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ABSTRACT
Variable importance, interaction measures, and partial dependence plots are important summaries in the
interpretation of statistical and machine learning models. In this article, we describe new visualization tech-
niques for exploring these model summaries. We construct heatmap and graph-based displays showing
variable importance and interaction jointly, which are carefully designed to highlight important aspects of
the fit. We describe a new matrix-type layout showing all single and bivariate partial dependence plots, and
an alternative layout based on graph Eulerians focusing on key subsets. Our new visualizations are model-
agnostic and are applicable to regression and classification supervised learning settings. They enhance
interpretation even in situations where the number of variables is large. Our R package vivid (variable
importance and variable interaction displays) provides an implementation. Supplementary files for this
article are available online.
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1. Introduction

Visualization is a key tool in understanding statistical and
machine learning models. In this article, we present new visu-
alizations to serve two main goals, namely improved model
understanding and interpretation. Our new visualizations are
based on variable importance and interaction measures, and
partial dependence plots (PDPs). A variable importance value
is used to express (in a scalar quantity) the degree to which a
variable affects the response value through the chosen model.
A variable interaction is a scalar quantity that measures the
degree to which two (or more) variables combine to affect the
response variable. Variable importance and variable interaction
(henceforth VImp and VInt; together VIVI) are widely used in
many fields to understand and explain the behavior of a model.
In biology, they are used to examine gene–gene interactions
(e.g., Wang et al. 2012). In high-energy physics VImp can be an
important tool in high-dimensional feature selection processes
(e.g., Gleyzer and Prosper 2008). In econometrics, they are
common tools to evaluate interaction behaviour (e.g., Balli and
Sorensen 2010).

Traditional methods of displaying VImp or VInt use variants
of line or bar plots, see, for example, Molnar (2019). However,
in variable importance plots, there is relatively little emphasis on
displaying how pairs of interacting variables may be important
in a model. This can be a hindrance to model interpretation,
especially if a variable has low importance but a high interaction
strength. The inclusion of interacting terms in a model has
been shown to affect the prediction performance (Oh 2019).

CONTACT Alan Inglis alan.inglis@mu.ie Hamilton Institute, Maynooth University, Maynooth, Ireland
1We use the term “variable” throughout to denote the input to a statistical and machine learning model as this seems to be the most common parlance.

Other terms commonly used include feature, predictor, explanatory variable, independent variable, etc.
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However, as shown in Wei et al. (2015a), for high-dimensional
models that are governed mainly by interaction effects, the
performance of certain types of permutation-based variable
importance measures will decrease and thereby produce low
values of importance. Consequently, viewing the VInt and VImp
together provides a more complete picture of the behavior of a
model fit.

Our new displays present VInt and VImp jointly in a single
plot. We allow for seriation so that variables are reordered
with those exhibiting high VIVI grouped together. This assists
in interpretation and is particularly useful as the number of
variables becomes large. Furthermore, we make use of filtering,
so less influential variables can be removed. For our network
displays, we use graph clustering to group together interacting
variables.

Partial dependence plots were introduced by Friedman
(2000) to show how the model’s predictions are affected by one
or two predictors. In addition to the above, we propose a new
display which shows all pairwise PDPs in a matrix-type layout,
with a univariate PDP on the diagonal, similar to a scatterplot
matrix. With this display, the analyst can explore, at a glance,
how important pairs of variables impact the fit. Once again,
careful reordering of the variables facilitates interpretation.

Our final display takes the filtering of all pairwise PDPs a step
further. We select only those pairwise PDPs with high VInt, and
display an Eulerian path visiting these plots by extending the
zigzag display algorithm of Hofert and Oldford (2020). We call
this a zen-partial dependence plot (ZPDP).
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These new visualizations can be used to explore machine
learning models more thoroughly in an easily interpretable way,
providing useful insights into variable impact on the fit. This
is demonstrated by practical examples. In each plot careful
consideration is given to various aspects of the design, including
color choices, optimising layouts via seriation, graph clustering,
and Euler paths for the ZPDP. Filtering options limit the plots to
variables deemed relevant from VImp or VInt scores. Our new
displays are appropriate for supervised regression and classifica-
tion fits, and are model and metric agnostic in that no particular
model fit nor importance method is prescribed. The methods
described here are implemented in our R packagevivid (Inglis
et al. 2021).

The organization of the article is as follows. In Section 2, we
discuss the concepts of VImp and VInt. Then, we describe our
new heatmap and network displays of joint variable importance
and interaction and demonstrate these on an example. In Sec-
tion 3, we discuss our new layouts for collections of PDPs, either
in a matrix format or zig–zag layout and show their application.
In Section 4, we use our new methodology to explore a machine
learning fit from a larger dataset. Finally in Section 5, we offer
some concluding discussion.

2. Visualizing Variable Importance and Interaction

We begin with a nonexhaustive review of the concepts of VImp
and VInt. Though the visualizations, we present are agnostic to
the measures used to determine these scalar quantities, some
degree of understanding is helpful in interpreting the later plots.
We then describe our new visualizations and their design prin-
ciples and provide illustrations.

