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Low-Storage Quantile Estimation

C. Hurley and R. Modarres

Department of Statistics, The George Washington University,
Washington DC 20052, USA

Summary

When a dataset is too large to be stored in primary memory, standard algo-
rithms for computing sample quantiles are not directly applicable. In this
paper, we examine the statistical and computational properties of meth-
ods for quantile estimation from a dataset of n observations, which use
far fewer than n» memory locations. A histogram-based estimator is pro-
posed, which is appealing for its conceptual and computational simplicity.
Its good statistical properties are borne out by a simulation study, where
it produces estimates which are similar to the sample quantiles, and with
greater accuracy than the estimates yielded by other, more complex and
computationally intensive methods.

Keywords: Histogram, quantile, space efficiency.

1 Introduction

Estimators that are formed as a result of performing algebra on the observa-
tions are not robust. Most robust estimators are based on quantiles, which
are not algebraic functions of the observations. Typically, in order to find the
sample quantiles of a set of n data values, they must be stored simultaneously
in n memory locations.

Extremely large datasets are becoming increasingly commonplace. How-
ever, in any computing environment the number of observations that can be
stored in primary memory is restricted, because the available memory, though
large, is finite (even with virtual memory). For example, at our local SAS in-
stallation (SAS Institute, 1990), PROC SORT halts due to insufficient virtual
storage with as few as 50,000 numeric observations (on an IBM 4381 main-
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frame under the CMS operating system). Many computing environments
also limit the maximum array size allowed, and this may be much smaller
and even independent of the available memory. For instance, in Common
Lisp (Steele, 1990) the maximum array size is implementation dependent. In
one particular Lisp implementation, Macintosh Common Lisp, (Apple Com-
puter, 1992), the maximum array size is just over two million. Even that
will not be sufficient for some applications, which can have gigabytes or even
terabytes of data. Rousseeuw and Bassett (1990) give various applications
where quantiles of large datasets are required, ranging from ERG curves in
opthamology to crystallography.

This article is concerned with low-storage quantile estimation. More
specifically, assuming the data z,,z,,...,z, are independent observations
from a distribution function F, we wish to estimate the number &a such that
F(£4) = o, when the available number of memory locations is m << n.
This problem is related to the selection problem, which is concerned with
finding the kth smallest of n observations. The kth smallest observation is
variously taken as an estimate of the k/n or k/(n+1)th quantile. Conversely,
an estimate of the ath population quantile provides an approximation to the
[an]th largest observation. Baeza-Yates and Gonnet (1991) survey the se-
lection problem and Mahmoud, Modarres and Smythe(1993) analyze a time
efficient algorithm for selection of order statistics.

A sample quantile can be selected with many passes through the data.
A naive approach would compute the sample median using m memory loca-
tions with [n/2m] passes through the data. The inefficiency of this algorithm
stems from two sources. First, selecting the sample median in this way re-
quires O(n) passes through the data. Since disk access is far slower than RAM
access, an efficient low-storage quantile estimator should rely on a single pass
through the data. Second, for fixed m, the algorithm requires O(n?) com-
parisons. This compares poorly with the O(n) comparisons required when
the data is stored in primary memory (see, for example, Baeza-Yates and
Gonnett, 1991). Alternatively, some authors have taken a probabilistic ap-
proach to the problem. Munro and Paterson (1980) and Dunn (1991) offer
a low-storage, probabilistic, selection algorithm and Hatzinger and Panny
(1993) discuss an efficient implementation of Dunn’s algorithm.

Many different approaches have been taken to the problem of low-storage
quantile estimation. One approach given by Tierney (1983) is based on
stochastic approximation, using algebraic operations to update the quantile
estimate as the data values are read. Therefore, it is not necessary to store the
data values simultaneously in primary memory. Another approach to quan-
tile estimation is based on trees. Pearl (1981) suggested a minimax tree for
estimating an arbitrary quantile. Other authors (Tukey, 1978; Weide, 1978;
Rousseeuw and Bassett, 1990) independently proposed another tree-based
approach to median estimation, using recursive medians of subsamples. In
Section 2 we describe the above methods. We compare their computational
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properties, such as storage demands, and the ease and speed of computation,
as well as statistical properties such as asymptotic behavior and robustness.

