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A B-spline based and computationally performant

projector for iterative reconstruction in tomography

Application to dynamic X-ray gated CT

Fabien Momey, Loı̈c Denis, Catherine Mennessier, Éric Thiébaut, Jean-Marie Becker, Laurent Desbat

I. INTRODUCTION

ITERATIVE reconstruction methods for tomography have

long proven their potential to enhance reconstruction qual-

ity, compared to the filtered backprojection (FBP) [2]. The

drawback of iterative methods is their expensive computation

time. However ongoing researches on algorithms and recent

enhancements in computational power, call for a re-evaluation

of the potential of iterative reconstruction in this domain.

Such methods require an accurate numerical modelization

of the data acquisition process: the so-called projector. The

representation of the object of interest (image) is the starting

point of the projector. It is assimilated to a continuous function

decomposed on a discrete basis of functions. The choice of

this basis is essential for an accurate representation of the true

function. Standard models such as voxel driven or ray driven

[5] are based on raw samples, yielding modelization errors and

artifacts on the reconstructed image. More advanced models,

such as the recent distance driven [1] projector, define the

function at any point considering staircase voxels, and thus

make a better modelization. However such a basis of functions

provides a coarse representation of the image because of its

anisotropic behaviour, causing large modelization errors. Such

issues can be dealt with the spherically symmetric volume

elements, mostly known as blobs [7] [8] [9] [10] [11], but at

the cost of increased complexity. Finally, for implementation

purposes, the projection of the staircase voxel, in the distance

driven model, is approximated, increasing its modelization

errors.

We propose the use of B-splines as an alternative to both

staircase voxel and blob approaches. B-splines are well known

piecewise polynomial functions, and are characterized by the

degree of their constituting polynomials. Recent works in

sampling theory [18] [19] [15] have shown their efficiency
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Éric Thiébaut is with the Centre de Recherche Astrophysique de Lyon -
Observatoire de Lyon.

Jean-Marie Becker is with the Laboratoire Hubert Curien, and with CPE
Lyon.

Laurent Desbat is with the TIMC-IMAG, Grenoble, France.

in representing a continuous signal, with a good recovering

accuracy. Increasing their degree makes them more and more

similar to the 3D Gaussian functions, with a quasi-isotropic

behaviour, while keeping local influence and separability prop-

erty.

This gives us clues to develop a new efficient numerical pro-

jector for iterative reconstruction. One of the most important

improvements we get is the reduction of the angular sampling

of projections without any loss of quality.

Such an improvement is particularly of interest in the case

of dynamic gated X-ray CT, which can be considered as a

tomographic reconstruction problem with very few projection

data, and for which we show some preliminary results.

II. MATERIALS AND METHODS

A. Use of B-splines for image representation

Let f : x 7→ f(x), with x = (x1, x2, . . . , xn) ∈ R
n, be the

n-dimensional continuous function modelizing the true image

to be reconstructed. Its decomposition on a discrete basis of

functions gives:

f(x) =
∑

k∈Zn

ckϕk(x) =
∑

k∈Zn

ckϕ(x− xk) (1)

where this discrete shift-invariant basis is assumed to be com-

posed of the compact atom function ϕ(x), regularly spaced on

a n-dimensional grid of N samples. k = (k1, k2, . . . , kn)
T ∈

Z
n corresponds to indexes of the N samples of the discrete

grid in the n-dimensional space, xk = (xk1
, xk2

, . . . , xkn
)T ∈

R
n are the coordinates of this discrete grid.

For numerical purposes, f is described as a vector of its N

coefficients:

c = (c1, c2, . . . , cN )T ∈ R
n (2)

The choice of the atom function ϕ of the basis is essential

for warranting consistency with the image intrinsic continuity.

It will be a key point for the design of the projector which

has to modelize accurately the data.

B-splines are piecewise polynomial functions with degree d,

continuously differentiable up to order d− 1 [18]. Let β0(x)
be the rectangular pulse. Thus βd is a B-spline of degree d,

constructed by d convolutions of β0.