2.1. Measuring Variable Importance

A VImp is a scalar measure of a variable’s influence on the
response. Many techniques have been proposed to calculate
variable importance, depending on the type of model. The term
“influence” here may encompass changes in the mean response
or that of higher order uncertainty. In our work, we focus exclu-
sively on changes in the mean. For a wider review of variable
importance techniques, and the different goals that a variety of
approaches may achieve see Wei et al. (2015b).

Much of the initial work in VImp focused on estimating the
partial derivative of the response with respect to one or two
input variables (Frey and Patil 2002). This is a global VImp mea-
sure when the model is linear, but perhaps less useful (though
still potentially interesting) in nonlinear models where it is often
defined as a local importance measure. In high-dimensional
settings, these methods can be discretized across a hyper-cube
to allow for the identification of, for example, linearity in a
nonlinear model (Helton and Davis 2002). Due to their local
behavior, we do not incorporate them into our visualizations
below.

Some VImp measures arise naturally out of a model struc-
ture. The most familiar would be those based on summary
statistics created from regression models, such as standard-
ized coefficient values, (partial) correlation coefficients, and R2.
Many of these can be extended to nonlinear models such as

generalized additive models (Wood 2000), or projection pursuit
regression (Friedman and Stuetzle 1981). R2 in particular seems
useful as a VImp measure, as it can be defined for a wide
variety of statistical models and can be decomposed into main
and potentially high order interaction effects, yielding a VInt
measure in addition.

Similarly, other model-structure based methods arise out of
now standard machine learning techniques. Random forests, for
example, involves the use of the Gini coefficient, and the reduc-
tion in mean square error, to catalog a variable’s influence on the
“purity” of a model output (Breiman 2001). This can naturally be
seen as a VImp measure. Others have extended these approaches
to introduce conditional and permutation VImp statistics which
aim to reduce the bias that may occur due to variable collinearity
(see, e.g., Hothorn et al. 2006).

Conditional variants of permutation variable importance
were proposed by Strobl et al. (2008) for a random forest. This
method examines splits of the trees in a random forest and
permutes the variables within these subgroups (see Section 2.2
for more details). Whereas Strobl et al. (2008) relied on the
splitting of trees to determine the subgroups, a model-agnostic
approach was introduced by Molnar et al. (2020) that builds
the subgroups explicitly from the conditional distribution of
the variables. In tree-based models such as CART and random
forests, Ishwaran et al. (2010) proposed a VImp called minimal
depth, which is the proximity of a variable to the root node,
averaged across all trees.

Permutation importance was introduced by Breiman (2001)
and is measured by calculating the change in the model’s pre-
dictive performance after a variable has been permuted. The
algorithm works by initially recording the model’s predictive
performance, then, for each variable, randomly permuting a
variable and recalculating the predictive performance on the
new dataset. The variable importance score is taken to be the
difference between the baseline model’s performance and the
permuted model’s performance when a single feature value is
randomly shuffled. A similar agnostic permutation concept was
developed by Fisher et al. (2019). This method permutes inputs
to the overall model instead of permuting the inputs to each
individual ensemble member. In situations where no embedded
variable importance is available, a model-agnostic approach
such as permutation importance is a useful tool.

In theory any of the above global importance measures could
be used in our visualizations. However, providing code for each
would be a daunting task. Instead, we take a pragmatic approach
and use the associated VImp measure with the model that we are
fitting. In cases where there is no such obvious method, we use
the Fisher et al. (2019) agnostic permutation approach discussed
above to measure VImp.2

2.2. Measuring Variable Interaction

Measuring variable interaction in a machine learning model
can be considerably harder than estimating marginal impor-
tance. Even the definition of the term “interaction” is disputed
(Boulesteix et al. 2015). We focus here on bivariate interaction

2In our implementation, any available VImp may be used.
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only, though higher order interactions may certainly be present
in many situations. Friedman and Popescu (2008) stated that a
function f (x) exhibits an interaction between two of its variables
xk and xl if the difference in the value of a function f (x) as a
result of changing the value of xk depends on the value of xl.
That is, the effect of one independent variable on the response
depends on the values of the second independent variable.
Often, an interaction is taken to mean a simple multiplication
of two (continuous) variables (e.g., Berrington de González and
Cox 2007), though in machine learning models much more
complex relationships can exist. We follow the definition of
Friedman and Popescu (2008) by considering an interaction to
be estimated from the difference between joint and marginal
partial dependence; a full mathematical definition is given
below. Even this definition should not be used without care,
as in the case of highly correlated or potentially confounding
variables.

In tree-based models such as CART and random forests,
much focus has been on measuring interactions via the structure
of trees (e.g., Ishwaran et al. 2010; Deng 2019). If two variables
are used as splits on the same branch, then this might initially
appear like a measure of interaction. However, this does not
separate out the interaction from potential marginal effects.
The problem is partially overcome by permuting the variables
(individually for a VImp, jointly for VInt), to assess the effect on
prediction performance. The resulting VInt measure is known
as pairwise prediction permutation importance (Wright et al.
2016).

For models that are not tree-based, or when a model-agnostic
measure is required, a variety of other methods can be used.
Many of these are based on the idea of partial dependence
(Friedman 2000). The partial dependence measures the change
in the average predicted value as specified feature(s) vary over
their marginal distribution. The partial dependence of the
model fit function g on predictor variables S (where S is a subset
of the p predictor variables) is estimated as

fS(xS) = 1
n

n∑
i=1

g(xS, xCi), (1)

where C denotes predictors other than those in S,
{xC1 , xC2 , ..., xCn} are the values of xC occurring in the training
set of n observations, and g() gives the predictions from the
machine learning model. For one or two variables, the partial
dependence functions fS(xS) are plotted (the so-called PDP) to
display the marginal fits.