In Section 3 we describe an approach to low-storage quantile estimation
based on the sample histogram, which has good computational and statistical
properties. While basing estimates on grouped data such as histograms is
commonplace, to our knowledge such methods have not been examined in
the context of low-storage, single-pass quantile estimation from very large
datasets.

Finally, in Section 4 we report on a simulation study, where we compare
the efficiency of various low-storage quantile estimators. The study verifies
that quantile estimates based on the sample histogram are similar to the
sample quantiles, and have greater accuracy than the estimates produced by
other, more complex and computationally intensive methods.

2 Approaches to low-storage quantile estima-
tion

In order to simplify the discussion we focus on the problem of estimating the
median, which we denote as £. In most cases, the properties given for the
median generalize easily to other quantiles.

Except for its high storage requirements, the sample median és has good
properties: it is consistent and asymptotically normal assuming the density
(&) > 0 exists at £&. That is,

g2, ( L) .
\/ﬁ(&s E) N O) 4f2(€) (1)
In the absence of further knowledge about F', there is no aymptotically uni-
formly median-unbiased, translation equivariant estimator of £ with smaller
asymptotic variance (Pfanzagl, 1974). The sample median also has good
robustness properties. One measure of robustness is the finite sample break-
down point (see Hoaglin et al., 1983, for example) defined as the smallest frac-
tion of observations which when replaced, can result in an estimator which
is arbitrarily large or small. The sample median has the ideal breakdown of
[n/2]/n ~ 1/2, while by contrast, the sample mean has breakdown 1/n. We
note that, to calculate the breakdown point for non-permutation invariant
estimators, the j values being replaced have indices belonging to the most
damaging (breakdown-wise) j-subset of {1,2,...,n}.

2.1 Minimax trees

Pearl (1981) proposed a quantile estimator based on minimax trees. We
describe this estimator, summarize the properties as given by Pearl (1981),
and derive its breakdown point.
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Figure 1: A minimax tree

A minimax tree is a uniform d-ary tree whose terminal nodes are indepen-
dent observations from F, and whose non-terminal nodes at odd levels of the
tree contain the minimum values of its d children while even level nodes con-
tain the maximum values of its d children. (By convention the root is at level
0.) The minimax estimator is based on the observation that the minimax
value of the root node converges in probability to a specific quantile of the
distribution function F' (Pearl, 1981), where the quantile estimated depends
on the branching factor d of the minimax tree. The minimax value of the
root node is found by traversing the tree from left to right, examining the
terminal values and propagating the minimum and alternatively the maxi-
mum value upwards through the non-terminal nodes. A tree with height h
will have d* terminal nodes, and so can be used to estimate a quantile from
up to d* observations.

Figure 1, for example, shows a minimax tree with a height h of 2, contain-
ing observations 3,12,10,1,6,2,23,7 and 4 at the terminal nodes. The values
3,1,4 at level 1 are obtained by computing the minimum of those at level
2. The root of the minimax tree (level 0) is then the maximum of the level
1 values. This tree has branching factor d = 3, which for tall trees gives a
root value approximating the 31.7 percentile value of the distribution. If the
maximum and minimum nodes are exchanged, the resulting structure is de-
scribed as a maxmin tree. In this case the root node for d = 3 approximates
the 68.3'" percentile.

In order to enlarge the set of estimable quantiles, different branching
factors d; and dy for the minimum and maximum nodes respectively, are
employed. For example, branching factors of 3 and 5 result in an estimate of
the 49th percentile, while branching factors of 6 and 44 give an estimate of
the median. In general, the minimax tree with branching factors d; and d,
estimates the o quantile of F, where « is the solution of & = (1—(1—a)9)%.
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Table 1: Computational properties (storage requirements, ease of implemen-
tation, range of n) of median estimators.

[ Method | Space | Implementation | n 1
Median n difficult any
Minimax | 2Ah difficult (d1da)P/?
Remedian | bk easy b*

S.A. m moderate any
Histogram | m + 2 | very easy any

Table 2: Statistical properties (breakdown, permutation invariance, location-
scale equivariance, monotone equivariance and asymptotic normality) of me-
dian estimators.