βd(x) = β0 ∗ · · · ∗ β0

︸ ︷︷ ︸

d+1 terms

(x) (3)



Hence going back to the formulation of the image representa-

tion in (1), we choose B-splines as our basis of functions ϕ,

leading to:

f(x) =
∑

k∈Zn

ckβ
d
k
(x) =

∑

k∈Zn

ckβ
d(x− xk) (4)

Classical basis functions used by some existing projectors

are the simple staircase voxels. This is the case for the distance

driven projector [1]. These functions are advantageous for

being the most compact B-splines (of degree 0), easy to manip-

ulate. However, staircase voxels suffer from a high anisotropic

behaviour. They constitute a too coarse basis of representation

of a continuous object, leading to large modelization errors. A

finer sampling rate lowers these errors, but at the cost of an

increased computational burden.

The accuracy of the model can be improved using B-

splines of higher degree. Indeed B-splines are close to a

Gaussian function when their degree d is large. Thus they tend

to spherically symmetric function, while preserving a local

support. As a result we can deal with quasi-isotropic functions.

We also get a better approximation order in the modelization

of f(x). These two properties are related by the fact that B-

splines are the shortest and smoothest scaling functions for a

given order of approximation [19].

B. Projector

We consider a general tridimensional system with coordi-

nates x = (x, y, z) linked to the object of interest. The regular

sampling grid is therefore identified by the samples positions

xk, corresponding also to the center of each basis function βd
k

.

Then we consider a flat detector, with coordinates u = (u, v).
The detector acquires the projection with a given orientation

denoted θ. Let c be the vector of coefficients of the image,

defined in (2). The numerical data modelization at orientation

θ is:

gθ = Rθ · c , gθq =
∑

k∈Ωθ
q

Rθ
qk · ck (5)

where Rθ is the projector and gθ is the resulting data vector,

the elements of which are noted gθq . The coefficient Rθ
qk of the

matrix Rθ is the contribution of the voxel function k on the qth

data element. Ωθ
q is the set of voxels k impinging the θ-oriented

detector pixel q. Let Pq : u 7→ Pq(u) = β0(u − uq) be the

qth detector pixel response, assumed to be a 2D rectangular

pulse, centered at position uq . This response is shift-invariant

over each detector pixel. Thus:

Rθ
qk =

∫ ∫

F θ
k
(u) · Pq(u) du (6)

F θ
k

is the footprint of the basis function βd
k

. It is nothing else

than the X-ray transform of this function on the θ-oriented

detector, along each ray trajectory {S(θ), ~r(θ,u)} crossing it,

and impinging the detector plane at the position u.

F θ
k
(u) =

∫

x∈{S(θ),~r(θ,u)}

βd
k
(x) dx (7)

A given projector Rθ determines the expression of this

footprint F θ
k

. Obviously, F θ
k

depends on the chosen basis of

functions. Moreover some approximations are often made in

the calculation of this footprint and its contribution to detector

pixels, in order to lower the computation cost.

Our approach uses the quasi-isotropy property of B-splines

of higher degree, stated in section II-A, to suppose that the

footprint is identical whatever the orientation θ. As a result, we

first state that the footprint of βd
k

, in parallel beam geometry,

is a n − 1-dimensional B-spline of degree d, separable over

the detector axis. For the 3D case, this gives:

F θ
k
(u) = βd(u− uk) · β

d(v − vk) (8)

where (uk, vk) = uk is the position, on the detector, of the

projection of the center xk of βd
k

.

In the case of cone beam geometry, the magnification effect

has to be taken into account, as well as the distorsion effect

depending on the position of the voxel in the field of view.

For the 3D case, this gives:

F θ
k
(u) = βd

(
u

Γθ
S · δuk

− uk

)

· βd

(
v

Γθ
S · δvk

− vk

)

(9)

Γθ
S is the magnification factor; δuk

et δvk are the distorsion

factors.

