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                                                                 Abstract 

Deep learning techniques are used to achieve state-of-art accuracy in semantic segmentation on 
aerial ortho-imagery datasets. These algorithms are known to be efficient in terms of accuracy but at the 
expense of computational power required for training and subsequent inference operations. In this paper 
we strive to achieve a comparable performance but with lower floating point operations per second 
(FLOPS) and less training time. With this in mind, we chose to evaluate the EfficientNet-B0 network 
configured with 5.3 millions parameters and 0.39 billion FLOPS as a feature extractor operating inside a 
U-net architecture, achieving accuracy levels (mean F1 score of 0.869) comparable to a state-of-the-art 
deep learning architecture (U-net with Resnet50 as backbone) configured with 25.6 million parameters 
and 4.1 billion FLOPS which achieved a mean F1 score of 0.87. These promising results demonstrate that 
employing EfficientNet as the feature extractor in semantic segmentation on aerial ortho-imagery can be 
an effective strategy, in achieving higher performance results in terms of computational power, especially 
when running these networks on the edge. 

 
Keywords: Deep Learning, Supervised Image Segmentation, semantic segmentation, ortho-imagery, Deep 
convolutional neural network  

1 Introduction  

Over the past decade, advances in Machine Learning (ML) and in particular Deep Learning (DL) algorithms have 
resulted in significant advances in Computer Vision. One of the key applications is Semantic Segmentation which 
is used in a number of applications including; Robotic Localisation, Autonomous Driving, Scene Understanding 
and, building High-Definition Maps [Kemker et al., 2018].  

In terms of geospatial applications, unmanned aerial vehicles (UAVs) are playing an increasing role in data 
gathering and mapping our real world environments. These robotic aerial data gathering platforms are now 
commonly found across the globe, collecting large volumes of data that require automated processing such as 
feature extraction to be carried out on the fly. Such requirement demands both computationally inexpensive and 
high accuracy feature extraction techniques [Ammour et al., 2017]. 

Most common and well-known traditional techniques in computer vision like Support Vector Machines, 
[Waske and Benediktsson, 2007], and Random Forests, [Pal, 2005], often result in less accurate outputs compared 
to the DL techniques that produce significantly improved accuracy but at the expense of resources required to 
train and carry out subsequent inference [O’Mahony et al., 2020]. In this paper we investigate the potential for 
EfficientNet family, [Tan and Le, 2019], to help reduce this expense in extracting man-made features in UAV 
aerial imagery. We investigate this hypothesis using an U-Net architecture, [Ronneberger et al., 2015], with an 
EfficientNet-B0, [Tan and Le, 2019] feature extractor. To assess the performance of the resulting architecture we 
utilise the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark dataset [ISPRS, 
2016]. 

2 Prior Work 

 
Recent developments in aerial robotic data gathering platforms, such as UAVs, now enable the rapid capture of 
aerial imagery at higher spatial-temporal resolutions as well as lower costs. In parallel, emerging developments in 
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contemporary DL algorithms in automating the data processing and feature extraction has resulted in new data 
products and information services for applications including; urban planning, land cover classification, 
Emergency Response, etc. [Ammour et al. 2017].  

It is possible to generate an orthophoto from overlapping aerial imagery that is geometrically corrected 
(orthorectified) so it can be used to measure true distances and dimensions. The process of orthorectification 
enables various real-world phenomena and distortion such as topographic relief, lens distortion and camera 
orientation to be corrected [Habib et al., 2007].  

Semantic Segmentation is an important algorithm that can assign a class to each pixel of a given image 
where the classes are defined A Priori. Semantic Segmentation applied to ortho-imagery is very useful and 
important because of its ability to detect and categorise one or more classes in the ortho-image [Liu et al., 2018]. 
Traditional image segmentation methods include; Watershed, Graph Cuts and Random Forests which have been 
used to classify high-resolution aerial images [Meyer and Beucher, 1990; Boykov and Jolly, 2001; and Pal, 2005]. 
However, DL techniques involving convolutional neural networks have proven to be more efficient and effective 
in extracting features from images compared to these more traditional approaches [Deng et al., 2009]. DL methods 
perform well even for semantic segmentation due to their ability to automatically extract features. For example, in 
2015, there was a 20% relative improvement to 62.2% mean Intersection over Union (IoU) using a Fully 
Convolution Networks (FCNs based on the PASCAL VOC 2012 benchmark dataset compared to the state-of–the-
art techniques of that time [Long et al., 2015].  