Method Breakdown Perm. | Loc-Scale | Mono. Asymp.
Invar. | Equiv. Equiv. Normal

Median [n/2]/n yes yes yes, odd n | yes

Minimax [max(di,dz)] "% | no no yes no

Remedian (-(Lbzl)k no no yes, odd b | no

S.A. m/2]/n no yes no yes

Histogram | [n/2]/n yes yes no yes

The corresponding maxmin tree estimates the (1~ )™ quantile. When such
a tree has height h, there will be (d;dy)"/? terminal nodes.

The properties of the minimax tree quantile estimator are summarized in
the second row of Tables 1 and 2. Pearl (1981) describes how the estimate
can be computed in 2h storage locations, and shows that the estimator is
consistent for strictly increasing F, at least for the case of di = dp. The
asymptotic distribution is non-normal, and the convergence rate is slower
than /n.

Clearly, the estimator is not permutation invariant. Also, an undesirable
property of this median estimator is its lack of location-scale equivariance:
the root value of the minimax tree computed on observations whose signs are
flipped is the negative of the root value of the maxmin tree computed on the
original observations.

Next we derive the breakdown properties of the minimax estimator. In the
minimax tree, each successive pair of minimum and maximum levels reduces
didy values to a single value, by grouping the values into dy groups of size dy,
computing the minima of those groups, and then computing the maximum
of the d» minima. For the dyd, values to be reduced to an arbitrarily large
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value, at least one of the d; minima must be arbitrarily large, which requires
that at all of the values in a group of size d; be replaced. Similarly, for the
dydy values to be reduced to an arbitrarily small value, at least one value from
each of the dy groups must be replaced. With a total of h/2 pairs of successive
minimum and maximum levels, this leads to a finite sample breakdown point
of €minimax = [min(dy, d2)]*/2/n. When n is exactly (d1d2)™?, this simplifies
to [max(di, d2)]~"/2, giving 1/y/n for the case when d; = dy. In fact, for a
fixed value of n, the highest breakdown is achieved when dy = dy, and so,

2h/2 1

_’I‘L—_ < €minimax < ﬁ (2)
Thus, the breakdown point of minimax quantile estimators, while better than
that of the sample mean, tends to zero as the sample size n — oco.

2.2 The remedian

In this section, we describe another tree-based method for median estimation,
which uses recursive medians of subsamples. We show that this method re-
quires more storage than the minimax estimator, but has a higher breakdown
point.

The method of recursive medians has appeared several times in both the
statistics and computer science literature, see Weide (1978), Tukey (1978),
Pearl (1981), (who attributes the idea to Cantor), and Rousseeuw and Bassett
(1990). Blum et al (1973) use the method for pivot selection in a one-sided
quicksort algorithm for the selection problem. Following Rousseeuw and Bas-
sett (1990), we call this estimator the remedian. The method can be extended
to other quantiles, as described by Chao and Lin (1993).

Suppose that n is of the form b* where b and k are integers. The reme-
dian algorithm processes the observations sequentially in groups of size b. A
median is computed for each group, yielding b*~! medians at the first stage.
This step is repeated recursively until a single estimate is found (see Figure
2). A remedian can be computed using k arrays of size b requiring kb storage
locations.

Rousseeuw and Bassett (1990) have investigated the computational and
statistical properties properties of the remedian, which we summarize in Ta-
bles 1 and 2. We note that implementation is easy as long as n has the
form b*. For fixed b as k — 0o, the estimator is consistent, converging at a
sub-optimal rate to a non-normal asymptotic distribution. Recently, Chao
and Lin (1993) investigated the asymptotic properties of the remedian under
more general conditions. The estimator has good breakdown properties, but
the demands of robustness are in conflict with the requirement that storage
be kept low: as the storage increases so does the finite sample breakdown
point.