A study of modelization and approximation errors of our

model, compared with the distance driven model, has been

done previously in [12], and has proven its better accuracy. We

have shown that the use of cubic B-splines (degree 3) already

reaches almost the best accuracy. However such a gain is at

the cost of an increase of the required number of operations,

due to the larger footprint of a given voxel as a function of

the B-spline degree, as shown in Fig.1. But at the degree 3, it

is only about 6 times larger, which remains is the same range

of computational burden. Moreover our projection scheme,

as well as the staircase voxel based approaches, is highly

parallelizable, making possible to optimize the implementation

for speeding up the calculation.
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Fig. 1. Number of operations involved in the calculation of the 3D B-spline
based projector, as a function of the B-spline degree and the number of voxels
in each direction, compared with the distance driven projector.

III. RESULTS ON 2D FAN BEAM RECONSTRUCTIONS

A linear detector, linked to the fan beam source, is consid-

ered. The set source-detector rotates around the 2-dimensional

object of interest. The B-spline coefficients of the image c,



are reconstructed from the set of projections g = {gθ|θ ∈ Θ},

where Θ is the set of projection angles, by minimization of:

c = argmin
ĉ

∑

θ∈Θ

||gθ − Rθ · ĉ||2
W

︸ ︷︷ ︸

data residuals

+ µ ·Ψ(Φ · ĉ)
︸ ︷︷ ︸

regularization term

(10)

where || · ||2
W

corresponds to the weighted least squares term.

The weighting matrix W is the inverse of the noise covariance.

Ψ : f 7→ Ψ(f) is a regularization operator applied to the image

in the samples space. The interpolation operator Φ, which

transforms the B-spline coefficients in samples values, can be

applied using fast digital filtering operations [16] [17] [18], as

well as its inverse. Thus the additional computational burden

is negligible. The regularization we use is a relaxed total

variation prior [14]. The minimization of (10) is performed

with a quasi-Newton optimization algorithm: the L-BFGS

method [13].
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Fig. 2. (a) Reconstructions of a Shepp-Logan phantom 256×256, from a set
of 60 projections with 512 detector pixels, with both the B-spline projector
using cubic B-splines and the distance driven projector. Visualization in
Hounsfield units. Reconstructions from noisy data (additional non-stationary
Gaussian noise with a signal to noise ratio of about 3000), obtained with
the value of µ giving the best visual image quality. (b) Normalized root
mean square error in 2 regions of interest (ROI) of the reconstructed image,
for various values of the hyperparameter µ (logarithmic scale). The ROIs
are indicated on the image, with the corresponding color on the graphs.
Solid curves : reconstructions with the B-spline projector. Dashed curves :
reconstructions with the distance driven projector.

Fig.2 shows some of the previous results obtained in [12].

We had reconstructed a 256×256 Shepp-Logan phantom, from

a set of 60 projections with 512 detector pixels, calculated

analytically. The sampling rate was the same for both voxels

and detector pixels. The reconstructions were performed with

both our B-spline based projector, using cubic B-splines, and

the distance driven projector, for comparison. The data were

corrupted by a non-stationary Gaussian noise, with a signal to

noise ratio approximately 3000.

Fig.2(a) displays some reconstructed images, obtained in

[12]. The best value of the hyperparameter µ is found, which

gives the best qualitative visual quality of the reconstructed

1 7 13 19

Fig. 3. Dynamic Shepp-Logan phantom 512× 512. A 5 seconds period of
motion is chosen and 25 frames are extracted. The frames 1, 7, 13 and 19

are represented. The position of each frame’s date in the temporal sinusoidal
signal is indicated. The red ellipse corresponds to the trajectory of the small
circular insert in the left big ellipse distorted over time.

image. Our B-spline based projector leads to a better im-

age quality than distance driven, without regularizing a lot.

Fig.2(b) shows curves of the normalized root mean square

error (RMSE), calculated on 2 regions of interest (ROI) taken

on the image, as a function of the hyperparameter µ, using

both the B-spline based projector using cubic B-splines (solid

curves) and the distance driven projector (dashed curves). The

curves show that, for each ROI, the B-spline based projector’s

RMSE is always lower than the distance driven projector’s

RMSE. Thus for this given evaluation metric, our projector

shows again the best performances.