Friedman’s H-statistic or H-index (Friedman and Popescu
2008) is a VInt measure created from the partial dependence by
comparing the partial dependence for a pair of variables to their
marginal effects. Squaring and scaling gives a value in the range
(0, 1):

H2
jk =

∑n
i=1[fjk(xij, xik) − fj(xij) − fk(xik)]2

∑n
i=1 f 2

jk(xij, xik)
, (2)

where fj(xj) and fk(xk) are the partial dependence functions of
the single variables and fjk(xj, xk) is the two-way partial depen-
dence function of both variables, where all partial dependence
functions are mean-centered.

The H-statistic requires O(n2) predicts for each pair of
variables, and so can be slow to evaluate. Sampling from the
training set will reduce the time, though at a cost of increas-
ing the variance of the partial dependence estimates and the
H-statistic.

When the denominator in Equation (2) is small, the partial
dependence function for variables j and k is flat, and small fluc-
tuations in the numerator can yield spuriously high H-values.
Biased partial dependence curves will also lead to inflated H.
This occurs in some machine learning approaches which exhibit
regression to the mean in their one-way partial dependencies.
Furthermore biased partial dependence curves are a particular
problem in the presence of correlated predictors. These issues
with the H-statistic seem to be not widely known by practition-
ers (though see Apley and Zhu 2020), and we provide a short
illustration of these problems in the appendix.

In our visualizations throughout this article, we use the
square-root of the average un-normalized (numerator only)
version of Friedman’s H2 for calculating pairwise interactions:

Hjk =
√√√√ 1

n

n∑
i=1

[fjk(xij, xik) − fj(xij) − fk(xik)]2 . (3)

This reduces the identification of spurious interactions and
provides results that are on the same scale as the response
(for regression). It does not, however, remove the possibil-
ity that some large H-values arise from correlated predictor
variables.

We follow the convention of Hastie et al. (2009) by using the
logit scale for both the partial dependence and in calculation of
the H-statistic when fitting a classification model with a binary
response. If the response is multi-categorical a near-logit is used,
defined as

gk(x) = log[pk(x)] − 1
K

K∑
k=1

log[pk(x)], (4)

where k = 1, 2, . . . , K and pk(x) is the predicted probability
of the kth class. PDPs of gk(x) from Equation 4 can reveal the
dependence of the log-odds for the k-th class on different subsets
of the input variables.

Alternatives to the H-statistic have been suggested, which
could be used in place of the the H-statistic in our visualiza-
tions. Hooker (2004) used a functional ANOVA construction
to decompose the prediction function into variable interac-
tions and main effects. Greenwell et al. (2018) suggested a
partial dependence-based feature interaction which uses the
variance of the partial dependence function as a measure of
importance of one variable conditional on different fixed points
of another.

2.3. Heatmap Visualization With Seriation

Traditionally, variable importance and interaction are displayed
separately, with variable interaction itself spread over multiple
plots, one for each variable. We direct the reader to Molnar
(2019, chap. 8) for examples. We propose a new heatmap display
showing VImp on the diagonal and VInt on the upper and lower
diagonals. The benefit of such a display is that one can see which
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Figure 1. Heatmap from random forest of college application data. In (a) variables are in original order. In (b), the heatmap is re-ordered using leaf sort. In (b) we can see
three important and mutually interacting variables, F.Undergrad, Accept and Apps.

variables are important as individual predictors and at the same
time see which pairs of variables jointly impact on the response.
It also facilitates easy comparison of multiple model fits,
which is far less straightforward with separate VImp and VInt
displays.

We illustrate the heatmap using a random forest fit to a
college applications dataset (American Statistical Association
1995), with Enroll (i.e., the number of new students enrolled) as
the response. The data were gathered from 777 colleges across
the United States and contains 18 variables ranging from eco-
nomic factors (such as room and board and book costs) to the
number of applications received and accepted. As some of the
variables are skewed they are log-transformed prior to building
the model. The data was split 70-30 into training and test sets.
A value of R2 = 0.96 was obtained for the test set. All plots were
made from the training set. See the supplementary materials for
a description of the data and transformations.

Figure 1 shows our heatmap with two different orderings.
Figure 1(a) has the variables in their original order, while Fig-
ure 1(b) uses the leaf-sorting algorithm (described below). The
purple color scale used on the off-diagonal shows the Fried-
man’s H-statistic values (un-normalized) with deeper purple
indicating a higher VInt. Similarly, the green color scale on
the diagonal represents the level of VImp, here measured using
an embedded approach supplied by the random forest (in this
case, the increase in node purity). We use colorblind-friendly,
single-hued sequential color palettes from Zeileis et al. (2020)
going from low to high luminance in both cases, designed to
draw attention to high VInt/VImp variables. From the improved
ordering in Figure 1(b), there are three clearly important and
potentially interacting variables, F.Undergrad (the number of
full-time undergraduate students), Accept (the number of appli-
cants accepted), and Apps (the number of applications received),
with F.Undergrad having the largest VImp when predicting
Enroll.