Next we compare the storage requirements of the minimax and remedian
methods. From Rousseeuw and Bassett (1990), when b = 3 the remedian
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Figure 2: A remedian tree

uses the smallest possible amount of storage, which is 3logan. Now, unless
both d; and dy are 2,

3logzn > 2log gz n = 2h,

which is the storage used by the minimax tree.

The remedian requires more storage locations, but with the exception
of the degenerate b = 2 case, has better breakdown properties than the
minimax estimator, as we now show. The remedian has breakdown point
€remedian = ([b/2]/b)F > 1/2*F (Rousseeuw and Bassett, 1990). When b > 4,

!
k = 2log,v/n= 2M < log, v/n,
log, b
and so 1/2¥ > 1/y/n. When b = 3, the breakdown €remedian = (2/3)F >
1/y/n, using steps similar to above. And so, using (2), we have that, for
b >3,

€remedian = —— = €minimax-
n
In the b = 2 case, the remedian collapses to the sample mean, and its break-
down is €remedian = 1/7 < €minimax, 3gain using (2).
2.3 Stochastic approximation

Tierney (1983) proposed a stochastic approximation (S.A.) algorithm for es-
timating the ath quantile §,. A starting estimate é,,,m is obtained using the
first m observations, say. Then as observations z; are read in, the estimate
is updated according to the following formula:

éa,H—l = éoz,i —c (I[z‘.ﬂsga’..] - a) , (3)
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where Ij) is the indicator function, and ¢; is chosen so that the resulting
estimator has minimum asymptotic variance.

The formula (3) looks deceptively simple; in fact the quantity ¢; involves
an estimate of the density at the population quantile, and computing c; at
each step requires quite a few floating point operations. The space complexity
and breakdown properties for the S.A. estimator (see Tables 1 and 2) depend
on the number of observations used in obtaining the starting estimate éa,m.
Interestingly, since the c;’s are finite, it is not possible to breakdown this
estimator by replacing any or all of 41, Tm+2, - - -, Tn. Tierney(1983) shows
that the estimator has the same large-sample behavior as the sample median.
Like the remedian and minimax estimators, this estimator is not permutation
invariant.

3 Histogram Quantile Estimates

We propose the following histogram estimator of the population quantile. For
ease of presentation, we focus on the median in the following discussion.
Suppose for simplicity [, are fixed and known to contain the sample
median. Later we relax this assumption and address the case where ! and
r are estimated from the data. Divide (/,7] into m bins each of width (r —
l)/m = w/m. Then count the number of observations falling in each bin
(I +iw/m, I+ (i+ 1)w/m],i =0,1,...,m — 1, and the number falling at or
below | and beyond r. We define the histogram estimator of the population

median as Fu(h) - 1/2 1/2 - Fo(a)

. (b)) — — Fy(a

RO - @ T )~ Fala) @
where F,(z) is the empirical distribution function and the bin (a, b] contains
the sample median so that

Fo(a) < 1/2 < F,,(b).

Note that the estimator é is simply obtained by linear interpolation of the
bin endpoints.
This estimator requires m storage locations and is computed in O(n)

steps. Since
P 1
E = Es +0 <_) s
m

where &, is the sample median, it follows that the é has the same asymptotic
distribution (1) as the sample median, when n = o(m?). Alternatively, for
fixed a and b, the estimator (4) has an asymptotic normal distribution, but
it is not necessarily a consistent estimator of £. From the joint asymptotic
normality of the empirical c.d.f. evaluated at a and b, and the multivariate
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delta method (see, for example Rao, 1973 pp. 386-387), we have that

D B-aP  (b=a)2(/2~ F@)(F®) ~1/2
VrlE=4) N("’ 1F0) = Fla) (F®) - F@)? )

_ PO -12 12 Fla)

F(b)— F(a) « F(b)— F(a)’

Properties of this histogram estimator are summarized in the fifth lines
of Tables 1 and 2. Unlike previous methods, this procedure leads to an es-
timator which is permutation invariant. This property is important when
there are dependencies among the data values, which frequently occurs when
they are collected over time. The lack of monotone equivariance of the his-
togram estimator has two sources: the first is the use of equispaced bins in
the histogram construction, and the second is the use of linear interpolation
between the endpoints of the bin containing the sample median.