There are many Neural Network architectures that utilise CNNs for semantic segmentation tasks e.g., U-net 
[Ronneberger et al., 2015], LinkNet [Chaurasia and Culurciello, 2017], Feature Pyramid Networks [Li et al., 
2019]. As an example, [Wu et al., 2018] uses U-net [Ronneberger et al., 2015] for automatically segmenting 
building features from aerial imagery. Similarly, [Boonpook, et al., 2018] uses SegNet [Vijay et al., 2016] to 
extract building features from UAV images for riverbank monitoring. One of the novelties of these architectures is 
their compatibility and adaptability with a range of feature extractors. For example, one can use VGG [Simonyan 
and Zisserman, 2015] as the feature extractor in a U-net architecture [Ronneberger et al., 2015] or use ResNet [He 
et al., 2016] inside a LinkNet [Chaurasia and Culurciello, 2017]. The performance of these networks completely 
depends on the performance of the feature extractor in combination with how the architecture combines these 
features to segment the objects under observation. More recently, ScasNet [Liu et al., 2018] which utilized Resnet 
[He et al., 2016] as a feature extractor, achieved one of the best results with an overall accuracy of 91.1% on the 
ISPRS Potsdam benchmark dataset [Liu et al., 2018]. With a more complex feature extractor is it possible to 
achieve higher performance with respect to accuracy in resulting object segmentation, but this also increases the 
number of parameters to train. This gives rise to computationally more expensive requirements since high-
performing DL techniques require relatively large volumes of training data to train models with a high number of 
parameters.  

In this paper, we investigate the potential for a more efficient and scalable Semantic Segmentation Neural 
Network architecture that allows a comparable level of performance to be achieved similar to the actual state-of-
art applied to ortho-imagery from the ISPRS Potsdam benchmark dataset. To this end, we employ a combination 
of a U-net architecture [Ronneberger et al., 2015], an EfficientNet [Tan and Le, 2019] feature extractor and 
focal/dice loss [Lin et al., 2020, Deng et al., 2018]. 

3 Technical Description 

The main drawback of the majority of CNNs are their tendency to down-scale or reduce the spatial resolution of 
the features along the depth of the network which is not ideal in a segmentation context. 

To overcome down-sampling of the spatial resolution, many Fully Convolutional Neural Networks have 
been suggested like Segnet [Vijay et al., 2016], U-net [Ronneberger et al., 2015]. We chose a U-net architecture 
with an EfficientNet-b0 as the feature extractor, after an initial assessment based on literature review, for this 
study.  

The U-Net architecture is a CNN widely used for Semantic Segmentation. The original network consists of 
an encoder path and a decoder path that gives the U-shaped architecture. The Encoder part is composed by 
repeated convolution layers, each followed by a rectified linear unit (ReLU) layer and a maximum pooling layer. 
The decoder part is composed by sequence of up-convolutions and concatenations.  
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Figure 1: Overall U-net architecture using EfficientNet-b0 

 
The U-net architecture readapted with the EfficientNet-B0 as the encoder is detailed in Figure 1. The 

EfficientNet is a family of Convolutional Neural Networks developed in the context of AutoML where the authors 
have investigated a possible solution for neural network (NN) scaling for efficiency [Tan and Le, 2019]. Tan and 
Le, [Tan and Le, 2019], created a first baseline EfficientNet-B0 inspired by a MnasNet and scaled up to the B7 
network using their new compound scaling method, optimizing both accuracy and FLOPS at the same time. As a 
result, the network is faster and smaller compared to the other major networks used based on the ImageNet 
benchmark dataset [Tan and Le, 2019]. Specifically, EfficentNet-B0 uses 4.9 times less parameters and 11 times 
less FLOPS compared to ResNet-50 while providing 77.1 % as Top-1 accuracy on ImageNet compared to 76.1% 
of ResNet-50 [He et al., 2016]. Figure 2 shows the EfficientNet-B0 architecture. 
 

 
Figure 2: Architecture of EfficientNet-B0 as feature extractor 

 
Along with the architecture, it also important to carefully select the loss function which will penalize the 

network for incorrect predictions and detections. Standard cross-entropy loss is calculated as the average of per-
pixel loss. This poses a huge issue when the number of foreground pixels are far less than the number of 
background pixels. Although, weighted cross entropy loss helps alleviate this problem, it does not result in a 
significant improvement. To overcome this issue, we used a combination of a focal and dice loss. While the focal 
loss helps in learning hard negative examples and addresses the issue of class imbalance, dice loss helps to learn 
better class boundaries [Lin et al., 2020, Deng et al., 2018].  
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The Dice Loss is defined by 
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where C is the total number of classes, N is the total number of pixels, 𝑝!(𝑐) is the predicted class of the pixel, 
𝑔!(𝑐) is the ground truth class of the pixel. TP, FP and FN are respectively the true positives, false positives, false 
negatives of a particular class. The Focal Loss is defined by 
 

ℒ.2&34 = −𝜆 $
"
∑ ∑ 𝑔!(𝑐)(1 − 𝑝!(𝑐))g 𝑙𝑜𝑔(𝑝!(𝑐))"

!#$
/0$
&#1                                (2) 

 
The focusing parameter g was set to 2 and the weighting factor l was set to 0.25 in our experiment. Thus, the total 
loss is given by, 
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4 Experiments 

4.1 Implementation 
We implemented U-net architecture using Tensorflow 2.3.1 with CUDA 10.1 support. Training images are read 
on the fly and randomly augmented using Tensorflow data API. We did our performance tests using a graphics 
processing unit (GPU) NVIDIA GeForce GTX 1650 with 4 GB of GPU memory. 