Many authors have investigated the benefits of re-ordering
(also known as seriation) for graphical displays; see, for example,
Hurley (2004), Hahsler et al. (2008), and Earle and Hurley

(2015). The benefits of reordering the variables in Figure 1(b)
are clear. The right-hand plot lends itself to easy interpretation,
whereas the left-hand plot does not.

Most seriation algorithms start with a matrix of dissimilar-
ities or similarities between objects and produce an ordering
where similar objects are nearby in the sequence. Our goal here
is a little different. As well as placing mutually interacting vari-
ables nearby in the sequence, we would like to bring important
variables or pairs of variables to the start of the sequence so that
the most relevant portion of the heatmap will be in the top-left
corner.

We use the leaf sort seriation algorithm from Earle and
Hurley (2015). This uses hierarchical clustering followed by a
sorting step. Let vi be a measure of variable importance and sij
be the interaction measure between variables i and j. Treating
the matrix of interactions as a similarity matrix, we first con-
struct a hierarchical clustering. This produces a dendrogram,
resulting in a variable ordering where high-interacting variables
are nearby. Using this ordering in a heatmap generally brings
high interactions close to the diagonal, but ignores our goal
of placing important variables early in the sequence. For the
sorting step, we calculate for each variable a combined measure
of its importance and contribution to the interactions, defining
these scores as

wi = λ1vi + λ2 max
j �=i

sij.

Here, λ1 and λ2 are scaling parameters to account for the fact
that variable importance and interaction are not measured in the
same units. Reasonable choices of λ1 and λ2 rescale importance
and interaction to, say, unit range or unit standard deviation.
We use unit range by default. As there are many possible
dendrogram orderings consistent with a hierarchical cluster-
ing of the matrix of interactions, the sorting step re-orders
the dendrogram leaves so that the weights wi are generally
decreasing.

Sorting the variables in this way will achieve our goals of plac-
ing high-interacting pairs of variables nearby in the sequence,
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Figure 2. A comparison of a kNN and random forest fit on the college application data. NOTE: Both fits identify F.Undergrad as the most important variable as well as having
similar mutual interactions between F.Undergrad, Accept and Apps. The kNN fit identifies many more moderate interactions between variables, especially concerning the
variable Private

while simultaneously pulling predictors with high importance
and interaction to the top-left of the heatmap, leaving less rele-
vant predictors to the bottom-right. Setting λ2 = 0 or λ1 = 0
produces plots which sort by descending VImp or max VInt,
respectively. For all future heatmap plots, we use the sorting
strategy discussed above to optimize the arrangement of vari-
ables. After using seriation to re-order the heatmap variables,
filtering can be applied to limit the display to the most important
or interacting variables; this strategy is especially useful when
there are large numbers of predictors.

The heatmap display can be further used to compare different
model fits. In Figure 2, we compare the random forest to a k-
nearest neighbours (kNN) fit. In the left panel of Figure 2, we
have a heatmap of a kNN fit (with k = 7 neighbors considered),
while the right panel shows the random forest heatmap. To make
a direct comparison of the heatmaps, we swap the embedded
VImp measures that are available from a random forest fit
and instead measure importance with an agnostic permutation
approach that allows direct comparison of both the kNN and
random forest models. Furthermore, we set both heatmaps to
use the same color scale for the VImp and VInt values.

We see in Figure 2 that both the random forest and kNN
fit identify F.Undergrad as the most important variable for
predicting the number of students enrolled. The top three vari-
ables are identical in both models, though the VImp values are
much smaller in general across the kNN fit (e.g., the measured
VImp for F.Undergrad for the kNN and random forest fits are
0.16 and 0.6, respectively). Both fits show mutual interactions
between F.Undergrad, Accept and Apps. However, the kNN
fit also suggests a moderate interaction between Private (i.e.,
whether the university was public or private) and F.Undergrad,
which appears somewhat lower in the random forest fit. As
Private has a relatively low VImp in both model fits, a simple
VImp screening could miss its relevance to the fit. We note
though, that this kNN-random forest comparison is for the sake
of illustration only, as in this instance the kNN fits poorly by
comparison with the random forest, having a test mean square
error (MSE) over three times bigger.

2.4. Network Visualization

As our second offering for displaying VIVI, we propose a net-
work plot that shares similar benefits to the heatmap display but
differs from it by giving a visual representation of the magnitude
of the importance and interaction values not only via color
but also by the size of the nodes and edges in a graph. In this
plot, each variable is represented by a node and each pairwise
interaction is represented by a connecting edge. See Figure 3(a)
for an example. The color scales were chosen to match that used
in the heatmap, with node size and color luminance increas-
ing with variable importance. Similarly, edge width and color
reflects the strength of the VInt. By default we choose a radial
layout to display the variables (although this can be changed
according to preference) and use the same seriation of variables
as the heatmap, with the variables of high importance and high
interaction strength placed in a clock-wise arrangement starting
at the top. The benefit of such a display is that one can quickly
decipher the magnitude of the importance and interactions of
the variables as well as seeing which variables both individually
and jointly impact on the response.

