset. It can
be seen that the load of hour h-1 has the highest auto-correlation, and
the hourly load sequence contains multiple periodicities. The load of
h-24 and the load of h-24 multiple have peak auto-correlation.

As for one-day ahead peak and valley load forecasting, as shown
in Fig. 9. It shows the auto-correlation between the 14-day loads.
The auto-correlation coefficients between the daily peak load data se-
quences are periodic, while the auto-correlation between the daily val-
ley load data sequences is not significant. Overall, the auto-correlation
between the daily peak and valley load decreases as the time interval
increases.

Based on the above conclusions, this paper creates 4 cases with
different input features, case details are shown in Table 1.

• The input of Case 1 is a 8-dimensional vector that uses the load of
hour h-1, h-24, h-48, h-72, h-96, h-120, h-144, h-168 to forecast
the load of hour h.

• The input of Case 2 is a 168-dimensional vector that uses the load
of hour h-1 to h-168, the hourly load of the previous week, to
forecast the load of hour h.
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Fig. 6. Assessment of correlation for selected prediction features.
Fig. 7. The number of occurrences of peak or valley load per day for 2018.
Fig. 8. The auto-correlation coefficient of hourly load data.
Fig. 9. The auto-correlation coefficient of daily peak and valley load data.
• The input of Case 3 is a 3-dimensional vector that uses the peak
and valley load of day d-1, d-2, d-7 to forecast the peak and valley
load of day d.

• The input of Case 4 is a 7-dimensional vector that uses the peak
and valley load of day d-1 to d-7, the daily peak or valley load of
the previous week, to forecast the peak and valley load of day d.

The input features of Cases 1 and 3 are selected based on the auto-
correlation of hourly load data and that of daily peak and valley load
7

data. The time point with a high auto-correlation coefficient and that
with peak auto-correlation coefficient in the previous week are used as
input features. In addition, it can be seen from Table 1 that the input
features of Case 2 and Case 4 contain all of the input features of Case
1 and Case 3, respectively. In this paper, Case 2 and Case 4 are used
as the control experiments to verify the accuracy and importance of
feature selection.
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Table 1
The details of each case.

Forecast horizon Input feature Output (kW)

Case 1 1-h load h-1,h-24,h-48,h-72,h-96,h-120,h-144,h-168 Load_(h)

Case 2 1-h load h-1,h-2,h-3, . . . ,h-167,h-168 Load_(h)

Case 3 Daily peak load d-1, d-2, d-7 Peak load_(d)
Daily valley load valley load_(d)

Case 4 Daily peak load d-1,d-2,d-3,d-4,d-5,d-6,d-7 Peak load_(d)
Daily valley load Valley load_(d)
4.6. Model setup

This paper creates standard LSTM-based model and SVM-based
model based on background work. The SVM-based model used in the
experiment is created with the scikit learning package, and the LSTM-
based model is developed using Keras. The detailed parameters of these
two models parameter settings are as follows:

• LSTM-based model: This model contains two LSTM layers and one
fully connected layer. The first LSTM contains 100 units and the
second LSTM layer contains 50 units. A dropout layer with 0.2
dropout rate is added between the first LSTM layer and the second
LSTM layer to prevent overfitting. The activate function is rule.
Mean square error is used as a loss function and Amda acts as an
optimizer.

• SVM-based model: The linear function is used as the kernel of
support vector regression model. The Tolerance for stopping cri-
terion is set to 0.001. The penalty parameter C of the error term
is 1.

.7. Cross validation

Time series cross-validation [43] has been used to avoid over-fitting.
hus, the whole historical load dataset from 2013 to 2017 is used as
training set to ensure that there is a sufficient data training model.

hen, the energy demand data for 2018 is treated as a verification set.
nlike the K-Fold cross-validation method, time series cross-validation
ethod is trained using data prior to the test set sequence.

. Results

The current section describes the results of the prediction models
or each case study developed. The results presented in this section
ave been validated with data extracted by the building management
ystem. Therefore, both the accuracy metrics and the validation refer
o the physical building actual data. In particular one-hour ahead load
Section 5.1), and one-day ahead peak and valley load (Section 5.2).

.1. Performance of one-hour ahead load forecasting models

This sub-section mainly evaluates the performance of LSTM-based
odel and SVM model for one-hour load forecasting. In terms of Case
, the 2018 monthly RMSE is shown in Fig. 10.

The actual load and the predicted load for hourly load forecasting
n June, 2018 are plotted in Fig. 11. The blue line is the actual power
ata, the green line represents the predicted electricity load by the
STM-based model, and the red line stands for the predicted data by the
VM-based model. The absolute values of the predicted and actual load
ifferences are displayed below the corresponding time step. Among
hem, the blue bar represents the LSTM-based model, and the orange
ar stands for the SVM-based model.