The histogram estimate of the population median is based on a com-
pact, frequency table representation of the n data values. Once the table is
constructed, any population parameter may be estimated in time which is
independent of n. This contrasts with the other low-storage estimators pre-
sented, where each quantile estimated causes the amount of work performed
to increase by an amount proportional to n.

Our discussion so far has assumed that an interval (I,r| containing the
sample median is known. In many situations the context of the data will
suggest such an interval, but it may be too wide to be of practical use.
Fortunately, if it happens that ! and r are incorrectly specified and do not
contain the sample median, this is detected by the algorithm.

We now describe how suitable values of { and » may be obtained from the
data. The simplest and most conservative strategy uses the first m values
to estimate [ and r by the minimum and maximum. However, especially for
extremely heavy-tailed distributions such as the cauchy distribution where
wild observations occur, this strategy can lead to a wide (I, ] interval and
thus an unreliable median estimator.

More generally, one could let I be the j = [gm]th smallest and r the jth
biggest among the first m values, where 0 < ¢ < 1/2. We would like the
resulting interval to be narrow, but with a high probability of containing the
sample median. We note that

P(&e(r])=P(M2jandm-Mz23),

where M is the number of values from the first m which are less than é_,.
Assuming that the first m values can be regarded as a random sample from
the totality of n values, M ~ Hypergeometric(m, n,n1), where n; is the total
number of values which are less than &,. When there are no ties (n; = [n/2])
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and n is large, M is approximately distributed as N(m/2, m/4). Therefore,

P (&l € (l,r])

it

PG <M <m-—j)
1- 20 (j—-‘ m/Z)
m/4

efam(e-1). ®

The lower and upper quartiles of the first m values (¢ = 1/4) are thus a
reasonable choice for [ and r; the resulting interval has a high probability of
containing the true sample median (more than 99.84% for m of 40 or beyond).

Of course, when the first m values are used to choose [ and r, the estimator
loses the permutation invariance property and the breakdown drops from
the optimal [n/2]/n to [gm]/n. However, to break the estimator down,
the 7 = [gm] extreme values would have to lie among the first m values.
Assuming all values are equally likely to be outliers, the probability that j
values cause the estimator to breakdown is

Q

Q

()  nn-1)---(n—-j+1)

m.

n

n—-j‘ . . .
(m—J) 7”(7” - 1) (m -7+ 1) < ('m)J ,
which is small.

4 Simulation Study

In the previous two sections, we examined the asymptotic properties of several
methods for quantile estimation. However, it is worthwhile to investigate the
properties of these estimators for finite sample sizes. Ideally, we would like to
consider sample sizes of several million observations, but given the limitations
of computing resources, we chose to perform a simulation based on 1000
repetitions with a sample size of 50,625. The random number generator used
was described by Marsaglia (1972).

In our simulation study, we compare the performance of the five methods
of median estimation listed in Tables 1 and 2. The sample median is included
in the study in order to compare the low-storage methods to the estimator
typically used when the storage is unrestricted. Since both the remedian and
minimax methods place limitations on the form of the sample size, we set
b (buffer size) to 15 and k (the number of buffers) to 4, for the remedian
algorithm. For the minimax method, we choose the branching factors d;
and dy to be 3 and 5, respectively, and the tree height h to be 8. These
parameter choices result in a sample of size n = 50,625, with remedian
using 60 memory locations and the minimax method using 16. To make the
memory requirements of the other methods comparable, we also set m to 60.
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Table 3: Simulation Results. For the low-storage estimators, the ratio of the
MSE to the MSE of the sample median is given, for the normal, contaminated
normal, cauchy and x? distributions.

[ Method | Normal [ Contam. | Cauchy | X7 |

Minimax 76.95 79.61 73.88 75.327
Remedian | 3.291 3.453 3134 3.332
S.A. 1.004 1.013 1.025 1.001
Histogram [ 0.992 0.995 0.994 0.991

For the histogram method, we use the first m values to estimate [ and r by
the upper and lower quartiles. (From Equation (5) with m = 60, such an
interval contains the actual sample median with a probability of 0.9999.)