In Figure 3(a), we again use the random forest fit of the
college application data, using the same VImp and VInt mea-
sures as in Figure 1. In the network plot, the strong mutual
interactions between F.Undergrad, Accept and Apps and are
represented by thick, intensely purple lines. F.Undergrad is iden-
tified as the most important single predictor and is represented
by a large, intensely green node. For settings with large number
of predictors, it will be useful to filter the display to focus
on high VIVI variables. An additional step groups or clusters
the variables according to VImp or VInt values. For example,
Figure 3(b) shows a network plot, filtered to display pairs of
variables with high VInt and clustered to show groups with
mutually similar VInt. Here it is clear that the cluster colored
pink contains the variables with the largest VInt scores. In this
example, we use hierarchical clustering, but in our implemen-
tation, the graph clustering methods provided by the package
igraph (Csardi and Nepusz 2006) are directly available.
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Figure 3. Network plot of a random forest fit on the college application data. Three mutually interacting and important variables can be seen, namely F.Undergrad, Accept
and Apps. In (a) all of the variables are displayed. In (b) the network plot has been filtered to display pairs of variables with high VInt and clustered to highlight variables
with mutually high VInt.

3. Visualizing Partial Dependence and Individual
Conditional Expectation

We introduce new variants of partial dependence and individual
conditional expectation plots in two different layouts. With
these plots, we can further investigate predictor effects singly
and pairwise, especially for those predictors deemed important
in our VIVI plots. Additionally, our new plots combine displays
of variable pairs, thus highlighting the presence of strong cor-
relations where VInt measures may mislead. Conventionally,
PDPs are shown singly or in linear layouts, see Section 8.1 of
Molnar (2019) for examples. By comparison, our new displays
are more compact, richer, and benefit from seriation.

3.1. Individual Conditional Expectation Curves

Goldstein et al. (2015) described individual conditional expec-
tation (ICE) curves, which are closely related to PDPs. While
a PDP shows the average partial relationship between the
response and one or two features S, ICE plots display a collection
of curves, each showing the estimated relationship between
the response and the feature S, at an observed value of other
features. Recalling Equation (1), the ICE curves consist of
g(xS, xCi) versus xS, i = 1, 2, . . . , n, while the PDP curve is
their average fS(xS). If the ICE curves follow a similar pattern,
then the PDP is a useful overall summary, but if the pattern
varies, then the feature effect is not homogeneous.

3.2. Generalized Partial Dependence Pairs Plot With ICE
Curves

We propose a generalized pairs partial dependence plot (GPDP)
with one-way partial dependence and ICE curves with a super-
imposed partial dependence curve on the diagonal, the bivariate
partial dependence on the upper diagonal and scatterplots of
raw variable values on the lower diagonal, all of which are
colored by the predicted values ŷ. Figure 4 provides an example.

With the generalized pairs plot, an analyst can quickly identify
which variables singly or jointly impact on the fit. We use a
diverging palette so deviations from the average response are
emphasized. Here, high values of ŷ are shown in dark red and
low values are shown in dark blue. Mid-range values are shown
in yellow. To avoid interpreting the PDPs where there are no
data (and hence potentially spurious H-statistics), we mask out
extrapolated areas by plotting the convex hull. For maximum
resolution of the bivariate PDPs, the range of the collection of
PDP surfaces dictates the limits of the color map. As predictions
for individual observations and ice curves are likely to fall
beyond these limits, colors are assigned using the closest value
in the color map limits.

The ordering of the variables matches that of our heatmap
and network plots. The GPDP differs from the previous plots
by showing us the distribution of the explanatory variables
(lower-diagonal), the exact nature of any linear/nonlinear effects
through the use of ICE curves (diagonal), and the average
behaviour of the interactions through the use of two-way partial
dependence (upper-diagonals). For the ICE curves we have lim-
ited the graphic to display a maximum of 30 randomly sampled
curves by default, to allow individual ICE curves to be seen.
As with the other visualizations, our GPDP can handle both
categorical responses and predictors.

Figure 4 shows an example of a GPDP of the college appli-
cations data. In the interest of space, we pre-filter this plot to
show the seven most influential variables. The bivariate PDPs
show the response surface over the convex hull of each variable
pair. The lower diagonal plots indicate that F.Undergrad:Accept,
F.Undergrad:Apps and especially Accept:Apps are highly corre-
lated with similar increasing marginal effects on the diagonal,
suggesting that the the high H-values between these variables
are likely to be spurious. This is verified by the bivariate linear
PDPs for these variables. As Private is a factor with two levels
(i.e., yes or no), the partial dependence for each factor level is
shown in the upper-diagonal (with yes in red and no in blue).
The remaining variables would appear to have little effect either
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Figure 4. GPDP of a random forest fit on the college data showing the seven most influential variables. From the changing one and two-way partial dependence, we can
see that F.Undergrad, Accept and Apps have some impact on the response. However, as they are highly correlated and have similar increasing marginal effects, the potential
interactions identified by the H-statistic are likely to be spurious.

singly or jointly on the response. This can be seen from the flat
one-way PDP and ICE curves on the diagonal and the flat two-
way PDPs.