It can be seen from Fig. 10 that the monthly RMSE trends of the two
odels are similar, and the RMSE changes are balanced. This shows

hat the performance of the two models is relatively stable and there
s no over-fitting phenomenon. The monthly RMSE of the LSTM-based
odel is smaller compared to the monthly RMSE of the SVM-based
8

model. It can also be seen from the predicted load curve and the actual
load curve shown in Fig. 11 that the LSTM-based model performs better
on the fitted hourly power load curve than the SVM-based model.

As for case 2, due to the influence of input feature selection, the
2018 monthly RMSE in Case 2 presents the opposite result of Case 1,
as shown in Fig. 12. Fig. 13 shows the actual load and predicted load
in Case 2 in June 2018.

It can be seen that the monthly RMSE of the SVM-based model is
generally lower than that of the LSTM-based model. The predicted load
of the SVM-based model fits better with the actual load.

In summary, considering both feature selection and hourly load
forecasting, it can be concluded that the performance of the LSTM-
based model is better than that of the SVM-based model. In addition,
as shown in Table 2, the runtime of the LSTM-based model is much
longer than that of the SVM-based model.

5.2. Performance of daily peak and valley load prediction models

This section assesses the performance of the LSTM-based model and
the SVM-based model in one-day peak and valley load forecasting. As
in the previous sub-section, RMSE is used to describe the performance
of the model, and each month of 2018 is used as a test set. Figs. 14 and
15 plots the monthly RMSE of the model for peak load and valley load
forecasting in Case 3 and in Case 4, respectively.

It can be seen that the trend of monthly RMSE in Case 3 and Case 4
is very similar whether it is one-day ahead peak forecasting or one-day
ahead valley forecasting.

In order to more intuitively compare the performance of the two
models, the actual load and predicted load for one-day ahead peak and
valley load forecasting in June are plotted, as shown in Figs. 16 and
17. In these figures, the blue line is the actual power data, the red
line represents the predicted electricity load by the LSTM-based model,
and the yellow line stands for the predicted data by the SVM-based
model. The absolute values of the difference between the predicted load
and the actual load are displayed below the corresponding time step.
Among them, the blue bar represents the LSTM-based model and the
orange bar stands for the SVM-based model. It can be concluded from
the above figures that the LSTM-based model and the SVM-based model
have almost the same prediction accuracy in one-day ahead peak and
valley load forecasting. In fact, the SVM-based model is able to perform
better with small datasets compared to deep neural network.

The predictions have been tested using cross-validation and data
analysis techniques to find outliers in the performance of the models.
The validation analysis was also applied on special days such as na-
tional or local holidays, but it did not reveal any great variance from
the average.

6. Discussion

The current work aims to forecast the electricity consumption of a
large and high efficient commercial building using different machine
learning techniques. The results of the four main case studies with
the MAE, RMSE, MAPE, and runtime are summarized in Table 2.
The current section discuss the performance of LSTM-based model and
SVM-based model assessing the advantages and disadvantages of the
models.
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Fig. 10. The 2018 monthly RMSE for hourly load forecasting in Case 1.
Fig. 11. The actual load and the predicted load in Case 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 12. The 2018 monthly RMSE for hourly load forecasting in Case 2.
9
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Fig. 13. The actual load and the predicted load in Case 2.
Fig. 14. The 2018 monthly RMSE for daily peak and valley load forecasting in Case 3.
Fig. 15. The 2018 monthly RMSE for one-day ahead peak and valley load forecasting in Case 4.
Table 2
Comparison of models performances.

Forecast Model MAE (kW) RMSE (%) MAPE (%) Runtime

LSTM 9.258 3.15 4.05 497.70
Case 1 1-h ahead load SVM 11.940 3.82 5.30 4.21

LSTM 12.642 3.54 5.54 706.96
Case 2 1-h ahead load SVM 11.539 3.26 5.37 23.94

LSTM 9.957 4.84 3.04 67.93
1-day ahead peak load SVM 9.873 4.81 3.01 0.05

LSTM 3.603 2.60 2.57 66.96
Case 3 1-day ahead valley load SVM 3.758 2.70 2.71 0.05

LSTM 9.800 4.73 3.00 66.82
1-day ahead peak load SVM 9.709 4.70 2.96 0.06

LSTM 3.683 2.63 2.63 69.60
Case 4 1-day ahead valley load SVM 3.665 2.66 2.63 0.05
10
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Fig. 16. The actual load and predicted load for daily peak and valley load forecasting in Case 3. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 17. The actual load and predicted load for daily peak and valley load forecasting in Case 4. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
In terms of one-hour ahead load forecasting, it can be seen that
based on the LSTM-based model, the models produce more accurate
results in Case 1 than Case 2 As mentioned in the experimental setup
section, Case 1 contains only 8 features for the input of the pre-
dictive model, which is much smaller than the number of features
included in Case 2. Therefore, it shows that feature selection based on
auto-correlation plays a fundamental role in LSTM-based models. The
input features with high auto-correlation are more important than the
number of input features.