We compare the four low-storage estimators for four continuous distri-
butions, three exhibiting increasing amounts of heavy-tailedness, namely the
standard normal, a contaminated normal and the cauchy distributions, and
the chi-square distribution with one degree of freedom, which exhibits a high-
degree of skewness. The contaminated distribution used is N(0, 1) contami-
nated by 10% N(0,9). For each of the five methods, we estimate the popu-
lation median. In Table 3, we report the ratio of the mean square error for
each estimator to the mean square error of the sample median.

The minimax estimator consistently performs very poorly over the range
of distributions considered. The poor performance can be traced to its asymp-
totic behavior, which requires the tree height h — oco. In our simulation, h
was merely 8. A moderately large h value of 150 for instance, would require
a sample size n of more than 1.6x10%8. With dy = 3 and dy = 5, the maxmin
tree used in the simulation is actually estimating the 51st percentile of the
parent distribution, rather than the median. However, the contribution of
the bias term to the mean square error of the estimator is negligible. The
branching factors of 6 and 44 required to estimate the median, even with a
tree height as small as 8, would require a sample size prohibitively large for
the purposes of simulation.

The performance of the other tree-based estimator, the remedian, while
much better than that of the minimax estimator, is less than ideal. For
each of the distributions considered, its mean square error is more than three
times that of the sample median. Figure 3 shows plots of the remedian for
the cauchy and x? samples only (the plots for the other distributions are
similar). Once again, we see that the variability of the remedian far exceeds
that of the sample median. We also notice that the correlation between the
remedian and the sample median is low.

The mean square errors of both the S.A. and histogram estimators are
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Figure 3: Plots of remedian estimates. The x-axis shows the remedian, and
the y-axis shows the the sample median, for the cauchy and x?} samples.

very close to that of the sample median, for each of the distributions con-
sidered, with the histogram estimator having slightly smaller MSE in each
case. For a closer examination, we turn to Figure 4 which shows the cauchy
and x? samples only (the plots for the other distributions are similar). Both
methods yield estimates which have very high correlation with the sample
median, therefore it is more informative to plot deviations from the sample
median on the y-axis. Here we see that for both the cauchy and X3 samples,
the methods give us estimates that are almost always within .02 of the true
population median. Overall, it appears that the histogram estimates track
the sample median a little more closely than do the stochastic approxima-
tion estimates. In the case of the x? distribution, the histogram estimator
shows evidence of a very slight, positive bias. This is not surprising, given
that we are performing linear interpolation in intervals where the density is
decreasing.

5 Discussion

In this investigation, we have examined the computational and statistical
properties of four methods of quantile estimation. For clarity of presentation
we focused on median estimation, but except in the case of the remedian, the
extension to other quantiles is immediate.

While the method of Pearl (1981) has very low storage requirements, our
simulation study demonstrated that it is very unreliable, at least for the mod-
erately large sample size considered. The remedian algorithm is far simpler,
has higher breakdown, and performed better in simulation than the minimax
method. However, both tree-based methods performed substantially worse
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Figure 4: Comparision of the histogram and S.A. methods. The plots in the
first row compare the methods on cauchy data, while the second row uses
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y-axis shows the difference between the estimate and the sample median.
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than the stochastic approximation and histogram-based methods. Both of
these methods produced estimates matching the sample median in their ac-
curacy, and, data values used for startup aside, both have high breakdown.
Our expermiments have shown similar results for other quantiles. We believe
the histogram method is to be preferred for its conceptual simplicity, ease of
implementation and computational efficiency.

Many variations on the histogram estimator presented here are possible.
For example, Krieger and Gastwirth (1984), show that, at least for unimodal
distributions, retaining bin means as well as counts allows one to narrow the
search for a sample quantile to a bin sub-interval. Rather than the simple
linear interpolation scheme we described, a quadratic or any higher-order
interpolation of the empirical c.d.f. at the bin endpoints could be performed
to obtain the quantile estimate. Attempts could also be made to use the
first m observations to construct non-equispaced bins, which are denser in
the region where the target quantile is likely to fall.
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