3.3. Partial Dependence Zenplot

Our final display uses the methods of Hofert and Oldford (2020)
to show selected panels of the all-pairs PDP in a space-saving
layout, which we call a zen-partial dependence plot (ZPDP).
Zenplots (zigzag expanded navigation plots) were designed for
showing pairwise plots of high-dimensional data in a zigzag lay-
out. The motivation for zenplots is that they focus on interesting
2D displays, and they permit examination of high-dimensional
data. Indeed, Hofert and Oldford (2018) presented an example
where they successfully explore pairwise dependence of 465
variables via 164 zenplots. Here, we propose to adapt zenplots
for bivariate PDPs.

To describe the construction, consider a network plot show-
ing VImp/VInt such as that in Figure 3(a). Then delete edges
with VInt below a threshold, leaving a graph such as that in
Figure 3(b). We wish to build partial dependence plots show-
ing pairs of variables with high VInt, that is, visiting each of
the edges in our thresholded graph. For a connected graph,

the greedy Eulerian path algorithm of Hurley and Oldford
(2011) visits each edge at least once, starting from the highest
weighted edge and moving through edges giving preference
to the highest-weight available edge. If the graph is not even,
then some edges may be visited more than once, or additional
edges are visited. If the graph is not connected, then we form
sequences for the connected sub-graphs, which are optionally
joined into a single sequence.

Zenplots use the zigzag display algorithm of Hofert and Old-
ford (2020) and allow for the display of high-dimensional data
by alternating plot axes in a zigzag-like pattern where adjacent
axes share the same variable. We adapt this concept replacing
bivariate data plots with bivariate PDPs. As interpretation issues
may arise when the distribution of some of the variables is
highly skewed, we display a rug plot on each axis to show the
distribution of the data. For ease of viewing, the rug plots are a
single color and use alpha blending to highlight the distribution.
As with our GPDP, there is an option to mask areas where the
partial dependence has been extrapolated. The resulting plot
displays the most important interacting variables in as small a
space as is possible, vastly reducing the number of plots that
would be required for interpretation compared with a default
matrix scatterplot of PDPs.
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Figure 5. ZPDP of a random forest fit on the college data. We can see that the
predicted value for the number of students enrolled increases with each of the
variables.

In Figure 5, we show a ZPDP for the random forest fit to the
college applications data. The ZPDP shows the bivariate PDPs
corresponding to each of the edges of Figure 3. The sequence
of plots is obtained from an Eulerian visiting the edges starting
with the highest-weight edge, here that is between F.Undergrad
and Accept, and following available edges in order of preference
by weight thereafter. The resulting Eulerian is F.Undergrad,
Accept, Apps, F.Undergrad, Private, Accept, and P.Undergrad.
The plots shown correspond to a subset of those in Figure 4,
limited to the more interesting high-interaction pairs. This
more compact display helps focus the reader’s attention where
it is needed, especially as the plots are approximately ordered
by decreasing H-index. The variables Private and P.Undergrad
show little evidence of marginal importance, and notwithstand-
ing the relatively large H-values, there is not much evidence of
interaction with other predictors.

4. Case Study: Cervical Cancer Risk Classification

Cervical cancer remains one of the most prevalent forms of
cancer in women globally, ranking fourth in the global cancer
incidence in women (Bray et al. 2018). The link between cervical
cancer and sexually transmitted diseases (STDs) has been well
established. The long-term use of hormonal oral contraceptives
is associated with increased risk (Smith et al. 2003). Further-
more, having multiple children has been shown to increase risk
(Lukac et al. 2018), particularly in women previously infected
with HPV.

Here, we examine and create visualizations for data con-
cerning cervical cancer risk factors (Fernandes et al. 2017).
Based on the previous studies, we would expect our visualiza-
tions to align with prior identification of important variables,
with the addition of gaining new information about how the

Figure 6. Heatmap of a GBM fit on the cervical cancer data. The first seven variables
have the highest VIVI scores. Age and No_preg have the strongest interaction.

variables interact. The data is comprised of historical medical
records (such as a patient’s STD history, oral contraceptive or
intrauterine device [IUD] use) and personal information (such
as age and sexual activity). Due to the personal nature of the
questions asked for the collection of the data, several patients
decided not to answer some of the questions, particularly those
concerning STDs. The data have been previously studied (see,
e.g., Alsmariy et al. 2020). The full dataset contains 36 variables
with 858 observations and uses Biopsy (Healthy or Cancer) as
the response.

For this case study, we use a subset of the variables (see
supplementary materials for a listing). Preliminary exploration
of the data shows that many variables are highly skewed and
contain zero values; in this case we use a log(x + 1) transforma-
tion. The data is split 70-30 into training and test sets. We fit a
classification gradient boosting machine (GBM) model (Fried-
man 2000) to the training data, with Biopsy as the response. The
accuracy on the test set was measured to be 0.93, and the area
under the curve (AUC) was 0.73. All plots were made using the
training data, with all PDPs and the H-statistic measured on the
logit scale.