IV. APPLICATION ON SIMULATED 2D DYNAMIC X-RAY

GATED CT

We experiment our projector in the context of dynamic

X-ray tomography. More precisely we simulate a 2D case

of gated iterative reconstruction of a Shepp-Logan phantom,

some ellipses of which see its parameters periodically moving

over time (semi-minor or major axis, center’s position). Hence

the motion of the phantom’s ellipses can be either translations

or distorsions. The temporal signal associated to the periodic

variation of the parameters is a sinus function, that is to say

that the speed of motion is not constant over a period. Fig.3

shows frames of the simulated object. Each frame’s size is

512 × 512. The speed of the motion is almost the fastest for

frames 1 and 13, and almost the slowest for frames 7 and 19.

For instance the trajectory of motion of the small circular insert

in the left big ellipse is indicated on Fig.3 for illustration. The

position of the frame’s date in the temporal sinusoidal signal

is also indicated.

The geometry of the acquisition system is the same as in III,

but now a period is defined for a whole rotation of the detector

around the object. We choose this acquisition time to be equal

to 120 seconds. During this period, 600 projections, regularly

spaced in time, and on 360◦, are simulated analytically from

the state of the object at the corresponding date. The period

of motion lasts 5 seconds. As a result 24 periods of motion

occur during the acquisition. We want to be in gated mode, so

we reconstruct 25 frames of a period of motion of the object,

such that a given projection is exactly registered to a given

frame. Hence we have 25 frames, each one repeated 24 times

during the acquisition, thus associated with 24 projections

regularly spaced on 360◦. It is very important to notice that

this problem results in reconstructing each frame from very

angularly undersampled data.
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Fig. 4. Frame 13 of the reconstructed gated 128 × 128 Shepp-Logan
sequence, with both the B-spline projector using cubic B-splines (right)
and the distance driven projector (left). The reconstructed images are re-
interpolated on a finer 512× 512 grid, using cubic B-spline interpolator.
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gated 128 × 128 Shepp-Logan sequence, with both the B-spline projector
using cubic B-splines (right) and the distance driven projector (left). The
reconstructed images are re-interpolated on a finer 512 × 512 grid, using
cubic B-spline interpolator.

From this set of projections, we perform gated reconstruc-

tions of the 25 frames. The reconstruction of this sequence is

performed globally, each frame reconstruction following the

same optimization scheme as in Eq.10, for the data residuals’

part. A global spatio-temporal regularization is performed

on the ”2D + time” sequence, which consists in the same

regularizer used in III, but extended to 3 dimensions to take

into account the temporal correlation between frames.

Fig.4 shows preliminary results of reconstructions, with

both our B-spline based projector, using cubic B-splines, and

the distance driven projector, for comparison. We focus our

visualization on a single frame, the 13th, at which the speed

of the motion is faster. The reconstructed 128 × 128 images

are re-interpolated on a finer 512 × 512 grid, using a cubic

B-spline interpolator, for a better image quality. We can see

the better visual quality of the frame reconstructed with our

B-spline projector.

Fig.5 shows profiles of the reconstructions shown in Fig.4,

for a more precise evaluation. Again the superior ability of

our projector to recover finer details is visible.

V. CONCLUSION AND FURTHER WORKS

We have presented a new type of numerical projector for

iterative reconstruction in tomography. It is based on the use

of a basis of separable 3D B-splines, which is much more

adapted for data modelization than the staircase voxels.

We have demonstrated the better accuracy of our projec-

tor based on cubic B-splines, on 2-dimensional regularized

iterative reconstructions, from simulated data, using a small

number of projections, compared with the distance driven

projector.

We also have studied its behaviour in the context of dynamic

gated X-ray tomography. The fact that the temporal dimension

has to be included in the reconstructed image, i.e. it becomes

a ”2D + time” image, reduces drastically the number of

projections available for a given temporal frame. Preliminary

results have again shown that the accuracy of the projector is

a key point to deal with this lack of data in the reconstruction

process, and to make the best use of available information.
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