As for one-day ahead peak and valley load forecasting, the predic-
tion accuracy of Case 3 using the LSTM-based model is not significantly
different from that of Case 4. The reason for this result is that the auto-
correlation of daily peak and valley load shows a downward trend as
a whole. At this point, it is not effective to select the input features on
the peak auto-correlation in each cycle.

For the SVM-based model, it can be seen from the experimental
results that the more input features provided to the model, the higher
the prediction accuracy of the model. In summary, the feature selection
focusing on high auto-correlation features can improve the accuracy of
the LSTM-based model. Therefore, another contribution of this paper
is the method of feature selection. The input of the model can directly
affect the predictive performance of the LSTM-based model. Thus, in
11
the feature selection stage, the auto-correlation of historical load data
is used to select the time point with high correlation as the input
feature. This method is better than directly selecting the historical load
of a certain cycle in the past as an input feature. Additionally, this
paper evaluates and compares the performance of LSTM-based models
and SVM-based models through four cases. Using time series cross-
validation, each month of 2018 is used for validation of the model,
and the monthly RMSE of the two models is recorded.

The comparison between a deep neural network prediction with a
SVM model revealed that the trained LSTM model is more accurate than
the SVM-based model in one-hour ahead load forecasting. In terms of
one-day ahead peak and valley load forecasting, the performance of the
SVM-based model is better. However, it is worth mentioning that the
runtime of the SVM-based model is much shorter than the LSTM-based
model, for both hourly load forecasting and daily peak and valley load
forecasting. In fact, as illustrated in Table 2, the average runtime of
the SVM-based model can be negligible, at 0.05 s, while the average
runtime of the LSTM-based model is approximately 70 s.

In summary, the LSTM-based model is better at handling complex,
unstable data based on sufficient training data. SVM-based model is
suitable for load forecasting of small-scale datasets. In the case of
sufficient data and the pursuit of high-precision load forecasting, the
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preferred choice is the LSTM-based model, while SVM-based model is
a better choice when there is not enough training data or time cost is
one of the main considerations.

Furthermore, when assessing technology for electricity demand
forecast in buildings for day-ahead scheduling or short term predic-
tion to implement demand response measures, training a deep neural
network could result in a small if none advantage. In the case of
commercial high efficient buildings, the prediction errors are relatively
small and the accuracy is enough for an accurate overall assessment for
a demand response aggregator to control the electricity generation or
reduce the building electricity demand.

The forecast technique can be used to estimate valleys and peak
consumption a day-ahead, allowing demand response aggregators to
bid on the day ahead electricity market. Additionally, it could also sup-
port building managers to schedule a day ahead local CHP generators.
The one hour ahead forecast will allow to have an accurate baseline
to estimate the impact on DR measures on the buildings and for the
optimal scheduling of local generators.

Although the model applied in this paper has good prediction
results, it can be further improved to reduce the predicted and actual
load difference. This paper only considers history load data for short-
term load forecasting. The article uses the Pearson and Spearman
correlation coefficients to rule out the effects of outdoor temperature
and date types on load forecasting, however, other factors can be
considered, such as the amount of renewable energy produced or
occupancy profiles.

7. Conclusions

The provision of energy system services plays a critical role for the
decarbonization of the power system and the integration of renewable
energies at local and system levels. However, the growing penetration
of renewable and controllable loads require accurate load forecasting
techniques. In this paper, a commercial building has been used as a
test-bed for a set of forecasting algorithms using machine learning
techniques. Besides the hourly energy demand forecast, a day-ahead
peak and valley prediction has been trained on the historical data. The
current work developed state of the art forecast models to predict the
electricity demand and compare it with the daily valley and peak to
dynamically optimize the CHP generator, the thermal storage and elec-
tricity demand implementing demand response measures. The novelty
of the work is the development of three different prediction models
that can be combined for the evaluation of flexibility. In future work,
hybrid models, for example, combining multiple forecast techniques,
may be tested to improve prediction accuracy. Additionally, a more
accurate model will be employed to identify anomalies such as power
outages and unscheduled maintenance and the prediction models will
be used to compute a metric to assess the flexibility of the building
and to forecast the impact of the demand response measures on the
potential flexibility.

Acronyms

ANNs Artificial Neural Networks

ES building energy simulation

HP combined heat and power

R Demand Response

SM Demand Side Management

MS energy management system

FNN Feed-Forward Neutral Network

VAC Heating, Ventilation and Air Conditioning
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LSTMs Long Short-term Memory Networks

LTLF long-term power load forecasting

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MTLF medium-term load forecasting

RMSE Root Mean Squared Error

RNNs Recurrent Neural Networks

STLF short-term load forecasting

SVM Support Vector Machines

SVR Support Vector Regression

TSO Transmission System Operator

VSTLF very short-term load forecasting
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