Figure 6 displays a heatmap of the GBM fit on the cervical
cancer risk data, using a permutation VImp method. Reading
from the top-left, the first seven variables have the highest VIVI
scores. Overall, Age has the highest importance followed closely
by Horm_Cont_yrs (the number of years a patient has taken
hormonal contraceptives). This is in agreement with the studies
mentioned above. Age also shares the strongest interaction with
No_preg (number of pregnancies), which has a medium Vimp
but is highly important in terms of its interaction. We can see
multiple interactions throughout the top seven variables. Of
note is the interaction between STDs_No (number of STDs a
patient has previously had) and No_sex_par (number of sexual
partners). Both of these variables share a strong interaction but
have low VImps and they may have been mistakenly eliminated
from a model were VImp scores to be used as the sole variable
selection metric.
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Figure 7. GPDP of a GBM fit on the cervical cancer data. The presence of the STD condylomatosis (STDS_condy) increases the risk of cervical cancer. Risk increases
substantially at higher ages and with prolonged use of hormonal contraceptives.

We further explore the impact of the top five variables from
Figure 6 on cancer classification in the GPDP plot of Figure 7. To
compare response groups, the ICE plots on the diagonal show 25
instances sampled from each of the Cancer and Health groups.
The ICE curves are colored according to the predicted log-odds
of cancer for that instance. As there is only one red curve, the
predicted model accords most observations low cancer proba-
bilities, even for those known to have cancer. The solid black
lines on the diagonal of Figure 7 show single variable PDPs. The
PDP curve for Age, the single most important predictor, has a
mostly decreasing log-odds trend up to an age of 43 (≈ 3.75
on the log scale), with a steep incline thereafter. But we can see
from the Age scatterplots there are few cases with ages beyond
43, so the pattern in this area is not supported by much data. The
pattern for the Horm_Cont_yrs PDP is similar to that for Age,
where log-odds of cervical cancer increases rapidly beyond eight
years. In this case though, there are quite a few observations in
this region supporting this finding.

According to Figure 6, the predictors No_preg and Age
have the strongest interaction. The bivariate PDP plot for
No_preg:Age indicates the form of this interaction. A high num-
ber of pregnancies is associated with low cancer probability for
middle age groups, but is associated with a higher cancer prob-
ability for older and, interestingly, younger patients. Note that
in the plots with one numeric and one categorical variable, such
as the plot for STD_condy (STDs: condylomatosis) and Age, the

numeric variable is always drawn on the x-axis, notwithstanding
the label is on the y-axis. This is to allow the plot to be more
easily read. In this plot, the bivariate PDP is the same as two
PDPs for each level of STDs_condy (where the green curve is
for STDs_condy = 1). Although this pair has a relatively high
VInt score (as seen in Figure 6), there does not appear to be
an interaction present in the bivariate PDP, as the difference
between the two curves does not vary with age.

To focus just on predictors with high pairwise interaction
scores, we turn to a network plot. Figure 8 displays a network
plot of the GBM fit to the cervical cancer risk data, filtered
to show pairs of variables with a H-index greater than 0.08
(with the cutoff chosen after inspection of the histogram of
H values). The selected variables include the five variables
appearing in Figure 7, and three additional variables, namely
No_sex_par, STDs_No, and IUD_yrs (number of years with
an intrauterine device), with eight relevant interactions
between them. This display has some benefits over the
heatmap display of Figure 6. First, it focuses directly on
pairs of variables with high interaction, particularly with
the choice of network layout. Second, in the heatmap
plot, even with seriation, some high-interaction pairs of
variables may not be positioned nearby which detracts from
readability. For example, in Figure 6, associating the relevant
variables with the strong interaction for (First_sex_inter,
STDS_No) requires considerable effort from the reader.
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Figure 8. Network graph of a GBM fit on the cervical cancer data, filtered to show
pairs of variables with H-index greater than 0.08.

However, this strong interaction is immediately obvious
in Figure 8.

To explore these interacting variables further, we use a
ZPDP in Figure 9 to show the bivariate PDPS for the eight
interactions. The Eulerian path starts with the pair of vari-
ables with the highest H-index (here No_preg:Age), and from
there to Age:STDs_cond_y, ending up at No_preg:IUD_yrs.
An additional plot is added corresponding to an edge between
Horm_Cont_yrs and IUD_yrs to complete the Eulerian. (In
this example, it would be possible to construct a ZPDP based

on an Eulerian visiting each edge of the graph in Figure 8
exactly once, but this Eulerian ignores edge weights.) The
STDs_No:No_sex_par plot (third row, second column) is a
flat surface with no evidence of interaction, despite these
variables having a moderate H-index. Interestingly, in the
No_preg:IUD_yrs plot (third row, first column), the probabil-
ity of developing cervical cancer is increasing with IUD_yrs,
with a steeper gradient for moderately high No_preg. Fur-
ther investigation is needed to determine the nature of
this effect.

To summarize, we have used our visualizations to identify
and examine some clear risk factors associated with develop-
ing cervical cancer. Our novel approach allowed us to exam-
ine specific pairs of variables that interact and through our
use of graphs and PDPs, we can examine how each vari-
able affects the model’s predictions. Specifically, the age of
a patient and the number of years of hormonal contracep-
tive use seem to be important risk factors, agreeing with the
previous studies. From Figure 7, the women who took hor-
monal contraceptives for eight or more years appear to have
a higher risk cervical cancer, which is in agreement with the
findings of Smith et al. (2003). Surprisingly, as seen in Fig-
ure 6, Dx.HPV (i.e., whether the patient has had the previous
diagnosis of HPV) was ranked to have middling importance,
despite the known link between HPV and cervical cancer. Nei-
ther did we see evidence of an interaction between No_preg
and Dx.HPV, which contrasts with Lukac et al. (2018). These
differences may be due to the low frequency of positive cases in
the data.