4.2 Benchmark Dataset 
We applied and studied the performance of the architecture described in section 3 with the ISPRS Potsdam 
benchmark dataset [ISPRS, 2016]. This benchmark dataset contains 38 ortho-images of same size of 6000 x 6000 
pixels generated from cropping a larger orthophoto at a ground sampling distance (GSD) of 5 cm. Each ortho-
image in the dataset consist of 4 channels IRRGB (Infrared, Red, Green, Blue) and for each ortho-image, there is a 
corresponding Digital Surface Model (DSM), representing elevation and normalised DSM (nDSM) data. The 
ground truth labels are also provided for training purposes for 24 of these 38 ortho-images. An example of the 
dataset is detailed in Figure 3 where a ISPRS RGB patch is overlapped with the ground truth. The ground truth 
colour map used for ISPRS classes/objects is listed in Table 1. 
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Figure 3: Labels overlapped on a RGB ortho-image crop from ISPRS Potsdam dataset 

  
Colour Class 
White Impervious Surfaces 
Blue Buildings 
Cyan Low Vegetation 
Green Trees 
Yellow Car 

Red Clutter 

Table 1: ISPRS colour and class definition 

4.3 Training and Evaluation 
For the experiments, we pre-processed the raw ISPRS Potsdam dataset and generated 4681 patches of 512x512 
pixels each with the infrared (IR), red (R), green (G), and normalized digital surface model (nDSM) band. Every 
patch has the correlated mask in a different folder with the same patch name in .tif format. For training, we used 
an 80/20 split so, 80% of all the 4681 patches was used for train the model and the remaining 20% patches was 
used for validation purposes. Data was also normalized, and data augmentation was applied, which consisted of 
random rotation of 90°, vertical and horizontal flips with a probability of 0.5. We choose a batch size of 4 due to 
our memory constraints. We did not use the Transfer Learning technique because most of the common pre-trained 
weights are based on RGB images, but in this case, we have 4 channels corresponding to IR, RG and nDSM data. 
Hence, we initialized the network with Xavier initialization [Glorot and Bengio, 2010]. The initial learning rate 
(LR) was set to 0.001 with a learning rate scheduler that monitored the validation loss. The LR was set to decrease 
by a factor of 0.1 every 5 epochs if the validation loss doesn’t reduce. The minimum LR was set to 1e-15. The 
optimizer chosen was Adam [Kingma and Ba, 2015].  

We trained two models using the ISPRS Potsdam dataset and created a comparison table (Table 2) with the 
F1 score metric (2) per class and reporting the number of parameters and FLOPS required. All the models are 
based on the same U-net architecture but with a different feature extractor. We chose to compare EfficientNet B0 
with ResNet50 because these two architectures have comparable performances [Tan and Le, 2019] 

We assessed quantitative performance of the two models based on the F1 score applied to all the six classes 
as,  

 
𝐹1 = 2 *5'&!6!27∗9'&344

*5'&!6!27-9'&344
      (4) 

 
where, Precision and Recall are defined by: 
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4.4 Results and Analysis 
We generated predictions for each of the fourteen ortho-images contained in the ISPRS Potsdam test dataset and 
compared to the ground truth calculating the metrics for both architectures. We also produced qualitative results as 
shown in Figure 4 where we show the IRRG image, the ground truth, the prediction with Resnet50 and the 
prediction with EfficientNet-B0 based on an ortho-image from the ISPRS Potsdam test dataset. 

As seen from Table 2, EffientNet-b0 resulted in almost the same weighted F1 score as ResNet-50 but with 
4.9x less parameters and 11x less FLOPS. This resulted in comparable performance when comparing 
EfficientNet-b0 to ResNet-50 but with significantly less computational overhead.  

 
 

Architecture Num. of 
parameters FLOPS Weighted 

Mean F1 

F1-Scores 

Impervious 
Surfaces Buildings Low 

Vegetation Trees Car Clutter 

U-net + 
EfficientNet

-B0 
5.3M 0.39B 0.869 0.89 0.95 0.82 0.83 0.89 0.41 

U-net + 
ResNet50 25.6M 4.1B 0.87 0.89 0.95 0.82 0.82 0.88 0.45 

Table 2: Model comparison 
 

 
Figure 4: Qualitative comparison side by side of the inference from the models on the ISPRS Potsdam test set. 
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5 Conclusions 

In this paper, we investigated a more efficient Neural Network architecture that can achieve state-of-art 
performance on Semantic Segmentation applied to ortho-imagery, captured using UAVs. We reviewed a Neural 
Network based on a U-net architecture but modifying the features extractor with the new EfficientNet-B0. We 
were not interested in accuracy alone, but also examining the possibility of reducing the computational power 
required by the common architecture ResNet50. Initial results are promising and scalable. Further experimentation 
could be conducted on testing and evaluating the robustness and versatility of these architectures using different 
datasets and comparing the results also with other well-known Semantic Segmentation architectures. 
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