Figure 9. ZPDP of a GBM fit on the cervical cancer risk data. High cancer probability occurs with high number of pregnancies and high age. The color scale is the same as
that of Figure 7.
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5. Discussion

We have presented innovative and informative methods to visu-
alize the importance and interactions of variables simultane-
ously from a model. The seriated heatmap of Section 2.3 and
the network plot of Section 2.4 are effective in determining
which variables have the most impact on the response in a
model fit. We view VIVI measures displayed in heatmap and
network plots as a starting point for further detailed exploration
of the nature of variable effects and interactions in the GPDP
and ZPDP. The ZPDP construction is a novel application of the
recently proposed zenplots of Hofert and Oldford (2020), which
should prove particularly useful to focus exploration on high-
VIVI subsets of variables.

Our methods are intuitive, flexible and easily customisable.
Built-in or model-agnostic variable importance measures may
be used in our heatmap and network displays. In our work
to date, we use the model-agnostic H-statistic. Model-agnostic
measures are particularly useful when comparing two or more
fits. The heatmap and network displays will also be useful for
comparing different VIVI measures for the same fit.

As calculation of the VIVI matrix and our visualizations
are available for any subset of the data, stratified versions or
facetted displays will give insight into higher-order predictor
interactions. A drawback to the H-statistic is calculation speed,
which is highly model dependent, though sampling and parallel
calculation offer useful speed-ups. For example, the 14 × 14 H-
matrix for the GBM fit in Figure 6 computed on 30 randomly
selected observations took approximately 16 sec on a MacBook
Pro 2.3 GHz Dual-Core Intel Core i5 with 8GB of RAM. Calcu-
lation for the 17-predictor random forest fit in Figure 1 is much
slower, taking approximately 79 sec, even though here we used
just 20 randomly selected observations. A second drawback, we
have identified is that high H values can occur in settings where
there is no feature interaction, especially in the presence of high
variable correlation. The presence and nature of interactions can
be further verified in the bivariate PDP, thus avoiding mislead-
ing conclusions.

A bivariate importance measure, perhaps obtained by per-
muting pairs of variables, could be used in place of the H-
statistic in the heatmap and network visualizations. It would also

be interesting to explore the interaction measures of Hooker
(2004) and Greenwell et al. (2018) in our visualizations, and
whether these measures avoid the issues identified with the use
of H.

A number of variants of the GPDP and ZPDP could be
investigated in the future work. One possibility for the bivariate
PDP, is to subtract the two marginals plotting fjk − fj − fk, which
corresponds directly to the H-statistic. Alternatively, accumu-
lated local effects (ALE) functions (Apley and Zhu 2020) could
be used in place of PDPs in our matrix layouts. ALE functions
were constructed with the goal of counteracting the bias issues
of partial dependence functions. Another option might be to
replace the partial dependence f in Equation (3) with the cor-
responding ALE function, giving a new interaction measure.

Appendix

We explore some limitations of the H-statistic using a simu-
lated dataset. We demonstrate the benefits of the un-normalized
version of H, and show how correlated variables can result in
spuriously high-interaction measures.

Using the Friedman benchmark equation (Friedman 1991),

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε (5)
where xj ∼ U(0, 1), j = 1, 2, . . . , 10; ε ∼ N(0, 1)

we simulate 1000 observations and fit a random forest. There
are five important variables with an interaction between x1 and
x2, and five additional predictors x6, x7, . . . x10 unrelated to the
response.

In Figure 10(a) and (b), we compare the normalized and un-
normalized versions of the H-statistic for the simulated data.
Colour legends are not useful here and are omitted. In all cases,
the x1:x2 interaction is correctly identified. However, in (a) there
are numerous spurious strong interactions among the noise
variables. In (b) using un-normalized H these spurious strong
interactions disappear. The culprit here is the denominator in
Equation (2), which for variables x6, x7, . . . x10 will be close to
zero, thus artificially inflating H. This is the rationale behind our
use of the un-normalized H-statistic in our examples through-
out.

Figure 10. Comparison of the normalized and un-normalized H-statistic and the effect of including correlated variables for a random forest model. In (a) multiple spurious
interactions are detected when using the normalized H-statistic. In (b) the spurious interactions have mostly disappeared when using the un-normalized version. In (c)
(un-normalized H) a moderate spurious interaction between the correlated variables x4 and x5 is detected.
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A more subtle cause of spuriously inflated H is due to bias in
the partial dependence curve. This is a particular problem in the
presence of correlated predictor variables (see, e.g., Apley and
Zhu 2020). To demonstrate this, we replace x5 with 0.3x5+0.7x4
in Equation (5) thus introducing a strong correlation (≈ 0.92)
between x4 and x5. The resulting VIVI heatmap of the random
forest fit in Figure 10(c) shows a moderate x4:x5 interaction
which is spurious. Even in the absence of correlation, bias can
occur if the fit exhibits regression to the mean. For example, this
occurs with tree-based fits such as a random forest, where pre-
dictions cannot lie outside the range of training set responses.
This bias is evident in Figure 10(b) and (c) as the light purple
squares in the top-left section of the heatmaps.
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